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Abstract. Precipitation nowcasting has important implications for urban operation and flood prevention. Radar echo 

extrapolation is the common method in precipitation nowcasting. Using deep learning models to extrapolate radar echo data 

has great potential. The increase of lead time leads to a weaker correlation between real rainfall evolution and generated 

images. The evolution information is easily lost during extrapolation, which is reflected as echoes attenuation. Existing 15 

models, including Generative Adversarial Network (GAN)-based models, are all difficult to reduce loss and curb attenuation, 

which results in insufficient rainfall prediction accuracy. Aim to the problem, a Spatiotemporal Process Intensification 

Network (GAN-argcPredNet v2.0) based on GAN-argcPredNet v1.0 is designed. GAN-argcPredNet v2.0 reduces the loss by 

intensifying the influence of the previously input evolution information. A Spatiotemporal Information Changes Prediction 

(STIC-Prediction) network is designed as generator. With the intensification of echo feature sequence, the generator focuses 20 

on the spatiotemporal variation and generates more accurate images. Furthermore, discriminator is a Channel-Spatial 

Convolution (CS-Convolution) network. The discriminator intensifies the discrimination of echoes information by 

strengthening spatial information of single image. Identification results are fed back to the generator, which reduces the loss 

of important evolutionary information. The experiments are based on the radar dataset of South China. The results show that 

GAN-argcPredNet v2.0 performs better than other models. In heavy rainfall prediction, compared with baseline, the 25 

Probability of Detection (POD), the Critical Success Index (CSI), and the Heidke Skill Score (HSS) increase by 24.8 %, 

22.2 % and 21.5 % respectively. The False Alarm Ratio (FAR) decreases by 3.76 %. 

1 Introduction 

Accurate precipitation nowcasting, especially heavy precipitation nowcasting, plays a key role in hydrometeorological 

applications such as urban-operation safety and flash-flood warnings (Liu et al., 2015). It can effectively prevent the hazards 30 

and losses caused by heavy precipitation to economy and people (Luo et al., 2020). 
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Radar echo extrapolation is the method most often used to nowcast precipitation (Reyniers, 2008). The essence is tracking 

areas of reflectivity to derive motion vectors, and then using the motion vectors to determine future location of the 

reflectivity (Austin and Bellon, 1974). Traditional radar echo extrapolation methods include cross-correlation, individual 

radar echo-tracking and the optical flow method (Bowler et al., 2004). As the storm evolution like merging, splitting, growth 35 

and decay, traditional methods are difficult to predict accurately. Using deep learning models to extrapolate has great 

potential (Foresti et al., 2019). Deep learning has powerful nonlinear mapping ability. By studying the motion process from a 

large number of historical radar echo images, deep learning has better results (Shi et al., 2015; Pan et al., 2021). Compared 

with other deep learning models, the Generative Adversarial Network (GAN)-based models have great advantages in 

generating high quality echo images (Tian et al., 2020; Xie et al., 2022). 40 

The radar echo images are predicted for a future period based on the real echo sequence. In the deep learning models, the 

increase of lead time leads to a weaker correlation between the real images at the front of sequence and the generated image. 

The influence of real echoes evolution is rapidly diminishing. In this process, the models lose rainfall evolution information. 

It is reflected as echoes attenuation on generated images. Due to the smaller percentage of heavy rainfall areas, the 

attenuation is more severe. Existing deep learning models, including GAN-based models, lack the method to curb 45 

attenuation, which leads to low accuracy in predicting heavy rainfall. 

In this work, a Spatiotemporal Process Intensification Network (GAN-argcPredNet v2.0) is designed based on Generative 

Adversarial Advanced Reduced-Gate Convolutional Deep Predictive Coding Network (GAN-argcPredNet v1.0) (Zheng et 

al., 2022), which reduces loss and curbs attenuation. In GAN-argcPredNet v2.0, a Spatiotemporal Information Changes 

Prediction (STIC-Prediction) network is designed as the generator. The generator focuses on the spatiotemporal variation of 50 

radar echo feature sequence. The more accurate images are generated by intensifying the spatiotemporal evolution of 

previous inputs. Furthermore, discriminator is a Channel-Spatial Convolution (CS-Convolution) network. By focusing on 

radar echo features from spatial and channel dimensions, the discriminator enhances the ability to identify echoes 

information. In this way, the generator can better retain evolution information. Generator and discriminator are trained 

against each other to have accurate rainfall prediction. The experiments are based on the radar dataset of South China. The 55 

results show that GAN-argcPredNet v2.0 performs better than other models, e.g., Convolution Gated Recurrent Unit 

(ConvGRU), Convolutional Long Short-Term Memory (ConvLSTM), Generative Adversarial ConvGRU (GA-ConvGRU) 

and GAN-argcPredNet v1.0. 

