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Abstract. This study analyses data assimilative numerical simulations in an eddy dominated western boundary current: the

East Auckland Current (EAuC). The goal is to assess the impact of assimilating surface and subsurface data into a model of

the EAuC via running observing system experiments (OSEs). We used the Regional Ocean Modelling System (ROMS) in

conjunction with the 4-dimensional variational (4D-Var) data assimilation scheme to incorporate sea surface height (SSH) and

temperature (SST), and subsurface temperature, salinity, and velocity from three moorings located at the upper, mid and lower5

continental slope using a 7-day assimilation window. Assimilation of surface fields (SSH and SST) reduced SSH root mean

square deviation (rmsd) by 25% in relation to the non-assimilative (NoDA) run. The inclusion of velocity subsurface data

further reduced SSH rmsd up- and downstream the moorings by 18-25%. By improving the representation of the mesoscale

eddy field, data assimilation increased complex correlation between modelled and observed velocity in all experiments by at

least three times. However, the inclusion of temperature and salinity slightly decreased the velocity complex correlation. The10

assimilative experiments reduced the SST rmsd by 36% in comparison to the NoDA run. The lack of subsurface temperature

for assimilation led to larger rmsd (>1°C) around 100 m in relation to the NoDA run. Comparisons to independent Argo

data also showed larger errors at 100 m in experiments that did not assimilate subsurface temperature data. Withholding

subsurface temperature forces near-surface average negative temperature increments to the initial conditions that are corrected

by increased net heat flux at the surface but this had limited or no effect on water temperature at 100 m depth. Assimilation15

of mooring temperature generates mean positive increments to the initial conditions that reduces 100 m water temperature

rmsd. In addition, negative heat flux and positive wind stress curl were generated near the moorings in experiments that

assimilated subsurface temperature data. Positive wind stress curl generates convergence and downwelling that can correct

interior temperature but might also be responsible for decreased velocity correlations. The few moored CTDs (8) had little

impact in correcting salinity in comparison to independent Argo data. However, using doubled decorrelation length scales of20

tracers and a 2-day assimilation window improved model salinity and temperature in comparison to Argo profiles throughout

the domain. This assimilation configuration, however, led to large errors when subsurface temperature data was not assimilated

due to incorrect increments to the subsurface. As all reanalyses show improved model-observation skill relative to HYCOM-
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NCODA (the model boundary conditions), these results highlight the benefit of numerical downscaling to a regional model of

the EAuC.25

1 Introduction

The East Auckland Current (EAuC) is a western boundary current (WBC) that originates as the reattachment of the subtropical

water flow to a continental margin on the New Zealand Northeastern Continental Slope (NZNES) (Stanton et al., 1997) (Fig. 1

– see Fig. 5 in Chiswell et al. (2015) for a detailed schematic). The EAuC mean transport was estimated to be 9 Sverdrups (Sv)

(Roemmich and Sutton, 1998) with variability at periods longer than 100 days (Stanton and Sutton, 2003). Previous studies30

suggested that the EAuC intrudes onto the continental shelf bringing subtropical waters to shallow regions (60 m), possibly

driven by bottom Ekman transport (Zeldis et al., 2004; Santana et al., 2021). Long-term variability (> 100 days) in the EAuC

was suggested to be driven by baroclinic Rossby waves (Laing et al., 1998; Chiswell, 2001). Santana et al. (2021) observed

locally formed mesoscale eddies and their arrival from the east using a one-year time series of in situ and remotely-sensed sea

surface height (SSH) and temperature (SST) data. The EAuC is more eddy-dominated compared to other WBC, where the ratio35

between the eddy and mean kinetic energies is larger (0.3) than the East Australian Current’s (EAC; 0.1) (Fig. 8 in Oke et al.

(2019)). Mesoscale eddies are generated by barotropic and baroclinic instabilities, which limit the predictability of the system

(Marchesiello et al., 2003; Feng et al., 2005), and accurate simulation of the EAuC variability needs to incorporate observations,

potentially through data assimilation, to realistically represent eddies and other features that vary on short time-scales (Oke

et al., 2005, 2013, 2015; Santana et al., 2020).40

Data assimilation (DA) combines observations and numerical model outputs to obtain an improved estimation of the ocean

system, called the analysis. The ocean analysis can be achieved via the Ensemble Kalman Filter method and its variants

::::::::
Ensemble

:::::::
Kalman

::::::
Filters which have flow-dependent information about the model error statistics but require a large (20+)

number of simulations (Bannister, 2017). The ocean analysis can also be obtained using calculus of variations through the

minimisation, in a least-squares sense, of the difference between model results and
:
a
:::::::::
variational

:::::::
method,

::::::
which

:::::::::
iteratively45

::::::::
minimises

::
a
::::
cost

:::::::
function

::::
that

::::::::
measures

:::
the

:::::
misfit

:::::::
between

:::
the

::::::
model

:::::::::
simulation

::::
and

::::::::
available observations (Weaver et al.,

2003; Di Lorenzo et al., 2007; Moore et al., 2011a). The 4-dimensional variational data assimilation (4D-Var) method reduces

model-data misfits over a finite time interval (assimilation window) using available observations while preserving dynamical

consistency and it has been used in notable studies in oceanography (Powell et al., 2008; Zavala-Garay et al., 2012; Kerry

et al., 2016; Powell, 2017; Pasmans et al., 2019; Siripatana et al., 2020; de Paula et al., 2021). These studies are realistic 4D-50

Var applications using the Regional Ocean Modelling system (ROMS), from which different values of assimilation-window

length, observational errors, and decorrelation length scales were used for the tests performed in this current study.

Observing system experiments (OSEs) aim to assess the importance of distinct sets of observations on the quality of different

analyses (Oke et al., 2015). By withholding observational subsets, one can estimate the importance of those data in the ocean

reanalysis. For instance, Zavala-Garay et al. (2012) used ROMS 4D-Var to show that assimilation of SST and SSH data55

increased temperature error between 350 and 750 m in comparison to a non-assimilative run. The authors found that further
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assimilating temperature from XBTs or synthetic temperature generated from its relation with SSH was needed to constrain the

degradation in temperatures between 350 and 750 m. Pasmans et al. (2019) stated that assimilation of temperature and salinity

from ocean gliders should be accompanied by surface measurements to prevent the generation of unrealistic instabilities.

Siripatana et al. (2020) compared two reanalyses: (i) assimilated traditional observations only (satellite SSH and SST, and60

temperature and salinity from Argo floats) and (ii) assimilated traditional observations and data from moorings, gliders and

high-frequency radar; and found improved subsurface results of temperature and velocity in the latter experiment.

The EAuC system lacks traditional subsurface data, where Argo profiles are rare and the region can experience months with-

out any water column measurement. Between May 2015 and May 2016, the EAuC region was sampled along Topex/Poseidon

147 line, and five mooring lines (named M1 to M5) were deployed in coastal waters and the continental rise to measure velocity,65

temperature and salinity (Fig. 1) and were analysed in Santana et al. (2021). During this one year of observations, Santana et al.

(2021) identified distinct periods of mesoscale activity in the region driven alternately by anti- and cyclonic eddies, as well as

a period of encroachment of the EAuC jet towards the continental slope. Intensive offshore sampling efforts such as these are

potentially cost-prohibitive. Therefore, determining the most important variables and locations of interest for ocean sampling

is key in the region, especially in this eddy-dominated WBC. The EAuC also showed strong velocity shear on the continental70

mid-slope (Santana et al., 2021), which might indicate the need for subsurface data for accurate velocity simulation.

The goal of this study is to evaluate the impact of assimilating subsurface observations into a model of EAuC system.

We conducted a set of OSEs where the most complete simulation assimilated surface fields (SSH and SST), and mooring

velocity, temperature and salinity (ASFUVTS) (Fig. 1). The other experiments suppressed observation types in the assimilation

algorithm. They withheld velocities (NoUV); subsurface temperature and salinity (NoTS); and all mooring data (NoUVTS).75

As control, we examined a non-assimilative simulation (NoDA). Argo data was left out of all experiments for independent

model-data comparison. Sensitivity tests on decorrelation length scales and assimilation window were also conducted which

helps deciding the best assimilation configuration for an operational forecast of the EAuC.

