
Response to reviewers' comments:
# Response to Reviewer 1
Reviewer #1:Convective wind gusts (GCs) cause great structural damage and serious hazards.
This paper designs a physics-constrained model (namely by an improved PhyDNet) for 0-2 h of
quantitative CGs nowcasting with a spatial resolution of 0.01°×0.01°and a 6-minute temporal
resolution. The structure of the forecast neural network is designed interesting, which contains a
temporal attention module. In addition, this model combines sufficient situ observations and radar
data. I admire the author's dedication to such detailed work. I only have some minor points to
make before being published.

We appreciated the constructive and detailed comments from the reviewer, which helped us
greatly to improve the manuscript. Please find the detailed responses to each comment below.

[Comments]
I DATA

① The wind data the authors used is from automatic weather stations (AWSs), and they are few
wind observation data on the seacoast (and even over the sea) from Figure 1b. I wonder how to
interpolate the wind data over the sea, whether to set it to 0 directly. Please clarify the detailed
information on the IDW interpolation method.
Response: Thanks for your suggestion. In this study, we employed the Inverse distance-weighted
(IDW) algorithm for wind data interpolation. For each grid point, we used the nearest four stations
within a 15 km radius to perform the interpolation. In the case of sea areas, due to the lack of
weather stations, the condition of having four stations within a 15 km radius is not met, resulting
in many 'nan' values over the sea.

Additionally, since accurate wind speed observations are lacking over the sea, the
interpolation in coastal areas may also have significant errors. To address this issue, we used the
Natural Earth land-sea dataset to create a mask for the sea areas. We set a special value (here we
set to 0) for the sea areas and assigned a weight of 0 to these regions during the training process.
This ensures that the sea areas do not contribute to the backpropagation optimization.

② If the wind data over the sea is 0, please give some analyses on whether this approach affects
model performance, such as causing underestimations on PWGS to some extent.

Response: As mentioned above, we set the wind data over the sea as 0. During the training
process, we mask the wind data on the sea areas by setting the weight of the loss function to 0.
This is done to minimize the loss in forecasting gusts on land areas. Although we minimized the
loss by masking the wind data during the calculation, errors still exist because the convolution
calculation still involves the coastal areas. Setting the wind data on the seacoast and over the sea
to 0 or a special value will not affect the model training, as the values on the seacoast and over the
sea do not participate in the model's backpropagation optimization. However, during the forward
propagation process, which is the forecasting process, the special values on the seacoast (and over
the sea) still participate in the convolutional operations. Thus the ASWS or PWGS close to the
seacoast may be slightly underestimated.



If the wind data over the sea is set to 0, but the seacoast areas are still included in the loss
calculation, it could significantly impact the results and result in more pronounced
underestimations.
We have added explanations for this in the revised manscript (Lines 80-81 and 86-91) : “Note

that there are limited wind observation data available on the seacoast/over the sea, and as a result,
this study focuses on gust forecasting in the land region of eastern China.” “The wind observation
data on the seacoast and over the sea was set to 0. Subsequently, during the training process, we
masked the wind data on the seacoast and over the sea by setting the weight of the loss function to
0. This ensures that the sea areas do not contribute to the backpropagation optimization. However,
the values in the sea areas still participate in the convolutional operations during the forward
propagation process, which could lead to a slight underestimation of the ASWS or PWGS values
in areas close to the seacoast.”

③ The same interpolation problem also emerges in radar reflectivity. There are 10 weather radar
stations in eastern China, and how to interpolate them into grided data. I suggest the authors
exhibit some exemplificative image pairs for ASWS/radar data and processed gridded data.
Response: Thanks for your suggestion. The 3 km radar reflecticity/RMOS data was obtained from
the operational Doppler weather radar 3-D digital mosaic system developed by the Chinese
Academy of Meteorological Sciences (Wang et al., 2009). This system integrates data from
multiple Doppler weather radar stations across eastern China, providing a comprehensive and
high-resolution representation of the atmosphere at a 3 km altitude. The system can provide
quality controlled base data, 3-D reflectivity grid data of single site, 3-D mosaic reflectivity and
some derived products base on mosaic base data, which are useful not only for operational work,
but also for scientific research.
For specific data processing, it converts the radar scan data from polar coordinates to Cartesian

coordinates using a two-step interpolation process. First, it applies a nearest-neighbor interpolation
method in the radial direction. Second, it uses vertical linear interpolation in the azimuthal
direction.
To combine the gridded reflectivity fields from multiple radar stations, the systerm stitches

them together, ensuring appropriate overlap in many regions, particularly in the middle and upper
troposphere where data from multiple radars are available. After that, an exponential weighting
interpolation method based on the distance between individual grid cells and radar locations is
used to obtain interpolated results at an altitude of 3 km. More details of radar data interpolation
can be found in (Wang et al., 2009).

We have added the mentioned radar data interpolation into the revised manuscript (Lines
105-107).

Reference:
Wang, H., Liu, L., Wang, G., Zhuang, W., Zhang, Z., and Chen, X.: Development and application
of the Doppler weather radar 3-D digital mosaic system, Journal of Applied Meteorological
Science, 20, 214–224, 2009 (in Chinese).

④ Is the data the authors used open-source? If so, please clarify the web links of them.
Response: Yes, the data we used is open-source. Please find the wind observation data and radar



data files at this site: https://doi.org/10.7910/DVN/PIZU7V. We also have added this in the “Code
availability” section of the revised manuscript (Page 24).

II MODEL

① Please clarify the detailed structures of the convolutional encoder and decoder in Appendix,

and the feature map shapes of ℎ�, ℎ�, ℎ�, and ℎ�.

Response: Thanks for your detailed suggestion. The detailed structures of the convolutional
encoder and decoder are shown in Table S1. The input image shape is
batch_size×sequence_length×channels×width×height. Specifically, batch size is set to 2, input
sequence length is 10. The feature map shapes showed in the convolutional and deconvolutional
layers are just channels×width×height. After each convolutional layer in the encoder, there is a
Group Normalization followed by a LeakyReLU activation function. Similarly, in the decoder, a
Group Normalization and a LeakyReLU activation function follow each deconvolution layer,
except for the fourth deconvolution layer.

The feature map shapes of ℎ�, ℎ�, ℎ�, and ℎ� are both 128×30×35. We also have added this in
supplement of the revised manscript.