2 Related Work 

Radar echo extrapolation based on deep learning has better performance than traditional methods. Sequence network and 60 

GAN are two common neural networks in radar echo extrapolation. Previous studies showed that GAN performed better in 

enhancing image quality. However, the prediction of heavy rainfall is still insufficient. 
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2.1 Radar-based precipitation nowcasting 

Extrapolation based on radar echo images is a common method for precipitation nowcasting. Eulerian persistence is a naive 

extrapolation method, which is based on using the latest available observation as a prediction. Eulerian persistence is quite a 65 

powerful model for very short lead times (Ayzel et al., 2019). Traditional extrapolation techniques include cross-correlation 

and individual radar echo-tracking (Pierce et al., 2004; Liguori and Rico-Ramirez, 2014). Thunderstorm Identification, 

Tracking, Analysis, and Nowcasting (TITAN) is a classical centroid tracking algorithm (Dixon and Wiener, 1993). The 

algorithm achieves precipitation nowcasting through real-time tracking and automatic identification of individual storm. The 

tracking performance of TITAN is poor during multi-cell storms. Then, an enhanced TITAN (ETITAN) is proposed (Han et 70 

al., 2009). By combining cross-correlation and individual radar echo-tracking, ETITAN achieves more accurate tracking and 

prediction. Cross-correlation method, however, has significantly lower prediction accuracy when echoes change rapidly. The 

optical flow method achieves local prediction by treating echoes motion as fluid (Sakaino, 2013). Pyramid Lucas-Kanade 

Optical Flow method (PPLK) achieves better extrapolation by introducing a typical local differential optical flow method 

(Liu et al., 2015). As radar echoes continuously evolve, the invariance assumption of the optical flow method cannot be 75 

satisfied. The extrapolation accuracy is affected. Besides, these traditional methods fail to utilize the large amounts of 

historical images. 

2.2 Sequence networks for image sequence prediction 

Deep learning has powerful nonlinear mapping ability and makes full use of historical data. Radar echo extrapolation can be 

regarded as an image sequence prediction problem. Therefore, the problem can be solved by implementing an end-to-end 80 

sequence learning method (Sutskever et al., 2014; Shi et al., 2015). ConvGRU learns video features through convolution 

operation, which realizes sparse connection of model units (Ballas et al., 2015). Convolution operation is also used in 

ConvLSTM. By replacing the steps of internal data state transformation in LSTM, ConvLSTM can better extract features 

(Shi et al., 2015). Convolutional recursive structure is position invariant, which is not consistent with the natural variation 

motion. Trajectory GRU (TraijGRU) is further proposed (Shi et al., 2017). Both LSTM and GRU models have long-term 85 

memory. However, this capability is limited to historical spatial information and has a limited memory. RainNet builds a 

convolutional network architecture in precipitation nowcasting, which avoids the brittleness of LSTM structure (Ayzel et al., 

2020). This new structure still fails to address the information loss. Meanwhile, the realistic details of images are also 

insufficient in these models. 

Attention mechanism is also often used in sequential networks. By learning the importance of different image parts, attention 90 

mechanisms can improve prediction accuracy. For example, the self-attention mechanism combines the spatial relationships 

of different locations and reinforces important areas (Wang et al., 2018a). Eidetic 3D LSTM (E3D-LSTM) introduces self-

attention to intensify long-term memory in LSTM (Wang et al., 2018b). However, it lacks attention in the channel dimension. 

Interaction Dual Attention LSTM (IDA-LSTM) expands spatial and channel attention based on self-attention to better obtain 
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the representation (Luo et al., 2021). As the high hardware load, self-attention is hard to train high resolution images. 95 

Convolutional Block Attention Module (CBAM) was developing simultaneously as a less computational attention 

mechanism. It can be flexibly applied in sequential networks (Woo et al., 2018). These attention methods reinforce spatial 

information. In sequence prediction, the temporal information is also important, but these methods fail to reinforce it. For 

radar echo extrapolation, it reflects as a lack of intensification to rainfall evolution information. 

2.3 GAN-based Radar Echo Extrapolation 100 

At present, high quality extrapolation is mostly achieved by GAN (Tian et al., 2020; Xie et al., 2022). GAN consists of a 

generator and a discriminator, which has powerful data generation capabilities (Goodfellow et al., 2020). This is because the 

model with anti-loss can better realize multi-modal modeling (Lotter et al., 2016). For instance, Deep Generative Models of 

Rainfall (DGMR) generates more accurate reflectivity by adversarial training (Ravuri et al., 2021). GAN is also used to 

generate realistic details for broader extrapolation range (Chen et al., 2019). GA-ConvGRU uses ConvGRU as the generator. 105 

By implementing multi-modal data modeling, the images quality is far better than ConvGRU (Tian et al., 2020). A number 

of studies contribute to improving the stability of GAN training. Energy-Based Generative Adversarial Forecaster (EBGAN-

Forecaster) combines convolution structure and codec framework to improve stability (Xie et al., 2022). Also, our proposed 

GAN-argcPredNet v1.0 has more advantages in improving the predicted echoes details and stabilizing GAN training (Zheng 

et al., 2022). As the lack of curbing echoes attenuation, all these models have limited accuracy in rainfall prediction, 110 

especially heavy rainfall prediction. 