2 Methods

2.1 Numerical model80

We use the Regional Ocean Modeling System (ROMS), a primitive-equation, hydrostatic, and free-surface ocean model that

solves the Reynolds-averaged form of the Navier–Stokes equations. ROMS is a fully nonlinear, finite-difference model that

uses terrain-following (sigma) vertical coordinates and horizontal orthogonal curvilinear coordinates on a staggered Arakawa

C-grid (Shchepetkin and McWilliams, 2003, 2005; Haidvogel et al., 2008). The model domain (290 x 150) is rotated 52.14°

clockwise to better resolve the NZNES and spans 332 km offshore at the widest point (near North Cape) (Fig. 1). The domain85

has a horizontal resolution of approximately 2 km, which roughly captures coastline variability and still resolves the conti-

nental shelf and slope without large computational cost. The model has 30 vertical sigma layers and model bathymetry was

interpolated from the 250 m resolution bathymetric data set built by the National Institute of Water and Atmospheric Research

(NIWA - https://niwa.co.nz/our-science/oceans/bathymetry). We use a vertical discretisation scheme that increases the resolu-
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Figure 1. (a) Study area showing the one-year average SSH from AVISO (black contours) and NoDA run (green-red shade), and near-surface

velocities NoDA run (black arrows). The stations M3 to M5 are indicated along the grey line. The coloured arrows represent the vertically

averaged (bin = 280 m) in situ velocities centred at 140 m (red), 420 m (cyan), 700 m (blue), and 980 m (yellow). (b) Temporal averages of

temperature from in situ measurements (coloured contours) and the NoDA run (coloured shade). The grey rectangles show regions sampled

by ADCPs at M4 and M5 and the vertical positions of thermistors and CTDs are indicated as black and green dots, respectively. (c) Location

of the study area (magenta contour) in the Southwest Pacific Ocean. The colours and arrows represent the 20-year average of geostrophic

currents. Current speeds lower than 0.05 m/s were masked. The 200- and 1000-meter isobaths are shown as blue and black contours in (a)

and (c).

tion near the surface and bottom by applying stretching function type 4 and transformation equation option 2 (Shchepetkin and90

McWilliams, 2005, 2009). The vertical resolution is higher at the upper 200 m (4th - 30th layer). On the slope (depth<1000

m), the vertical resolution is higher than 66 m and in the open ocean the thickest level is 233 m (3838.6 m depth). The effect

of bottom friction is parameterised using a constant drag coefficient of 3.0 x 10−3 (Lentz, 2008), and the vertical mixing of

tracers and momentum is done with K-ϵ (Rodi, 1987), using the generic length scale (GLS) scheme (Umlauf and Burchard,

2003). Baroclinic modes are resolved using a time step of 180 s, while the barotropic time step is 6 s.95

Model surface forcing is from the Japanese atmospheric 55-year reanalysis for driving ocean models (JRA55-do, Tsujino

et al. (2018)). A previous study demonstrated that JRA55-do had the highest correlation with observed winds in comparison to

other atmospheric forcing datasets in the Southwest Pacific (Taboada et al., 2019). Atmospheric forcing fields of wind speed,

net shortwave radiation, downward longwave radiation, relative humidity, temperature, rain, and pressure are provided every

3 h and are used to compute the surface fluxes of stress, heat and freshwater using the bulk flux parameterisation of Fairall100

et al. (2003). The model uses initial and boundary conditions of SSH, temperature, salinity, and velocities from HYCOM-
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NCODA (Chassignet et al., 2009) versions 91.1 and 91.2 which cover the period focus of this study. Annual average discharge

from several rivers are included as lateral forcing in the model. The boundary forcing is applied daily using Chapman (1985)

condition for free surface, Shchepetkin condition (Mason et al., 2010) for barotropic velocities and mixed radiation-nudging

(Marchesiello et al., 2001) for baroclinic velocities, temperature and salinity. A 5-day nudging coefficient is applied towards105

the lateral boundaries. The model aims to simulate continental shelf, slope and rise regions, including the offshore extent of

the EAuC and its eddy variability. Tidal variability is not included in this study.

2.2 Observations

Remotely-sensed observations of SSH and SST were used in all assimilative runs in this study. Optimally interpolated gridded

maps of daily SSH with 1/4° of horizontal resolution created by AVISO (Ducet et al., 2000) were assimilated into the model.110

Daily SSH offsets (annual mean of ∼51 cm) were calculated prior to every assimilation cycle as the difference between the

spatial average of observations and model daily averages for each assimilative experiment (one-year averages are shown in

Fig. 1a as examples of this offset). These offsets were removed from AVISO observations before assimilation to ensure the

comparisons were made on the same reference surface. Daily maps of SST (1/4°) from AVHRR Pathfinder (Casey et al., 2010)

were used for assimilation into the model at a depth of 2 m. SSH and SST data were assimilated daily at 12:00 pm UTC in115

regions deeper than 200 m. Data points that are within 20 grid points of the boundaries were removed and a total of 123 data

points of SSH (or SST) were assimilated per day, with roughly an SSH/SST measurement every 12th grid point. We used an

assimilation window of seven days (see details in section 2.3) which gives a total of 861 SSH/SST data points per assimilation

cycle (Table 1).

A cross shelf-slope mooring transect collected data from the 6th of May 2015 to the 21st of May 2016 (Fig 1a,b). In situ120

observations of temperature, salinity, u and v components of velocity from 3 moorings (M3, M4, and M5) were assimilated

into the model (Fig 1b). MicroCAT CTDs were located near the surface and bottom at the three stations and two extras CTDs

were located around 200 m at M4 and M5 (green dots in Fig 1b). 26 temperature sensors were evenly distributed between the

three stations, with higher density of instruments in the upper 200 m water column (black dots in Fig 1b). Two long-range

(LR) and two short-range (SR) ADCPs were located at M4 and M5 (grey rectangles in Fig 1b). The water column was binned125

every 15 m (LR) or 4 m (SR) by the upward-looking ADCPs. Velocity (temperature and salinity) measurements were taken

during a period of 2 min. (1 min.) every 10 min or less. The dataset is freely available and can be found in O’Callaghan et al.

(2015). All in situ observations were low-pass filtered at a period of 30h to remove tidal signals and their interaction with other

processes, as in Kerry et al. (2016). The observations were averaged at time bins of 6 h, centred at 3, 9, 15 and 21 UTC. Types

of observations, their sources and median number of observations per assimilation cycle are shown in Table 1.130

Independent data from 30 Argo profiles (Roemmich et al., 2019) were used for model-data independent comparison. More

details on model evaluation are described in section 2.4.
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Table 1. Types of observations assimilated, their source and median number of observations per assimilation cycle.

Observation type Obs. source Obs. error (std) Median number of obs. per 7-day assim. cycles

SSH AVISO 0.04 m 861

SST AVHRR 0.3 °C 861

Velocity Moorings M3-M5 0.15 m/s 1493

Temperature Moorings M3-M5 0.8 °C 808

Salinity Moorings M3-M5 0.16 g/kg 224

2.3 Data assimilation

Data assimilation is applied in a series of time windows using strong constraint 4D-Var, i.e. neglecting model errors (Di Lorenzo

et al., 2007; Moore et al., 2011a). Tests using 2, 3, 4, and 7 days as assimilation window were conducted and the OSEs with135

a 7-day window had the most realistic results in comparison to observations. Results from a 2-day window reanalysis were

also analysed in the current study. In this work, 4D-Var is used to adjust the control variables including initial, boundary, and

atmospheric conditions. The ocean analysis is obtained via minimisation of model-to-data discrepancy or cost function (J)

given by:

J(δz) =
1

2
δzTD−1δz+

1

2
(Gδz−d)TR−1(Gδz−d) (1)140

where δz is the state vector constituted of increments (corrections) to the initial δx(t0), lateral δb(t), and surface δf(t) condi-

tions. D and R are the background and observation error covariance matrixes, respectively. Superscripts T and -1 represent the

transpose and inverse operations, respectively.

G ≡ HMf , where H, is the linearised version of the observation function H that maps the model-state to the observation

time and locations. The operator Mf denotes the tangent linear operator of the model integration about the forecast (denoted145

by the subscript f) over the assimilation window. For the transpose, GT ≡ MT
f HT, HT maps from observation to model-space

and the MT operation integrates backward in time over the assimilation window.

Gδz−d represents the mismatch between the tangent linear model fields mapped to the observations (Gδz) and the obser-

vations d which is called the innovation vector and is defined as the difference between observations and model background

interpolated to observation location. SSH observations had a daily bias (or offset) between data and model reduced from the150

observations before the innovation values were computed.

