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Abstract. With the increase in computational power, ocean models with kilometer-scale resolution have emerged over the last

decade. These models have been used for quantifying the energetic exchanges between spatial scales, informing the design

of eddy parametrizations and preparing observing networks. The increase in resolution, however, has drastically increased the

size of model outputs, making it difficult to transfer and analyze the data. It remains, nonetheless, of primary importance to

assess more systematically the realism of these models. Here, we showcase a cloud-based analysis framework proposed by5

the Pangeo Project that aims to tackle such distribution and analysis challenges. We analyze the output of eight submesoscale-

permitting simulations, all on the cloud, for a crossover region of the upcoming Surface Water and Ocean Topography (SWOT)

altimeter mission near the Gulf Stream separation. The cloud-based analysis framework: i) minimizes the cost of duplicating

and storing ghost copies of data, and ii) allows for seamless sharing of analysis results amongst collaborators. We describe

the framework and provide example analyses (e.g., sea-surface height variability, submesoscale vertical buoyancy fluxes, and10
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comparison to predictions from the mixed-layer instability parametrization). Basin-to-global scale, submesoscale-permitting

models are still at their early stage of development; their cost and carbon footprints are also rather large. It would, therefore,

benefit the community to document the different model configurations for future best practices. We also argue that an emphasis

on data analysis strategies would be crucial for improving the models themselves.

1 Introduction15

Traditionally collaboration amongst multiple ocean modelling institutions and/or the reproducing of scientific results from

numerical simulations required the duplication, individual sharing and downloading of data, upon which each party of interest

(often
::
of

:::
the

:::::::::
interested

::::::
parties

:::
(or

:
an independent group) would analyze the data on their local workstation or cluster. We

will refer to this as the ‘download’ framework (Stern et al., 2022). As realistic ocean simulations with kilometric horizontal

resolution have emerged (e.g., Rocha et al., 2016; Schubert et al., 2019; Brodeau et al., 2020; Gula et al., 2021; Ajayi et al.,20

2021), such a framework has become cumbersome with tera- and peta-bytes of data needed to be transferred and stored as ghost

copies. Nevertheless, a real demand exists for collaboration to inter-compare models to examine their fidelity and quantify

robust features of submeso- and meso-scale turbulence (the former on the horizontal spatial scales of O(10km) and latter on

O(100km); here on referred to jointly as (sub)mesoscale; Hallberg, 2013; McWilliams, 2016; Lévy et al., 2018; Uchida et al.,

2019; Dong et al., 2020). The Ocean Model Intercomparison Project (OMIP), for example, has been successful in diagnosing25

systematic biases in non-eddying and mesoscale-permitting ocean models used for global climate simulations (Griffies et al.,

2016; Chassignet et al., 2020).

Here, we would like to achieve the same goal as OMIP but by inter-comparing submesoscale-permitting ocean models, which

have been argued to be sensitive to grid-scale processes and numerical schemes as we increasingly push the model resolution

closer to the scales of non-hydrostatic dynamics and isotropic three-dimensional (3D) turbulence (Hamlington et al., 2014;30

Soufflet et al., 2016; Ducousso et al., 2017; Barham et al., 2018; Bodner and Fox-Kemper, 2020). Considering the enormous

computational cost and carbon emission of these submesoscale-permitting models, it would also benefit the ocean and climate

modeling community to compile the practices implemented by each modeling group for future runs. In doing so, we analyze

eight realistic, submesoscale-permitting ocean simulations, which cover at least the North Atlantic basin, run with the code

bases of the Nucleus for European Modelling of the Ocean (NEMO; Madec et al., 2019, https://www.nemo-ocean.eu/), Coastal35

and Regional Ocean COmmunity model (CROCO; Shchepetkin and McWilliams, 2005, https://www.croco-ocean.org/), Mas-

sachusetts Institute of Technology general circulation model (MITgcm; Marshall et al., 1997, https://mitgcm.readthedocs.io/

en/latest/), HYbrid Coordinate Ocean Model (HYCOM; Bleck, 2002; Chassignet et al., 2009, https://www.hycom.org/), Finite

volumE Sea ice-Ocean Model (FESOM; Danilov et al., 2017, https://fesom2.readthedocs.io/en/latest/index.html), and First

Insitute
::::::
Institute

:
of Oceanography Coupled Ocean Model (FIO-COM, http://fiocom.fio.org.cn/). Considering the amount of40

data, however, the download framework becomes very inefficient. Therefore, we have implemented the ‘data-proximate com-

puting’ framework proposed by the Pangeo project where we have stored the model outputs on the cloud and brought the

computational resources adjacent to the data on the cloud (Abernathey et al., 2021a; Stern et al., 2022).
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Figure 1. SWOT tracks during its calibration phase and strategic Xover regions in the Atlantic sector. The regions cover the Gulf Stream

separation and its extension (Regions 1 and 2), western Mediterranean Sea (Region 3) and Agulhas Rings (Region 4).