2.4 Summary 

In precipitation nowcasting, deep learning has better performance than traditional methods. The increase of lead time reduces 

the guidance of real echoes evolution to extrapolation. This leads to evolution information loss in deep learning-based 

prediction. Existing models, including GAN models, are difficult to reduce the loss. The accuracy of rainfall prediction is 115 

insufficient, especially heavy rainfall. However, heavy rainfall prediction is important for disaster prevention. A 

spatiotemporal process intensification model based on GAN is designed to solve the problem. 

3 Model 

In GAN-argcPredNet v1.0, the generator generates predicted images according to input image sequences. Then, the predicted 

and real images are fed into discriminator with dual channel input. The discriminator makes judgments and the parameters 120 

are updated by adversarial loss optimization. Adam is used as the optimizer, which is an extension of stochastic gradient 

descent (Kingma Diederik and Adam, 2014). The generator parameters are updated once every five times. GAN-

argcPredNet v2.0 model is constructed based on GAN-argcPredNet v1.0. 
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3.1 GAN-argcPredNet v2.0 

GAN-argcPredNet v2.0 consists of STIC-Prediction generator and CS-Convolution discriminator (Fig. 1). STIC-Prediction 125 

generator reduces information loss and echoes attenuation by intensifying the spatiotemporal variations of the previous 

feature sequence. The generator is composed of argcPredNet and STIC Attention module (Fig. 2). The argcPredNet is 

composed a series of repeatedly stacked modules, with a total of three layers (Zheng et al., 2022). Each layer of the module 

including the input convolutional layer (𝐴𝑙), the recurrent representation layer (𝑅𝑙), the prediction convolutional layer (𝐴̂𝑙) 

and the error representation layer (𝐸𝑙). 𝑅𝑙 learns image features and generates the feature map 𝑅𝑙
𝑇 ∈ 𝑅𝐻×𝑊×𝐶, where 𝐻, 𝑊 130 

and  𝐶 denote layer, current prediction time, map height, map width and feature channel respectively. The feature map guides 

the lower layers to generate images. STIC Attention is after the second layer. The previous feature sequence, especially 

heavy rainfall feature, is intensified from the spatiotemporal dimension. Weights are assigned to different rainfall areas, 

which curbs the information loss and echoes attenuation. Then, the intensified 𝑅𝑙
𝑇  is fed to the next layer for more accurate 

image. The calculation method of STIC-Prediction is: 135 

𝐴𝑙
𝑇 = {

𝑥𝑇

𝑀𝐴𝑋𝑃𝑂𝑂𝐿(𝛾(𝑓(𝐸𝑙−1
𝑇 )))

      
𝑖𝑓 𝑙 = 0

0 < 𝑙 < 𝐿
 ,        (1) 

𝐴̂𝑙
𝑇 = 𝛾(𝑓(𝑅𝑙

𝑇)) ,                                                                (2) 

𝐸𝑙
𝑡 = [𝛾(𝐴𝑙

𝑇 − 𝐴̂𝑙
𝑇) ;  𝛾(𝐴̂𝑙

𝑇 − 𝐴𝑙
𝑇) ] ,                                                            (3) 

𝑅𝑙
𝑡 =   {

𝑎𝑟𝑔𝑐𝐿𝑆𝑇𝑀(𝐸𝑙
𝑇−1,  𝑅𝑙

𝑇−1)                                                                 𝑖𝑓 𝑙 = 𝐿          

𝑎𝑟𝑔𝑐𝐿𝑆𝑇𝑀(𝐸𝑙
𝑇−1,  𝑅𝑙

𝑇−1,  𝑈𝑃𝑆𝐴𝑀𝑃𝐿𝐸(𝑆𝑇𝐼𝐶(𝑅𝑙+1
0 : 𝑅𝑙+1

𝑇 )))     𝑖𝑓 𝑙 = 1          

𝑎𝑟𝑔𝑐𝐿𝑆𝑇𝑀(𝐸𝑙
𝑇−1,  𝑅𝑙

𝑇−1,  𝑈𝑃𝑆𝐴𝑀𝑃𝐿𝐸(𝑅𝑙+1
𝑇 ))              𝑙 = 0 𝑎𝑛𝑑 1 < 𝑙 < 𝐿

    (4) 

Here, 𝑥𝑇 denotes the initial input, 𝑀𝐴𝑋𝑃𝑂𝑂𝐿 denotes the maximum pooling operation, 𝛾 denotes relu activation function, 𝑓 140 

denotes convolution operation, 𝑎𝑟𝑔𝑐𝐿𝑆𝑇𝑀  denotes Advanced Reduced-Gate Convolutional LSTM (Zheng et al., 2022), 

𝑆𝑇𝐼𝐶 denotes STIC Attention. 