The combination of control variables δza that minimizes J is yielded iteratively in the subspace spanned by the linear

combinations of the observed model variables. The method chosen in the present work is the physical-space statistical analysis

system (4D-PSAS) and the algorithm that minimises the cost function is shown in Fig. 2 on Moore et al. (2011a). 4D-PSAS

defines δza as:155
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δza = DGT(GDGT +R)−1d (2)

δza can be equivalently written as δza = DGTwa where wa is the sub-space of the model state vector spanned by the observa-

tions (i.e. the dual space) and satisfies:

(GDGT +R)wa = d (3)

The dual form has the advantage that the dimension of wa is equal to the number of observations which is, in our case, several160

orders of magnitude smaller than the dimension of the full state vector. Thus, solving (3) may be less demanding than solving

equation (2) (Moore et al., 2011a).
::
In

:::::::
addition,

::::
the

::::::
number

:::
of

::::::::::
observations

::
d

:
in

::::::::
equation

:::
(2)

:::::::
increase

::::
with

:::
the

:::::::::::
assimilation

:::::::
window,

::::::::
therefore,

::
it
::
is

::::::::
expected

:::
that

:::::
runs

::::
with

::::::
longer

::::::::::
assimilation

:::::::
window

::
(7

:::::
days)

::::
rely

:::::
more

:::
on

::::::::::
observations

::::::
rather

::::
than

:::::::::
background

::::::
terms.

In practice, we find an acceptable reduction of the model-to-data discrepancy after 20 iterations (inner loops), when atmo-165

spheric and lateral forcings are adjusted every 12 h along with initial conditions at the beginning of the assimilation cycle. For

further details of the method and its application, readers are referred to Moore et al. (2011a, b).

The diagonal background/prior error covariance matrix D cannot be completely calculated or stored, it is rather estimated

via factorisation (Weaver and Courtier, 2001). D takes into consideration the background error standard deviations of initial,

boundary and forcing conditions, spatial decorrelation scales and normalisation factors (Moore et al., 2011a). The background170

error standard deviations were calculated from the average of 4-day variances computed from two years of the NoDA run

ocean (initial conditions), boundary, and forcing fields.
::::::
Spatial

:::::::::::
decorrelation

:::::
scales

:::
are

:::::::::::
implemented

:::
on

::
D

::
to

::::
limit

:::
the

:::::::
impacts

::
of

::::::::::
observations

::::::
within

::::::
certain

:::::::
ranges. Horizontal decorrelation length scales for SSH, velocities, active tracers (temperature

and salinity) were 100, 50 and 100 kilometres. Vertical decorrelation length scales for velocities and active tracers were 50 and

100 metres. The normalisation factors are the costliest part of the covariance modelling but they are computed only once for175

each combination of background error standard deviations and spatial decorrelation length scales. The normalisation factors

were estimated via randomisation (Fisher and Courtier, 1995) using 7500 iterations. Fig. 3 in de Paula et al. (2021) shows an

example of convolution of a unit impulse function with the horizontal (vertical) decorrelation length scale set to 100 km (50

m). For more details on the computation of the background error covariance matrix D, please see Moore et al. (2011a).

The observational error covariance matrix R is assumed to be diagonal. The standard deviation used was the largest value180

between an assigned standard deviation and the observation error obtained from the AVISO and AVHRR products, with the

assigned value being the highest most of the time. This strategy was applied to satellite observations, whereas in situ data used

a given standard deviation only. According to values used in the literature (e.g. Moore et al. (2011b); Kerry et al. (2016)),

different standard deviations were tested and the values that gave the best results were: 0.04 m for SSH; 0.3 °C for satellite

SST; 0.8 °C for subsurface temperature; 0.16 g/kg for subsurface salinity; and 0.15 m/s for water column u and v components185

of velocities. A large standard deviation was attributed to in situ temperature due to strong internal tides in the region and blow-

down events that often happened at the three moorings. Depth of the thermistors was obtained assuming an inverted pendulum
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relationship between CTDs located near the surface and bottom (Stanton and Morris, 2004) but a level of uncertainty remains

in the depth of measurements. A summary of the observation standard deviation errors and the median number of observations

per 7-day assimilation cycles is shown in Table 1.190

2.4 Experiment design and evaluation metrics

Four data assimilation experiments and one free-running simulation (no data assimilation; NoDA) are part of the OSEs. The

first data assimilation experiment incorporated SSH, SST, u and v components of velocity and mooring temperature and salinity

(ASFUVTS). The other data assimilative experiments were similar but withheld: subsurface temperature and salinity (NoTS);

subsurface velocities (NoUV); and all mooring data (NoUVTS). Another experiment assimilating surface and all mooring data195

was also conducted using a 2-day assimilation window (ASFUVTS-2days) which was designed to better match the obser-

vations. This experiment (ASFUVTS-2days) differed from the other simulations in three aspects. It used 7-day variances to

compute background error standard deviations and 200 kilometres (metres) as horizontal (vertical) decorrelation length scales

of active tracers (temperature and salinity). The last difference is the assimilation window length which is two days
:::::
2-day

::::::::::
assimilation

:::::::
window

:::::
which

::::::
makes

:::::::::
increments

::
to

:::
the

::::::
initial

::::::::
conditions

:::::
more

:::::::
frequent. These modifications made ASFUVTS-200

2days less comparable to the rest of the OSEs but they were needed in order to achieve the best match between assimi-

lated and independent observations – for results, see sections 3.2 and 3.3. Two other 7-day assimilation window experiments

(ASFUVTS-2x and NoUVTS-2x) were run assimilating the same observations as in ASFUVTS and NoUVTS but with the with

the background error covariance matrix used in ASFUVTS-2days (doubled decorrelation length scales and 7-day variances).

Those experiments showed that using doubled decorrelation length scale of tracers can lead to larger errors in temperature if205

subsurface data is not available.
:::::
Those

:::::::::::
experiments

::::
were

::::::
needed

::::
and

:::
are

::::::::::::
recommended

::::::
during

:::
the

:::::::::::
development

::
of

::
an

::::::
ocean

:::::::::
operational

:::::::
forecast.

:
Table 2 summarises the experiments’ configurations.

Table 2. Assimilation experiments and their observations, decorrelation length scales of temperature and salinity and assimilation window.

Experiments Assimilated observations Horizontal (vertical) decorr. length scales of tracers Assim. window

ASFUVTS SSH, SST, velocity, temperature, and salinity 100 km (metres) 7 days

NoTS SSH, SST, and velocity 100 km (metres) 7 days

NoUV SSH, SST, temperature and salinity 100 km (metres) 7 days

NoUVTS SSH and SST 100 km (metres) 7 days

ASFUVTS-2days SSH, SST, velocity, temperature, and salinity 200 km (metres) 2 days

ASFUVTS-2x SSH, SST, velocity, temperature, and salinity 200 km (metres) 7 days

NoUVTS-2x SSH and SST 200 km (metres) 7 days

The numerical simulations started on the 1st of May 2015 using an initial condition interpolated from HYCOM-NCODA

and they ran until the 31st of May 2016. The simulations started assimilating SSH and SST observations on the 1st of May, and

mooring data between the 8th of May 2015 and the 21st of May 2016. The simulations assimilated SSH and SST until the 31st210
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of May 2016 and 57 (200) assimilation cycles were performed in the 7-day (2-day) reanalyses. The NoDA run was integrated

until 31st December 2016. Model results were interpolated to the observations’ spatial resolution for evaluation.

The NoDA run and reanalyses were objectively validated using root mean square deviation (rmsd) given by:

rmsd =

√
1

n
Σn

i=1(xi − yi)2; (4)

and linear correlation (r):215

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
; (5)

between observed (x) and modelled (y) results, where i=1,2,...,n are the observation times or locations and the averages −

were applied in time or space. The daily offset between observed and model SSH was removed before performing the SSH

rmsd calculation. SSH and SST rmsd were computed using daily averaged model results (analysis) interpolated to observations

locations inside the domain. Complex vector correlation was computed between simulated and observed 2D velocity vectors.220

Complex correlation converts a pair of two-dimensional vector series into complex numbers and computes the correlation

between their real parts and their relative angular displacement using their imaginary parts (Kundu, 1976). Model bias is defined

as the difference between simulated and observed quantities. Statistics computed between model and in situ observations used

daily averaged data processed and studied in Santana et al. (2021). Thirty Argo profiles were available inside the model domain

(see section 3.3 for details) during the reanalyses period and these were used to provide independent temperature and salinity225

observations for model-data comparison. Argo data and model results were linearly interpolated from 0 to 2000 m depth using

bins of 10 m. HYCOM-NCODA analyses which assimilated SSH, SST and Argo profiles (Chassignet et al., 2009) were also

compared against subsurface mooring and Argo data.

3 Results

3.1 DA impact on surface fields230

Documented periods with anti- (A1 and A2) and cyclonic (C2) mesoscale eddies (Santana et al., 2021) were used to compare

the NoDA (no data assimilation – control) and ASFUVTS (assimilating SSH, SST, velocity, temperature and salinity data)

:::
and

:::::::::
ASFUVTS

:
runs. ASFUVTS’ SSH height fields showed good agreement with observed SSH structures, where the centre

of model high and low SSH tended to match with the core of anti- (A1 and A2) and cyclonic (C2) eddies respectively (Fig.