Many of these simulations were developed ahead of the Surface Water and Ocean Topography (SWOT) satellite launch

(Morrow et al., 2019), now projected to be in November 2022, in order to allow for the instrumental calibration of SWOT45

(Gomez-Navarro et al., 2018; Metref et al., 2020), and to disentangle the internal wave signals from (sub)mesoscale flows;

SWOT is expected to observe the superposed field of the two dynamics (Savage et al., 2017a; Torres et al., 2018; Yu et al.,

2021). During its calibration phase, SWOT will pass over the same site every day for six months and have tracks that will

cross over with each other. In order to showcase the data-proximate computing framework and its potential for collaborative,

open-source and reproducible science, we provide example diagnostics for one of the SWOT Crossover (Xover) regions around50

the Gulf Stream separation (Region 1 in Figure 1). We leave the detailed diagnostics of (sub)mesoscale flows including other

SWOT-Xover regions and the potential impact of modeling numerics on the resolved flow for a subsequent paper.

The paper is organized as follows: We describe the data-proximate computing framework in section 2 and showcase some

example analyses using this framework in section 3. Cautionary remarks regarding sustainability into the future for open-source

reproducible science are given in section 4 and we conclude in section 5.55

2 Data-proximate computing framework

In order for the data-proximate computing framework to work for collaborative, open-source and reproducible science, it

requires two components to work together simultaneously: i) public access to analysis-ready data, and ii) open-source compu-

tational resources adjacent to the data.
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2.1 Analysis-ready cloud-optimized data60

In the �eld of Earth Science, model outputs are often archived and distributed in binary, HDF5 or NetCDF formats. While

we have greatly bene�ted from these formats, they are not optimized for cloud storage nor for parallelized cloud computing.

However, as Earth Scientists, commonly, we do not possess the training in cloud infrastructure nor data engineering required

to ef�ciently convert large scale archival datasets into formats which allow us to leverage the full performance potential of

the commercial cloud. Data engineers, on the other hand, do not know the scienti�c needs of the data. In collaboration with65

Pangeo Forge (Stern et al., 2022, https://pangeo-forge.readthedocs.io/en/latest/), we have therefore, attempted to �ll this niche

by streamlining the process of data preparation and submission. To transform their data into analysis-ready cloud optimized

(ARCO) formats, data providers (ocean modeling institutions in our case) need only specify the source �le location (e.g., as

paths on an Ftp, Http or OPeNDAP server) along with output dataset parameters (e.g., particular ARCO format, chunking)

in a Python module known as arecipe. The recipe module, which is typically a few dozen lines of Python code, relies on a70

data model de�ned in the open sourcepangeo-forge-recipes package. Once complete, the recipe is submitted via a

Pull Request on Github to the Pangeo Forgestaged-recipes repository (https://github.com/pangeo-forge/staged-recipes).

From here, Pangeo Forge automates the process of converting the data into ARCO format and storing the resulting dataset on

the cloud, using its own elastically-scaled cloud compute cluster. The term “analysis-ready” here is used broadly to refer to

any dataset that has been preprocessed to facilitate the analysis which will be performed on it (Stern et al., 2022). An example75

of such recipe for eNATL60 described in section 3 is given in Appendix A. We refer the interested reader to Abernathey et al.

(2021a) and Stern et al. (2022) for further details on the technical implementation.

The crowdsourcing approach of Pangeo Forge, to which any data provider can contribute, not only bene�ts the immediate

scienti�c needs of a single research project, but also the entire scienti�c community in the form of shared, publicly accessible

ARCO datasets which remain available for all to access. This saves each scientist the cost of duplicating and storing ghost80

copies of the data and allows for reproducible science. The model outputs used for this study are stored on the Open Storage

Network (OSN), a cloud storage service provided by the National Science Foundation (NSF) in the U.S. The surface data

were saved hourly and interior data in the upper1000m as daily averages (due to cloud storage constraints). To facilitate

the access of data from OSN, we have further made them readable viaintake , a data access and cataloging system which

uni�es the API to read and load the data (https://intake.readthedocs.io/en/latest/overview.html). Namely, the API to read and85

load the data is the same for all of the data used in this project, regardless of its distribution format (e.g., binary, HDF5 or

NetCDF), because each of the datasets has been converted by Pangeo Forge into the cloud-optimized Zarr format (https:

//zarr.readthedocs.io/en/stable/
:
), and subsequentlycataloged

:::::::::
catalogued withintake , prior to analysis. This is particularly

bene�cial for our case where we would like to systematically analyze multiple data collections. The entire process of zarrifying

the data, �uxing them to OSN and cataloging scaled well for the four regions shown in Figure 1. ;
::::
the

:::
net

::::::
amount

:::
of

::::
data90

:::::
stored

:::
on

::::
OSN

:::
as

::
of

:::::::
writing

:::::
sums

::
up

:::
to

::::::::
O(1Tb).