CS-Convolution discriminator is composed of four-layer convolution structure and CS Attention module. Convolution 

structure is responsible for extracting echo features of input radar echo images. CS Attention module is embedded after the 

first layer convolution structure. The module strengthens spatial information of echo features, especially heavy rainfall, 145 

which enhances discriminant ability. Then, the guidance is better given to the generator. 
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Figure 1: This is the structure of GAN-argcPredNet v2.0. Twelve images are used in the sequence of radar echo maps that form 

the set of predictors. Here, five images are used as the input sequence, and seven images are used as the ground-truth images. 
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 150 

Figure 2: This is the structure of STIC-Prediction. Modules are in layer 𝟏 at time 𝑻. 

3.2 Intensified Spatiotemporal Evolution Information of Echoes 

During extrapolation, the increase of lead time leads to a weaker correlation between real rainfall evolution and generated 

images. The evolution information is easily lost, which results in echoes attenuation. Intensifying the influence of previous 

evolution can effectively solve the problem. STIC Attention intensifies spatiotemporal evolution information of echo feature 155 

sequences, which curbs the information loss and echoes attenuation. CS Attention is designed to improve the discriminant 

ability of rainfall by intensifying spatial information of echo features. 

3.2.1 STIC Attention 

The STIC Attention module is used in generator (Fig. 3). The STIC Attention combines MaxPool3D (3D = map height, map 

width and time) and AvgPool3D to focus on the spatial information of feature sequences from the maximum and average 160 

perspectives. It focuses on heavy rainfall echoes, while considering non-heavy rainfall. With the introduction of the 3D 

convolution, the spatiotemporal changes of feature sequences are extracted. The representation ability of generator is 

enhanced from the spatiotemporal dimensions. Following are the detailed steps: 

Given the feature sequence 𝐹 ∈ 𝑅𝑡×𝐻×𝑊×𝐶  as input, where 𝑡 denotes time. Two feature sequences 𝐹𝑚𝑎𝑥
𝑡𝑠 ∈ 𝑅𝑡×𝐻×𝑊×1 and 

𝐹𝑎𝑣𝑔
𝑡𝑠 ∈ 𝑅𝑡×𝐻×𝑊×1, are obtained by pooling operation, which denote the maximum and average feature along the channel axis 165 

respectively. The feature sequences are then connected and 3D convoluted. By using hard_sigmoid as the activation function, 

the training speed is accelerated. Then, the STIC Attention map sequence 𝑀𝑆𝑇𝐼𝐶 ∈ 𝑅𝑡×𝐻×𝑊×1 is obtained. Finally, the output 

feature sequence 𝐹1 ∈ 𝑅𝑡×𝐻×𝑊×𝐶, is calculated by element-wise multiplying 𝑀𝑆𝑇𝐼𝐶 and 𝐹. In short, the calculation method of 
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STIC Attention is:    

𝑀𝑆𝑇𝐼𝐶 = 𝜎(𝑓7×7×5((𝑀𝑎𝑥𝑃𝑜𝑜𝑙3𝐷(𝐹))𝑐𝑜𝑛𝑐𝑎𝑡(𝐴𝑣𝑔𝑃𝑜𝑜𝑙3𝐷(𝐹)))) = 𝜎(𝑓7×7×5(𝐹𝑚𝑎𝑥
𝑡𝑠 concat𝐹𝑎𝑣𝑔

𝑡𝑠 )) ,   (5) 170 

𝐹1 = 𝑀𝑆𝑇𝐼𝐶𝐹 ,                                                                (6) 

Here, 𝑐𝑜𝑛𝑐𝑎𝑡 denotes connection operation, 𝑀𝑎𝑥𝑃𝑜𝑜𝑙3𝐷 denotes 3D maximum pooling operation, 𝐴𝑣𝑔𝑃𝑜𝑜𝑙3𝐷 denotes 3D 

average pooling operation, 𝑓7×7×5  denotes 3D convolution operation with convolution kernel of 7×7×5, and 𝜎  denotes 

hard_sigmoid activation function,  denotes element-wise multiplication. 

 175 

Figure 3: This is the structure of STIC Attention. 

3.2.2 CS Attention 

The CS Attention module (Fig. 4) is used in the discriminator. For input feature 𝐹′ ∈ 𝑅𝐻×𝑊×𝐶 , the channel attention map 

𝑀𝑐 ∈ 𝑅1×1×𝐶 , is generated by channel attention module. After element-wise multiplying with initial feature image, the 

spatial attention map 𝑀𝑠 ∈ 𝑅𝐻×𝑊×1, is generated by spatial attention module. Finally, the output feature 𝐹2
′ ∈ 𝑅𝐻×𝑊×𝐶  is 180 

obtained in the same way. In short, the calculation process is as follows: 

𝐹1
′ = 𝑀𝑐𝐹′ ,                                                                (7) 

𝐹2
′ = 𝑀𝑠𝐹1

′ ,                                                                (8) 

Here,  denotes element-wise multiplication, 𝐹1
′ is the middle feature. 
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Figure 4: This is the structure of CS Attention. 

