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Abstract. This study analyses data assimilative numerical simulations in an eddy dominated western boundary current: the

East Auckland Current (EAuC). The goal is to assess the impact of assimilating surface and subsurface data into a model of

the EAuC. We used the Regional Ocean Modelling System (ROMS) in conjunction with the 4-dimensional variational (4D-

Var) data assimilation scheme to incorporate sea surface height (SSH) and temperature (SST), and subsurface temperature,

salinity, and velocities from three moorings located at the upper, mid and lower continental slope using a 7-day assimilation5

window. Assimilation of surface fields (SSH and SST) reduced SSH root mean square deviation (rmsd) in relation to the non-

assimilative (NoDA) run. The inclusion of velocity subsurface data reduced SSH rmsd up- and downstream the moorings. By

improving the representation of the mesoscale eddy field, data assimilation increased complex correlation between modelled

and observed velocity in all experiments. However, the inclusion of temperature and salinity slightly decreased the velocity

complex correlation. The assimilative experiments had smaller SST rmsd in comparison to the NoDA run. The lack of sub-10

surface temperature for assimilation led to larger errors (>1°C) around 100 m in relation to the NoDA run. Comparisons to

independent Argo data showed similar results. Withholding subsurface temperature forces near-surface average negative tem-

perature increments that are corrected by increased net heat flux at the surface which does not affect waters at 100 m depth.

Assimilation of mooring temperature generates increments to the initial conditions that reduces 100 m water temperature rmsd.

Larger positive wind stress curl was generated in experiments that assimilated subsurface temperature data. Positive wind stress15

curl generates convergence and downwelling which is another way of correcting the upper thermocline cold bias. The larger

positive wind stress curl might also be responsible for decreased velocity correlation in the experiments that assimilated tem-

perature and salinity. The few moored CTDs (8) had little impact in correcting salinity, however, using doubled decorrelation

length scales of tracers and a 2-day assimilation window improved model salinity in comparison to independent Argo data. In

addition, the results were similar to the global reanalysis HYCOM-NCODA which assimilates Argo profiles and was used as20

boundary condition. HYCOM-NCODA had near zero velocity complex correlation on the mid-slope, whereas all reanalyses

showed improved results which highlights the benefit of downscaling to a regional model of the EAuC.

1

https://doi.org/10.5194/gmd-2022-270
Preprint. Discussion started: 18 November 2022
c© Author(s) 2022. CC BY 4.0 License.

reviewer
附注
by how much percentage

reviewer
附注
again, by how much percentage

reviewer
高亮
Still, it is useful to provide the approximated ratio of reduction

reviewer
高亮
Here，the authors should clarify, how much percentage, the assimilation experiments increases.

reviewer
高亮
This argument is blur. similar to what?

reviewer
高亮
This is not proved in the context below

reviewer
高亮
the downwelling could push surface water downward and therefore surface net heat flux could impact water downward, right?

reviewer
高亮
Is it possible that double the decorrelation length scales also improve salinity in the 7-d assimilation window?

I understand that performing the assimilation experiment for 1-year requires lots of time. I suggest the authors explain and compare more about the background terms (maybe show in discussion part): for instance, the correlations between mooring-locations and the surrounding areas with different decorr radius, based on how the backgound covariances are computed in the assimilation system; These testings could also help to see what is an approxiamte decorrelation radius. 

reviewer
高亮
This makes no sense. In HYCOM-NCODA, they assimilated Argo profiles. Their assimilation schemes could ensure that the analysis is close to observations. 

For instance, if they use a small decorr radius (short window+short spatial distance+ very weak cross-covariance between salinity and the other variables),  it is surely the analysis will be close to observations (within given prior uncertainties). Actually, smaller decorr radius usually keep small residual errors (model-assimilated observations), but destroy the model dynamics. 




1 Introduction

The East Auckland Current (EAuC) is a western boundary current (WBC) that originates as the reattachment of the subtropical

water flow to a continental margin on the New Zealand Northeastern Continental Slope (NZNES) (Stanton et al. (1997), Fig.25

1). The EAuC mean transport was estimated to be 9 Sverdrups (Sv) (Roemmich and Sutton, 1998) with variability at periods

longer than 100 days (Stanton and Sutton, 2003). Studies of the EAuC impact on the continental shelf found shallow (60 m)

intrusions of subtropical water, possibly driven by EAuC bottom Ekman transport (Zeldis et al., 2004; Santana et al., 2021).

Long-term variability (> 100 days) in the EAuC was suggested to be driven by the arrival of baroclinic Rossby waves (Laing

et al., 1998; Chiswell, 2001). Santana et al. (2021) observed locally formed mesoscale eddies and their arrival from the east30

using a one-year time series of in situ and remotely-sensed data. The EAuC is less coherent compared to other WBC, where

its ratio between the eddy and mean kinetic energies is larger than the East Australian Current’s (EAC) ratio (Oke et al., 2019).

Mesoscale eddies are generated by barotropic and baroclinic instabilities, which are unpredictable (Marchesiello et al., 2003;

Feng et al., 2005), and accurate simulation of the EAuC variability needs to incorporate observations to realistically represent

eddies and other features that vary on short timeframes (Oke et al., 2005, 2013, 2015; Santana et al., 2020).35

Data assimilation (DA) combines observations and numerical models to obtain ocean fields with reduced uncertainty, called

the analysis, that better represents the ocean state (e.g. location of mesoscale eddies). The ocean analysis can be achieved

via calculus of variations through the minimisation, in a least-squares sense, of the difference between model results and

observations (Weaver et al., 2003; Di Lorenzo et al., 2007; Moore et al., 2011b). The 4-dimensional variational data assimilation

(4D-Var) method reduces model errors over a finite time interval using all observations available while preserving dynamical40

consistency. 4D-Var has notable applications in oceanography, such as: Weaver et al. (2003); Powell et al. (2008); Mazloff et al.

(2010); Matthews et al. (2012); Zavala-Garay et al. (2012); de Souza et al. (2015); Osafune et al. (2015); Kerry et al. (2016);

Powell (2017); Phillipson and Toumi (2017); Pasmans et al. (2019); Janeković et al. (2020); Siripatana et al. (2020); Levin et al.

(2020); López et al. (2020); de Paula et al. (2021); Moore et al. (2021)). Some of those are realistic 4D-Var applications using

the Regional Ocean Modelling system (ROMS), from which different values of time-window length, observational errors, and45

decorrelation length scales were used for the tests presented in the current study.

