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Abstract. Precipitation nowcasting has important implications for urban operation and flood prevention. Radar echo 

extrapolation is a common method in precipitation nowcasting. Using deep learning models to extrapolate radar echo data has 

great potential. The increase of lead time leads to a weaker correlation between the real rainfall evolution and the generated 

images. The evolution information is easily lost during extrapolation, which is reflected as echo attenuation. Existing models, 15 

including Generative Adversarial Network (GAN)-based models, are difficult to curb attenuation, resulting in insufficient 

accuracy in rainfall prediction. Aim to the problem, a Spatiotemporal Process Enhancement Network (GAN-argcPredNet v2.0) 

based on GAN-argcPredNet v1.0 is designed. GAN-argcPredNet v2.0 curbs attenuation by avoiding blurring or maintaining 

the intensity. A Spatiotemporal Information Changes Prediction (STIC-Prediction) network is designed as the generator. By 

suppressing the blurring effect of rain distribution and reducing the negative bias by STIC Attention, the generator generates 20 

more accurate images. Furthermore, the discriminator is a Channel-Spatial Convolution (CS-Convolution) network. The 

discriminator enhances the discrimination of echo information and provides better guidance to the generator in image 

generation by CS Attention. The experiments are based on the radar dataset of South China. The results show that GAN-

argcPredNet v2.0 performs better than other models. In heavy rainfall prediction, compared with the baseline, the Probability 

of Detection (POD), the Critical Success Index (CSI), the Heidke Skill Score (HSS) and Bias Score increase by 18.8 %, 17.0 25 

%, 17.2% and 26.3 % respectively. The False Alarm Ratio (FAR) decreases by 3.0 %. 

1 Introduction 

Accurate precipitation nowcasting, especially heavy precipitation nowcasting, plays a key role in hydrometeorological 

applications such as urban-operation safety and flash-flood warnings (Liu et al., 2015). It can effectively prevent the hazards 

and losses caused by heavy precipitation to economy and people (Luo et al., 2020). Radar echo extrapolation is the method 30 

most often used to nowcast precipitation (Reyniers, 2008). The essence is tracking areas of reflectivity to derive motion vectors, 

and then using the motion vectors to determine future location of the reflectivity (Austin and Bellon, 1974).  
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Traditional radar echo extrapolation methods include cross-correlation, individual radar echo-tracking, and the optical flow 

method (Bowler et al., 2004). Thunderstorm Identification, Tracking, Analysis, and Nowcasting (TITAN) is a classical 

centroid tracking algorithm (Dixon and Wiener, 1993). This algorithm achieves precipitation nowcasting by real-time tracking 35 

and automatic identification of individual storms. However, the tracking performance of TITAN is poor during multi-cell 

storms. To address this, an enhanced TITAN (ETITAN) was proposed (Han et al., 2009). By combining cross-correlation and 

individual radar echo-tracking, ETITAN achieves more accurate tracking and prediction. While the cross-correlation method 

is effective, it has lower prediction accuracy when echoes change rapidly. On the other hand, the optical flow method achieves 

local prediction by treating echoes motion as fluid (Sakaino, 2013). Additionally, some traditional nowcasting systems 40 

combined different information and further improved the ability of nowcasting. A Bayesian precipitation nowcasting system 

based on the ensemble Kalman filter was formulated. The system correctly captures the flow dependence of both the numerical 

weather prediction (NWP) forecast and the Lagrangian persistence of radar observations (Nerini et al., 2019). Furthermore, 

the variational algorithm is used to improve the nowcasting system to achieve three-hour nowcasting (Chung and Yao, 2020). 

The Lagrangian Integro-Difference equation model with Autoregression (LINDA) also performs better for prediction accuracy 45 

and duration (Pulkkinen et al., 2021). As the storm evolution like merging, splitting, growth and decay, traditional methods 

are difficult to predict accurately. Besides, these traditional methods do not intend to utilize the large amounts of historical 

images. 

Deep learning has powerful nonlinear mapping ability. By analyzing the motion process through a large number of historical 

radar echo images, deep learning achieves better results (Shi et al., 2015; Pan et al., 2021). Radar echo extrapolation can be 50 

regarded as an image sequence prediction problem. Therefore, the problem can be solved by implementing an end-to-end 

sequence learning method (Sutskever et al., 2014; Shi et al., 2015). ConvGRU learns video features through convolution 

operation, enabling sparse connection of model units (Ballas et al., 2015). Convolution operation is also used in ConvLSTM. 

By replacing the step of internal data state transformation in LSTM, ConvLSTM can better extract features (Shi et al., 2015). 

Convolutional recursive structure is position invariant, which is not consistent with natural motion and transformation. 55 

Trajectory GRU (TrajGRU) was further proposed (Shi et al., 2017). Both LSTM and GRU models have long-term memory. 

However, this capability is limited to historical spatial information. RainNet utilizes a convolutional network architecture in 

precipitation nowcasting, which avoids the brittleness of LSTM structure (Ayzel et al., 2020).  