:::::
While

:::
the

:::::::
amount

:::
of

:::::::
O(1Tb)

::::
may

:::::
seem

::::::
small,

:::
the

::::::
ARCO

::::::::::
framework

::::::
negates

:::
the

:::::::::
generation

::::
and

::::::
storage

:::
of

:::::
ghost

::::::
copies,

::::
and

:::::
scales

:::
as

:::
the

::::
data

::::
size

::::::::
increases.

:
Jupyter notebooks for the results

shown in section 3, including the Yaml �le to access data viaintake , are given in the Pangeo Dataswot_adac_ogcms
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Github repository (https://github.com/roxyboy/swot_adac_ogcms/tree/notebook; a DOI will be added upon acceptance of the

manuscript).
:::::::::
Regarding

::::::::
LLC4320,

:::
the

::::
data

::::
were

::::::::
accessed

:::
via

:::
the

:::::::::
Estimating

:::
the

:::::::::
Circulation

:::
and

:::::::
Climate

::
of

:::
the

::::::
Ocean

:::::::
(ECCO)95

:::
data

::::::
portal.

:::::
While

:::::
there

:::
was

:::
no

::::::::
particular

:::::::::
sub-setting

:::::::
applied

::
to

::::
their

::::::
dataset

::::
prior

::
to

::::::::
analyses,

:::
the

::::
data

:::::
portal

::::
and

::::::::::
cloud-based

:::::::::
JupyterHub

:::::
being

::::::
within

::::::::::
geographical

:::::::::
proximity

::::::
(within

:::
the

::::
U.S.)

:::::::::
facilitated

:::
the

:::
data

::::::
access.

::::
The

::::::::::
combination

:::
of

:::::::::::
llcreader

::
of

:::
the

:::::::::
xmitgcm

::::::
Python

:::::::
package

::
to

::::::
access

::::
their

::::
data

::
in

::::::
binary

::::::
format

:::
(as

:::::::
opposed

::
to

::::::::
NetCDF)

::::
also

::::::::
enhanced

:::
the

:::::::::
ef�ciency

::::::::::::::::::::::::::::::::::::
(Abernathey, 2019; Abernathey et al., 2021b)

:
.

2.2 Cloud-based JupyterHub100

For data-proximate computational resources, we have implemented a JupyterHub, an open-source platform that provides re-

mote access to interactive sessions in the cloud for many users (Fangohr et al., 2019; Beg et al., 2021), on the Google Cloud

Platform (GCP). This infrastructure is run in collaboration with 2i2c.org, a non-pro�t organization based in the U.S. that man-

ages cloud infrastructure for open source scienti�c work�ows. Authentication for each user/collaborator on the JupyterHub is

provided via a white-list of Github usernames, meaning that the hub can be accessed from anywhere and is not tied directly105

to an institutional account. This has allowed for real-time sharing of Python scripts amongst collaborators and exchanging of

feedback on the analytical results we present in section 3. Cloud computing also offers the scaling of resources for improved

I/O throughput and optimization of network bandwidth and Central Processing Units (CPUs).

3 Example analyses

The model outputs used for this showcase are from the eNATL60 (Brodeau et al., 2020), GIGATL (Gula et al., 2021),110

HYCOM50 (Chassignet and Xu, 2017, 2021), FESOM-GS, LLC4320 (Rocha et al., 2016; Stewart et al., 2018), ORCA36

(https://github.com/immerse-project/ORCA36-demonstrator), FIO-COM32 (Xiao et al., 2022), and HYCOM25 (Savage et al.,

2017a, b; Arbic et al., 2018) simulations. The detailed con�guration of each simulation is given in Appendix B. In order to

motivate the reader on the necessity of inter-comparing realistic submesoscale-permitting simulations, we show in Figure 2

the
::::::
surface relative vorticity normalized by the local Coriolis parameter on February 1, 00:00 from each model. Despite their115

similar spatial resolutions, the spatial scales represented vary widely across models. Submesoscale-permitting ocean modeling

is in its early stage of development, and each modeling institution is still exploring best practices. Therefore, we did not spec-

ify an experimental protocol, as in OMIP, for the model outputs from each institution. Each model uses different atmospheric

products and tidal constituents to force the ocean, and the initial conditions and duration of spin up all vary (Appendix B).

Nevertheless, we should expect statistical similarity in the oceanic �ow at the spatial scales ofO(10km) if the numerics are120

robust.

3.1 Surface diagnostics of the temporal mean and variability

In light of the SWOT mission, the primary variable of interest is the ocean dynamic sea level. The AVISO estimate of this

quantity is called the Absolute Dynamic Topography (ADT), while the closely related model diagnostic is the Sea Surface
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Figure 2. A snapshot of surface relative vorticity normalized by the local Coriolis parameter on February 1, 00:00 from each model in

Region 1.
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