Observing system experiments (OSEs) aim to assess the importance of distinct sets of observations on the quality of different

analyses (Oke et al., 2015). By withholding observational subsets, one can estimate the importance of those data in the ocean

reanalysis. For instance, Zavala-Garay et al. (2012) used ROMS 4D-Var to show that assimilation of sea surface temperature

(SST) and height (SSH) data only increased temperature error between 350 and 750 m in comparison to a non-assimilative run.50

The authors found that assimilation of XBT or synthetic CTD data were needed to correct this. Pasmans et al. (2019) stated that

assimilation of temperature and salinity from ocean gliders should be accompanied by surface measurements to prevent the

generation of unrealistic instabilities. Siripatana et al. (2020) compared two reanalysis: (i) assimilated traditional observations

only (satellite SSH and SST, and temperature and salinity from Argo floats) and (ii) assimilated traditional observations and

data from moorings, gliders and high-frequency radar; and found improved subsurface results in the latter experiment.55
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The EAuC system lacks traditional subsurface data, where Argo profiles are rare and the region can experience months with-

out any water column measurement. Between May 2015 and May 2016, the EAuC region was sampled along Topex/Poseidon

147 line, when five mooring lines (named M1 to M5) were deployed from coastal waters to the continental rise which sampled

velocity, temperature and salinity (Fig. 1) and analysed in Santana et al. (2021). Sampling efforts like those are costly, and

deciding important variables and locations of interest for ocean sampling is key in the region, specially in this eddy dominated60

WBC. Moreover, the EAuC also showed strong velocity shear on the continental mid-slope (Santana et al., 2021), which might

indicate the need for subsurface data for accurate velocity simulation.

The goal of this study is to evaluate the impact of subsurface data assimilation into a model of EAuC system. We conducted a

set of OSEs where the most complete simulation assimilated surface fields (SSH and SST), and mooring velocity, temperature

and salinity (ASFUVTS) (Fig. 1). The other experiments suppressed observation types in the assimilation algorithm. They65

withheld velocities (NoUV); subsurface temperature and salinity (NoTS); and all mooring data (NoUVTS). As control, we

examined a non-assimilative freely evolving simulation (NoDA). Argo data was left out of all experiments for independent

model-data comparison.

2 Methods

2.1 Numerical model70

We use the Regional Ocean Modeling System (ROMS), a primitive-equation, hydrostatic, and free-surface ocean model that

solves the Reynolds-averaged form of the Navier–Stokes equations. ROMS is a fully nonlinear, finite-difference model that

uses terrain-following (sigma) vertical coordinates and horizontal orthogonal or curvilinear Arakawa C grid (Shchepetkin and

McWilliams, 2003, 2005; Haidvogel et al., 2008). The model domain (290 x 150) is rotated 52.14° clockwise to better resolve

the NZNES and spans 332 km offshore at the widest point (near North Cape) (Fig. 1). The domain has horizontal resolution75

of approximately 2 km, which roughly captures coastline variability and still resolves the continental shelf and slope without

large computational cost. The model has 30 vertical sigma layers and model bathymetry was interpolated from the 250 m reso-

lution bathymetric data set built by the National Institute of Water and Atmospheric Research (NIWA - https://niwa.co.nz/our-

science/oceans/bathymetry). We use a vertical discretisation scheme that increases the resolution near the surface and bottom

by applying stretching function type 4 and transformation equation option 2 (Shchepetkin and McWilliams, 2005, 2009). The80

vertical resolution is higher at the upper 200 m (from 4 to 30 layers). On the slope (depth<1000 m), the vertical resolution is

higher than 66 m and in the open ocean the thickest level is 233 m (3838.6 m depth). Baroclinic modes are resolved using a

time step of 180 s, while the barotropic time step is 6 s.

Model surface forcing is from the Japanese atmospheric 55-year reanalysis for driving ocean models (JRA55-do, Tsujino

et al. (2018)). A previous study demonstrated that JRA55-do had the highest correlation with observed winds in comparison85

to other atmospheric forcing datasets in the Southwest Pacific (Taboada et al., 2019). Atmospheric forcing fields of wind

speed, net shortwave radiation, downward longwave radiation, relative humidity, temperature, rain, and pressure are specified

every 3 h and used to compute the surface fluxes of stress, heat and freshwater using the bulk flux parameterisation of Fairall
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Figure 1. (a) Study area showing the one-year average SSH from AVISO (black contours) and NoDA run (green-red shade), geostrophic

velocities from AVISO (blue arrows) and NoDA run (black arrows). The coloured arrows represent the vertically averaged (bin = 280 m)

in situ velocities centered at 140 m (red), 420 m (cyan), 700 m (blue), and 980 m (yellow). The white arrows represent the orientation axes

used. The stations M3 to M5 are indicated along the grey line. Integer numbers represent Argo locations for independent data comparison. (b)

Temporal averages of temperature from in situ measurements (coloured contours) and the NoDA run (coloured shade). The grey rectangles

show regions sampled by ADCPs at M4 and M5 and used in data assimilation. The vertical positions of thermistors and CTDs are indicated

as black and green dots, respectively. (c) Location of the study area (magenta contour) relative to other currents in the Southwestern Pacific

Ocean. The colors represent the one-year average of geostrophic current speed. The 200- and 1000-meter isobaths are shown as blue and

white contours in (a) and (c).

et al. (2003). The model uses initial and boundary conditions of SSH, temperature, salinity, and velocities from HYCOM-

NCODA (Chassignet et al., 2009) versions 91.1 and 91.2 which cover period of simulations generated here. de Souza et al.90

(2021) analysed the performance of four global reanalysis that assimilate SSH, SST and Argo data on the New Zealand waters.

The authors found that HYCOM-NCODA (8 km resolution) had higher SSH and SST variability than low-resolution (25 km)

satellite surface observations and other reanalyses with similar grid-spacing. HYCOM-NCODA had velocity standard deviation

similar to that observed at M4 and M5, even though GLORYS (8 km global ocean reanalysis, (Lellouche et al., 2018)) better

represented temperature and salinity profiles in the region. Annual average discharge from several rivers are included as lateral95

forcing in the model. The boundary forcing is applied daily using Chapman (1985) condition for free surface, Shchepetkin

condition (Mason et al., 2010) for barotropic velocities and mixed radiation-nudging (Marchesiello et al., 2001) for baroclinic

velocities, temperature and salinity. A 5-day nudging coefficient is applied towards the lateral boundaries. The model aims

to simulate continental shelf, slope and rise regions, including the offshore extent of the EAuC and its eddy variability. This
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and the upcoming studies using the simulations analysed here focus on intra-annual variability and tides are not included as100

forcing.

2.2 Observations

Remotely-sensed observations of SSH and SST were used in all assimilative runs of the current study. Optimally interpolated

gridded maps of daily SSH with 1/4° of horizontal resolution created by AVISO (Ducet et al., 2000) were assimilated into the

model. Daily SSH offsets (annual mean of∼51 cm) were calculated prior to every assimilation cycle as the difference between105

the spatial average of observations and model daily averages for each assimilative experiment (one-year averages are shown

in Fig. 1a as examples of this offset). This offset was removed from AVISO observations before assimilation to ensure the

comparisons were made on the same reference surface. Daily maps of SST (1/4°) from AVHRR Pathfinder (Casey et al., 2010)

were used for assimilation into the model at a depth of 2 m. SSH and SST data were assimilated daily at 12:00 pm UTC in

regions deeper than 200 m. Data points that are within 20 grid points of the boundaries were removed and a total of 123 data110

points of SSH (or SST) were assimilated per day, with roughly an SSH/SST measurement every 12th grid point. We used an

assimilation window of seven days (see details in section 2.3) which gives a total of 861 SSH/SST data points per assimilation

cycle (Fig. 2).