Attention mechanisms are also frequently employed in sequential networks. By learning the importance of different image 

parts, attention mechanisms can improve prediction accuracy. For example, the self-attention mechanism combines the spatial 60 

relationships of different locations and emphasizes important areas (Wang et al., 2018a). Eidetic 3D LSTM (E3D-LSTM) 

introduces self-attention to enhance long-term memory in LSTM (Wang et al., 2018b). However, it lacks attention in the 

channel dimension. Interaction Dual Attention LSTM (IDA-LSTM) expands the spatial and channel attention based on self-

attention to improve representation learning (Luo et al., 2021). Due to the high hardware load, self-attention is hard to train for 

high-resolution images. Convolutional Block Attention Module (CBAM) was developed simultaneously as a less 65 

computational attention mechanism. It can be flexibly applied in sequential networks (Woo et al., 2018). 
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Compared to sequence prediction networks, Generative Adversarial Network (GAN)-based models have significant 

advantages in generating high-quality echo images. High quality refers to images that are more realistic and structurally similar 

to real images (Tian et al., 2020; Xie et al., 2022). GANs consist of a generator and a discriminator. The generator is responsible 

for generating new synthetic data that follows the distribution of the training data. The discriminator is trained to distinguish 70 

between samples generated by the generator and real samples from the training set. The generator and discriminator are trained 

against each other to achieve balance. GANs have powerful data generation capabilities (Goodfellow et al., 2020). This is 

because the model with anti-loss can better realize multi-modal modeling (Lotter et al., 2016). For instance, Deep Generative 

Models of Rainfall (DGMR) generates more accurate reflectivity by adversarial training (Ravuri et al., 2021). GANs are also 

used to generate realistic details for a broader extrapolation range (Chen et al., 2019). GA-ConvGRU uses ConvGRU as the 75 

generator. The image quality is far better than ConvGRU by implementing multi-modal data modeling (Tian et al., 2020). A 

number of studies contribute to improving the stability of GAN training. Energy-Based Generative Adversarial Forecaster 

(EBGAN-Forecaster) combines a convolution structure with a codec framework to improve stability (Xie et al., 2022). 

Additionally, our proposed GAN-argcPredNet v1.0 has more advantages in improving the details of predicted echoes and 

stabilizing GAN training (Zheng et al., 2022). 80 

However, the radar echo images are forecasted for future time periods based on the real echo sequence. In deep learning 

models, the increase of lead time leads to a weaker correlation between the real images at the front of the sequence and the 

generated images. The influence of the real echo evolution diminishes rapidly, resulting in the loss of rainfall evolution 

information. This loss is reflected as the attenuation of echo shape and intensity in the generated images. Due to the smaller 

percentage of heavy rainfall areas, the attenuation is more severe. To the knowledge of authors, existing deep learning models, 85 

including GAN-based models, lack a method to curb this attenuation, which leads to low accuracy in predicting heavy rainfall. 

In this study, a Spatiotemporal Process Enhancement Network (GAN-argcPredNet v2.0) was proposed based on Generative 

Adversarial Advanced Reduced-Gate Convolutional Deep Predictive Coding Network (GAN-argcPredNet v1.0) (Zheng et al., 

2022), which aims at curbing attenuation. In GAN-argcPredNet v2.0, a Spatiotemporal Information Changes Prediction (STIC-

Prediction) network is designed as the generator. The generator focuses on the spatiotemporal variation of the radar echo 90 

feature sequence. The purpose of the generator is to curb echo attenuation by suppressing the blurring effect of rain distribution 

and reducing the negative bias. Furthermore, a Channel-Spatial Convolution (CS-Convolution) network is designed as the 

discriminator. The discriminator aims to guide the generator to better retain echo shape and intensity by enhancing the ability 

to identify echo information. The generator and discriminator are trained against each other to achieve accurate rainfall 

prediction.  95 
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2 Model 

2.1 GAN-argcPredNet v1.0 overview 

GAN–argcPredNet v1.0 (Fig. 1) uses Wasserstein GAN with gradient penalty (WGAN-gp) as its predictive framework. The 

model solves the problem of training instability by utilizing gradient penalty measures (Gulrajani et al., 2017). The generator 

in GAN-argcPredNet v1.0 is an argcPredNet model, responsible for learning the data features of rainfall and simulating the 100 

real echo distribution to generate predictive images. The discriminator is a four-layer CNN model with a dual-channel input 

method. The predictive and real images are fed into the discriminator, which judges the real images as true and the predictive 

images as false. Adam is used as the optimizer, which is an extension of stochastic gradient descent (Kingma Diederik and 

Adam, 2014). The model parameters are updated through adversarial loss optimization. The generator is updated once after 

every five updates of the discriminator. 105 

 

Figure 1: The structure of GAN-argcPredNet v1.0. More information about the model can be found in the paper of Zheng et al. 

(Zheng et al., 2022). 

2.2 GAN-argcPredNet v2.0 overview 

GAN-argcPredNet v2.0 model was built based on GAN-argcPredNet v1.0. GAN-argcPredNet v2.0 consists of a STIC-110 

Prediction generator and a CS-Convolution discriminator (Fig. 2). The STIC-Prediction generator is designed to reduce echo 

attenuation by suppressing the blurring effect and reducing the negative bias. The generator is composed of the argcPredNet 

and the STIC Attention module (Fig. 3). The argcPredNet is composed of a series of repeatedly stacked modules, with a total 

of four layers (Zheng et al., 2022). Each layer of the module consists of the input convolutional layer (𝐴𝑙), the recurrent 

representation layer (𝑅𝑙 ), the prediction convolutional layer (�̂�𝑙 ) and the error representation layer (𝐸𝑙 ). 𝑅𝑙  learns image 115 

features and generates the feature map 𝑅𝑙
𝑇 ∈ 𝑅𝐻×𝑊×𝐶 , where 𝑙, 𝑇, 𝐻, 𝑊 and  𝐶 denote layer, current prediction time, map 
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height, map width and feature channel, respectively. The feature map guides the lower layers to generate images. STIC 