2a,c,e). The NoDA run generated anti- and cyclonic eddies close to the observed ones, however, the eddies’ centres were235

displaced by tens of kilometres (Fig. 2b,d,f). This result can be attributed to SSH and velocity boundary conditions from

HYCOM-NCODA which provided accurate SSH at the border and forced the generation of eddies with the correct cyclonicity

albeit displaced from the observed eddies. Smaller eddies were modelled in the two simulations due to their higher resolution
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(∼2 km) in comparison to the observations (∼25 km) (Fig. 2c,d). Mesoscale eddies that had their centre near the domain

boundary were not well simulated by either experiment, such as the cyclonic eddy centred at 34°S and 174°E on 2015/10/09240

and the anticyclonic eddy centred at 36°S and 178°E on 2016/04/09 (Fig. 2a,b,e,f). A statistical analysis of the representation

of mesoscale eddies (SSH and SST fields) by the numerical experiments is shown in the rest of this section.

The root mean square deviation (rmsd )
::::
rmsd

:
was calculated in time and space against observations to objectively evaluate

SSH and SST generated by the experiments. The rmsd is compared to the observations’ standard deviation (std) which shows

regions or periods of larger mesoscale variability that might be harder to accurately simulate observed SSH and SST. All245

experiments had reduced SSH rmsd on the slope where observed SSH std was smaller and SSH rmsd tended to be higher in the

open ocean (larger SSH std) where mesoscale eddies are present (Fig. 3a,b,c,d). The most complete ocean analysis (ASFUVTS)

had reduced SSH rmsd (mean = 0.06 m) in comparison to the NoDA SSH rmsd (mean = 0.08 m) for the majority of the domain

(Fig. 3a,b). The NoUVTS run had similar average SSH rmsd (0.06 m) to the ASFUVTS run. However, ASFUVTS further

reduced SSH rmsd upstream and downstream of the moorings (Fig. 3b,c). Experiments that assimilated in situ velocities250

(NoTS, ASFUVTS-2days) also had positive impact on SSH representation up- and downstream of the moorings (not shown).

NoDA had large SSH rmsd, especially in areas of observed high SSH std – north and east of the moorings and north of the East

Cape (178°E, 37°S) (Fig. 3a,d). The dynamics in those regions were largely dominated by more than four mesoscale eddies

that persisted for more than a month each (Santana et al., 2021).

The NoDA run had the highest average SST rmsd (0.72 °C) and showed the largest SST rmsd (>1.4 °C) near the model NW255

boundary, which was also seen in the assimilative runs (Fig. 3f,g,h). Assimilation of surface and subsurface fields (ASFUVTS

run) reduced the maximum (∼ 1.0 °C) and average (0.45 °C) SST rmsd values in comparison to the NoDA run (Fig. 3f,h).

Withholding subsurface temperature data (NoUVTS runs) had small impacts in the maximum (decrease of ∼ 0.2 °C) and mean

(increase of 0.01 °C) SST rmsd (Fig. 3f,g), as well as for NoUV and NoTS runs (not shown).

The NoDA run had larger spatial SSH rmsd in comparison to the ASFUVTS and NoUVTS runs for most of the year-long260

period of simulation (Fig. 4a). Assimilating subsurface velocity, temperature and salinity further reduced the average SSH

rmsd by 14%. The NoDA run average spatial SSH correlation was 0.51 and below 0.2 in some events (Fig. 4b). This shows

the lack of skill in simulating the timing and location of the mesoscale eddies in the NoDA run. Assimilation of SSH and

SST (NoUVTS) improved SSH correlation by 27% and the inclusion of subsurface data further increased the correlation (by

31%) which was above 0.4 virtually during the entire year of simulation. The SSH represents the integral of subsurface density265

fields which is a good proxy for representation of the whole ocean state and the SSH was better represented when velocity,

temperature and salinity observations were assimilated.

The NoDA run had spatial SST rmsd similar to the assimilative runs in the first two-thirds of the simulation period, however,

it showed larger errors from Feb. 2016 onwards and reached a maximum of 1.82°C (Fig. 4c). The ASFUVTS run had smaller

SST rmsd time mean (0.47°C) in relation to the NoDA run (mean = 0.68°C). Withholding subsurface data (NoUVTS) had270

little impact on the SST rmsd (mean = 0.46°C). The NoDA run had small absolute SST difference to observations (<1.0°C)

during the first two-thirds of the timeseries but a larger cold bias (<-1°C) was developed in Apr. 2016 (Fig. 4d). Assimilation of

surface fields only (NoUVTS) had absolute SST bias below 0.5°C throughout the year-long period of simulation. The inclusion
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Figure 2. Daily maps of observed SSH from AVISO (black contours), and modelled SSH (coloured shade) from experiments ASFUVTS

(left column) and NoDA (right column) on days 2015/10/09 (a,b), 2015/12/25 (c,d), and 2016/04/22 (e,f). The acronyms A1, A2, and C2

represent mesoscale eddies studied in Santana et al. (2021). The coloured arrows show in situ velocities as in Fig. 1a).
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Figure 3. Maps of SSH (top row) and SST (bottom row) statistics. Observed AVISO SSH std (a) and AVHRR SST std (e), modelled

ASFUVTS run SSH (b) and SST rmsd (f), NoUVTS SSH (c) and SST rmsd (g), NoDA SSH (d) and SST rmsd (h).

of subsurface data (ASFUVTS) did not have a well-marked impact on model SST bias, most of the surface field correction was

done by assimilation of SSH and SST more specifically.275

Assimilation of subsurface data (ASFUVTS) positively impacted the representation of
::::::::
improved

:
SST in comparison to

the experiment that withheld subsurface observations (NoUVTS). A larger positive impact was shown on SSH rmsd when

subsurface data was assimilated. Assimilation of in situ velocities
:::::::
velocity, especially, further reduced the SSH rmsd up- and

downstream of the moorings. Main differences between experiments appeared in the subsurface fields comparisons which are

shown in the next section.280

3.2 DA impact on subsurface fields

The NoDA run had very little velocity complex correlation (< 0.1) with observations at M4 and M5 (Fig. 5a,b). DA improved

complex correlation between modelled and observed velocity vectors in all experiments at the two stations. These results can be

related to assimilation of SSH which corrects the geostrophic circulation that is responsible for the long-term (> 30 days) upper

half water column current variability in the region (Santana et al., 2021). The most complete assimilative run (ASFUVTS) had285

better results in comparison to the NoDA run but not against other assimilative runs. Withholding temperature and salinity

(NoTS and NoUVTS) improved upon ASFUVTS, and NoTS had the best overall results. ASFUVTS-2days, on the other hand,

had the best overall results. HYCOM-NCODA poorly represented velocity at M4 probably due to less accurate representation

of the slope bathymetry (Fig. 11 in de Souza et al. (2021)). At M5, however, HYCOM-NCODA showed velocity complex

12



Figure 4. Timeseries of SSH spatial observed std and model rmsd (a), SSH spatial correlation (b), SST spatial observed std and model rmsd

(c), and SST spatial mean (right hand axis) and model bias (left hand axis) (d). The colours represent observations from AVISO/AVHRR

(light blue), and model output from NoDA run (red), NoUVTS run (dark blue), and ASFUVTS run (black). Mean std, rmsd and correlation

coefficients, and std SST bias are shown in the legend. Mean SST in (d) is shown on the right axis for better visualisation. The acronyms A1,

C1, EAuC, A1, A2/C2, and C2 represent mesoscale structures near M5 which were studied in Santana et al. (2021).

correlation coefficient similar to the 7-day assimilative runs. Velocity at M5 was more dominated by the mesoscale field and290

less controlled by topographic constraints when compared to M4 (Santana et al., 2021), which makes velocity easier to simulate

even in lower horizontal resolution models.