Table S1 Parameter settings in encoder and decoder. "Conv" denotes convolutional layer in encoder,
“Deconv” denotes deconvolutional layer in decoder.
Encoder Input size Kernel size /stride Decoder Input size Kernel size /stride

Conv1 2×480×560 3×3/(2,2) Deconv1 128×30×35 3×3/(2,2)

Conv2 16×240×280 3×3/(2,2) Deconv2 64×60×70 3×3/(2,2)

Conv3 32×120×140 3×3/(2,2) Deconv3 32×120×140 3×3/(2,2)

Conv4 64×60×70 3×3/(2,2) Deconv4 16×240×280 3×3/(2,2)

Encoder output size: 128×30×35 Decoder output size: 2×480×560

② What is the difference between ℎ� and ℎ�? In Equation (4), ℎ� is the summation of ℎ� and ℎ�.

However, in Figure 3, ℎ� is from some transformation of ℎ�, and ℎ� is the summation of ℎ� and

ℎ�. Please unify the illustration.

Response: Thanks for pointing out this. After careful checking, ℎ� is actually ℎ�. Specifically, ℎ�

is the summation of ℎ� and ℎ�, and it is fed into the deconvolutional units to calculate the
predictions. We have corrected this mistake and modified Figure 1 (shown below) in the revised
manuscript.

https://doi.org/10.7910/DVN/PIZU7V


Figure 1. Illustration of CGsNet. The encoder is to the left of the dotted red line, and the decoder
is to the right. ��

�,� and ���
�,� are the observed and forecasted ASWS/RMOS fields, respectively.

ℎ�
� indicate the input tensors calculated by the convolution units. ℎ�

� and ℎ�
� indicate the hidden

states of ConvLSTM and PhyCell, respectively. ℎ�
� represents the hidden state that combines the

values from ℎ�
� and ℎ�

� .

③ From the example of Figure 3, I wonder if there are 4 individual attention modules

corresponding to the output length. And the effect of the attention is to find the most significant

historical information from the input sequence. For example, when predicting � , the attention

module can assign weights for {ℎ�−4
� , ℎ�−3

� , ℎ�−2
� , ℎ�−1

� } , and when prediction � + 1, the

attention module can assign weights for {ℎ�−4
� , ℎ�−3

� , ℎ�−2
� , ℎ�−1

� } as well, or for {ℎ�−3
� , ℎ�−2

� ,

ℎ�−1
� , ℎ��}.

Response: Yes, when predicting ���
�,� , the attention module can assign weights for {ℎ�−4

� , ℎ�−3
� ,

ℎ�−2
� , ℎ�−1

� } , and when predicting ���+1
�,� , the attention module can assign weights for {ℎ�−3

� , ℎ�−2
� ,

ℎ�−1
� , ℎ��}. We have added this explanation into the revised manscript (Lines 154-156): “The
effect of the attention mechanism operation is to find the most significant historical information
from the input sequences, e.g., when predicting ���+1

�,� , the attention module can assign weights for
{ℎ�−�

� ,, …, ℎ��}.”

④ There is no � on the right side of Equation (1), how to obtain ��� (∀� ∈ [1, �])?

Response:Thanks for pointing out this. After careful checking, we modified Equation (1) as:

E
tk t ks W h b   , ∀� ∈ [1, �]. Then ��� is calculated by input ��� and it can be interpreted as

the relative importance of the k-th ℎm. Please check this in the Equation (1) of the revised
manuscript.



⑤ Please give the detailed calculation process of PhyDNet and ConvLSTM in Appendix.

Response: Thanks for your suggestion. We have added the deailed calculation process of PhyDNet
(the main module: PhyCell) and ConvLSTM in supplement, as follows:

1) PhyCell
PhyCell is a physical cell of PhyDNet (Guen and Thome, 2020b), whose dynamics are

governed by the PDE response function ��(��, �):
�� �, � ≔ Φ � + ∁(�, �) (1)

where Φ � represents a physical predictor modeling only the latent dynamics, and the ∁(�, �)
represents a correction term, modeling the interaction between input data and latent state. Φ �
can be modeled as:

Φ �(t, �) = �,�:�+�≤� ��,�
��+��
������� (�, x) (2)

Φ �(t, �) combines the spatial derivatives with coefficients ��,� up to a certain differential
order q. A wide range of classical physical models, e.g., the wave equation and heat equation, can
be subsumed in this generic class of linear PDEs.

The discrete time PhyCell with the standard forward Euler numerical scheme can be written
as:

� � + 1 = 1 − �� ⊙ �� + Φ �� + �� ⊙ �(��) (3)
where ⊙ denotes the Hadamard product; �� is a gating factor; and �(��) indicates the new
observed input. Here we write the equivalent two-steps for Eq (3):

���+1 = �� + Φ(��) Prediction (4)
��+1 = ���+1 + �� ⊙ (�(��) − ���+1) Correction (5)

The Eq (4) represents the prediction step, which is a physically-constrained motion in latent
space, and it computes the intermediate representation: ���+1 . The correction step in Eq (5)
incorporates the input data. The decoupling between prediction and correction can be used to
robustly train the model in missing data contests and long-term forecasting. Besides, the trade-off
between both steps is controlled by ��, which can be interpreted as the Kalman gain.

The physical predictor Φ in Eq (4) is implemented by using a convolutional neural network,
based on the connection between convolutions and differentiations. The 1×1 convolutions are used
to linearly combine the derivatives with ��,� coefficients in Eq (2). Moreover, the Kalman gain ��

is approximated by a gate with learned convolution kernels �ℎ, �� and bias ��:
�� = tanh (�ℎ ∗ ���+1 + �� ∗ � �� + ��) (6)

where * respent the convolutional operator. If �� = 0, the dynamic follows the physical predictor;
if �� = 1, the latent will be reset and only driven by the input.

PhyCell is an atomic recurrent cell used for building physically-constrained RNNs. The
PhyDNet here uses one layer of PhyCell, which can also be easily stacked to build more complex
models.