Attention is designed to focus on the importance of different rainfall regions after the third layer. The purpose is to better 

maintain spatiotemporal features during information transmission within the model. After passing through STIC Attention, the 

features are fed to the lower layers, aiming to avoid blurring or to maintain the intensity during extrapolation. The calculation 120 

method of STIC-Prediction is: 

𝐴𝑙
𝑇 = {

𝑥𝑇

𝑀𝐴𝑋𝑃𝑂𝑂𝐿(𝛾(𝑓(𝐸𝑙−1
𝑇 )))

      
𝑖𝑓 𝑙 = 0

0 < 𝑙 < 𝐿
 ,        (1) 

�̂�𝑙
𝑇 = 𝛾(𝑓(𝑅𝑙

𝑇)) ,                                                                (2) 

𝐸𝑙
𝑇 = [𝛾(𝐴𝑙

𝑇 − �̂�𝑙
𝑇) ;  𝛾(�̂�𝑙

𝑇 − 𝐴𝑙
𝑇) ] ,                                                            (3) 

𝑅𝑙
𝑇 =   {

𝑎𝑟𝑔𝑐𝐿𝑆𝑇𝑀(𝐸𝑙
𝑇−1,  𝑅𝑙

𝑇−1)                                                                   𝑖𝑓 𝑙 = 𝐿          

𝑎𝑟𝑔𝑐𝐿𝑆𝑇𝑀(𝐸𝑙
𝑇−1,  𝑅𝑙

𝑇−1,  𝑈𝑃𝑆𝐴𝑀𝑃𝐿𝐸(𝑆𝑇𝐼𝐶(𝑅𝑙+1
0 : 𝑅𝑙+1

𝑇 )))     𝑖𝑓 𝑙 = 1          

𝑎𝑟𝑔𝑐𝐿𝑆𝑇𝑀(𝐸𝑙
𝑇−1,  𝑅𝑙

𝑇−1,  𝑈𝑃𝑆𝐴𝑀𝑃𝐿𝐸(𝑅𝑙+1
𝑇 ))              𝑙 = 0 𝑎𝑛𝑑 1 < 𝑙 < 𝐿

    (4) 125 

Here, 𝑥𝑇 denotes the initial input, 𝑀𝐴𝑋𝑃𝑂𝑂𝐿 denotes the maximum pooling operation, 𝛾 denotes relu activation function, 𝑓 

denotes the convolution operation, 𝑎𝑟𝑔𝑐𝐿𝑆𝑇𝑀 denotes Advanced Reduced-Gate Convolutional LSTM (Zheng et al., 2022), 

and 𝑆𝑇𝐼𝐶 denotes STIC Attention. 

The CS-Convolution discriminator is composed of a four-layer convolution structure and a CS Attention module. The 

convolution structure is responsible for extracting the echo features from the input radar echo images. CS Attention is 130 

embedded after the first-layer convolution structure. This module is designed to focus on radar echo features, especially heavy 

rainfall features. The purpose is to enhance discriminative ability and provide better guidance for the generator. The 

hyperparameters of the generator and discriminator are provided in the supplement (Table S7 and S8). 
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Figure 2: The structure of GAN-argcPredNet v2.0. Fifteen radar echo images are used as a test sequence. Here, the first five images 135 
are used as the input sequence, and the last ten images are used as the Ground-truth images. The generator generates images based 

on input sequences. The discriminator judges both the predictive images and Ground-truth images. The adversarial loss is then 

obtained to optimize the model. 
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Figure 3:  The STIC-Prediction structure at time 𝑻 with 𝒍 = 𝟏 (𝒍 = 𝟎, 𝟏, 𝟐, 𝟑). STIC Attention is after the third layer. Before 𝑹𝒍+𝟏
𝑻  140 

enters the 𝑹𝒍
𝑻  module, 𝑹𝒍+𝟏

𝑻  forms a sequence 𝑹𝒍+𝟏
𝟎 : 𝑹𝒍+𝟏

𝑻  with the previous 𝑹𝒍+𝟏 . STIC Attention focuses on the importance of 

different regions of the sequence. Finally, the new 𝑹𝒍+𝟏
𝑻  is fed to the 𝑹𝒍

𝑻 module. See Section 2.2 for further explanation. 

2.3 STIC Attention 

STIC Attention (Fig. 4) combines MaxPool3D (3D = map height, map width and time) and AvgPool3D to focus on the spatial 

information in feature sequences from both the maximum and average perspectives. This step focuses on heavy rainfall echoes 145 

while considering non-heavy rainfall. The introduction of 3D convolution enables extraction of spatiotemporal changes in the 

feature sequences. The module calculates the importance of evolutionary information, which aims to suppress the blurring 

effect and reduce the negative bias. Following are the detailed steps. 