The assimilative experiments had smaller temperature rmsd at the surface in comparison to the NoDA run at M4 and M5

(coloured markers at the surface in Fig. 5c,d). Assimilating subsurface temperature (ASFUVTS and NoUV) generated temper-

ature rmsd smaller than the NoDA run rmsd in the upper 500 m at M4 and M5 (black and light blue lines in Fig. 5c,d). The295

lack of subsurface temperature for assimilation (NoTS and NoUVTS), however, led to larger rmsd (>1°C) in the upper 200

m at M4 and M5, and below 500 m at M5 (pink and dark blue lines in Fig. 5c,d). The ASFUVTS-2days run had improved

temperature rmsd down to 1000 m at M5. HYCOM-NCODA showed improved temperature results compared to the NoDA

run (dashed and solid red lines in Fig. 5c,d).
:::
This

::
is

:::::::
because HYCOM-NCODA assimilates temperature and salinity data from

Argo floatscan explain the improved results.300
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Figure 5. Profiles of complex correlation coefficient between observed and modelled velocity vector at (a) M4 and (b) M5. Profiles of

temperature root mean square deviation between observed and modelled temperature at (c) M4 and (d) M5. Black diamonds (ASFUVTS),

black dots (ASFUVTS-2days), magenta squares (NoTS), cyan triangles (NoUV), blue stars (NoUVTS) and red dots (NoDA) represent the

median depth of thermistors and CTDs at each station, except at the surface where comparisons are against AVHRR SST. HYCOM-NCODA

results are shown as dashed red lines. The depth averaged values of complex correlation and temperature rmsd are shown in the legends.

Temperature differences between model and observations at M4 showed small cold bias and relative warming at the begin-

ning of the timeseries for all experiments (Fig. 6). The small biases can be attributed to the initial and boundary conditions

obtained from HYCOM-NCODA analysis which shows a relative warming between Jul and Aug 2015 when Argo data was

not available in the region (red shade and numbers in Fig. 6e). Larger differences between the OSEs started to appear in Sep.

2015. The ASFUVTS and NoUV runs are colder than observed between Sep. and Nov. 2015 and Mar. and May 2016 (<-1°C305

– second lightest blue shade in Fig. 6a,b). The NoUVTS and NoTS (not shown) runs are cooler in the upper 200 m water

column from Sep. 2015 onwards (Fig. 6c). Withholding subsurface temperature for assimilation (NoUVTS and NoTS) led to

the continuous cooling of waters in the top 200 m until the end of the simulation. The NoDA run had a small temperature

difference when compared to observations in Sep. 2015 but these increased in Oct. 2015 (Fig. 6d). The longest persistent cold

bias in the NoDA run started in mid-Mar 2016, associated with the SST cold bias during the same period (Fig. 4d). Cooling310

of the upper water column seen in the NoTS and NoUVTS runs also occurred in the NoDA run. This effect might be intrinsic
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Figure 6. (a) Difference between model and observed daily average temperature at M4 for experiments (a) ASFUVTS, (b) NoUV, (c)

NoUVTS, (d) NoDA, (e) HYCOM-NCODA, and (f) ASFUVTS-2days. The red numbers in (e) show the dates when Argo profilers sampled

the NZNES. The locations of the Argo floats are shown in Fig. 10e. The acronyms A1, C1, EAuC, A1, A2/C2, and C2 represent mesoscale

structures near M5 which were studied in Santana et al. (2021).
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to the model configuration, and data assimilation of velocities and/or surface fields only enhanced this bias. ASFUVTS-2days

had a marked negative temperature difference between Aug and Sep 2015 that was reduced in the rest of the year (Fig. 6e).

At M5, a mid water column warm bias (>1°C) was simulated in the first half of the year-long period in all OSEs (second

lightest red shade Fig. 7a,b,c,d). This also occurred
:::::::
appeared in HYCOM-NCODA between Jun and Sep 2015 (Fig. 7e) prob-315

ably due to the lack of Argo floats to the north of 35°S. ASFUVTS had the smallest differences to the observations out of all

7-day assimilation window experiments (Fig. 7a). In mid-Aug 2015, a near surface cold bias (<-2°C) was pronounced in all

experiments, but further developed in the NoDA, NoTS and NoUVTS runs towards the end of the simulation period. This is

associated with the lack of subsurface temperature assimilation and the near surface cold bias present in the NoDA run. The

ASFUVTS (NoUV) run reduced the cold (warm) differences to values above -1°C (below 2°C) for most of the period of the320

simulation. It showed that the assimilation of subsurface temperature and salinity had positive impact by reducing temperature

biases at M4 and M5. ASFUVTS-2days better matched the observations and had the smallest temperature differences at M5

(Fig. 7f). However, this assimilation configuration led to larger temperature differences when mooring temperature was not

assimilated. As such
:::::::::::
Consequently, this configuration is not advisable in this region for an operational forecast system as Argo

floats can spend months without sampling the region.325

Observed salinity timeseries from CTDs located near 200 m depth at M4 and M5 were compared to simulated salinity

from three experiments and HYCOM-NCODA (Fig. 8). All models’ salinity tended to oscillate near the observed values, and

average absolute biases were smaller than 0.1 g/kg. The ASFUVTS run slightly degraded salinity results in comparison to the

NoDA run, however, salinity rmsd were smaller than the observation standard deviation (0.16 g/kg). ASFUVTS-2days and

HYCOM-NCODA had larger peaks and troughs in salinity timeseries and the largest variances (0.02 g/kg) at M5. This result330

can be attributed to the frequency of increments applied to the initial conditions – everyday in HYCOM-NCODA and every

other day in ASFUVTS-2days. Despite that, ASFUVTS-2days had the best statistical performance amongst the simulations

compared which can also be attributed to the more frequent increments
:::::::::
corrections

:
to the initial conditions.

Salinity rmsd comparisons at three different depths at M4 and M5 are shown for all ROMS’ experiments and HYCOM-

NCODA in Table 3. These experiments had salinity rmsd oscillating around 0.16± 0.04 g/kg in shallower depths (≤ 220 m)335

at M4 and M5 stations. The
::
An

:
exception to this is ASFUVTS-2days which had the smallest salinity rmsd (<0.10 g/kg) in the

upper M4 and M5 depths. HYCOM-NCODA also had salinity rmsd around 0.16 ± 0.04 g/kg in the upper and 200 m depth at

both M4 and M5. Salinity rmsd was reduced near the bottom at M4 and M5 (< 0.08 g/kg) in all ROMS’ experiments as well as

for HYCOM-NCODA. ASFUVTS-2days, however, had the largest salinity rmsd near the bottom at M5. The bathymetry used

in HYCOM-NCODA was shallower than near bottom measurements at M5 and salinity rmsd was not calculated. These OSEs’340

results suggest that future experiments should reduce salinity observation standard deviation (or error) below a certain depth.

For instance, observed salinity error can be reduced to 0.06 g/kg below 1000 m as in Kerry et al. (2016) or an exponential

decay can be applied from surface (0.12 g/kg) to 2000 m (0.02 g/kg) (Xie and Zhu, 2010; Mignac et al., 2015; Santana et al.,

2020). In the next section, model temperature and salinity are validated against Argo-independent observations.
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Figure 7. (a) Difference between model and observed daily average temperature at M5 for experiments (a) ASFUVTS, (b) NoUV, (c)

NoUVTS, (d) NoDA, (e) HYCOM-NCODA, and (f) ASFUVTS-2days. The red numbers in (e) show the dates when Argo profilers sampled

the NZNES. The locations of the Argo floats are shown in Fig. 10e. The acronyms A1, C1, EAuC, A1, A2/C2, and C2 represent mesoscale

structures near M5 which were studied in Santana et al. (2021).
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Figure 8. Observed (light blue) and modelled daily average salinity near 200 m depth at M4 (a) and M5 (b) from experiments ASFUVTS

(black), ASFUVTS-2days (dark blue), NoDA (red), and HYCOM-NCODA (magenta/pink). Some experiments had their colour changed from

previous plots for better visualisation. Var, rmsd, bias and corr represent variance, root mean square deviation, mean bias and correlation

coefficient calculated between modelled and observed salinity. Red numbers show the dates when Argo profilers sampled the NZNES, and

their locations are shown in Fig. 10e. The acronyms A1, C1, EAuC, A1, A2/C2, and C2 represent mesoscale structures near M5 which were

studied in Santana et al. (2021).
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Table 3. Salinity root mean square deviation (rmsd) between experiments and CTD observations at M4 and M5.