2) ConvLSTM
ConvLSTM is a variant of the long short-term memory network (Shi et al., 2015), which is a

fundamental and effective spatiotemporal recurrent structure for spatiotemporal modeling. The
ConvLSTM uses the forget gate, input gate, and output gate to update its cell and hidden states.
The input gate controls how much of the new information will be added to the memory cell. The



forget gate is used to control how much of the previous information will be forgotten from the
memory cell, while the cell information which will be propagated to the new gate is controlled by
the output gate. The calculation processes of the ConvLSTM are as follows:

�� = � ��� ∗ �� + �ℎ� ∗ ℎ�−1 + ��� ⊙ ��−1 + �� (7)
�� = � ��� ∗ �� + �ℎ� ∗ ℎ�−1 + ��� ⊙ ��−1 + �� (8)

�� = �� ⊙ ��−1 + �� ⊙ ���ℎ ��� ∗ �� + �ℎ� ∗ ℎ�−1 + �� (9)
�� = � ��� ∗ �� + �ℎ� ∗ ℎ�−1 + ��� ⊙ �� + �� (10)

ℎ� = �� ⊙ tanh (��) (11)
where � is the sigmoid activation function. Besides, ��, ��, ℎ� , ��, �� , and �� represent input,
memory cell, hidden state, input gate, forget gate, and output gate, respectively. Bias � and
weight � both represent learning parameters.

References:

Guen, V. L. and Thome, N.: Disentangling physical dynamics from unknown factors for
unsupervised video prediction, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11 474–11 484,
https://doi.org/10.1109/CVPR42600.2020.01149, 2020b.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-c.: Convolutional LSTM
network: A machine learning approach for precipitation nowcasting, Advances in neural
information processing systems, 28, https://doi.org/10.1007/978-3-319-21233-3_6, 2015.

⑥ About the physics-constraint concept mentioned in Introduction and Model architecture

(namely PhyDNet), I think the authors should cite the “inductive biases” from

doi.org/10.1038/s42254-021-00314-5, which can be interpreted by designing specialized network

architectures that implicitly embed prior knowledge and satisfy a set of given physical laws.

Response: Thanks for your suggestion. We have cited the “inductive biases” in the Model
architecture section: “PhyDNet steers the learning process toward identifying physically consistent
solutions by introducing an appropriate inductive bias (Karniadakis et al., 2021), that is, implicitly
embedding prior knowledge in the network architecture and satisfying a given set of physical
laws.” (see Lines 126-128 in revised manuscript).

Reference:

Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al.: Physics-informed machine learning, Nature
Reviews Physics, 3, 422–440, https://doi.org/10.1038/s42254-021-00314-5, 2021.

III EXPERIMENT

1 Please append an ablation study on the proposed attention module.
Response: Thanks for the suggestion. As suggested, we have added an ablation study on the
attention module. Specifically, we compared the performance of PhyDNet (without attention) with
CGsNet. Table 2, Figure 4-6 show the results of the ablation study, which indicate that the

https://doi.org/10.1038/s42254-021-00314-5


forecasting performance of CGsNet for ASWS is superior to that of PhyDNet. These results
suggest that the attention mechanism proposed in CGsNet is effective and can significantly
improve the accuracy of ASWS forecasting. Overall, the results confirm that CGsNet is reliable
and accurate for ASWS nowcasting. Detailed comparative descriptions can be found in Sections
4.1 and 4.2 of the revised manuscript.

Table 2. Quantitative results of CGsNet and PhyDNet on ASWS nowcasting. 95% CI represent
the 95% confidence interval of the indices.

Figure 4. The CGsNet and PhyDNet results for different nowcasting lead times of ASWS at
thresholds of 8.0 m/s, 10.8 m/s, and 13.9 m/s.The shaded red and green areas represent the 95%
confidence intervals of the CGsNet and PhyDNet indices, respectively.



Figure 5. Observations (first row), CGsNet forecasts (second row), and PhyDNet forecasts (third
row) of ASWS in eastern China, 30 April 2021, 20:12-22:12 BJT. Note that forecasting started at
20:12, and the observations and forecasts are shown at intervals of 30 min.

Figure 6. Same as Figure 5, but for 15 May 2021, 13:00-15:00 BJT.



Response to reviewers' comments:

# Response to Reviewer 2
Reviewer #2:This paper describes the use of a neural network for predicting convective wind gusts
at lead times of 6-120 minutes. The neural network includes several architectural components that
have recently been developed in the field of deep learning. These include pieces of the recurrent
neural net (RNN) architecture, where the prediction at the kth lead time becomes an input
(predictor) to the neural network to predict at the (k + 1)th lead time; the attention mechanism,
where the neural network can automatically determine the most important steps in a time series of
predictor values; and PhyCell, which incorporates partial differential equations (PDE). The neural
network predicts convective wind gusts on a 1-km grid covering eastern China. The authors
compare their results to a baseline model called INCA and demonstrate (albeit without
significance-testing) that their neural network, which they call CGsNet, outperforms INCA.
Overall, the quality of both the writing and science are very good. I have a handful of major
comments, which are made as inline comments in the attached PDF but also summarized below.
Minor comments are not summarized below and can be seen only in the attached PDF.

Thanks for the constructive and detailed comments, which help us improve the manuscript
significantly. We considered all comments and carefully revised all comments in the revised
manuscript. Below is the point-to-point response to major and minor comments.

[Major comments]
1. The abstract contains several unclear/unjustified statements. See inline comments.
Response:Thanks for your detailed suggestion. We have revised the abstract section, addressing
previously unclear or unjustified statements. Please check abstract section in the revised
manuscript. About several comments, the responses are as follow:
1) Line 5: Do you mean "at 0--2-hour lead time"?
Yes. We have modified this and made it clear (see Line 5).

2) Line 5: What do you mean by "first"? That your approach is the first ever to achieve
minute-/km-level forecasts?
In fact, accurately forecasting CGs at the minute-kilometer-level has been a challenge, with few
past studies achieving this goal. While fine-scale numerical experiments can predict CGs at this
level, they often require long computation times on the order of several hours, making them
unsuitable for nowcasting needs. Therefore, we have removed the word "first" in the revised
manuscript for the sake of accuracy.

3) Line 7: What do you mean by "spatiotemporally consistent"? This was never discussed in the
paper.
The “spatiotemporally consistent” means that the CGs forecasts are continuous in temporal and
spatial within the 0-2 hour forecast window. Unlike traditional extrapolation-based forecasting
algorithms such as SCIT (Storm Cell Identification and Tracking) (Johnson et al., 1998), which
focus on convective cells and require identification of these cells before issuing extrapolation
forecasts and rough early warnings for affected areas, our algorithm can perform 2D grid-based
forecasts with 6-minute updates in all weather conditions. Therefore, we describe our algorithm as



spatiotemporally consistent.