Given the feature sequence 𝐹 ∈ 𝑅𝑡×𝐻×𝑊×𝐶  as input, where 𝑡  denotes time. Two feature sequences 𝐹𝑚𝑎𝑥
𝑡𝑠 ∈ 𝑅𝑡×𝐻×𝑊×1  and 

𝐹𝑎𝑣𝑔
𝑡𝑠 ∈ 𝑅𝑡×𝐻×𝑊×1, are obtained by pooling operations, which denote the maximum and average feature along the channel axis, 150 

respectively. The feature sequences are then connected and 3D convoluted. The activation function is hard_sigmoid. By 

introducing linear behavior, hard_sigmoid allows gradients to flow easily in the unsaturated state, and provides a crisp decision 

in the saturated state, resulting in far less computational expense (Courbariaux et al., 2015; Gulcehre et al., 2016; Nwankpa et 

al., 2018). Then, the STIC Attention map sequence 𝑀𝑆𝑇𝐼𝐶 ∈ 𝑅𝑡×𝐻×𝑊×1 is obtained. Finally, the output feature sequence 𝐹1 ∈

𝑅𝑡×𝐻×𝑊×𝐶, is calculated by element-wise multiplication of 𝑀𝑆𝑇𝐼𝐶 and 𝐹. In short, the calculation method of STIC Attention 155 

is:  

𝑀𝑆𝑇𝐼𝐶 = 𝜎(𝑓7×7×5((𝑀𝑎𝑥𝑃𝑜𝑜𝑙3𝐷(𝐹))𝑐𝑜𝑛𝑐𝑎𝑡(𝐴𝑣𝑔𝑃𝑜𝑜𝑙3𝐷(𝐹)))) = 𝜎(𝑓7×7×5(𝐹𝑚𝑎𝑥
𝑡𝑠 concat𝐹𝑎𝑣𝑔

𝑡𝑠 )) ,   (5) 

𝐹1 = 𝑀𝑆𝑇𝐼𝐶𝐹 ,                                                                (6) 
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Here, 𝑐𝑜𝑛𝑐𝑎𝑡  denotes the connection operation, 𝑀𝑎𝑥𝑃𝑜𝑜𝑙3𝐷  denotes the 3D maximum pooling operation, 𝐴𝑣𝑔𝑃𝑜𝑜𝑙3𝐷 

denotes the 3D average pooling operation, 𝑓7×7×5 denotes the 3D convolution operation with a convolution kernel of 7×7×5, 160 

𝜎 denotes the hard_sigmoid activation function, and  denotes the element-wise multiplication. 

 

Figure 4: The structure of STIC Attention. The first line represents the calculation process of the STIC Attention map sequence. 

The second line represents the process of applying the STIC Attention map sequence to the input feature sequence. 

2.4 CS Attention 165 

CS Attention consists of Channel Attention and Spatial Attention (Fig. 5). For input feature 𝐹′ ∈ 𝑅𝐻×𝑊×𝐶 , the channel attention 

map 𝑀𝑐 ∈ 𝑅1×1×𝐶 is first generated. After element-wise multiplication with initial feature image, the spatial attention map 

𝑀𝑠 ∈ 𝑅𝐻×𝑊×1, is generated by the Spatial Attention module. Finally, the output feature 𝐹2
′ ∈ 𝑅𝐻×𝑊×𝐶 is obtained in the same 

way. In short, the calculation process is as follows: 

𝐹1
′ = 𝑀𝑐𝐹′ ,                                                                (7) 170 

𝐹2
′ = 𝑀𝑠𝐹1

′ ,                                                                (8) 

Here,  denotes the element-wise multiplication, and 𝐹1
′ is the middle feature. 

 

Figure 5: The structure of CS Attention. The calculation order is first through the Channel Attention module and then through the 

Spatial Attention module. 175 
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The Channel Attention module (Fig. 6) studies the relationship among different feature channels. The global maximum and 

average pooling are used to gather spatial maximum and average information for each channel. The combination of these 

methods allows for a more comprehensive judgment of the importance of different feature channels. Then, the correlation 

between feature channels is obtained by learning the respective parameters in a dense layer. The Channel Attention module 

focuses more on meaningful feature channels. The detailed steps are as follows: 180 

The feature map 𝐹′ is input into the Channel Attention module. Two 1D feature maps 𝐹𝑚𝑎𝑥
𝑐 ∈ 𝑅1×1×𝐶 and 𝐹𝑎𝑣𝑔

𝑐 ∈ 𝑅1×1×𝐶 are 

obtained by applying global pooling, which denote the global maximum and global average pooling features, respectively. 

Then, the correlation between these features is extracted through dense layers. In order to reduce parameter overhead, the 

number of neurons in the first dense layer is set to 𝐶 𝑟⁄ , where 𝑟 is the compression ratio. Finally, the hard_sigmoid activation 

function is applied to obtain final channel attention map 𝑀𝑐. In short, the channel attention map is calculated as follows: 185 

𝑀𝑐 = 𝜎(𝜑11(𝛾(𝜑10(𝐺𝑀𝑃(𝐹′)))) + 𝜑21(𝛾(𝜑20(𝐺𝐴𝑃(𝐹′))))) = 𝜎(𝜑11(𝛾(𝜑10(𝐹𝑚𝑎𝑥
𝑐 ))) + 𝜑21(𝛾(𝜑20(𝐹𝑎𝑣𝑔

𝑐 )))) ,  (9) 

Here, 𝐺𝑀𝑃 denotes the global maximum pooling, 𝐺𝐴𝑃 denotes the global average pooling, 𝜑10, 𝜑11 denotes the first and 

second dense layer of 𝐹𝑚𝑎𝑥
𝑐 , 𝜑20 , 𝜑21  denotes the first and second dense layer of 𝐹𝑎𝑣𝑔

𝑐 , and 𝛾 denotes the relu activation 

function. 