The Channel Attention module (Fig. 5) studies relationship between the different feature channels. The global maximum and 

average pooling are used to gather spatial maximum and average information on each channel. The combination of them can 

judge the importance of different feature channels more comprehensively. Then the correlation between feature channels is 

obtained by learning the respective parameters in a dense layer. The Channel Attention assigns more weight to meaningful 190 

features from channel dimension. The detailed steps are as follows: 

The feature map 𝐹′ is input into Channel Attention module. Two 1D feature maps 𝐹𝑚𝑎𝑥
𝑐 ∈ 𝑅1×1×𝐶 and 𝐹𝑎𝑣𝑔

𝑐 ∈ 𝑅1×1×𝐶, are 

obtained by global pooling, which denote the global maximum and average pool feature respectively. Then, the correlation 

between features is extracted through dense layers. In order to reduce parameter overhead, the number of neurons in the first 

dense layer is set to 𝐶 𝑟⁄ , where 𝑟 is the compression ratio. Then, the two results are summed. Finally, hard_sigmoid is used 195 

as the activation function to accelerate the training speed and obtain final channel attention map 𝑀𝑐. In short, the channel 

attention maps are calculated as follows: 

𝑀𝑐 = 𝜎(𝜑11(𝛾(𝜑10(𝐺𝑀𝑃(𝐹′)))) + 𝜑21(𝜎(𝜑20(𝐺𝐴𝑃(𝐹′))))) = 𝜎(𝜑11(𝛾(𝜑10(𝐹𝑚𝑎𝑥
𝑐 ))) + 𝜑21(𝜎(𝜑20(𝐹𝑎𝑣𝑔

𝑐 )))) ,  (9) 

Here, 𝐺𝑀𝑃 denotes global maximum pooling, 𝐺𝐴𝑃 denotes global average pooling, 𝜑10, 𝜑11 denotes the first and second 

dense layer of 𝐹𝑚𝑎𝑥
𝑐 , 𝜑20, 𝜑21 denotes the first and second dense layer of 𝐹𝑎𝑣𝑔

𝑐  and 𝛾 denotes relu activation function. 200 

 

Figure 5: This is the structure of Channel Attention. 

The Spatial Attention module (Fig. 6) studies the importance of each part in the same channel. The maximum and average 

pooling are used along channel axis respectively, which obtains echoes information of the feature image. The 2D 

convolution operation extracts feature and generates a spatial attention map with the same size as input image. The detailed 205 

steps are as follows: 
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After the Channel Attention module, the feature map 𝐹1
′ ∈ 𝑅𝐻×𝑊×𝐶  is input into the Spatial Attention module. Two 2D 

feature maps 𝐹𝑚𝑎𝑥
𝑠 ∈ 𝑅𝐻×𝑊×1  and 𝐹𝑎𝑣𝑔

𝑠 ∈ 𝑅𝐻×𝑊×1 , are obtained by pooling operation, which denote the maximum pool 

feature and average pool feature on the channel respectively. The feature maps are then connected and 2D convoluted, using 

hard_sigmoid as the activation function to accelerate the training speed and obtain final spatial attention map 𝑀𝑠. In short, 210 

the calculation method of spatial attention map is: 

𝑀𝑠 = 𝜎(𝑓7×7((𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷(𝐹1
′))𝑐𝑜𝑛𝑐𝑎𝑡(𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝐷(𝐹1

′)))) = 𝜎(𝑓7×7(𝐹𝑚𝑎𝑥
𝑠 concat𝐹𝑎𝑣𝑔

𝑠 )) ,    (10) 

Here, 𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷 denotes 2D maximum pooling operation, 𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝐷 denotes 2D average pooling operation, amd 𝑓7×7 

denotes 2D convolution operation with convolution kernel of 7×7. 

 215 

Figure 6: This is the structure of Spatial Attention. 

4 Experiments and discussion 

In South China radar echo data, continuous rainfall processes are selected as the training set from 2015 to 2016. The 

continuous radar echo images from March to May 2017 are selected as the testing set. The comparison with other models, 

e.g., ConvGRU, ConvLSTM, GA-ConvGRU, and GAN-argcPredNet v1.0, shows that GAN-argcPredNet v2.0 has better 220 

effect on rainfall prediction. 

4.1 Dataset description 

The paper uses the South China radar echo data provided by Guangzhou Meteorological Administration. The radar mosaic 

comes from 11 weather radars. The median filtering algorithm is used to control radar data quality, which eliminates errors 

caused by isolated clutter. In addition, the mirror filling and continuity checks are applied to remove traditional radar error 225 

sources. After quality control, there is only an extremely small amount of strong interference, which has negligible impact on 

the training of the model. 