A cross shelf-slope mooring transect collected data from the 6th of May 2015 and the 21st of May 2016 (Fig 1a,b). In situ

observations of temperature, salinity, u and v components of velocity from moorings M3, M4, and M5 were assimilated into115

the model (Fig 1b). MicroCAT CTDs were located near the surface and bottom at the three stations and two extras CTDs were

located around 200 m at M4 and M5 (green dots in Fig 1b). 26 temperature sensors were evenly distributed between the three

stations, with higher density of instruments in the upper 200 m water column (black dots in Fig 1b). Two long range (LR) and

two short range (SR) ADCPs were located at M4 and M5 (grey rectangles in Fig 1b). The water column was binned every 15

m (LR) or 4 m (SR) by the upward looking ADCPs. Velocity (temperature and salinity) measurements were taken during a120

period of 2 min. (1 min.) every 10 min or less. The dataset is freely available and can be found in O’Callaghan et al. (2015). All

in situ observations were low-pass filtered at a period of 30h to remove tidal signals and their interaction with other processes,

as in Kerry et al. (2016). The observations were averaged at time bins of 6 h, centred at 3, 9, 15 and 21 UTC. Mooring velocity

observations (magenta line in Fig. 2) were available in the first cycle and were followed by temperature and salinity (cyan and

green lines in Fig. 2). Velocity had the largest amount of mooring observations but stratification information (SST, mooring125

temperature and salinity) was larger when combined (blue line in Fig. 2).

Non-assimilated data from 30 Argo profiles (Roemmich et al., 2019) sampled the region encompassed by the model domain

(integer numbers in Fig. 1a) during the simulation period and were used for model-data independent comparison. More details

on model evaluation are described in section 2.4.

2.3 Data assimilation130

Data assimilation is applied in a series of time windows using strong constraint 4D-Var, i.e. neglecting model errors (Di Lorenzo

et al., 2007; Moore et al., 2011b). Tests using 2, 3, 4, and 7 days as assimilation window were conducted and the OSEs with a
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Figure 2. Number of observations (after quality control and assurance, filtering and averaging) used in each 7-day assimilation cycle.

Observations types are shown by colour: AVISO SSH (red), AVHRR SST (black), mooring u and v components of velocity (magenta),

mooring temperature (cyan), mooring salinity (green), combined SST, mooring temperature and salinity (blue). Mooring data was used from

stations M3, M4 and M5.

7-day window had the most realistic results in comparison to observations. Results from a 2-day window reanalysis were also

analysed in the current study. In this work, 4D-Var is used to adjust the control variables for initial, boundary, and atmospheric

conditions. The ocean analysis is obtained via minimisation of model-to-data discrepancy or cost function (J) given by:135

J(δz) =
1
2
δzTD−1δz +

1
2
(Gδz−d)TR−1(Gδz−d) (1)

where δz is the state vector constituted of increments (corrections) to the initial δx(t0), lateral δb(t), and surface δf(t) condi-

tions. D and R are the background and observation error covariance matrixes, respectively. Superscripts T and -1 represent the

transpose and inverse operations, respectively.

G ≡ HMf , where H, is the linearised version of the observation function H that maps the model-state to the observation140

time and locations. The operator Mf denotes the tangent linear operator of the model integration about the forecast (denoted

by the subscript f) over the assimilation window. For the transpose, GT ≡MT
f HT, HT maps from observation to model-space

and the MT operation integrates backward in time over the assimilation window.
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Gδz−d represents the mismatch between the tangent linear model fields mapped to the observations (Gδz) and the obser-

vations d which is called the innovation vector and is defined as the difference between observations and model background145

interpolated to observation location. SSH observations had a daily bias (or offset) between data and model reduced from the

observations before the innovation values were computed.

The combination of control variables δza that minimizes J is yielded iteratively in the subspace spanned by the linear

combinations of the observed model variables. The method chosen in the present work is the physical-space statistical analysis

system (4D-PSAS) (Moore et al., 2011b), which defines δza as:150

δza = DGT(GDGT + R)−1d (2)

δza can be equivalently written as δza = DGTwa where wa is the sub-space of the model state vector spanned by the observa-

tions (i.e. the dual space) and satisfies:

(GDGT + R)wa = d (3)

The dual form has the advantage that the dimension of wa is equal to the number of observations which is, in our case, several155

orders of magnitude smaller than the dimension of the full state vector. Thus, solving (3) may be less demanding than solving

(2) (Moore et al., 2011b).

In practice, we find an acceptable reduction of the model-to-data discrepancy after 20 iterations (inner loops), when atmo-

spheric and lateral forcings are adjusted every 12 h along with initial conditions at the beginning of the assimilation cycle. For

further details of the method and its application, readers are referred to Moore et al. (2011b, a) .160

The background error covariance matrix D cannot be completely calculated or stored, it is rather estimated via factorisation

(Weaver and Courtier, 2001). D takes into consideration the background error standard deviations, spatial decorrelation scales,

and normalisation factors (Moore et al., 2011a). Background error standard deviations were calculated from the average of

4-day variances computed from 2 years of the NoDA run. Horizontal decorrelation length scales for SSH, velocities, active

tracers (temperature and salinity) were 100, 50 and 100 kilometres. Vertical decorrelation length scales for velocities and active165

tracers were 50 and 100 metres. The normalisation factors were estimated via randomisation (Fisher and Courtier, 1995) using

7500 iterations. The described background error configuration is valid for the 7-day reanalyses which differs in three aspects

from the 2-day reanalysis – see section 2.4 for details.

The observational error covariance matrix R is assumed to be diagonal. The standard deviation used was the largest value

between an assigned standard deviation and the observation error obtained from the AVISO and AVHRR proucts, with the170

assigned value being the highest most of the time. This strategy was applied to satellite observations, whereas in situ data used

a given standard deviation only. According to values used in the literature (e.g. Moore et al. (2011a); Kerry et al. (2016)),

different standard deviations were tested and the values that gave the best results were: 0.04 m for SSH; 0.3 °C for satellite

SST; 0.8 °C for subsurface temperature; 0.16 g/kg for subsurface salinity; and 0.15 m/s for u and v components of velocities.
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Large standard deviation was attributed to in situ temperature due to strong internal tides in the region and blow down events175

that often happened at the three moorings. Depth of the thermistors was obtained assuming an inverted pendulum relationship

between CTDs located near the surface and bottom (Stanton and Morris, 2004) but a level of uncertainty remains in the depth

of measurements.