 190 

Figure 6: The structure of Channel Attention. Channel Attention utilizes maximum pooling outputs and average pooling outputs 

with their respective networks. 

The Spatial Attention module (Fig. 7) studies the importance of each part in the same channel. The maximum and average 

pooling are used along the channel axis, which obtains echoes information of the feature image. The 2D convolution operation 

extracts feature and generates a spatial attention map with the same size as the input image. The detailed steps are as follows: 195 

After the Channel Attention module, the feature map 𝐹1
′ ∈ 𝑅𝐻×𝑊×𝐶  is input into the Spatial Attention module. Two 2D feature 

maps 𝐹𝑚𝑎𝑥
𝑠 ∈ 𝑅𝐻×𝑊×1 and 𝐹𝑎𝑣𝑔

𝑠 ∈ 𝑅𝐻×𝑊×1, are obtained by applying pooling operation, which denote the maximum pool 

feature and average pool feature on the channel respectively. The feature maps are then connected and 2D convoluted, using 
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hard_sigmoid as the activation function to obtain final spatial attention map 𝑀𝑠. In short, the calculation method of spatial 

attention map is: 200 

𝑀𝑠 = 𝜎(𝑓7×7((𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷(𝐹1
′))𝑐𝑜𝑛𝑐𝑎𝑡(𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝐷(𝐹1

′)))) = 𝜎(𝑓7×7(𝐹𝑚𝑎𝑥
𝑠 concat𝐹𝑎𝑣𝑔

𝑠 )) ,    (10) 

Here, 𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷 denotes the 2D maximum pooling operation, 𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝐷 denotes the 2D average pooling operation, and  

𝑓7×7 denotes the 2D convolution operation with a convolution kernel of 7×7. 

 

Figure 7: The structure of Spatial Attention. Spatial Attention utilizes the maximum and average pooling outputs along the channel 205 
axis and forwards them to the convolutional layer. 

3 Data and experimental setup 

3.1 Dataset description 

This study used the South China radar echo data provided by Guangzhou Meteorological Administration. The radar mosaic 

comes from 11 weather radars. The median filtering algorithm was used to control radar data quality, which eliminates errors 210 

caused by isolated clutter. In addition, the mirror filling and continuity checks were applied to remove traditional radar error 

sources. After quality control, the data contains only an extremely small amount of strong interference, which has a negligible 

impact on the training of the model. 

From 2015 to 2016, a total of 32,010 consecutive echo images with rainfall were randomly selected as the training set. For the 

testing phase, 7,995 consecutive images were randomly selected from March to May 2017. The original resolution of each 215 

image is 1050 × 880 pixels, covering an area of 1050 km × 880 km. Each pixel denotes a resolution of 1 km × 1 km. The 

reflectivity values range from 0 to 80 dBZ, with the amplitude limit set between 0 and 255. The data was collected every 6 

minutes, which is the Constant Altitude Plan Position Indicator (CAPPI) data at a height of 1 km. To speed up training and 

reduce hardware load, the central 128 × 128 images were segmented. 

Due to the relationship between radar reflectivity and rainfall type, the value on the radar echo image is converted to the 220 

corresponding rainfall rate. The calculation formula is as follows: 

𝑍 = 10 𝑙𝑜𝑔10 𝑎 + 10𝑏 𝑙𝑜𝑔10 𝑅 ,          (11) 
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Here, 𝑎 is set to 58.53 and 𝑏 is set to 1.56, 𝑍 denotes the radar reflectivity intensity, 𝑅 denotes the rainfall intensity. The 

correspondence between rainfall rate, radar reflectivity intensity and rainfall level are referred to Table 1 (Shi et al., 2017). 

Table 1: The rainfall level table. Rain Rate, Radar Reflectivity Intensity and Rainfall Level correspond to each other. 225 

Rain Rate (mm h-1) Radar Reflectivity Intensity (dBZ) Rainfall Level 

0 ≤   𝑅 < 0.5 𝑍 < 12.98 No / Hardly noticeable 

0.5 ≤  𝑅 < 2 12.98 ≤  𝑍 < 22.37 Light 

2 ≤   𝑅 < 5 22.37 ≤  𝑍 < 28.58 Light to moderate 

5 ≤   𝑅 < 10 28.58 ≤  𝑍 < 33.27 Moderate 

10 ≤   𝑅 < 30 33.27 ≤  𝑍 < 40.72 Moderate to heavy 

30 ≤   𝑅 40.72 ≤  𝑍 Rainstorm warning 

3.2 Evaluation metrics  

As for evaluation, the study used four metrics to evaluate the prediction accuracy of all 128 × 128 pixels, which are Probability 

of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI) and Heidke Skill Score (HSS). POD evaluates hit 

ability, while FAR is the metric of false alarms. The combination of them can evaluate the model more objectively. CSI and 

HSS are composite metrics that provide a direct judgment of the model effectiveness. CSI measures the fraction of observed 230 

and/or forecast events that are correctly predicted. HSS measures the fraction of correct forecasts after eliminating those 

forecasts which would be correct due purely to random chance. To measure the blurring effect, the study also used the Bias 

Score, which evaluates the ratio between the frequency of forecast events and the frequency of observed events. The formulas 

for calculating these five metrics are as follows: 

𝑃𝑂𝐷 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,                                                                (12) 235 