Reference:
Johnson, J. T., MacKeen, P. L., Witt, A., Mitchell, E. D. W., Stumpf, G. J., Eilts, M. D., &
Thomas, K. W.: The storm cell identification and tracking algorithm: An enhanced WSR-88D
algorithm, Weather and forecasting, 13(2), 263-276,
https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2, 1998.

4) Line 14: “alerts the damaging wind events in meteorological services.” --This suggests that
your model is used in operations already -- based on the rest of the paper, it sounds like your
model is not yet operational.
We have removed this description.

2. Most hyperparameter choices are not justified at all. Whether hyperparameter choices were
made via experimentation or a priori reasoning, the justification should be included in the paper.
If hyperparameters were chosen by experimentation, the experiments should be documented
(although I'm okay with putting most of the details in the Appendix or Supplemental Material); if
chosen by a priori reasoning, the a priori reasoning should be explained. For examples of
unjustified hyperparameter choices, see lines 84-85, lines 150-152, and Table 1 (and inline
comments at these places).
Response:Thanks for the detailed suggestion.
(1) For the Lines 84-85: we used Inverse distance-weighted (IDW) interpolation (radius of
influence = 15 km, 4 stations, and power of 2) for interpolation. Here we first briefly explain the
IWD calculation steps, as follows:
(a) Calculating the distance d from unknown points to all points;
(b) Calculating the weight  for each point, the weight is a function of the reciprocal of the

distance:

1

p
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i K
p

i
i

d

d











, where K is the total number of discrete points. Power ( p ) is a parameter

used to calculate the influence weight of the nearest K discrete points on the interpolation site,
which controls the effect of known points on the interpolation value based on their distance from
the interpolated point.

(c) Calculating interpolation results: 0 0
1

ˆ( , ) ( , )
K

i i i
i

z x y z x y


 , where 0 0( , )x y is the

interpolation point coordinate and ( , )i ix y represents the coordinates of discrete points.

To determine the optimal parameters for the IDW interpolation, we experimented with various
combinations of the number of stations (K) and radius of influence (R) (Figure S13). In IDW
interpolation, R refers to finding the K nearest discrete points from the interpolation site within a
radius range of R. As shown in the Figure S13, it is evident that when R is set to 5 km, the
condition of having nearest discrete points/stations within a 5 km radius is not met, resulting in
many 'nan' values. This is because the distance between meteorological observation stations is 10
km. Therefore, when R is less than 10 km, the observed field cannot be adequately interpolated.

https://doi.org/10.1175/1520-0434(1998)013%3c0263:TSCIAT%3e2.0.CO;2


However, when R is set to 10 km or lager, the interpolation results do not significantly change. For
K, when taking different values ranging from 2 to 16, the interpolation results are comparable. As
K increases, the value of the interpolated point is progressively smoothed by the surrounding
discrete points. Generally, when the value of R is not less than 10 km and the value of K is not too
large, the interpolation results of the observed wind field are similar, and the results are effective.
Thus using a R of 15 km and K= 4 staions are feasible. The choice of 15 km radius of influence
allowed us to capture local variations in the data without being overly influenced by distant
stations, which might not have the same meteorological conditions. Using 4 stations ensured that
the interpolation incorporated sufficient data points.

For power, as the power value increases, the interpolated value will gradually approach the
value of the nearest point. By specifying a small power value, the influence of points farther away
will be great, resulting in a smooth plane. Based on a comprehensive analysis, we selected a
common value of power=2. The power of 2 provided a balance between the weighting of nearby
and distant stations, which has been widely used in many studies.

Figure S13. The various combinations of the number of stations (K) and radius of influence (R)
for IDW interpolation.

（2）For the lines 150-152：
To ensure the robustness and generalization ability of our model, we carefully selected the
hyperparameters through a priori reasoning. The reasons for these hyperparameter choices are as
follows:
①Batch size: the batch size of 2 was chosen based on two factors. First, a small batch size also
has good generalization ability since each batch is randomly selected, allowing the model to adapt
better to new data. Second, a small batch size helps to reduce memory usage and accelerate
training, as the samples occupy a significant amount of memory.
②Learning rate: the learning rate was set based on the settings of PhyDNet (Guen and Thome,
2020b), which involved selecting an initial learning rate of 0.001 and decreasing it if the loss
function did not decrease after several epochs of training.
③Epoch: setting the number of epochs to 50 is to ensure that the model is fully trained. When
saving the model, the one with the lowest validation loss was selected and saved.



（3）Regarding Table 1:
The thresholds parameters of loss function was mainly based on the wind speed classification
determined by the China Meteorological Administration
(https://www.cma.gov.cn/2011xzt/20120816/2012081601/201208160101/201407/t20140717_252
607.html ), as shown in the following Table S1. High weights were assigned to high wind speeds
and RMOS values since accurate predictions in these ranges are crucial for ensuring life safety
and minimizing potential damage caused by extreme weather events. For example, wind speed
greater than 20.8 m/s are considered to be particularly hazardous, and thus, predictions in this
range were given a high weight. Besides, the issue of imbalance between high wind speed data
and low wind speed data can be partially addressed by assigning different weights, as there is a
scarcity of high wind speed data samples and an abundance of low wind speed data samples. This
approach can help alleviate the problem of the insufficient number of high wind speed data
samples and enable the model to forecast areas where strong gusts occur, which is a significant
concern. The specific weights were set with reference to the settings of Shi et al (2015) and expert
advice.

Table S1. The wind speed levels defined in China
Wind level Wind speed (m/s)

0 [0.0-0.3）

1 [0.3-1.6)

2 [1.6-3.4)

3 [3.4-5.5)

4 [5.5-8.0)

5 [8.0-10.8)
6 [10.8-13.9)

7 [13.9-17.2)

8 [17.2-20.8)
9 [20.8-24.5)

……

Reference:
Guen, V. L. and Thome, N.: Disentangling physical dynamics from unknown factors for unsupervised
video prediction, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11 474–11 484, https://doi.org/10.1109/CVPR42600.2020.01149, 2020b.
Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-c.: Convolutional LSTM
network: A machine learning approach for precipitation nowcasting, Advances in neural information
processing systems, 28, https://doi.org/10.1007/978-3-319-21233-3_6, 2015.