2.4 Experiment design and evaluation

Five data assimilative experiments and one free-running simulation (no data assimilation; NoDA) were conducted. The first180

data assimilative experiment incorporated SSH, SST, u and v components of velocity and temperature and mooring temperature

and salinity data (ASFUVTS). The other data assimilative experiments were similar but withheld: subsurface temperature and

salinity (NoTS); mooring velocities (NoUV); and all mooring data (NoUVTS). Another experiment assimilating surface and

all mooring data was also conducted using a 2-day assimilation window (ASFUVTS-2days) which was designed to better

match the observations. This experiment (ASFUVTS-2days) differed from the other simulations in three aspects. It used 7-day185

variances to compute background error standard deviations and 200 kilometres (metres) as horizontal (vertical) decorrelation

length scales of active tracers (temperature and salinity). The last difference is the assimilation window length which is two

days. These modifications made ASFUVTS-2days less comparable to the rest of the OSE but they were needed in order to

achieve the best match between assimilated and independent observations – for results, see sections 3.2 and 3.3.

The numerical simulations started on the 1st of May 2015 using an interpolated initial condition from HYCOM-NCODA190

and they ran until the 31st of May 2016. The simulations started assimilating SSH and SST observations on the 1st of May, and

mooring data between the 8th of May 2015 and the 21st of May 2016. The simulations assimilated SSH and SST until the 31st

of May 2016 and 57 (200) assimilation cycles were performed in the 7-day (2-day) reanalyses. The NoDA run was integrated

until 31st December 2016. Model results were interpolated to the observations spatial resolution for evaluation.

The NoDA run and reanalyses were objectively validated using root mean square deviation (rmsd) given by:195

rmsd =

√
1
n

Σn
i=1(xi− yi)2; (4)

and linear correlation (r):

r =
∑n

i=1(xi− x̄)(yi− ȳ)√∑n
i=1(xi− x̄)2

√∑n
i=1(yi− ȳ)2

; (5)

between observed (x) and modelled (y) results, where i=1,2,...,n are the observation times or locations and the averages − were

applied in time or space. The daily offset between observed and model SSH was removed before performing the SSH rmsd200

calculation. SSH and SST rmsd were computed using daily averaged model results (analysis) interpolated to observations

locations inside the domain. Complex correlation (Kundu, 1976) was calculated between simulated and observed velocity

vectors. Statistics computed between model and in situ observations used daily averaged data processed and studied in Santana

et al. (2021). 30 Argo profiles were available inside the model domain (integer numbers in Fig. 1a) during the reanalyses period
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and these were used to provide independent temperature and salinity data for model-data comparison. Argo data and model205

results were linearly interpolated from 0 to 2000 m depth using bins of 10 m. HYCOM-NCODA analyses which assimilated

SSH, SST and Argo profiles (Chassignet et al., 2009) were also used in the comparison against subsurface mooring and Argo

data.

3 Results

3.1 DA impact on surface fields210

A skillful state estimate should have rmsd to observations smaller than the typically observed standard deviation (std). The

most complete ocean analysis (ASFUVTS) had smaller SSH rmsd in comparison to the observed SSH std for most of the

domain (Fig. 3a,b). The NoUVTS run had similar average SSH rmsd (0.06 m) to the ASFUVTS run. However ASFUVTS

had reduced SSH rmsd upstream and downstream of the moorings (Fig. 3b,c). Experiments that assimilated in situ velocities

(NoTS, ASFUVTS-2days) also had positive impact on SSH representation up- and downstream the moorings (not shown).215

NoDA had larger SSH rmsd (0.08-0.14 m) in comparison to observed std (0.07-0.11 m) in regions deeper than 1000 m (Fig.

3a,d), where more than 4 mesoscale eddies with life span larger than a month were observed (Santana et al., 2021).

The NoDA run had average SST rmsd (0.72 °C) smaller than the average observed SST std (2.39 °C) (Fig. 3e,h). This skill

was achieved by the NoDA run’s ability to reproduce the seasonal cycle (amplitude of 6 °C), however this simulation had a

daily variability different to the observed. The experiment NoDA had the largest SST rmsd (>1.4 °C) near the model NW220

boundary, which was also seen in the assimilative runs (Fig. 3f,g,h). Assimilation of surface and subsurface fields (ASFUVTS

run) reduced the maximum (∼ 1.0 °C) and average (0.45 °C) SST rmsd values in comparison to the NoDA run (Fig. 3f,h).

Withholding subsurface temperature data (NoUVTS runs) had small impacts in the maximum (decrease of∼ 0.2 °C) and mean

(increase of 0.01 °C) SST rmsd (Fig. 3f,g), as well as for NoUV and NoTS runs (not shown).

The NoDA run had larger spatially averaged SSH rmsd (mean = 8 cm) in comparison to the observed spatially averaged225

SSH std (mean = 7 cm) for most of the year-long period of simulation (Fig. 4a). This shows the lack of skill in simulating the

timing and location of the mesoscale eddies in the NoDA run. ASFUVTS and NoUVTS runs had lower temporally averaged

spatial SSH rmsd (Fig. 4a) and higher temporally averaged spatial SSH correlation (Fig. 4b) in comparison to the NoDA run.

ASFUVTS had even higher spatial SSH correlation which means that including subsurface data for assimilation improved

the representation of mesoscale eddies and the EAuC studied in Santana et al. (2021). The SSH represents the integral of230

subsurface density fields which is good proxy for representation of the whole ocean state and the SSH was better represented

when velocity, temperature and salinity observations were assimilated.

The NoDA run had spatial SST rmsd similar or smaller to the observed spatial SST std in the first two thirds of the simulation

period, however it showed larger errors from Feb. 2016 onwards (Fig. 4c). ASFUVTS run had smaller SST rmsd time mean

(0.47°C) in relation to the NoDA run (mean = 0.68°C). Withholding subsurface data (NoUVTS) had little impact in the235

SST rmsd (mean = 0.46°C). The NoDA run had small absolute SST difference to observations (<1.0°C) during the first two

thirds of the timeseries but a larger cold bias (<-1°C) was developed in Apr. 2016 (Fig. 4d). Assimilation of surface fields
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Figure 3. Maps of SSH (top row) and SST (bottom row) statistics. Observed AVISO SSH std (a) and AVHRR SST std (e), modelled

ASFUVTS run SSH (b) and SST rmsd (f), NoUVTS SSH (c) and SST rmsd (g), NoDA SSH (d) and SST rmsd (h).

only (NoUVTS) had absolute SST bias below 0.5°C throughout the year-long period of simulation. Inclusion of subsurface

data (ASFUVTS) did not have a well-marked impact on model SST bias, most of the surface field correction was done by

assimilation of SSH and SST more specifically.240

Assimilation of subsurface and surface data (ASFUVTS) had little impact on the representation of SST in comparison to the

experiment that withheld subsurface observations (NoUVTS). However, a positive impact was seen on the spatial SSH rmsd

with respect to AVISO. Assimilation of in situ velocities reduced the SSH rmsd up- and downstream of the moorings. Main

differences between experiments appeared in the subsurface fields comparisons which are shown in the next section.