𝐹𝐴𝑅 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
 ,                                                                (13) 

𝐶𝑆𝐼 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
 ,                                                                (14) 

𝐻𝑆𝑆 =
2(𝑇𝑃×𝑇𝑁−𝐹𝑁×𝐹𝑃)

(𝑇𝑃+𝐹𝑁)(𝐹𝑁+𝑇𝑁)+(𝑇𝑃+𝐹𝑃)(𝐹𝑃+𝑇𝑁)
 ,         (15) 

𝐵𝑖𝑎𝑠 =
𝑇𝑃+𝐹𝑃

𝑇𝑃+𝐹𝑁
 ,                                                                (16) 

Here, 𝑇𝑃  denotes that the real and predicted value reach specified threshold, 𝐹𝑁  denotes that the real value reaches the 240 

specified threshold and the predicted value does not reach, 𝐹𝑃 denotes that the real value does not reach specified threshold 

and the predicted value reaches, and 𝑇𝑁 denotes that the real value and predicted value do not reach specified threshold. In 

the study, we applied threshold rain rates of 0.5, 2, 5, 10 and 30mm h-1 for calculating these metrics. 
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In order to evaluate the quality of generated images objectively, Mean Square Error (MSE) and Mean Structural Similarity 

(MSSIM) were also chosen for the experiment (Wang et al., 2004; Inoue and Misumi, 2022).  245 

3.3 Experimental setting 

Radar echo extrapolation is the prediction of future radar echo images based on real images. This study set the input sequence 

𝑀 and output sequence 𝑁 to 5 and 10, respectively. 

 GAN-argcPredNet v2.0 was first compared with the optical flow, ConvLSTM, ConvGRU, GA-ConvGRU, and GAN-

argcPredNet v1.0 in comparison experiments. The first one is a traditional method, and the code comes from the Pysteps library 250 

(Pulkkinen et al., 2019). The last one is the model we designed before. Other models are commonly used deep learning models 

in radar echo extrapolation. The hyperparameters for deep learning models were provided in the supplement (Table S1-6). 

Then the ablation study was designed to verify the effectiveness of STIC Attention and CS Attention. 

Before training, each pixel of the radar echo image was normalized to [0, 1]. All experiments were implemented by Python. 

Model training and testing were performed using the Keras deep learning library with Tensorflow as the backend. The 255 

operating environment is a Linux workstation equipped with two NVIDIA RTX 2080 Ti 11G GPUs. 

4 Results 

4.1 Comparison study 

In order to observe the performance of the models and evaluate the blurring effect more easily, the average scores of POD, 

FAR, CSI, HSS and Bias were calculated for all lead time in the experiment. Fig. 8 shows that, except for the Bias Score, most 260 

deep learning models have better scores than the optical flow. Besides the threshold of 30 mm h-1, the Bias Score of the optical 

flow is second only to GAN-argcPredNet v2.0. In deep learning models, the FAR Score of GAN-argcPredNet v2.0 is slightly 

higher than those of ConvGRU and ConvLSTM at thresholds of 0.5 and 2 mm h-1, respectively. However, the other scores of 

GAN-argcPredNet v2.0 are always the best. The comprehensive score of GAN-argcPredNet v1.0 is second only to GAN-

argcPredNet v2.0. GA-ConvGRU performs better than the two non-GAN models in most cases. Between the two non-GAN 265 

models, all scores of ConvLSTM are better than ConvGRU when the threshold is set to 5 and 10 mm h-1. 

GAN-argcPredNet v2.0 shows excellent performance in heavy rainfall prediction. Compared to the baseline GAN-argcPredNet 

v1.0, the POD, CSI, HSS and Bias scores of GAN-argcPredNet v2.0 increase by 20.1 %, 16.0 %, 15.4 % and 25.0 % when the 

threshold is set to 10 mm h-1. The FAR Score also decreases by 2.3 %. When the threshold is set to 30 mm h-1, the POD, CSI, 

HSS and Bias scores increase by 18.8 %, 17.0 %, 17.2% and 26.3 % respectively. The FAR Score decreases by 3.0 %.  270 
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Figure 8: The average scores of (a) POD, (b) FAR, (c) CSI, (d) HSS and (e) Bias under different threshold. All the time steps were 

used to compute the scores. The horizontal axis represents the threshold, in units of mm h-1. The perfect score of FAR is 0, while the 

others are 1.  

The experiment selected three prediction examples and drew the extrapolation comparison images (Fig. 9-11). In Fig. 9, the 275 

optical flow method has significant overestimation of the heavy rainfall areas. As the lead time increases, all deep learning 

models exhibit the phenomenon of echo attenuation in the predicted images. The attenuation of GAN-argcPredNet v2.0 is 

noticeably slower. In the circular and rectangular regions, the intensity and shape of strong echoes are well retained until 60 

minutes. There are some false predictions on the bottom right corner, and the heavy rain area near the top right goes out of the 

domain. Nonetheless, the other predictions of GAN-argcPredNet v2.0 are more consistent with Ground-truth.  280 

In Fig. 10, as the storm rapidly grows, the optical flow method misestimates the location of strong echoes. In the rectangular 

region, GAN-argcPredNet v2.0 performs better than other deep learning models in maintaining intensity and provides more 

accurate predictions compared to the optical flow method. 