From 2015 to 2016, 32,004 consecutive echo images with rainfall are randomly selected as the training set. 7,992 

consecutive images are randomly selected for testing from March to May 2017. The original resolution of the image is 1050 

× 880, and each image covers 1050 km × 880 km. The pixel denotes the resolution of 1 km × 1 km. The reflectivity range is 230 

0-80 dBZ, and the amplitude limit is between 0 and 255. The data is collected every 6 minutes, with the height of 1 km. To 

speed up the training and reduce the hardware load, the central 128 × 128 images are segmented. 
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4.2 Evaluation Metrics 

As for evaluation, the paper uses five metrics to evaluate the prediction accuracy of all 128 × 128 pixels, which are 

Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI) and Heidke Skill Score (HSS). The 235 

formulas for calculating these five indicators are as follows: 

𝑃𝑂𝐷 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,                                                                (11) 

𝐹𝐴𝑅 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
 ,                                                                (12) 

𝐶𝑆𝐼 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
 ,                                                                (13) 

𝐻𝑆𝑆 =
2(𝑇𝑃×𝑇𝑁−𝐹𝑁×𝐹𝑃)

(𝑇𝑃+𝐹𝑁)(𝐹𝑁+𝑇𝑁)+(𝑇𝑃+𝐹𝑃)(𝐹𝑃+𝑇𝑁)
 ,         (14) 240 

Here, 𝑇𝑃 denotes that the real and predicted value reach specified threshold, 𝐹𝑁 denotes that the real value reaches the 

specified threshold and the predicted value does not reach, 𝐹𝑃 denotes that the real value does not reach specified threshold 

and the predicted value reaches, and 𝑇𝑁 denotes that the real value and predicted value do not reach specified threshold. 

POD evaluates hit ability and FAR is the indicator of false alarms. The combination of them can evaluate the model more 

objectively. CSI and HSS are two composite metrics that provide a direct judgment of model effectiveness. The full score of 245 

POD, CSI and HSS is 1. The full score of FAR is 0. 

4.3 Training Setting 

Before training, each pixel of the radar echo image is normalized to [0, 1]. All experiments are implemented by Python. 

Model training and testing based on the Keras deep learning library with Tensorflow as backend. The operating environment 

is a Linux workstation equipped with NVDIA RTX 2080 Ti 11G GPU. 250 

4.4 Experiment results 

Different thresholds of rainfall are set in the experiment, which are 0.5mm h-1, 2mm h-1, 5mm h-1, 10mm h-1 and 30mm h-1 

respectively. Due to the relationship between radar reflectivity and rainfall type (Watters et al., 2021), the value on the radar 

echo image is converted to the corresponding rainfall. The calculation formula is as follows: 

𝑍 = 10 𝑙𝑜𝑔 𝑎 + 10𝑏 𝑙𝑜𝑔 𝑅 ,          (15) 255 

Here, 𝑎  is set to 58.53 and 𝑏  is set to 1.56, Z denotes radar reflectivity intensity, 𝑅  denotes rainfall intensity. The 

correspondence between rainfall, rainfall intensity and rainfall level are referred to Table 1 (Shi et al., 2017). 

Table 1: This is the rainfall level table. 
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Rain Rate (mm h-1) Radar Reflectivity Intensity (dBZ) Rainfall Level 

0 ≤   𝑅 < 0.5   𝑍 < 12.98 No / Hardly noticeable 

0.5 ≤  𝑅 < 2 12.98 ≤  𝑍 < 22.37 Light 

2 ≤   𝑅 < 5 22.37 ≤  𝑍 < 28.58 Light to moderate 

5 ≤   𝑅 < 10 28.58 ≤  𝑍 < 33.27 Moderate 

10 ≤   𝑅 < 30 33.27 ≤  𝑍 < 40.72 Moderate to heavy 

30 ≤   𝑅 40.72 ≤  𝑍 Rainstorm warning 

In this paper, GAN-argcPredNet v2.0 is compared with other models. They are ConvGRU, ConvLSTM, GA-ConvGRU and 

GAN-argcPredNet v1.0, respectively. The first five are common models in radar echo extrapolation, and the last one is the 260 

model we designed before. From Fig. 7, 8, 9, 10 and 11, the POD, FAR, CSI and HSS score curves of GAN-argcPredNet 

v2.0 are mostly in the best position during extrapolation. 

 

Figure 7: This is the scores of POD, FAR, CSI and HSS under different radar extrapolation lead time when the 

threshold = 0.5 mm h-1. 265 
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Figure 8: This is the scores of POD, FAR, CSI and HSS under different radar extrapolation lead time when the 

threshold = 2 mm h-1. 