3.2 DA impact on subsurface fields245

The NoDA run had very little velocity complex correlation (< 0.1) with observations at M4 and M5 (Fig. 5a,b). DA improved

complex correlation between modelled and observed velocity vectors in all experiments at the two stations. These results

can be related to assimilation of SSH which corrects the geostrophic circulation that is responsible for the long-term (> 30

days) upper half water column current variability in the region (Santana et al., 2021). The most complete assimilative run

(ASFUVTS) had better results in comparison to NoDA but not against other assimilative runs. Withholding temperature and250

salinity (NoTS and NoUVTS) improved upon ASFUVTS, and NoTS had the best overall results. ASFUVTS-2days, on the

other hand, had the best overall results. HYCOM-NCODA poorly represented velocity at M4 probably due to less accurate

representation of the slope bathymetry (de Souza et al., 2021). At M5, however, HYCOM-NCODA showed velocity complex
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Figure 4. Timeseries of SSH spatial std/rmsd (a), SSH spatial correlation (b), SST spatial std/rmsd (c), and SST spatial mean or bias from

AVISO/AVHRR (light blue), NoDA run (red), NoUVTS run (blue), and ASFUVTS run (black). Mean std, rmsd and correlation coefficients,

and std SST bias are shown in the legend. The acronyms A1, C1, EAuC, A1, A2/C2, and C2 represent the presence of mesoscale structures

at M5 studied in Santana et al. (2021).

correlation coefficient similar to the 7-day assimilative runs. Velocity at M5 was more dominated by the mesoscale field and

less controlled by topographic constraints compared to M4 (Santana et al., 2021), which makes velocity easier to simulate even255

in lower horizontal resolution models.

The assimilative experiments had smaller temperature rmsd at the surface in comparison to the NoDA run at M4 and M5

(coloured markers at the surface in Fig. 5c,d). However, the lack of subsurface temperature for assimilation (NoTS and NoU-

VTS) led to larger errors (>1°C) in the upper 200 m at M4 and M5, and below 500 m at M5 (pink and dark blue lines in

Fig. 5c,d). Assimilation of subsurface temperature (ASFUVTS and NoUV) had reduced temperature rmsd in comparison to260

the NoDA run from surface down to 500 m at M4 and M5 (black and light blue lines in Fig. 5c,d). ASFUVTS-2days run had

improved temperature rmsd down to 1000 m at M5. HYCOM-NCODA showed improved temperature results compared to the

NoDA run (dashed and solid red lines in Fig. 5c,d). This is due to the assimilation of temperature and salinity from Argo floats

since the reanalysis did not assimilate data from M4 or M5.
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Figure 5. Profiles of complex correlation coefficient between observed and modelled velocity vector at (a) M4 and (b) M5. Profiles of

temperature root mean square deviation between observed and modelled temperature at (c) M4 and (d) M5. Black diamonds (ASFUVTS),

black dots (ASFUVTS-2days), magenta squares (NoTS), cyan triangles (NoUV), blue stars (NoUVTS) and red dots (NoDA) represent the

median depth of thermistors and CTDs at each station, except at the surface where comparisons are against AVHRR SST. HYCOM-NCODA

results are shown as dashed red lines. The depth averaged values of complex correlation and temperature rmsd are shown in the legend.

Temperature differences between model and observations at M4 showed small cold bias and relative warming at the be-265

ginning of the timeseries for all experiments (Fig. 6). The small bias can be attributed to the initial condition on 1st of May

2015 obtained from HYCOM-NCODA analysis, however, differences started to appear in Sep. 2015. ASFUVTS and NoUV

runs are colder than observed between Sep. and Nov. 2015 and Mar. and May 2016 (<1°C - second lightest blue shade in Fig.

6b,c). NoTS and NoUVTS runs are cooler in the upper 200 m water column from Sep. 2015 onwards (Fig. 6d,e). Withholding

subsurface temperature for assimilation (NoTS and NoUVTS) led to the continuous cooling of waters in the top 200 m until270

the end of simulation. The NoDA run had a small temperature difference when compared to observations in Sep. 2015 but

these increased in Oct. 2015 (Fig. 6f). The longest persistent cold bias started in mid-Mar 2016, which might be associated

with the SST cold bias during the same period (Fig. 4d). Cooling of the upper water column in the NoTS and NoUVTS runs

also occurred in the NoDA run. This effect might be intrinsic to the model configuration, and data assimilation of velocities

and/or surface fields only enhanced this bias.275
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Figure 6. (a) M4 observed daily average temperature and difference between modelled and observed temperature for experiments (b) ASFU-

VTS, (c) NoUV, (d) NoTS, (e) NoUVTS and (f) NoDA. The red, blue and cyan numbers in (a) show the dates where Argo profilers sampled

the NZNES. The location of the Argo floats are shown in Fig. 1a and 8e.

At M5, a mid water column warm bias (>1°C) was simulated in the first half of the year-long period in all experiments

(second lightest red shade Fig. 7). This also happened on HYCOM-NCODA between Jun and Sep 2015 (not shown) probably
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Figure 7. (a) M5 Observed daily average temperature and difference between modelled and observed temperature from experiments (b)

ASFUVTS, (c) NoUV, (d) NoTS, (e) NoUVTS and (f) NoDA. The red, blue and cyan numbers in (a) show the dates where Argo profilers

sampled the NZNES. The location of the Argo floats are shown in Fig. 1a and 8e.

due to the lack of Argo floats to the north of 35°S. ASFUVTS had the closest match to the observations out of all experiments
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(Fig. 7b). In mid-Aug 2015, a near surface cold bias (<-2°C) was pronounced in all experiments, but further developed in the

NoDA, NoTS and NoUVTS runs towards at the end of the simulation period. This is associated with the lack of subsurface280

temperature assimilation and the intrinsic variability in the model run. ASFUVTS (NoUV) run reduced the cold and warm

differences to values below 1°C (2°C) for most of the period of simulation. It showed that the assimilation of temperature and

salinity had positive impact by reducing temperature biases at M4 and M5. We did not analyse salinity results at the moorings

due to the few number (≤3) of CTDs at each station. Instead, model salinity is compared to Argo independent observations in

the next section.285

3.3 Comparison to independent observations

Thirty non-assimilated temperature and salinity profiles spread throughout the domain (Fig. 8e) and in time (Fig. 7) were used

for model-data independent comparison. Model temperature rmsd showed similar trends to the results simulated at M4 and

M5. When temperature was not assimilated (NoTS and NoUVTS runs) there was a higher temperature rmsd between 0 and 200

m in comparison to the NoDA run due to a colder bias (<-1°C) that developed in those runs (blue and pink lines in Fig. 8a,b).290

Assimilation of subsurface temperature data (ASFUVTS and NoUV runs) generated smaller temperature rmsd in comparison

to the NoDA run from near surface down to 2000 m (ASFUVTS) (1000 m in NoUV) (solid black and cyan lines in Fig. 8a,b).