We have also added the parameter settings mentioned above in the supplement of the revised
manuscript.

3. It seems like the authors used some kind of subsetting to create their dataset, but the subsetting
methodology is unclear. See inline comment on lines 86-88.



Response: Sorry for not clear. Given the extreme nature of CGs, not all observation periods may
contain CGs. Therefore, a preliminary data selection is necessary. CGs are identified by the China
Meteorological Administration (CMA) as having a Peak Wind Gust Speed (PWGS) of at least
17.2 m/s caused by severe atmospheric convection. Based on the relationship between ASWS and
PWGS, we selected wind speed observations with ASWS greater than 10.8 m/s, which satisfies
the condition of ASWS > 17.2/1.77 m/s (gust factor = 1.77). Additionally, precipitation often
occurs during CG events, thus wind observations with precipitation events were further selected
from the dataset with ASWS greater than 10.8 m/s. After selecting the wind observation data,
radar data corresponding spatiotemporally to the wind gust data were selected to form a dataset.
This dataset was further divided into training, validation, and testing sets.

We have clarified this in the revised manuscript (lines 92-94) as: “To further select ASWS
data associated with CGs, the samples selection need meet two concurrent principles: 1) more than
2% of stations recorded ASWS > 10.8 m/s; and 2) the precipitation at more than 5% of the stations
within an hour was greater than 0.1 mm.”

4.It is unclear how the authors handle radar data at different heights. See inline comment on lines
96-97.
Response: Thanks for the suggestion. We only used radar data (base reflectivity factor) at 3
km, and we didn’t create a grid of composite (column-maximum) reflectivity. The use of 3 km
altitude radar mosaic data offers several advantages for identifying and forecasting convective
gusts:
(1) Radar data at a 3 km altitude is less affected by ground clutter, which can obscure low-level
features and lead to false detections.
(2) It provides comprehensive and continuous coverage of the study area, which is particularly
beneficial in regions with complex terrain or large spatial gaps between radar stations.
(3) It offers a more accurate representation of storm structure compared to radar data at other
altitudes, which is essential for detecting severe weather features such as bow echo and hook echo.
These features can be crucial for improving forecast accuracy.

We have added this clarification in lines 101-104 of the revised manuscript: “The constant-altitude
radar RMOSs at 3 km are less susceptible to ground clutter compared to radar data at other
altitudes. This allows them to provide continuous and comprehensive coverage of the study area,
as well as a more accurate representation of storm structure. Thus, these constant-altitude radar
RMOSs at 3 km were used as auxiliary data along with observed wind data to forecast the speed
of CGs.”

5. The target variables (what the CGsNet is predicting) eventually become clear, but quite late in
the paper. The target variables should be clear from the beginning. See inline comment on line 107.
Response:Thanks for your suggestion. The CGsNet model can generate predictions for both
ASWS and RMOS. We primarily focuses on the forecasting results for ASWS, with the RMOS
predictions serving as auxiliary information. Therefore, the analysis is limited to ASWS only. We
have modified the description on line 107 as follows: “the outputs were the forecasted ASWS with
lead times of 6-120 minutes ahead”(see line 118); “Note that we just focus on analyzing the
forecasting results of ASWS, and the forecated RMOS is a secondary result.” (see lines 158-159).



6. Section 3.1 needs to be written more clearly. See inline comments for specific points that are
unclear.
Response: Thanks for the suggestion. About several comments, the responses are as follow:
1) What does K refer to here? The number of hidden states, or the number of time steps in the
input sequence? Or does num_hidden_states =num_time_steps_in_sequence somehow?
Yes, K is the number of time steps in the input sequence, and we have added this into the revised
manuscript (line 139). The num_hidden_states in CGsNet is not equal to
num_time_steps_in_sequence.

2) Why do the predictions have both the superscripts a (for ASWS) and r (for RMOS)? I'm
confused about what you're predicting -- is it just ASWS, or RMOS? This should be clear.
Sorry for not clear. The CGsNet can predict both ASWS and RMOS, forming a
sequence-to-sequence architecture that is well-suited for multistep prediction. It can output T
future ASWS (a) and RMOS (r) predictions, as clarified by the addition of "This forms a
sequence-to-sequence architecture suited for multistep prediction, outputting T future ASWS (a)
and RMOS (r) predictions ..." in the revised manuscript (lines 140-141).

3)What is m? Why is this superscript needed?
Here we use “m” to represent the hidden state m

ih that combines the values from c
ih and

p
ih . c

ih and p
ih indicate the hidden states of ConvLSTM and PhyCell, respectively.

4) Where do the weights come from?
This weight is refer to the αtk, each weight αtk is computed by taking E

t kh  as input, followed by a
softmax operation.

5) The caption of Figure 3: This part does not make sense. "The input and output tensors
calculated by the conv and deconv units" = 4 things: input tensor for conv unit, output for conv
unit, input for deconv unit, output for deconv. But you match this description with 2 variables

( E
ih and D

ih ), not 4 variables.

After careful checking, ℎ� is actually ℎ�. Thus, we have modified this as: “ E
ih indicate the input

tensors calculated by the convolution units, respectively”.

We have revised Section 3.1 as mentioned. Please check the Section 3.1 in the revised manuscript.

7. I don't understand how the authors split their data. Specifically, (a) I don't understand how the
training and validation data are split; (b) I don't understand why they have such an incredibly
small testing dataset for wind gusts. See inline comments on lines 146-149.
Response:Thanks for pointing out this. After the carefully checking, (a) the ASWS and RMOS
grid fields from 2016 to 2020 were used for model’s training, and the fields from June to
September 2021 and April to May 2021 were employed for ASWS validation and testing,
respectively. The fileds from May to July 2022 were used for PWGS testing. We have clarified
this in the revised manuscript in lines 163-166.
(b) We understand your concern regarding the small testing dataset for wind gusts and would like



to address them as follows:
1) Observation resolution：the PWGS observations are collected at an hourly resolution, while the
ASWS are sampled at a minute level. This difference in resolution results in a lower observation
frequency for PWGS. Therefore, within the same time frame, there are fewer PWGS data
available for testing.
2) Obtaining high-quality wind gust data is often challenging due to difficulties in accurately
measuring wind gusts and maintaining reliable measurement equipment. As a result, there is
limited availability of such data, which can lead to small testing datasets.
3) Meteorological and hydrological drought: during the year 2022, the Yangtze River Basin
experienced an extreme drought, which had a significant impact on the wind gust data. The wind
observations during this period may have significantly differed from the data distribution under
normal conditions. Therefore, we took care to select the PWGS samples, and samples from
PWGS were taken from typical CGs events recorded by the meteorological bureau (we have
added this in the revised manuscript, see lines 96-97).