Experiments M4 84 m M4 220 m M4 1008 m M5 31 m M5 177 m M5 1799 m

ASFUVTS 0.198 0.110 0.068 0.169 0.152 0.047

ASFUVTS-2days 0.079 0.098 0.045 0.064 0.115 0.074

NoTS 0.181 0.103 0.074 0.159 0.133 0.041

NoUV 0.159 0.093 0.061 0.147 0.114 0.045

NoUVTS 0.164 0.085 0.072 0.159 0.111 0.038

NoDA 0.155 0.092 0.066 0.146 0.134 0.045

HYCOM-NCODA 0.172 0.160 0.041 0.132 0.163 shallower bathymetry

3.3 Comparison to independent observations345

Thirty non-assimilated temperature and salinity profiles spread in time (Fig. 9) and throughout the domain (Fig. 10e) were used

for model-data independent comparison. All experiments had small salinity differences when compared to the first five salinity

profiles sampled by Argo floats which can be attributed to HYCOM-NCODA’s initial and boundary conditions (Fig. 9). Larger

salinity differences, however, appeared in the OSEs’ results in late August when simulated salinity
::
sea

:::::
water

:
was fresher in the

upper 200 m depth and saltier underneath. Assimilation of surface and mooring data using a 7-day window did not generate350

any marked
::::::
notable

:
positive/negative impact in salinity in comparison to the NoDA run. ASFUVTS-2days had the smallest

differences between simulated and observed salinity (Fig. 9f) and its results were similar to HYCOM-NCODA (Fig. 9e) which

assimilates Argo data. However, fresher salinity differences
::
sea

:::::
water

:
were simulated in mid May 2016 when mooring salinity

data collection had ended.

In this analysis, we included experiments using a 7-day assimilation window and doubled decorrelation length scales for355

tracers (NoUVTS-2x and ASFUVTS-2x) to show the impact of this approach
:::
the

:::::
larger

:::::::::::
decorrelation

::::::
length

:::::
scale on sim-

ulating temperature and salinity at Argo locations. All experiments’ temperature rmsd showed similar patterns to the results

simulated at M4 and M5. When temperature was not assimilated (NoUVTS and NoTS) there was a higher temperature rmsd

between 0 and 200 m in comparison to the NoDA run due to a colder bias (<-1°C) that developed in these runs (Fig. 10a,b).

Assimilation of subsurface temperature data (ASFUVTS, ASFUVTS-2days and NoUV runs) resulted in smaller temperature360

rmsd in comparison to the NoDA run from the near surface down to 2000 m (Fig. 10a,b). HYCOM-NCODA reanalysis which

assimilates Argo, SSH and SST data had the overall best temperature representation at the Argo locations. Assimilation of sur-

face and mooring data using doubled decorrelation length scales (ASFUVTS-2x) slightly improved temperature representation

near the surface and around 1000 m depth in comparison to ASFUVTS (Fig. 10a,b). However, when subsurface data was not

assimilated (NoUVTS-2x) larger temperature rmsd were generated between 200 and 1200 m depth in relation to the NoUVTS365

run.

Comparisons to Argo salinity measurements showed that all 7-day window experiments and the NoDA run had similar

vertical structures in the salinity bias. Fresher salinity was modelled in the upper 200 m, and saltier waters were modelled
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Figure 9. Salinity difference between modelled and Argo observations from experiments (a) ASFUVTS, (b) NoUV, (c) NoUVTS, (d) NoDA,

(e) HYCOM-NCODA, (f) ASFUVTS-2days. The numbers in (e) show the dates when Argo profilers sampled the NZNES. The locations of

the Argo floats are shown in Fig. 10e. The acronyms A1, C1, EAuC, A1, A2/C2, and C2 represent mesoscale structures near M5 which were

studied in Santana et al. (2021).

below that, peaking at 600 m, in these experiments (Fig. 10c). ASFUVTS-2days had the smallest salinity bias and rmsd in

comparison to the 7-day window experiments (Fig. 10d). This suggests that, more frequent
::::::::::
corrections/increments to the initial370

conditions and doubled decorrelation length scales of tracers can overcome
:::::::
improve

::::::
salinity

::::
even

:::::
with the small number of

salinity observations. ASFUVTS-2days salinity results were close to HYCOM-NCODA reanalysis which assimilated salinity

data from Argo floats.

Applying doubled decorrelation length scales of tracers to the 7-day assimilation window experiments slightly reduced rsmd

for temperature (3%) and salinity (4%) at the Argo locations’ when assimilating mooring temperature and salinity (ASFUVTS-375

2x) in comparison to using 100 km (100 m) as horizontal (vertical) length scale (Fig. 10). However, when subsurface data

was withheld (NoUVTS-2x) it increased the mean temperature (salinity) rmsd by 18% (47%). Larger rmsd occurred when

withholding mooring temperature and salinity data using a 2-day assimilation window and double decorrelation length scales

of tracers (NoUVTS-2days – not shown).
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Figure 10. Profiles of mean bias and root mean square deviation (rmsd) between model and independent Argo observations of temperature

(a,b) and salinity (c,d). Solid black line (ASFUVTS), dashed black line (ASFUVTS-2days), starred black line (ASFUVTS-2x), solid blue

line (NoUVTS), starred blue line (NoUVTS-2x), red line (NoDA), and dashed red line (HYCOM-NCODA). The stars represent the median

depth of thermistors and CTDs (CTDs) at M3, M4 and M5 in temperature (salinity) bias and rmsd profiles. Results from experiments NoUV

and NoTS were not shown for better visualisation. (e) Map of Argo locations which are represented as numbers in black or red for better

visualisation only. The moorings’ locations are shown as black dots on the magenta line.

3.4 Increments to initial and surface conditions380

Variability in temperature increments to the initial conditions at M4 revealed oscillation between positive and negative incre-

ments through time in all experiments (Fig. 11). The 7-day window experiments that assimilated subsurface temperature and

salinity (ASFUVTS and NoUV) had positive increments extending from surface down to 500 m (darker red shade in Fig.

11a,b). In contrast, experiments that did not assimilate temperature and salinity (NoTS and NoUVTS) had strong positive in-

crements bounded to near the surface (Fig. 11c,d). ASFUVTS-2days did not have large positive increments near the surface385

but increments tended to vary from positive to negative values between assimilation cycles (Fig. 11e).

Near surface average temperature increments had a distinct difference between experiments that did and did not assimilate

subsurface temperature at M4 and M5 (Fig. 12a,b). Assimilation of in situ temperature (ASFUVTS and NoUV) generated

larger average positive increments (>0.04°C) around 100 m depth in comparison to the simulations that withheld subsurface
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Figure 11. Time variability of temperature increments (°C) to the initial conditions at M4 from experiments (a) ASFUVTS, (b) NoUV run,

(c) NoTS, (d) NoUVTS, and (e) ASFUVTS-2days.

temperature (NoTS and NoUVTS). The latter experiments had near surface mean negative temperature increments that de-390

creased towards zero below 200 m. ASFUVTS-2days had smaller average and standard deviation increments near the surface

in comparison to the 7-day experiments (Fig. 12a,b).
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Figure 12. Profile of average (thick lines) and standard deviation (thin lines) increment to initial conditions of temperature at M4 (a) and

M5 (b). Solid black line (ASFUVTS), dashed black line (ASFUVTS-2days), pink (magenta) line (NoTS), light blue (cyan) line (NoUV) and

dark blue line (NoUVTS). The red dashed line marks the 0 °C increment.

Surface mean heat flux analysis fields varied according to the presence/absence of subsurface temperature for assimilation

(Fig. 13). Simulations that withheld subsurface temperature (NoUVTS and NoTS) had large positive heat flux near the moor-

ings and in the majority of the domain (Fig. 13a,b). The positive heat flux in the NoTS and NoUVTS runs was related to the395

near-surface negative temperature increments at M4 and M5 (dark blue and pink lines Fig. 12). The combined positive heat

flux and negative temperature increments corrected the surface cold bias present in the NoDA run, but not the cooling trend

around 200 m. Experiments that assimilated subsurface temperature (ASFUVTS, NoUV and ASFUVTS-2days) had negative

average heat flux (or near zero heat flux – ASFUVTS-2days) near the moorings that extended north and south with varying

size between experiments (Fig. 13c,d,e). This negative heat flux increment balance the positive temperature increment at M4400

and M5 which aim at correcting both surface and upper thermocline (∼200 m) cold biases. The large variability in heat flux

analysis fields between experiments (Fig. 13) might be related to the 4-day variances used to compute the background error

covariance. The 4-day variances used here include daily cycle and cloud coverage variabilities which generated large heat flux

uncertainty and increments.
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Figure 13. Average surface net heat flux analysis (W/m2) (positive = downward) in experiments (a) NoUVTS, (b) NoTS, (c) NoUV, (d)

ASFUVTS, and (e) ASFUVTS-2days. (f) shows mean net heat flux in the freely evolving simulation (NoDA). Green (blue) colours show

positive (negative) mean surface heat flux.

The ASFUVTS-2days run had smaller negative heat flux analysis near the moorings. This happened due to the smaller405

average negative increments (M4) and positive increments (M5) added to the initial condition of temperature at these stations

(black dashed line Fig. 12). The NoDA run average net heat flux was mostly positive north of 35°S and was negative southwards

(Fig. 13f). On average, the atmosphere has a warming effect on the ocean north of 35°S and a cooling effect south of 35°S.