HYCOM-NCODA reanalysis which assimilates Argo, SSH and SST data had the overall best temperature representation at the

Argo locations.

Comparisons to Argo measurements showed that all 7-day window experiments and the NoDA run had similar vertical295

structure in the salinity bias. Fresher salinity was modelled in the upper 200 m, and saltier waters were modelled below that,

peaking at 600 m, in those experiments (Fig. 8c). The NoDA run had the smallest salinity rmsd from 0 to 200 m, and ASFUVTS

had the largest at that depth (Fig. 8d). It seemed that the 8 CTD observations spread between M3-M5 were not enough to correct

salinity in the model domain. On the other hand, ASFUVTS-2days had the smallest salinity bias and rmsd in comparison to

the 7-day window experiments. It suggests that, more frequent increments to the initial conditions and doubled decorrelation300

length scales of tracers can overcome the small number of CTD observations. ASFUVTS-2days salinity results were close to

HYCOM-NCODA reanalysis which assimilated salinity data from Argo floats.

3.4 Increments to initial and surface conditions

Variability in temperature increments to the initial conditions at M4 revealed oscillation between positive and negative incre-

ments through time in all experiments (Fig. 9). The 7-day window experiments that assimilated subsurface temperature and305

salinity (ASFUVTS and NoUV) had positive increments extending from surface down to 500 m (Fig. 9a,b). In contrast, exper-

iments that did not assimilate temperature and salinity (NoTS and NoUVTS) had large positive increments bounded to near

the surface (Fig. 9c,d). ASFUVTS-2days had smaller increments throughout the water column (Fig. 9e).

Near surface average temperature increments had a distinct difference between experiments that did and did not assimilate

subsurface temperature at M4 and M5 (Fig. 10a,b). Assimilation of in situ temperature (ASFUVTS and NoUV) generated310

larger average positive increments (>0.04°C) in comparison to the simulations that withheld subsurface temperature (NoTS

15

https://doi.org/10.5194/gmd-2022-270
Preprint. Discussion started: 18 November 2022
c© Author(s) 2022. CC BY 4.0 License.

reviewer
高亮
What is "intrinsic variavility in the model run"?

reviewer
高亮
What this means? which model simulation?

reviewer
高亮
resulted in

reviewer
高亮
It is surprising to see this.
two things the author should check:
1) after assimilation, is the rmsd of mooring-observed salinity costs are reduced? this can be show by a table or plot of all and individual cost component throughout the year. e.g. Figure 2 in https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.4044.
2) similar to Figure 6-7 in this manuscript for salinity. check what happened after assimilation.

 

reviewer
高亮
I think, one can plot the spatial patterns of salinity for top 200m with selected experiments and hycom data, check their spatial patterns and examine what caused the problem.

reviewer
高亮
It is hard to say that the increments are smaller. please consider remake Figure 9 with more clear color scales.



Figure 8. Profiles of mean bias and root mean square deviation (rmsd) between model and independent Argo observations of temperature

(a,b) and salinity (c,d). Black diamonds (ASFUVTS), black dots and dashed line (ASFUVTS-2days), magenta squares (NoTS), cyan triangles

(NoUV), blue stars (NoUVTS) and red dots (NoDA) represent the median depth of thermistors and CTDs (CTDs) at M3, M4 and M5 in

temperature (salinity) bias and rmsd profiles. HYCOM-NCODA results are shown as dashed red lines. (e) Map of Argo locations represented

as numbers in black or red for better visualisation only. The moorings’ locations are shown as black dots on the magenta line.

and NoUVTS). The latter experiments had near surface mean negative temperature increments that decreased towards zero

below 200 m. ASFUVTS-2days had smaller average increments throughout the water column (Fig. 10a,b).

Surface mean heat flux increments varied according to the presence/absence of subsurface temperature for assimilation (Fig.

11). Simulations that withheld subsurface temperature (NoTS and NoUVTS) had average positive increments in the majority315

of the domain (Fig. 11a,b). The positive heat flux increments in the NoTS and NoUVTS runs were related to the near surface

negative temperature increments at M4 and M5 (dark blue and pink lines Fig. 10). The combined positive heat flux increments

and negative temperature increments corrected the surface cold bias present in the NoDA run, but not the cooling trend around

200 m. Experiments that assimilated subsurface temperature (ASFUVTS, NoUV and ASFUVTS-2days) had negative average

heat flux increment near the moorings that extended north and south (Fig. 11c,d,e). This negative heat flux increment might320

balance the positive temperature increment at M4 and M5 which aim at correcting both surface and upper thermocline (∼200

m) clod biases.
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Figure 9. Time variability of temperature increments (°C) to the initial conditions at M4 from experiments (a) ASFUVTS, (b) NoUV run,

(c) NoTS, (d) NoUVTS, and (e) ASFUVTS-2days.

ASFUVTS-2days run had smaller negative heat flux increments. This happened due to the smaller average negative incre-

ments (M4) and positive increments (M5) added to the initial condition of temperature at those stations (black dashed line

Fig. 10). The average net heat flux showed roughly positive values north 35°S and it was negative southwards (Fig. 11f). On325
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Figure 10. Profile of average increment to initial conditions of temperature at M4 (a) and M5 (b). Solid black line (ASFUVTS), dashed black

line (ASFUVTS-2days), pink (magenta) line (NoTS), light blue (cyan) line (NoUV) and dark blue line (NoUVTS).

average, the atmosphere has warming effect on the ocean north of 35°S and cooling effect south of 35°S. This is observed in

JRA55-do (Fig. 48 in Tsujino et al. (2018)), in which the NZNES is located near the average zero net heat flux contour line in

the atmospheric forcing dataset.

Annual average wind stress is mainly from southwest in all experiments but wind stress curl showed some spatial variability

between the assimilative runs (Fig. 12). Experiments that did not assimilate subsurface temperature and salinity (NoUVTS and330

NoUV) had average negative wind stress curl at the moorings’ location (Fig. 12a,b). Conversely, assimilation of subsurface

temperature and salinity (NoUV and ASFUVTS) generated average positive wind stress curl on top of M5 (M3-M5 in ASFU-

VTS) (Fig. 12c,d). Positive wind stress curl generates convergence and downwelling of warmer water masses that might be

acting to prevent the cold bias in the numerical model. These changes in wind stress curl might also explain why assimilation

of subsurface temperature and salinity (ASFUVTS and NoUV) slightly degraded the representation of velocity at M4 and M5335

compared to withholding subsurface temperature and salinity (NoTS an NoUVTS). ASFUVTS-2days run had smaller wind

stress curl magnitude compared to the other simulations. Its wind stress curl field resembles the NoDA wind field forced with

JRA55-do, especially in the regions of negative wind stress curl near the coast around 37.5°S and observed by Taboada et al.

(2019) using CCMP data.
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Figure 11. Average surface heat flux increments (W/m2) (positive = downward) in experiments (a) NoUVTS, (b) NoTS, (c) NoUV, (d)

ASFUVTS, and (e) ASFUVTS-2days. (f) shows mean net heat flux in the freely evolving simulation (NoDA). Green (blue) colours show

positive (negative) mean surface heat flux.