To enhance the model's generalization capabilities and enable good performance during
convective gusts nowcasting, we set a low threshold for selecting ASWS samples before training
the model. This approach ensures that the model covers a broader range of wind speed data during
the learning process, improving its generalization ability under different wind speed conditions.
Meanwhile, this strategy is particularly useful when facing challenging meteorological phenomena
such as convective gusts.
In conclusion, although the testing dataset for PWGS was small, the available PWGS samples

were typical CG events and therefore highly representative. Moreover, we employed rigorous
techniques to ensure model robustness, and the use of various indices allowed us to effectively
evaluate our model's performance.

8. It seems like the authors inappropriately used their testing data for model selection; only the
validation data should be used for model selection. See inline comment on line 153.
Response: As you said, the validation data (not testing data) should be used for model selection.
Actually, we did. We described this in lines 152-153:“the model weight with the minimum loss on
the validation set was saved. The comparison and evaluation experiments were implemented on
the testing set.” The saved model means the trained model, which is the CGsNet. “The comparison
and evaluation experiments were implemented on the testing set” means that we evaluated the
trained model using the testing set and the comparison experiments with INCA also used the
testing set. The dataset was divided into three sets - training, validation, and testing - in
chronological order, with no overlap between them, ensuring their independence. The testing set
served as one final, independent assessment of the models' performance. For clarity, we have
modified the above sentence as: “the model weight with the minimum loss on the validation set
was selected and saved. Then the evaluation experiments were implemented on the testing set.”
(lines 169-170)

9. The comparison of a custom loss function to data augmentation is highly erroneous. See inline
comment on line 164.
Response: You’re right. It’s a mistake. In fact, the weighted loss function is designed to



ameliorate the issue of data imbalance caused by the scarcity of strong gust data. The custom loss
function can give a large weight to strong gusts and a small weight to weak gusts. Thus the model
can effectively learn the strong gust area during the training process and improve CG forecasting
accuracy. We have modified this in the revised manuscript (lines 182-184), as also shown in
follows.

“The weighted MAE loss is designed to ameliorate the problem of data imbalance caused by the
scarcity of strong gust data, as it gives a large weight to strong gusts and a small weight to weak
gusts.”

10. The results contain no confidence intervals or significance-testing -- in other words, no
measure of uncertainty. I emphasize this comment the most, since results without uncertainty are
nearly meaningless. All results in Figure 4 and Tables 2-4 should be accompanied by at least
confidence intervals, if not also significance tests. See inline comments for details.
Response: Thanks for the constructive suggestion. Following the suggestion, we employed the
bootstrapping method to calculate the confidence intervals for the indices in tables and figures
mentioned in our manuscript, as shown below. The results demonstrate that the evaluation indices
we computed all fall within the 95% confidence intervals, which indicates that our findings are
reliable. Additionally, we have updated the description of these tables and figures in the revised
manuscript to include information about the confidence intervals. Please check it in the revised
manuscript.

Table 2. Quantitative results of CGsNet and PhyDNet on ASWS nowcasting. 95% CI represent
the 95% confidence intervals of the indices.



Figure 4. The CGsNet and PhyDNet results for different nowcasting lead times of ASWS at
thresholds of 8.0 m/s, 10.8 m/s, and 13.9 m/s.The shaded pink and green areas represent the 95%
confidence intervals of the CGsNet and PhyDNet indices, respectively.

Table 3. Quantitative results of CGsNet and INCA on PWGS nowcasting with 95% confidence
intervals (in brackets). Note that the values in the first row of each metric represent CGsNet
results and the second row is INCA results.

Table 4. The PWGS evaluation results from CGsNet and INCA for different nowcasting lead
times at thresholds of 10.8 m/s, 13.9 m/s, 17.2 m/s and 20.8 m/s. Note that the values in the
brackets represent 95% confidence intervals, and values in the first row of each metric represent
CGsNet results and the second row is INCA results.



Figure 12. Comparison results of CGsNet and INCA on PWGS at thresholds of 10.8 m/s, 13.9
m/s, and 17.2 m/s on June 23, 2022, 18:00-20:00 BJT (Black error bars represent 95% confidence
intervals).



Figure 14. Same as Fig. 12, but for July 26, 2022, 14:00-16:00 BJT.

11. The model evaluation is lacking in detail. The authors present evaluation metrics based on the
full testing dataset (least granularity) and some individual case studies (most granularity) -- but
nothing in between (intermediate scales of granularity). The paper should include evaluation
metrics as a function of time of day (e.g., by hour), time of year (e.g., by month), geographic
location (e.g., maps with POD, CSI, FAR, etc. at each 1-by-1-km grid cell), and predicted wind
speed (i.e., the reliability curve). At the very least, I want to see reliability curves and some
division by time (either time of day or time of year). Ideally, I would like to see the evaluation
metrics broken down in all 4 ways that I have listed. Presenting evaluation metrics at varying
levels of granularity is crucial for understanding a model, especially for understanding its
strengths and weaknesses.
Response: Thanks for the detailed suggestion. For the mentioned evaluations, we have conducted
supplementary experiments: 1) evaluation of metrics as a function of time of day; 2) evaluation of
metrics as a function of time of year; 3) evaluation of metrics as a function of geographic location.
As for 4) the reliability curve of predicted wind speed, since CGsNet is a regression model and its
output cannot be transformed into probabilities, it remains as continuous values. Therefore, the
reliability curve may not be an appropriate method to evaluate CGsNet's performance. Instead, we
used a scatter plot as an alternative method to evaluate the model's performance. The results of the
supplementary experiments are presented below.