This is observed in JRA55-do (Fig. 48 in Tsujino et al. (2018)), in which the NZNES is located near the average zero net heat

flux contour line in the atmospheric forcing dataset.410

Annual average wind stress is mainly from northwest in the 7-day window runs and from west in the ASFUVTS-2days

and NoDA runs (vectors in Fig. 14). Wind stress curl showed some spatial variability between the assimilative runs (red and

green shade in Fig. 14). Experiments that did not assimilate subsurface temperature and salinity (NoUVTS and NoUV) had

average negative wind stress curl at the moorings’ location (Fig. 14a,b). Conversely, assimilation of subsurface temperature and

salinity (NoUV and ASFUVTS) generated average positive wind stress curl on top of M5 (M3-M5 in ASFUVTS) (Fig. 14c,d).415

Positive wind stress curl generates convergence and downwelling of warmer water masses that might be acting to prevent

the cold bias in the numerical model. These changes in wind stress curl can also explain why assimilation of subsurface
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Figure 14. Analysis field of wind stress (N/m2) and its curl (N/m3) (red-green shade) in experiments (a) NoUVTS, (b) NoTS, (c) NoUV, (d)

ASFUVTS, and (e) ASFUVTS-2days. (f) shows mean wind stress and its curl from JRA55-do. All fields were degraded from 2 km to 1/4°

to be similar to JRA55-do horizontal resolution.

temperature and salinity (ASFUVTS and NoUV) slightly degraded the representation of velocity at M4 and M5 compared

to withholding subsurface temperature and salinity (NoTS an NoUVTS). ASFUVTS-2days run had smaller wind stress curl

magnitude compared to the other simulations. Its wind stress curl field resembles the NoDA wind field forced with JRA55-do,420

especially in the regions of negative wind stress curl near the coast around 37.5°S and observed by Taboada et al. (2019) using

CCMP data.

4 Discussionand comparison to other studies

In this study, SSH, SST, mooring velocity, temperature and salinity observations were assimilated into an ocean model of

the EAuC using 4D-Var with a 7-day assimilation window. Observing system experiments (OSEs) were conducted in order425

to elucidate the importance of in situ data assimilation in the EAuC region. Four OSEs were performed based on the most

complete simulation called ASFUVTS which assimilated surface fields (SSH and SST), and mooring velocity, temperature
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and salinity. The other experiments withheld observation types from assimilation. They removed mooring velocities (NoUV);

subsurface temperature and salinity (NoTS); and all mooring data (NoUVTS). A non-assimilative simulation (NoDA) was used

as the control run. Argo data was left out for independent model-data comparison. Another run that assimilated surface and430

mooring data using a 2-day window (ASFUVTS-2days) and aimed at better matching the observations rather than serving as

basis for an operational forecast was also evaluated. HYCOM-NCODA outputs, which provided boundary conditions, were

also used in the model comparison.

All assimilative experiments showed a reduction in SSH rmsd in comparison to the NoDA run of about 25%. The improve-

ments in SSH were small in comparison to achievements seen in other WBC 4D-Var studies, such as: the East Australian435

Current (EAC) (∼63% Kerry et al. (2016)) and the Brazil Current (BC) (48% - de Paula et al. (2021)). Smaller correction in

SST (rmsd reduction of 37%) when compared to 4D-Var studies in the East Australian Current (EAC) (∼60% Kerry et al.

(2016)) and the Brazil Current (BC) (27% - de Paula et al. (2021)). These studies used lower horizontal resolution grids in the

open ocean (5 km EAC and 9 km BC) compared to our model spatial grid spacing (2 km) which might explain the differences

in performance. According to Sandery and Sakov (2017), increasing model resolution towards the submesocale (from 10 km to440

2.5 km) reduces the skill of the analysis and forecast. They suggested that resolving the less predictable submesoscale lowers

the predictability of the mesoscale as there is an inverse cascade in the kinetic energy spectrum. Kerry et al. (2020) found larger

errors when downscaling from a regional to a coastal domain (750-1000 m resolution) while simulating the cyclonic inshore

side and frontal instabilities of the EAC.

All OSEs improved velocity complex correlation by at least three times at M4 and five times at M5 in comparison to the445

NoDA run (coef. < 0.07). Assimilation of subsurface velocity (NoTS) simulated flow reversals at depth on the slope (M4) more

accurately and it improved on the simulation that assimilated only surface fields (NoUVTS). Counterintuitively, inclusion

of temperature and salinity in the 7-day window runs (NoUV and ASFUVTS) degraded the velocity results in comparison

to NoUVTS run. This might be associated with increased positive wind stress curl near the moorings in experiments that

assimilated subsurface temperature (ASFUVTS and NoUV runs). Positive wind stress curl causes downwelling of warmer450

waters and counter-balances the cold bias in the model but degrades velocity results in ASFUVTS and NoUV runs. The wind

impact can be reduced by decreasing the number of days to estimate wind variance (uncertainty). Another factor that may have

played a role was the low vertical resolution of salinity sensors, which were not enough to correct density fields and generate

accurate geostrophic currents. For future data collection strategies, we suggest that higher vertical resolution for salinity data.

The application of doubled decorrelation length scales of tracers improved temperature, salinity and velocity representation455

::::::::
simulation

:
when subsurface data was assimilated (ASFUVTS-2x and ASFUVTS-2days). However, this strategy led to larger

temperature and salinity errors when subsurface tracer data was not assimilated (NoUVTS-2x and NoUVTS-2days).

The 2-day assimilation window run (ASFUVTS-2days) had the highest complex correlation coefficients (>0.35) from a

combination of doubled decorrelation length scales, larger model error estimates and more frequent increments. ASFUVTS-

2days was more efficient at extracting and spreading mooring observational information and generated the best results when460

compared to temperature and salinity from Argo observations. This ocean reanalysis can be used to estimate EAuC heat

and volume transports since it better represents observations. However, this approach should not be used if subsurface data
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availability is low because a large subsurface cold bias can be generated. This is the case for an operational forecast in which

Argo floats might not be available for months. In Kerry et al. (2016), higher velocity complex correlation coefficients (∼1)

were obtained in a 2-year reanalysis of the EAC. However, the EAC has a more coherent jet (Mata et al., 2000; Bowen et al.,465

2005; Sloyan et al., 2016) which is well represented by the non-assimilative run (complex correlation ∼0.8 in some locations)

(Kerry et al., 2016). In contrast, the EAuC has a more eddy-dominated field (2/3 of 1 year) (Santana et al., 2021) which makes

it harder for ocean free-running models and reanalyses to capture such variabilities.

Marked differences among the experiments appeared in the subsurface temperature. Experiments that withheld in situ tem-

perature and salinity (NoTS and NoUVTS) generated a larger cold bias around 100 m at M4 and M5 in comparison to the470

NoDA run. At 100 m, rmsd were about 1.4°C (1.9°C) in the NoTS (NoUVTS) run at M4 and M5, whereas the NoDA run

had temperature rmsd of 1.1°C (1.6°C) at M4 (M5). Assimilation of in situ temperature and salinity (ASFUVTS and NoUV)

reduced the cold bias. The lack of subsurface temperature assimilation also generated similar errors at the top of the ther-

mocline in other regional studies (e.g., Zavala-Garay et al. (2012); Santana et al. (2020)). Zavala-Garay et al. (2012) needed

to assimilate XBT or synthetic CTD data to correct that large temperature rmsd (∼2°C) between 200 and 500 m depth. The475

authors aimed at simulating the EAC variability between years 2001 and 2002, and the Argo project was still beginning, with

few sondes in the ocean. In our study, it is still an open question if assimilating the few Argo temperature and salinity profiles

(30) and surface data would prevent the growth of the 100 m cold bias at M4 and M5. These experiments represent a good

benchmark to assess proper assimilation windows and decorrelation length scales. Doubled length scales of tracers (200 km

and 200 m) and a 2-day assimilation window led to colder biases in the experiments that withheld in situ temperature which480

could be a problem when Argo data is not available for a long period. The 7-day assimilation window and smaller length scales

(100 km and 100 m) seemed to be a good configuration to well-represent the surface (SSH and SST) and subsurface velocity

fields in an operational forecast system.