4 Discussion and comparison to other studies340

In this study, SSH, SST, mooring velocity, temperature and salinity observations were assimilated into an ocean model of the

EAuC using 4D-Var with a 7-day window length. Observing system experiments (OSEs) were conducted in order to elucidate

the importance of in situ data assimilation in the EAuC region. 4 OSEs were performed based on the most complete simulation

called ASFUVTS which assimilated surface fields (SSH and SST), and mooring velocity, temperature and salinity. The other

experiments withheld observation types from assimilation. They removed mooring velocities (NoUV); subsurface temperature345

and salinity (NoTS); and all mooring data (NoUVTS). A non-assimilative freely evolving simulation (NoDA) was used as

the control. Argo data was left out of all experiments for independent model-data comparison. Another run that assimilated

surface and mooring data using a 4D-Var 2-day window (ASFUVTS-2days) and HYCOM-NCODA were also used in the

model comparison.

All assimilative experiments showed a reduction in SSH rmsd in comparison to the NoDA run of about 25%. The improve-350

ments in SSH were small in comparison to achievements seen in other WBC 4D-Var studies, such as: the East Australian

Current (EAC) (∼63% Kerry et al. (2016)) and the Brazil Current (BC) (48% - de Paula et al. (2021)). Smaller correction in
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Figure 12. Analysis field of wind stress (N/m2) and its curl (N/m3) (red-green shade) in experiments (a) NoUVTS, (b) NoTS, (c) NoUV, (d)

ASFUVTS, and (e) ASFUVTS-2days. (f) shows mean wind stress and its curl from JRA55-do. All fields were degraded from 2 km to 1/4°

to be similar to JRA55-do horizontal resolution.

SST (rmsd reduction of 37%) when compared to 4D-Var studies in the East Australian Current (EAC) (∼60% Kerry et al.

(2016)) and the Brazil Current (BC) (27% - de Paula et al. (2021)). These studies used lower horizontal resolution grids in

open ocean (5 km EAC and 9 km BC) compared to our model spatial grid spacing (2 km) which might explain the differences355

in performance. According to Sandery and Sakov (2017), increasing model resolution towards the submesocale (from 10 km

to 2.5 km) reduces the skill of the analysis and forecast generated. They suggested that resolving the less predictable subme-

soscale lowers the predictability of the mesoscale as there is an inverse cascade in the kinetic energy spectrum. Kerry et al.

(2020) found larger errors when downscaling from a regional to a coastal domain (750-1000 m resolution) while simulating

the cyclonic inshore side and frontal instabilities of the EAC.360

All OSEs improved velocity complex correlation by at least 3-fold at M4 and 5-fold at M5 in comparison to the NoDA

run (coef. < 0.07). Including velocities in the assimilation (NoTS) improved on the simulation which only assimilated surface

fields (NoUVTS). This was most notable at M4, where the velocity data assists the model in better capturing frequent reverse

flows at depth. Counterintuitively, inclusion of temperature and salinity (NoUV and ASFUVTS) degraded the velocity results

in comparison to NoUVTS run. This might be associated with the low vertical resolution of salinity sensors, which were not365

enough to correct density fields and generate accurate geostrophic currents. For future data collection strategies, we suggest
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that higher vertical resolution for salinity data. Changes in the wind stress curl analysis field had a negative impact in the

representation of the velocity at M4 and M5 and may be the main cause for that. Larger positive wind stress curl was generated

near the moorings in ASFUVTS and NoUV runs. Positive wind stress curl causes downwelling of warmer waters and counter-

balances the cold bias in the model but degraded velocity results in ASFUVTS and NoUV runs.370

The 2-day assimilation window run (ASFUVTS-2days) showed the highest complex correlation coefficients (>0.35) which

combined doubled decorrelation length scales, larger model error estimate and more frequent increments. ASFUVTS-2days

overcame the low vertical resolution of salinity and temperature observations and generated the best results when compared

to Argo distant locations. However, this approach must be used with care if subsurface data availability is low because larger

colder biases can be generated. In Kerry et al. (2016), higher velocity complex correlation coefficients (∼1) were obtained in a375

2-year reanalysis of the EAC. However, the EAC has a more coherent jet (Mata et al., 2000; Bowen et al., 2005; Sloyan et al.,

2016) which is well represented by the non-assimilative run (complex correlation ∼0.8 in some locations) (Kerry et al., 2016).

In contrast, the EAuC has a more eddy-dominated field (2/3 of 1 year) (Santana et al., 2021) which makes it harder for ocean

free-running models and reanalyses to capture such variability.

Marked differences between the experiments arose when model results were compared to subsurface observations of tem-380

perature. Experiments that withheld in situ temperature and salinity (NoTS and NoUVTS) generated a larger cold bias around

100 m at M4 and M5 in comparison to the NoDA run. At 100 m, errors were about 1.4°C (1.9°C) in the NoTS (NoUVTS) run

at M4 and M5, whereas the NoDA run had temperature rmsd of 1.1°C (1.6°C) at M4 (M5). Assimilation of in situ temperature

and salinity (ASFUVTS and NoUV) prevented that and had improved results against the NoDA run. The lack of subsurface

temperature assimilation also generated similar errors at the top of the thermocline in other regional studies (e.g., Zavala-Garay385

et al. (2012); Santana et al. (2020)). Zavala-Garay et al. (2012) needed to assimilate XBT or synthetic CTD data to correct that

large temperature rmsd (∼2°C) between 200 and 500 m depth. The authors aimed at simulating the EAC variability between

years 2001 and 2002, and the Argo project was still beginning, with few sondes in the ocean. In our study, comparisons to

HYCOM-NCODA suggest that assimilating the few Argo temperature and salinity profiles (30) and surface data could prevent

the growth of the 100 m cold bias at M4 and M5. However, it still an open question if this would improve the ROMS 4D-Var390

results used in this study. These experiments represent a good benchmark to define proper assimilation window and decorrela-

tion length scales. Doubled length scales of tracers (200 km and 200 m) and a 2-day assimilation window led to colder biases

in the experiments that withheld in situ temperature (not shown) which could be a problem when Argo data is not available for

a long period. The 7-day assimilation window and smaller length scales (100 km and 100 m) seem to be a good configuration

to well-represent the surface (SSH and SST) and subsurface velocity fields in case of application in an operational forecast395

system.