Figure 7 illustrates the CSI results of PWGS forecasts from CGsNet and INCA at different hours
of a day. The results for POD, BIAS, and FAR are shown in Figure S4-S6. The PWGS samples
were mainly obtained during the afternoon and night periods, as CGs events tend to occur during
these times, particularly in the late afternoon and evening (Firouzabadi et al., 2019). The results
demonstrate that CGsNet outperforms INCA in forecasting PWGS at different thresholds, with



overall superior forecast performance. However, the performance of both models declines as the
PWGS threshold increases. Despite CGsNet's superiority, its performance is less stable than that
of INCA across different hours, exhibiting significant variability. For example, at 21:00 (BJT), the
performance of CGsNet declines, and even when PWGS > 10.8 m/s, its performance (CSI and
POD) is worse than INCA. At PWGS > 17.2m/s, the confidence intervals of CGsNet and INCA
are both wide, while some CSI and POD values of INCA fall outside the confidence intervals and
exhibit almost no predictability for CGs during 20:00-24:00 (BJT) (CSI=0, POD=0). Additionally,
when the PWGS threshold is 20.8 m/s, neither CGsNet nor INCA is skillful in CGs nowcasting
between 20:00 and 24:00 (BJT), with CGsNet showing a higher FAR than INCA (Figure S6).
These may be attributed to the fact that strong gusts occur less frequently during these times,
resulting in fewer high-value PWGS samples and highlighting the imbalance of wind data.

Figure 7. The CSI results of PWGS forecasts from CGsNet and INCA for different hours of a day
at thresholds of 10.8 m/s, 13.9 m/s 17.2 m/s, and 20.8 m/s.The shaded pink and purple areas
represent the 95% confidence intervals of the CGsNet and INCA indices, respectively.



Figure S4. Same as Figure 7, but for POD.

Figure S5. Same as Figure 7, but for BIAS.



Figure S6. Same as Figure 7, but for FAR.

The evaluation results for the PWGS forecasts of CGsNet and INCA in different months of a year
are illustrated in Figure 8 and Figure S7-S9. At different PWGS thresholds, CGsNet outperforms
INCA in terms of CSI and POD for PWGS forecasts from May to July, while FAR is lower than
INCA. However, there are large confidence intervals in the calculated evaluation metrics at
PWGS thresholds of 17.2 m/s and 20.8 m/s due to the low number of strong gusts samples,
leading to uncertainty. Moreover, for PWGS > 20.8 m/s, both CGsNet and INCA exhibit almost
no predictability for PWGS forecasts in May and June. Additionally, CGsNet's forecast
performance generally improves with increasing months, while INCA exhibits a fluctuation in
June PWGS forecasting and overall better performance in July PWGS forecasting compared to
May PWGS forecasting.



Figure 8. The CSI results of PWGS forecasts from CGsNet and INCA for different months of a
year at thresholds of 10.8 m/s, 13.9 m/s 17.2 m/s, and 20.8 m/s.The shaded pink and purple areas
represent the 95% confidence intervals of the CGsNet and INCA indices, respectively.

Figure S7. Same as Figure 8, but for POD.



Figure S8. Same as Figure 8, but for BIAS.

Figure S9. Same as Figure 8, but for FAR.

To better understand the performance of the model, we evaluated the forecasting performance of
CGsNet and INCA for PWGS using different indicators across different geographic locations
within the study area. Figure 9 displays the results for CSI, while the results for POD, BIAS, and
FAR are provided in Figure S10-S12. CGsNet shows better performance than INCA in forecasting



PWGS at different thresholds. As the threshold increases, the forecasting performance of CGsNet
decreases. This may be due to two reasons. Firstly, there is a reduction in the number of observed
PWGS samples, as some areas do not experience CGs events, resulting in an evaluation value of 0
for those areas. Secondly, CGsNet has limitations in its forecasting ability, particularly for
extreme PWGS (>20.8 m/s), which is mainly owing to the imbalance of observed strong and weak
wind data. Specifically, for the PWGS thresholds are at 10.8 m/s and 13.9 m/s, CGsNet exhibits a
outstanding ability to forecast PWGS for diverse regions in Jiangsu (excluding the edge areas),
with most areas achieving CSI and POD values above 0.8. Conversely, INCA's forecasting
performance is poor for most areas, with relatively better results in the southwest of Jiangsu.
However, even in these regions, INCA's performance is still inferior to that of CGsNet. Although
INCA outperforms CGsNet in terms of CSI and POD evaluation results for a PWGS threshold of
10.8 m/s in the Anhui Province region, but INCA exhibits high FAR and poor BIAS in this area.
For PWGS > 17.2 m/s, CGsNet shows good forecasting results in central, northern, and southern
Jiangsu, while INCA only performs well in a few stations in southwestern Jiangsu. When
PWGS > 20.8 m/s, both CGsNet and INCA exhibit poor forecasting skill, and only a few stations
can be effectively forecasted. Additionally, CGsNet and INCA show poor forecasting
performance in regions outside of Jiangsu, due to the dominance of CGs occurring in Jiangsu in
the PWGS test dataset, with limited samples from outside the Jiangsu. Obtaining more PWGS
evaluation samples outside of Jiangsu in future studies could address this issue.

Figure 9. The CSI results of PWGS forecasts from CGsNet and INCA for different areas at
thresholds of 10.8 m/s, 13.9 m/s 17.2 m/s, and 20.8 m/s.



Figure S10. Same as Figure 9, but for POD.

Figure S11. Same as Figure 9, but for BIAS.

Figure S12. Same as Figure 9, but for FAR.

A scatter plot of observed and forecasted PWGS is presented in Figure 10 for further comparison.
The results indicate that although CGsNet slightly underestimates PWGS, it performs well for
PWGS values less than about 12 m/s. However, its performance decreases, and a bias in PWGS
forecasts is observed for PWGS values greater than approximately 12 m/s. However, its
performance decreases and a bias in PWGS forecasts is observed for PWGS greater than about 12
m/s. In contrast, INCA has a obvious overestimation for PWGS < 12 m/s, and the PWGS forecasts
have a large deviation, not corresponding well to the observations. Additionally, the performance
of INCA for high PWGS values is also poor, which is of great concern. In summary, the results
indicate that the developed CGsNet is helpful to improve the accuracy of CGs nowcasting and
more skillful than INCA, although it tends to underestimate strong gusts.



Figure 10. Scatter plot of observation and forecasted PWGS, (a) CGsNet forecasts vs. observation,
(b) INCA forecasts vs. observation.

We also have added the mentioned results of the supplementary experiments into the Section 4.3.2
of the revised manuscript, and some figures (e.g., Figure S4, S5, S6, …) are in supplement of the
revised manuscript.

