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Abstract. Precipitation nowcasting has important implications for urban operation and flood prevention. Radar echo 

extrapolation is the a common method in precipitation nowcasting. Using deep learning models to extrapolate radar echo data 

has great potential. The increase of lead time leads to a weaker correlation between the real rainfall evolution and the generated 

images. The evolution information is easily lost during extrapolation, which is reflected as echo attenuation. Existing models, 15 

including Generative Adversarial Network (GAN)-based models, are difficult to reduce loss and curb attenuation, which results 

in insufficient rainfall prediction accuracy resulting in insufficient accuracy in rainfall prediction. Aim to the problem, a 

Spatiotemporal Process Intensification Enhancement Network (GAN-argcPredNet v2.0) based on GAN-argcPredNet v1.0 is 

designed. GAN-argcPredNet v2.0 reduces the loss by intensifying the influence of the previously input evolution 

informationcurbs attenuation by avoiding blurring or maintaining the intensity. A Spatiotemporal Information Changes 20 

Prediction (STIC-Prediction) network is designed as the generator. By intensifying the spatiotemporal evolution of the echo 

feature sequence with STIC Attention, By suppressing the blurring effect of rain distribution and reducing the negative bias 

by STIC Attention, the generator focuses on the spatiotemporal variation and generates more accurate images. Furthermore, 

the discriminator is a Channel-Spatial Convolution (CS-Convolution) network. The discriminator enhances the discrimination 

of echo information by intensifying spatial information with CS Attention. Identification results are fed back to the generator, 25 

which reduces the loss of important evolutionary information. The discriminator enhances the discrimination of echo 

information and provides better guidance to the generator in image generation by CS Attention. The experiments are based on 

the radar dataset of South China. The results show that GAN-argcPredNet v2.0 performs better than other models. In heavy 

rainfall prediction, compared with the baseline, the Probability of Detection (POD), the Critical Success Index (CSI), the 

Heidke Skill Score (HSS) and Bias Score increase by 18.8 %, 17.0 %, 17.2% and 26.3 % respectively. The False Alarm Ratio 30 

(FAR) decreases by 3.0 %. 
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1 Introduction 

Accurate precipitation nowcasting, especially heavy precipitation nowcasting, plays a key role in hydrometeorological 

applications such as urban-operation safety and flash-flood warnings (Liu et al., 2015). It can effectively prevent the hazards 

and losses caused by heavy precipitation to economy and people (Luo et al., 2020). Radar echo extrapolation is the method 35 

most often used to nowcast precipitation (Reyniers, 2008). The essence is tracking areas of reflectivity to derive motion vectors, 

and then using the motion vectors to determine future location of the reflectivity (Austin and Bellon, 1974).  

Traditional radar echo extrapolation methods include cross-correlation, individual radar echo-tracking, and the optical flow 

method (Bowler et al., 2004). Thunderstorm Identification, Tracking, Analysis, and Nowcasting (TITAN) is a classical 

centroid tracking algorithm (Dixon and Wiener, 1993). This algorithm achieves precipitation nowcasting by real-time tracking 40 

and automatic identification of individual storms. However, the tracking performance of TITAN is poor during multi-cell 

storms. To address this, an enhanced TITAN (ETITAN) was proposed (Han et al., 2009). By combining cross-correlation and 

individual radar echo-tracking, ETITAN achieves more accurate tracking and prediction. While the cross-correlation method 

is effective, it has lower prediction accuracy when echoes change rapidly. On the other hand, the optical flow method achieves 

local prediction by treating echoes motion as fluid (Sakaino, 2013). Additionally, some traditional nowcasting systems 45 

combined different information and further improved the ability of nowcasting. A Bayesian precipitation nowcasting system 

based on the ensemble Kalman filter was formulated. The system correctly captures the flow dependence of both the numerical 

weather prediction (NWP) forecast and the Lagrangian persistence of radar observations (Nerini et al., 2019). Furthermore, 

the variational algorithm is used to improve the nowcasting system to achieve three-hour nowcasting (Chung and Yao, 2020). 