Model temperature comparisons to Argo data showed similar results to those simulated at M4 and M5. NoTS and NoUVTS

runs had a larger cold bias near 100 m depth which generated a higher temperature rmsd (∼ 2°C) in comparison to the NoDA

run (∼ 1.6°C). A warm bias was also evident around 600 m, in all experiments with varying degrees. Assimilation of mooring

temperature (ASFUVTS and NoUV) reduced the cold bias and the temperature rmsd (∼ 1°C) in comparison to the NoDA run.400

The shallow-cold and deeper-warm biases are intrisic to the NoDA run, which might be associated with biases in the boundary
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condition from HYCOM-NCODA when Argo data was not available (between Jun and Sep 2015) for assimilation north of

35°S. Even though larger temperature errors were observed in the simulations that withheld mooring temperature and salinity

(1.6 - 2.1°C), they were still comparable to freely evolving simulations temperature rmsd (∼ 1.9°C) in other studies (e.g., Kerry

et al. (2016); Siripatana et al. (2020)) when assessed using Argo temperature.405

Data assimilation of subsurface observations using a 7-day window and smaller decorrelation length scales had little impact

in correcting salinity at the Argo locations. A small salinity degradation was simulated between 0 and 200 m in the assimilative

experiments in comparison to the NoDA run. Negative impact on near surface salinity was also observed when assimilating

SST or SSH data only in the Brazil Current region (Santana et al., 2020). Some authors suggest that assimilation of salinity data

is needed to constrain the model water column salinity (e.g., Oke and Schiller (2007); Tanajura et al. (2014); Oke et al. (2015)).410

Assimilation of surface and subsurface data every 2 days with larger decorrelation length scale of tracers (ASFUVTS-2days)

was able to considerably correct model salinity below 400 m in relation to the NoDA run. ASFUVTS-2days run reached error

values similar to HYCOM-NCODA which assimilated salinity data from Argo floats.

Increments to temperature initial conditions were positive and deep (200 m) in the experiments that assimilated subsurface

temperature (ASUVTS and NoUV). In contrast, withholding in situ temperature (NoTS and NoUVTS) generated negative and415

shallower (50 m) increments. This generated differences in the atmospheric heat fluxes, where NoTS and NoUVTS had average

positive heat flux increment in most of the domain to compensate the negative increments to the temperature initial condition.

The combined positive heat flux increments and negative temperature increments corrected the surface cold bias present in the

NoDA run, but not the cooling trend around 200 m. Conversely, experiments that assimilated subsurface temperature (ASFU-

VTS and NoUV) had negative average heat flux increment near the moorings. This negative heat flux increment balanced the420

positive temperature increment at M4 and M5 which aimed at correcting both surface and upper thermocline (∼200 m) cold

biases.

ASFUVTS, NoUV and ASFUVTS-2days runs (assimilated subsurface temperature) had net heat flux increment varying

from negative (near the moorings and north of the domain) to positive flux in the southeast region of the model domain.

This variability might be associated with the heat flux that forced the NoDA run. It was positive north of 35°S and negative425

southwards. The NZNES is located near the zero heat flux line in JRA55-do atmospheric forcing used in this study (Fig. 48

in Tsujino et al. (2018)). For instance, the Hawaiian archipelago is also located near a zero line heat flux in the atmospheric

forcing product. 4D-Var experiments in the region, also showed large average heat flux increments (±100 W/m2), and marked

spatial variability with negative increments in the lee of the islands and positive increments to the west of that (Matthews et al.,

2012).430

Positive wind stress curl was generated on top of M5 when subsurface temperature data was assimilated (ASFUVTS and

NoUV). Positive wind stress curl generates convergence and downwelling of warmer waters which might be associated with

corrections of the 200 m cold bias. Positive wind stress curl correction was also observed in the simulations on SE Brazil which

reduced the magnitude of upwelling in the region (de Paula et al., 2021). Changes in the wind stress curl in ASFUVTS and

NoUV runs (assimilated subsurface temperature) were also responsible to the lowered velocity complex correlation at M4 and435

M5 in comparison to the simulations that withheld subsurface temperature. If more subsurface salinity data were available,

22

https://doi.org/10.5194/gmd-2022-270
Preprint. Discussion started: 18 November 2022
c© Author(s) 2022. CC BY 4.0 License.

reviewer
高亮
Usually, smaller decorrelation scales limits observations signal near the observational location. Besides, the Covariance between salinity and temperature also matters. Therefore, it is necessary to examine both T&S increment in the RESULTS.

reviewer
高亮
I think this increments are too large. How much is the heat flux uncertain? how is it computed?

reviewer
删划线



the solutions ASFUVTS and NoUV runs could have converged to improved density structures that resulted in better simulated

currents as we observed in ASFUVTS-2days.

5 Conclusions and future work

By running the OSEs we elucidate the importance of different datasets on the quality of ocean reanalyses. The representation440

of surface fields and consequent mesoscale eddies was improved by data assimilation of surface data only. The model high

spatial resolution (2 km) which starts to solve submesoscale variability might be responsible for the lower skill compared

to other 4D-Var regional studies that had lower horizontal resolution (> 5 km). In situ subsurface temperature is of utmost

importance to correctly simulate the top of the thermocline - one of the most difficult regions to simulate in ocean models.

The lack of subsurface temperature for assimilation (NoTS and NoUVTS) increased the near surface cold bias present in the445

freely evolving model run (NoDA). Assimilation of mooring temperature (ASFUVTS and NoUV) corrects this, even at distant

Argo locations. Data assimilation using a 2-day window and doubled decorrelation length scales better matched the assimilated

and independent observations. This approach must be used with care if subsurface data availability is low (e.g., using Argo

floats only as subsurface data) because larger cold bias in the upper-thermocline can be generated (not shown). Nevertheless,

all reanalyses showed improved velocity results on the mid-slope when compared to HYCOM-NCODA, which shows the450

importance of downscaling to better represent the slope bathymetry and possibly shelf-slope exchange.

The current work is part of a set of experiments that prepare for a data assimilative ocean forecast for the NZNES. New

experiments based on the 7-day window configuration can be conducted using Argo and glider data. Questions regarding the

absence or presence of glider data can be asked and the impact on the velocity field evaluated with observations. Continuous

temperature and salinity sampling from ocean gliders would provide enough high vertical resolution and good spatial coverage455

that would positively impact the simulation of the thermohaline field and ocean currents.

In the future, a posterior check of the consistency of the observation and background error hypotheses (Mattern et al., 2018)

can be applied to improve the quality of the ocean reanalyses. Mattern et al. (2018) described how the covariance of residuals

and innovations, and the covariance of increments and innovations, should be roughly equal to the assumed observation and

background error variances, respectively. Posterior tests of these statistics probe whether the prior assumptions for error vari-460

ances need adjusting to be consistent with the model intrinsic skill and representativeness error. This method has been applied

to the Mercator-Ocean forecast system (GLORYS) to obtain better performance (Lellouche et al., 2018). Moreover, an En-

semble 4D-Var approach can be applied to improve the quality of the analysis on the NZNES. This methodology uses several

perturbed simulations (Ensemble) to estimate the model error covariance matrix (D) (e.g., Pasmans and Kurapov (2019)). This

includes spatial and temporal variability to D compared to a fixed model covariance matrix used here. This method showed465

improved representation of glider temperature and salinity observations when compared to 4D-Var using a static D (Pasmans

et al., 2020).
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