 

Figure 9: This is the scores of POD, FAR, CSI and HSS under different radar extrapolation lead time when the 270 

threshold = 5 mm h-1. 
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Figure 10: This is the scores of POD, FAR, CSI and HSS under different radar extrapolation lead time when the 

threshold = 10 mm h-1. 

 275 

Figure 11: This is the scores of POD, FAR, CSI and HSS under different radar extrapolation lead time when the 

threshold = 30 mm h-1. 
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In Table 2, the scores are the average performance of all lead times. Under different thresholds, the comprehensive 

performance of GAN-argcPredNet v2.0 exceeds other models. Especially in the heavy rainfall stages, the scores are far 

better than others. 280 

Using GAN-argcPredNet v1.0 as baseline, the POD, CSI and HSS scores of GAN-argcPredNet v2.0 increase by 23.5 %, 

20.6 % and 19.0 % when the threshold is 10 mm h-1. The FAR score also decreases by 1.5 %. When the threshold is 30 mm 

h-1, the POD, CSI and HSS scores increase by 24.8 %, 22.2 % and 21.5 % respectively. The FAR score decreases by 3.76 %. 

GAN-argcPredNet v2.0 shows excellent performance in heavy rainfall prediction. 

Table 2: This is the average scores of POD, FAR, CSI and HSS under different threshold. Bold represents the best 285 

score. 

Model 

Threshold = 0.5 mm h-1 Threshold = 2 mm h-1 

POD FAR CSI HSS POD FAR CSI HSS 

ConvGRU 0.622 0.227 0.531 0.663 0.575 0.343 0.450 0.596 

ConvLSTM 0.558 0.203 0.496 0.626 0.421 0.234 0.376 0.507 

GA-ConvGRU 0.654 0.218 0.558 0.686 0.544 0.265 0.460 0.604 

GAN-argcPredNet v1.0 0.659 0.206 0.569 0.695 0.57 0.243 0.488 0.631 

GAN-argcPredNet v2.0 0.661 0.185 0.577 0.704 0.604 0.241 0.512 0.655 

Model 

Threshold = 5 mm h-1 Threshold = 10 mm h-1 

POD FAR CSI HSS POD FAR CSI HSS 

ConvGRU 0.372 0.444 0.299 0.432 0.191 0.403 0.173 0.268 

ConvLSTM 0.399 0.351 0.335 0.480 0.202 0.423 0.178 0.273 

GA-ConvGRU 0.364 0.344 0.311 0.444 0.214 0.466 0.184 0.280 

GAN-argcPredNet v1.0 0.423 0.328 0.358 0.500 0.255 0.391 0.223 0.337 

GAN-argcPredNet v2.0 0.458 0.317 0.385 0.533 0.315 0.385 0.269 0.401 

Model 

Threshold = 30 mm h-1 

POD FAR CSI HSS 

ConvGRU 0.116 0.604 0.104 0.172 

ConvLSTM 0.091 0.680 0.080 0.133 
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GA-ConvGRU 0.089 0.657 0.077 0.128 

GAN-argcPredNet v1.0 0.149 0.612 0.126 0.205 

GAN-argcPredNet v2.0 0.186 0.589 0.154 0.249 

The prediction examples are visualized in Fig. 12. Compared with other models, GAN-argcPredNet v2.0 has better 

predictions and the heavy rainfall echoes are more consistent with Ground-truth. These indicate that GAN-argcPredNet v2.0 

effectively retains process information and curbs the attenuation. 

 290 

Figure 12: This is the example of radar echo exploration. The circular and rectangular regions represent heavy 

rainfall prediction. 

In order to evaluate the quality of generated images objectively, Mean Square Error (MSE) and Mean Structural Similarity 

(MSSIM) are chosen for the experiment (Wang et al., 2004; Inoue and Misumi, 2022). The full score of MSE is 0 and 

MSSIM is 1. According to Table 3, GAN-based models generate higher quality images, with GAN-argcPredNet v2.0 295 

performing the best. 

Table 3: This is the MSE and MSSIM scores of each model. Bold represents the best score. 
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Model MSE×102 MSSIM 

ConvGRU 0.406 0.724 

ConvLSTM 0.218 0.784 

GA-ConvGRU 0.188 0.812 

GAN-argcPredNet v1.0 0.191 0.814 

GAN-argcPredNet v2.0 0.187 0.826 

4.5 Ablation Study 

Through ablation study, we investigate the effects of STIC Attention and CS Attention. STIC-GAN and CS-GAN are 

constructed by adding STIC Attention module only in generator and CS Attention module only in discriminator. GAN-300 

argcPredNet v1.0, STIC-GAN, CS-GAN and GAN-argcPredNet v2.0 are tested respectively. From Fig. 13, 14, 15, 16 and 17, 

CS-GAN and STIC-GAN perform better than GAN-argcPredNet v1.0. 