The Lagrangian Integro-Difference equation model with Autoregression (LINDA) also performs better for prediction accuracy 50 

and duration (Pulkkinen et al., 2021). As the storm evolution like merging, splitting, growth and decay, traditional methods 

are difficult to predict accurately. Besides, these traditional methods do not intend to utilize the large amounts of historical 

images. 

As the storm evolution like merging, splitting, growth and decay, traditional methods are difficult to predict accurately. Using 

deep learning models to extrapolate has great potential (Foresti et al., 2019). Deep learning has powerful nonlinear mapping 55 

ability. By studying analyzing the motion process from through a large number of historical radar echo images, deep learning 

has achieves better results (Shi et al., 2015; Pan et al., 2021). Radar echo extrapolation can be regarded as an image sequence 

prediction problem. Therefore, the problem can be solved by implementing an end-to-end sequence learning method 

(Sutskever et al., 2014; Shi et al., 2015). ConvGRU learns video features through convolution operation, enabling sparse 

connection of model units (Ballas et al., 2015). Convolution operation is also used in ConvLSTM. By replacing the step of 60 

internal data state transformation in LSTM, ConvLSTM can better extract features (Shi et al., 2015). Convolutional recursive 

structure is position invariant, which is not consistent with natural motion and transformation. Trajectory GRU (TrajGRU) 

was further proposed (Shi et al., 2017). Both LSTM and GRU models have long-term memory. However, this capability is 
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limited to historical spatial information. RainNet utilizes a convolutional network architecture in precipitation nowcasting, 

which avoids the brittleness of LSTM structure (Ayzel et al., 2020).  65 

Attention mechanisms are also frequently employed in sequential networks. By learning the importance of different image 

parts, attention mechanisms can improve prediction accuracy. For example, the self-attention mechanism combines the spatial 

relationships of different locations and emphasizes important areas (Wang et al., 2018a). Eidetic 3D LSTM (E3D-LSTM) 

introduces self-attention to enhance long-term memory in LSTM (Wang et al., 2018b). However, it lacks attention in the 

channel dimension. Interaction Dual Attention LSTM (IDA-LSTM) expands the spatial and channel attention based on self-70 

attention to improve representation learning (Luo et al., 2021). Due to the high hardware load, self-attention is hard to train for 

high-resolution images. Convolutional Block Attention Module (CBAM) was developed simultaneously as a less 

computational attention mechanism. It can be flexibly applied in sequential networks (Woo et al., 2018). 

Compared with other deep learning modelsCompared to sequence prediction networks, the Generative Adversarial Network 

(GAN)-based models have significant advantages in generating high-quality echo images. High quality refers to images that 75 

are more realistic and structurally similar to real images (Tian et al., 2020; Xie et al., 2022). GANs consist of a generator and 

a discriminator. The generator is responsible for generating new synthetic data that follows the distribution of the training data. 

The discriminator is trained to distinguish between samples generated by the generator and real samples from the training set. 

The generator and discriminator are trained against each other to achieve balance. GANs have powerful data generation 

capabilities (Goodfellow et al., 2020). This is because the model with anti-loss can better realize multi-modal modeling (Lotter 80 

et al., 2016). For instance, Deep Generative Models of Rainfall (DGMR) generates more accurate reflectivity by adversarial 

training (Ravuri et al., 2021). GANs are also used to generate realistic details for a broader extrapolation range (Chen et al., 

2019). GA-ConvGRU uses ConvGRU as the generator. The image quality is far better than ConvGRU by implementing multi-

modal data modeling (Tian et al., 2020). A number of studies contribute to improving the stability of GAN training. Energy-

Based Generative Adversarial Forecaster (EBGAN-Forecaster) combines a convolution structure with a codec framework to 85 

improve stability (Xie et al., 2022). Additionally, our proposed GAN-argcPredNet v1.0 has more advantages in improving the 

details of predicted echoes and stabilizing GAN training (Zheng et al., 2022). 