Fig. 11 shows that the optical flow method overestimates the intensity and distorts the predicted shape of the echoes. When 

faced with storm decay, GAN-argcPredNet v2.0 still performs the best among all models, especially in the heavy rainfall areas. 285 
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The optical flow method consistently exhibits overestimation or misestimation in these examples. In deep learning models, the 

three GAN-based models also present better echo structure and prediction performance compared to the two non-GAN models.  

For the echo above 40 dBZ, ConvLSTM exhibits the most severe attenuation. 

 

Figure 9: The example of the growth of weather system in radar echo extrapolation. From top to bottom: ground truth frames; 290 
prediction by the optical flow; prediction by ConvGRU; prediction by ConvLSTM; prediction by GA-ConvGRU; prediction by 

GAN-argcPredNet v1.0; prediction by GAN-argcPredNet v2.0. The circular and rectangular regions represent heavy rainfall 

prediction, where the performance of the models in extrapolating heavy rainfall can be observed. 
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Figure 10: The example of rapid storm growth in radar echo extrapolation. From top to bottom: ground truth frames; prediction 295 
by the optical flow; prediction by ConvGRU; prediction by ConvLSTM; prediction by GA-ConvGRU; prediction by GAN-

argcPredNet v1.0; prediction by GAN-argcPredNet v2.0. The rectangular region represents the prediction for rapid storm growth. 
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Figure 11: The example of storm decay in radar echo extrapolation. From top to bottom: ground truth frames; prediction by the 

optical flow; prediction by ConvGRU; prediction by ConvLSTM; prediction by GA-ConvGRU; prediction by GAN-argcPredNet 300 
v1.0; prediction by GAN-argcPredNet v2.0. The circular and rectangular regions represent heavy rainfall prediction. 

To evaluate the quality of generated images objectively, the experiment also calculated the MSE and MSSIM metrics. Table 

2 shows that the optical flow method has the worst score. In deep learning models. GAN-based models have better scores in 

both MAE and MSSIM, with GAN-argcPredNet v2.0 achieving the best score. Compared to GAN-argcPredNet v1.0, the MAE 

metric of GAN-argcPredNet v2.0 decreases by 2.3 %, while the MSSIM metric increases by 1.25 %. In the non-GAN models, 305 

ConvLSTM scores better. 

Table 2: The MSE and MSSIM scores of each model. The perfect score of MSE is 0 while the perfect score for MSSIM is 1. Bold 

represents the best score. 

Model MSE×102 MSSIM 

optical flow 0.296 0.751 

ConvLSTM 0.230 0.775 

ConvGRU 0.243 0.763 

GA-ConvGRU 0.223 0.782 

GAN-argcPredNet v1.0 0.218 0.797 

GAN-argcPredNet v2.0 0.213 0.807 
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4.2 Ablation study 

In the ablation study, we investigated the effects of STIC Attention and CS Attention. STIC-GAN and CS-GAN were 310 

constructed by adding the STIC Attention module only in the generator and the CS Attention module only in the discriminator. 

To precisely observe the score differences, the experiment recorded the average score of each metric in a tabular format. Table 

3 shows that both CS-GAN and STIC-GAN have better scores than GAN-argcPredNet v1.0. At the threshold of 0.5 mm h-1, 

CS-GAN achieves the best score in the FAR metric, but other metrics still perform worse than GAN-argcPredNet v2.0. At 

thresholds of 5, 10, and 30 mm h-1, the metric scores of STIC-GAN exceed those of CS-GAN, which is closer to the GAN-315 

argcPredNet v2.0. 

Table 3: The average scores of POD, FAR, CSI, HSS and Bias under different threshold. All the time steps were used to compute 

the scores. Bold represents the best score. 

Model 
Threshold = 0.5 mm h-1 Threshold = 2 mm h-1 

POD FAR CSI HSS Bias POD FAR CSI HSS Bias 

GAN-argcPredNet v1.0 0.568 0.237 0.490 0.627 0.720 0.496 0.297 0.419 0.559 0.681 

CS-GAN 0.569 0.221 0.496 0.633 0.735 0.529 0.289 0.443 0.588 0.726 

STIC-GAN 0.570 0.241 0.490 0.627 0.739 0.512 0.289 0.433 0.576 0.700 

GAN-argcPredNet v2.0 0.589 0.229 0.507 0.645 0.755 0.533 0.286 0.448 0.593 0.730 

Model 
Threshold = 5 mm h-1 Threshold = 10 mm h-1 

POD FAR CSI HSS Bias POD FAR CSI HSS Bias 

GAN-argcPredNet v1.0 0.408 0.372 0.338 0.476 0.615 0.279 0.487 0.231 0.345 0.480 

CS-GAN 0.411 0.381 0.340 0.478 0.629 0.283 0.482 0.235 0.351 0.490 

STIC-GAN 0.433 0.379 0.354 0.496 0.667 0.317 0.477 0.258 0.383 0.560 

GAN-argcPredNet v2.0 0.442 0.361 0.365 0.510 0.668 0.335 0.476 0.268 0.398 0.600 

Model 
Threshold = 30 mm h-1 

POD FAR CSI HSS Bias 

GAN-argcPredNet v1.0 0.165 0.644 0.135 0.215 0.365 

CS-GAN 0.171 0.637 0.141 0.224 0.383 

STIC-GAN 0.194 0.632 0.156 0.248 0.457 

GAN-argcPredNet v2.0 0.196 0.625 0.158 0.252 0.461 

Fig. 12 shows that CS-GAN and STIC-GAN retain better echo intensity and shape compared to GAN-argcPredNet v1.0. For 

heavy rainfall, STIC-GAN shows better prediction with echoes that are closer to GAN-argcPredNet v2.0. In rectangular 320 

regions, STIC-GAN accurately predicts rainfall events until 30 minutes. However, in the circular regions, STIC-GAN 

overestimates the echo intensity compared to GAN-argcPredNet v2.0. 
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Figure 12: The example of radar echo extrapolation. From top to bottom: ground truth frames; prediction by GAN-argcPredNet 

v1.0; prediction by CS-GAN; prediction by STIC-GAN; prediction by GAN-argcPredNet v2.0. The circular and rectangular regions 325 
represent heavy rainfall prediction. 