In ROMS 4D-Var, spatial decorrelation length scales are set using one value per model variable for the whole domain

(Moore et al., 2011a). In reality, decorrelation length scales can vary in space depending on the main drivers of variability485

in each specific region. For instance, atmospheric heat flux dominates temperature variability at the surface, and SST at M4

has high correlation (>0.7) with points spread hundreds of kilometres across in the NoDA run (Fig. 15a). Nonetheless, this

correlation is limited to a few metres below the surface (<20 m) (Fig. 15b). At 200 m depth, the high correlation area covers

a region spanning ∼50 km across and ∼350 m at depth (Fig. 15c,d). In this study, we showed that using 100 km (m) as

horizontal (vertical) decorrelation length scales of tracers is a good approach to improve upon the non-assimilative (NoDA)490

run while preventing the degradation of subsurface temperature fields when water column data is not assimilated. However,

more tests can be done while assimilating Argo data and a non-trivial implementation of spatially variable decorrelation length

scales is encouraged.

Model temperature comparisons to Argo data showed similar results to comparisons at M4 and M5. NoTS and NoUVTS

runs had a larger cold bias near 100 m depth which generated a higher temperature rmsd (∼ 2°C) in comparison to the NoDA495

run (∼ 1.6°C). A warm bias was also evident around 600 m, in all experiments with varying degrees. Assimilation of mooring

temperature (ASFUVTS and NoUV) reduced the cold bias and the temperature rmsd (∼ 1°C) in comparison to the NoDA
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Figure 15. Maps (left panels) and cross-sections (right panels) of linear correlation coefficients between surface (top row) or 200 m (bottom

row) temperature at M4 and points in the rest of the domain from the NoDA run. The blue dots show observation locations used to correlate

with surrounding model grid points. The dashed black line shows regions with correlation coefficients equal to 0.7. The cross-section used

here follows the grid alignment which is different from the moorings’ orientation. The y-axis in (b) and (d) is on the right-hand side for better

visualisation.

run. The shallow-cold and deeper-warm biases are intrinsic to the NoDA run, which might be associated with biases in the

boundary condition from HYCOM-NCODA when Argo data was not available (between Jun and Sep 2015) for assimilation

north of 35°S. Even though larger temperature errors were observed in the simulations that withheld mooring temperature and500
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salinity (1.6 - 2.1°C), they were still comparable to freely evolving simulations temperature rmsd (∼ 1.9°C) in other studies

(e.g., Kerry et al. (2016); Siripatana et al. (2020)) when assessed using Argo temperature.

Data assimilation of subsurface observations using a 7-day window and smaller decorrelation length scales had little impact

in correcting salinity at the Argo locations. A small salinity degradation was simulated between 0 and 200 m in the assimilative

experiments in comparison to the NoDA run. Negative impact on near surface salinity was also observed when assimilating505

SST or SSH data only in the Brazil Current region (Santana et al., 2020). Some authors suggest that assimilation of salinity

data is needed to constrain the model water column salinity (e.g., Oke and Schiller (2007); Tanajura et al. (2014); Oke et al.

(2015)). Assimilation of surface and subsurface data every 2 days with larger decorrelation length scale of tracers (ASFUVTS-

2days) was able to considerably correct model salinity below 400 m. The ASFUVTS-2days run reached error values similar to

HYCOM-NCODA which assimilated salinity data from Argo floats.510

Increments to temperature initial conditions were positive and deep (200 m) in the experiments that assimilated subsurface

temperature (ASUVTS and NoUV). In contrast, withholding in situ temperature (NoTS and NoUVTS) generated negative and

shallower (50 m) increments. This generated differences in the atmospheric heat fluxes, where NoTS and NoUVTS had average

positive heat flux in most of the domain to compensate the negative increments to the temperature initial condition. The com-

bined positive heat flux increments and negative temperature increments corrected the surface cold bias present in the NoDA515

run, but not the cooling trend around 200 m. Conversely, experiments that assimilated subsurface temperature (ASFUVTS and

NoUV) had negative average heat flux near the moorings. This negative heat flux balanced the positive temperature increment

at M4 and M5 which aimed at correcting both surface and upper thermocline (∼200 m) cold biases.

ASFUVTS, NoUV and ASFUVTS-2days runs (assimilated subsurface temperature) had net negative or near zero surface

heat flux varying from negative to positive flux from near to away from the moorings. This variability might be associated with520

the 4-day variances which include the daily cycle of radiation and cloud coverage and were used to compute the background

error covariance of the forcing heat flux. Alternatively, there is a large spatial variability in heat flux that forced the NoDA run.

It was positive north of 35°S and negative southwards. The NZNES is located near the zero heat flux line in the JRA55-do

atmospheric forcing used in this study (Fig. 48 in Tsujino et al. (2018)). For instance, the Hawaiian archipelago is also located

near a zero line heat flux in the atmospheric forcing product. 4D-Var experiments in the region, also showed large average heat525

flux increments (±100 W/m2), and marked spatial variability with negative increments in the lee of the islands and positive

increments to the west of them (Matthews et al., 2012).

Positive wind stress curl was generated on top of M5 when subsurface temperature data was assimilated (ASFUVTS and

NoUV). Positive wind stress curl generates convergence and downwelling of warmer waters which might be associated with

corrections of the 200 m cold bias. Positive wind stress curl correction was also observed in the simulations on SE Brazil which530

reduced the magnitude of upwelling in the region (de Paula et al., 2021). Changes in the wind stress curl in the ASFUVTS

and NoUV runs (assimilated subsurface temperature) were also responsible for the lowered velocity complex correlation at M4

and M5 in comparison to the simulations that withheld subsurface temperature. If more subsurface salinity data were available,

the solutions ASFUVTS and NoUV runs could have converged to improved density structures that resulted in better-simulated

currents as we observed in ASFUVTS-2days.535

29



5 Conclusions and future work

By running the OSEs we elucidate the importance of different datasets on the quality of ocean reanalyses. The representation

of surface fields and consequent mesoscale eddies was improved by data assimilation of surface data only. The model high

spatial resolution (2 km) which starts to resolve submesoscale process might be responsible for the lower skill compared to

other 4D-Var regional studies that had lower horizontal resolution (> 5 km). In
:::
our

::::::
model,

::
in

:
situ subsurface temperature is540

of utmost importance to correctly simulate the top of the thermocline -
:
–
:
one of the most difficult regions to simulate in ocean

models. The lack of subsurface temperature for assimilation (NoTS and NoUVTS) increased the near surface cold bias present

in the freely evolving model run (NoDA). Assimilation of mooring temperature (ASFUVTS and NoUV) corrects this cold bias,

even at distant Argo locations. Data assimilation using a 2-day window and doubled decorrelation length scales better matched

the assimilated and independent observations. This approach must be used with care if subsurface data availability is low (e.g.,545

using Argo floats only as subsurface data) because larger cold bias in the upper-thermocline can be generated (not shown).

Nevertheless, all reanalyses showed improved velocity results on the mid-slope when compared to HYCOM-NCODA, which

shows the importance of downscaling to better represent the slope bathymetry and possibly shelf-slope exchange.

The current work is part of a set of experiments that prepare for a data assimilative ocean forecast for the NZNES. The

computational cost to produce one day of reanalysis is about 52 min, and 7 min to generate a 7-day forecast using 80 cores on the550

NeSI supercomputer (https://www.nesi.org.nz/), a Cray XC50. Alongside the operational forecast development, improvements

in the NoDA run configuration need to be conducted in order to understand and mitigate temperature and salinity biases. Tests

should be conducted using the Mercator-Ocean forecast system (GLORYS) (Lellouche et al., 2018) as boundary conditions

since they showed better performance in comparison to HYCOM-NCODA (de Souza et al., 2021). New experiments based

on the 7-day window configuration can be done using Argo and glider data. Questions regarding the absence or presence of555

glider data can be asked and the impact on the velocity field evaluated with observations. Continuous temperature and salinity

sampling from ocean gliders would provide enough high vertical resolution and good spatial coverage that would positively

impact the simulation of the thermohaline field and ocean currents.

In the future, a posterior check of the consistency of the observation and background error hypotheses (Mattern et al., 2018)

can be applied to improve the quality of the ocean reanalyses. Mattern et al. (2018) described how the covariance of residu-560

als and innovations, and the covariance of increments and innovations, should be roughly equal to the assumed observation

and background error variances, respectively. Posterior tests of these statistics probe whether the prior assumptions for error

variances need adjusting to be consistent with the model intrinsic skill and representativeness error. This method has been

applied to the GLORYS to obtain better performance (Lellouche et al., 2018). Moreover, an Ensemble 4D-Var approach can be

applied to improve the quality of the analysis on the NZNES. This methodology uses several perturbed simulations (Ensemble)565

to estimate the model error covariance matrix (D) (e.g., Pasmans and Kurapov (2019)). This includes spatial and temporal

variability to D compared to a fixed model covariance matrix used here. This method showed improved representation of glider

temperature and salinity observations when compared to 4D-Var using a static D (Pasmans et al., 2020).
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