 

Figure 13: This is the scores of POD, FAR, CSI and HSS under different radar extrapolation lead time when the 

threshold = 0.5 mm h-1. 305 
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Figure 14: This is the scores of POD, FAR, CSI and HSS under different radar extrapolation lead time when the 

threshold = 2 mm h-1. 

 

Figure 15: This is the scores of POD, FAR, CSI and HSS under different radar extrapolation lead time when the 310 

threshold = 5 mm h-1. 
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Figure 16: This is the scores of POD, FAR, CSI and HSS under different radar extrapolation lead time when the 

threshold = 10 mm h-1. 

 315 

Figure 17: This is the scores of POD, FAR, CSI and HSS under different radar extrapolation lead time when the 

threshold = 30 mm h-1. 
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From Table 4, when the threshold increases, the GAN-argcPredNet v2.0, CS-GAN and STIC-GAN far exceed the GAN-

argcPredNet v1.0, and the STIC-GAN is closer to the GAN-argcPredNet v2.0. The STIC Attention focuses more on the 

more rapidly evolving areas of the radar maps, which leads to the result. The CS Attention makes GAN-argcPredNet v2.0 320 

have better comprehensive performance. 

Table 4: This is the average scores of POD, FAR, CSI and HSS under different threshold. Bold represents the best 

score. 

Model 

Threshold = 0.5 mm h-1 Threshold = 2 mm h-1 

POD FAR CSI HSS POD FAR CSI HSS 

GAN-argcPredNet v1.0 0.659 0.206 0.569 0.695 0.57 0.243 0.488 0.631 

CS-GAN 0.660 0.200 0.571 0.697 0.573 0.242 0.490 0.632 

STIC-GAN 0.656 0.198 0.570 0.696 0.584 0.243 0.498 0.641 

GAN-argcPredNet v2.0 0.661 0.185 0.577 0.704 0.604 0.241 0.512 0.655 

Model 

Threshold = 5 mm h-1 Threshold = 10 mm h-1 

POD FAR CSI HSS POD FAR CSI HSS 

GAN-argcPredNet v1.0 0.423 0.328 0.358 0.500 0.255 0.391 0.223 0.337 

CS-GAN 0.433 0.317 0.366 0.511 0.306 0.421 0.257 0.384 

STIC-GAN 0.458 0.331 0.382 0.529 0.299 0.397 0.256 0.383 

GAN-argcPredNetv2.0 0.458 0.317 0.385 0.533 0.315 0.385 0.269 0.401 

Model 

Threshold = 30 mm h-1 

POD FAR CSI HSS 

GAN-argcPredNet v1.0 0.149 0.612 0.126 0.205 

CS-GAN 0.152 0.592 0.129 0.210 

STIC-GAN 0.163 0.580 0.139 0.226 

GAN-argcPredNet v2.0 0.186 0.589 0.154 0.249 

The effects of STIC Attention and CS Attention on extrapolation is shown in Fig. 18. The addition of STIC Attention or CS 

Attention makes the reflectivity of heavy rainfall echoes closer to the real echoes. Rainfall information is still well 325 
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maintained in the seventh images. The combination of the two makes the effect more obvious. Intensifying the influence of 

the previously input rainfall evolution information reduces echoes attenuation. 

 

Figure 18: This is the example of radar echo exploration. The circular regions represent heavy rainfall prediction. 

5 Conclusion 330 

The study improves precipitation nowcasting by reducing information loss and echoes attenuation. With the intensification 

of the previously input rainfall evolution information, GAN-argcPredNet v2.0 reduces information loss and enhances the 

prediction accuracy of rainfall, especially heavy rainfall. Meanwhile, the model is designed based on the generative 

adversarial structure, which achieves high quality radar echo extrapolation. 

In practice, a predictive software has been developed based on our model. After the software accesses the radar data and 335 

establishes a prediction task, rainfall prediction results are output as dataset. Then the dataset can be fed into the urban flood 

warning system. The improvement of rainfall prediction has a positive impact on flood prediction and urban-operation safety. 

Overall, GAN-argcPredNet v2.0 is a spatiotemporal process intensification model based on GAN, which achieves more 

accurate rainfall prediction. However, there are further improvements on the basis of current accuracy. 
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Future work should also consider how to achieve high-resolution rainfall prediction. High-resolution prediction is often 340 

limited by hardware conditions. Therefore, further optimization of the model to attenuate hardware conditions required for 

training and predicting is a realistic research direction. 

Code and data availability 

The radar data used in the paper comes from Guangdong Meteorological Administration. Due to the confidentiality policy, 

we only provide a sequence of 12 images. If you need to access more data, please contact Kun Zheng (ZhengK@cug.edu.cn) 345 

and Qiya Tan (ses_tqy@cug.edu.cn). The GAN-argcPredNet v2.0 model is open source. You can find the source code from 

https://doi.org/10.5281/zenodo.7505030. 
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