5 Discussions and conclusions 

5.1 Discussions 

In the comparison study, the Bias Score of the optical flow is second only to GAN-argcPredNet v2.0. The result proves that, 

compared to other deep learning models, the number of rainfall events predicted by the optical flow method is closer to real 330 

rainfall events. However, the poor FAR Score indicates that there are many false predictions among these predicted events. 

Considering other metrics as well, most deep learning models perform better than the optical flow method (Fig. 8 and Table 

2). In deep learning models, the three GAN-based models have higher prediction accuracy and better image quality compared 

to the two non-GAN models. This indicates that GAN structure has more advantages with its powerful image generation 

capability. Although ConvLSTM and ConvGRU sometimes have lower FAR scores, according to metrics such as POD, this 335 

is due to the fact that they fail to predict a large number of rainfall events. As the number of predicted rainfall events decreases, 

the false alarm rate also decreases. Combined with the Bias Score, ConvLSTM and ConvGRU generally predict a lower 

frequency of rainfall than other models. This indicates that they suffer from more severe blurring effect. GA-ConvGRU and 

GAN-argcPredNet v1.0 improve the prediction accuracy with GAN structure, but the phenomenon of echo attenuation also 

cannot be ignored.  340 

GAN-argcPredNet v2.0 achieves the highest prediction accuracy and quality, suggesting its effectiveness in curbing echo 

attenuation compared to other models. This is because the echo intensity and shape are better maintained by suppressing the 
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blurring effect of rain distribution and reducing the negative bias. According to the scores at the thresholds of 10 and 30 mm 

h-1, it can be observed that GAN-argcPredNet v2.0 exhibits the best improvement in predicting heavy rainfall.  

GAN-argcPredNet v2.0 maintains the evolution trend well, but there are still some special cases (Fig. 9). There are some false 345 

predictions on the bottom right corner, and the rain area near the top right goes out of the domain. This is because in the input 

sequence (Fig. 13), the rainfall on the bottom right corner shows a growing trend, and the rain area near the top right shows a 

trend of moving towards the upper left. Our model retains the information and maintains the trend through the attention 

mechanism, but there are still some deviations from Ground-truth. This may be overcome by increasing the dataset and 

strengthening training on special cases. Also, the strong echoes outside the center of the echo images are not as well represented 350 

as the main features during the extrapolation. This is because in the input sequence, the other strong echoes have a smaller 

range, making them more susceptible to attenuation during extrapolation. Although our model can curb the attenuation, its 

effectiveness is not as significant as in the central region. However, compared to other models, the overall result of GAN-

argcPredNet v2.0 is more competitive. 

 355 

Figure 13: The input radar images sequence. The example in Fig. 9 is extrapolated based on these five images. 

In the ablation study, we find that the scores of CS-GAN and STIC-GAN are mostly better than GAN-argcPredNet v1.0 (Table 

3 and Fig. 12). This indicates that both STIC Attention and CS Attention can curb echo attenuation and improve prediction 

accuracy. As the threshold increases, the scores of STIC-GAN become closer to that of GAN-argcPredNet v2.0. This is because 

STIC Attention focuses more on the rapidly evolving areas of the radar images. CS Attention helps GAN-argcPredNet v2.0 360 

achieve better overall performance. 

5.2 Conclusions 

The study improves precipitation nowcasting by reducing echo attenuation. By avoiding blurring or maintaining the intensity, 

GAN-argcPredNet v2.0 curbs the attenuation and improves the rainfall prediction accuracy, especially for heavy rainfall. STIC 

Attention suppresses the blurring effect of rain distribution and reduces the negative bias, allowing the generator to generate 365 

more accurate images. CS Attention enables the discriminator to better guide the generator to maintain echo intensity and 

shape. Meanwhile, the model is designed based on the generative adversarial structure, which achieves high-quality radar echo 

extrapolation. 

In practice, a predictive software has been developed based on our model. After the software accesses the radar data and 

establishes a prediction task, rainfall prediction results are output as dataset. Then the dataset can be fed into the urban flood 370 

warning system. The improvement of rainfall prediction has a positive impact on flood prediction and urban-operation safety. 
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Overall, GAN-argcPredNet v2.0 is a spatiotemporal process enhancement model based on GAN, which achieves more accurate 

rainfall prediction.  

Future work can be considered from two aspects. The prediction accuracy of the model proposed in the study still has room 

for improvement. False predictions may be reduced by increasing the dataset and strengthening training on special cases. High-375 

resolution prediction is often limited by hardware, such as graphics card.  Therefore, it is possible to reduce the need for 

hardware by optimizing the algorithm complexity and the number of parameters. 
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