Reference:
Firouzabadi, M., Mirzaei, M., and Mohebalhojeh, A. R.: The climatology of severe convective
storms in Tehran, Atmospheric Research, 221, 34–45,
https://doi.org/10.1016/j.atmosres.2019.01.026, 2019

12. The authors' interpretation of Figure 5 does not seem to be justified. See inline comments on
Figure 5 itself and also lines 226-227.
Response: Done as suggested. We have modified and added the interpretation of Figure 5 in the
revised manuscript (lines 263-267): “Specifically, the CGsNet model struggles to accurately
forecast regions with strong gusts (ASWS > 10.8 m/s) and produced nowcasts that are slightly
northward (approximately 50 km) of the observed locations. Additionally, in regions with strong
gusts (ASWS > 10.8 m/s), both CGsNet and PhyDNet underestimate the ASWS values, with
PhyDNet showing a larger underestimation. Some false reports are also found from both models
in the areas where 8.0 m/s < ASWS < 10.8 m/s, indicating that the modeling ability of CGsNet is
limited.”
We have also addressed this issue in the conclusion section: “In addition to these achievements,
there are some points requiring further discussion and investigation. For example, the intensity of
ASWS and PWGS sometimes is underestimated (especially for strong gusts, i.e., PWGS>20.8 m/s)
or there is sometimes a spatial offset between the forecasted and observed strong gusts, which may
be caused by several different factors. …” (lines 430-432 in the revised manuscript)

[Minor comments]
The other minor comments suggested in the PDF:



1.The typos and grammatical errors, e.g., line 15: Typo. Replace with "nontornadic", line 83:
Replace with "Thus".
Response: We have carefully checked the manuscript and corrected the pointing out typos and
grammar errors.

2.Lines 40-42:“Many previous studies have mainly focused on potential severe convective
weather (SCW) forecasting (McNulty, 1995; Doswell et al., 1996) or the possibility of classified
SCW forecasting (Zhou et al., 2019; Lagerquist et al., 2017), while quantitative CGs nowcasting
has rarely been reported.” I don't understand the difference between the two approaches you're
highlighting: "potential SCW-forecasting or classified SCW-forecasting" versus "quantitative
CG-nowcasting". Do you mean that the previous approaches were doing classification
(probability of wind exceeding a threshold) while you're doing regression (predicting the exact
wind speed in m/s)?
Response:Yes. Many previous studies have primarily focused on classification (probability of
wind exceeding a threshold) while we predict the exact wind speed in m/s.

3.Line 59: “objective-possibility forecasting”
Response: Thanks for pointing out this mistake. We modified this as “probabilistic forecasting”.

4.Line 104 and line 146: How exactly do you separate the three datasets? Do training, validation,
and testing all contain different years (example: 2016-2019 for training, 2020-2021 for validation,
2022 for testing)? Or what?
Response: Thanks for the comment. The ASWS and RMOS grid fields from 2016 to 2020 were
used for model’s training, and the fields from June to September 2021 and April to May 2021
were employed for ASWS validation and testing, respectively. The fields from May to July 2022
were used for PWGS testing. We have clarified this in the revised manuscript in lines 163-166.

5. Line 192: Why these specific ranges? Also, why is there an upper bound on these ranges? Why
not just evaluate ASWS in the range > 8.0 m/s and PWGS in the range > 10.8 m/s?
Response:Actually, we evaluated ASWS in the range > 8.0 m/s and PWGS in the range > 10.8 m/s.
Originally, our intention was to express graded evaluation here, not just evaluate this specific
range. The evaluation of wind speed levels is primarily based on the wind speed classification
determined by the China Meteorological Administration. We have modified this in the revised
manuscript (lines 216-217) as:’’ In particular, we concentrate on evaluating ASWS at thresholds of
8.0-13.9 m/s (e.g., ASWS > 8.0 m/s or ASWS > 13.9 m/s) and PWGS at thresholds of 10.8-20.8
m/s in CGs events.”

6. Lines 214-215: I'm unsure what to think about all your subjective assessments of skill (the
adjectives "outstanding," "decent," "skillful," etc.). Is there a baseline, i.e., another method you
can compare against? Because a lot of these results -- especially for the thresholds of 10.8 and
13.9 m/s, but also for the longer lead times at all thresholds -- seem quite poor.
Response: Thanks for reminding this. We have revised the sentences to avoid subjective
evaluation as much as possible. Furthermore, we have included an ablation study on the proposed
attention module, with PhyDNet serving as the baseline. A detailed analysis and description of this



can be found in Section 4.1 and 4.2 of the revised manuscript.

7. Lines 219 and 284: Northeast Cold Vortex--This is not a proper name, so it should not be
capitalized.
Response: Thanks for pointing out this. After carefully checking, we modified “Northeast Cold
Vortex” as “northeast China cold vortex” (Niu et al., 2021) in the revised manscript.

Reference:
Niu, Z., Zou, X., & Li, D.: Northeast China Cold Vortex Observed by FY-3 MWTS-2 and MetOp
AMSU-A, Journal of Geophysical Research: Atmospheres, 126(23), e2021JD035471, 2021.

8. Line 275 “Meanwhile, the BIAS and FAR of CGsNet are also lower than those of INCA.”: I
have two problems with the statement about bias:(1) This is not true. For the threshold of 20.8
m/s, CGsNet has a greater bias than INCA. (2) Lower bias is not always better. For example,
suppose that the two bias values are 0.50 and 1.00.
Response: Thanks for pointing out this. We have modified this as “The FAR of CGsNet is also
lower than that of INCA. Meanwhile, except for the threshold of 20.8 m/s, CGsNet consistently
exhibits better BIAS than INCA.” in the revised manscript (lines 315-316).

9.Line 304: ‘the movement and development derecho’.
Response: A derecho (pronounced similar to "deh-REY-cho") is a widespread, long-lived wind
storm that is associated with a band of rapidly moving showers or thunderstorms
(https://www.weather.gov/lmk/derecho). The CGs case on 26 July 2022 was influenced by a
derecho.

10. Line 342:Or you could compute site-specific GFs, direction-specific GFs, etc.
Response:Thanks for the suggestion. We have added this into the revised manuscript in line 441.

https://www.weather.gov/lmk/derecho
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