The However, the radar echo images are predicted forecasted for a future time periods based on the real echo sequence. In the  

deep learning models, the increase of lead time leads to a weaker correlation between the real images at the front of the 

sequence and the generated images. The influence of the real echo evolution is rapidly diminishing. In this process, the models 90 

lose rainfall evolution information. diminishes rapidly, resulting in the loss of rainfall evolution information. ItThis loss is 

reflected as echo attenuation on generated images the attenuation of echo shape and intensity in the generated images. Due to 

the smaller percentage of heavy rainfall areas, the attenuation is more severe. To the knowledge of authors, existing deep 

learning models, including GAN-based models, lack the a method to curb this attenuation, which leads to low accuracy in 

predicting heavy rainfall. 95 

In this work study, a Spatiotemporal Process Intensification Enhancement Network (GAN-argcPredNet v2.0) iswas proposed 

based on Generative Adversarial Advanced Reduced-Gate Convolutional Deep Predictive Coding Network (GAN-
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argcPredNet v1.0) (Zheng et al., 2022), which aims at reducing loss and curbing attenuation. In GAN-argcPredNet v2.0, a 

Spatiotemporal Information Changes Prediction (STIC-Prediction) network is designed as the generator. The generator focuses 

on the spatiotemporal variation of the radar echo feature sequence. Its purpose The purpose of the generator is to curb echo 100 

attenuation by intensifying the spatiotemporal evolution of previous inputs suppressing the blurring effect of rain distribution 

and reducing the negative bias. Furthermore, a Channel-Spatial Convolution (CS-Convolution) network is designed as the 

discriminator. The discriminator aims to enhance the ability to identify echo information by focusing on radar echo features 

from spatial and channel dimensions. In this way, the generator can be guided to better retain evolution information. The 

discriminator aims to guide the generator to better retain echo shape and intensity by enhancing the ability to identify echo 105 

information. The generator and discriminator are trained against each other to have achieve accurate rainfall prediction.  

32 Model 

In GAN-argcPredNet v1.0, the generator generates predicted images according to input image sequences. Then, the predicted 

and real images are fed into discriminator with dual channel input. The discriminator makes judgments and the parameters are 

updated by adversarial loss optimization. Adam is used as the optimizer, which is an extension of stochastic gradient descent 110 

(Kingma Diederik and Adam, 2014). The generator parameters are updated once every five times. GAN-argcPredNet v2.0 

model is constructed based on GAN-argcPredNet v1.0. 

2.1 GAN-argcPredNet v1.0 overview 

GAN–argcPredNet v1.0 (Fig. 1) uses Wasserstein GAN with gradient penalty (WGAN-gp) as its predictive framework. The 

model solves the problem of training instability by utilizing gradient penalty measures (Gulrajani et al., 2017). The generator 115 

in GAN-argcPredNet v1.0 is an argcPredNet model, responsible for learning the data features of rainfall and simulating the 

real echo distribution to generate predictive images. The discriminator is a four-layer CNN model with a dual-channel input 

method. The predictive and real images are fed into the discriminator, which judges the real images as true and the predictive 

images as false. Adam is used as the optimizer, which is an extension of stochastic gradient descent (Kingma Diederik and 

Adam, 2014). The model parameters are updated through adversarial loss optimization. The generator is updated once after 120 

every five updates of the discriminator. 
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Figure 1: The structure of GAN-argcPredNet v1.0. More information about the model can be found in the paper of Zheng et al. 

(Zheng et al., 2022). 

3.12.2 GAN-argcPredNet v2.0 overview 125 

GAN-argcPredNet v2.0 model was built based on GAN-argcPredNet v1.0. GAN-argcPredNet v2.0 consists of a STIC-

Prediction generator and a CS-Convolution discriminator (Fig. 12). The STIC-Prediction generator is designed to reduce echo 

attenuation by intensifying the spatiotemporal variations of the previous feature sequence suppressing the blurring effect and 

reducing the negative bias. The generator is composed of the argcPredNet and the STIC Attention module (Fig. 23). The 

argcPredNet is composed of a series of repeatedly stacked modules, with a total of four layers (Zheng et al., 2022). Each layer 130 

of the module including consists of the input convolutional layer (𝐴𝑙), the recurrent representation layer (𝑅𝑙), the prediction 

convolutional layer (�̂�𝑙) and the error representation layer (𝐸𝑙). 𝑅𝑙 learns image features and generates the feature map 𝑅𝑙
𝑇 ∈

𝑅𝐻×𝑊×𝐶 , where  𝑙 , 𝑇 , 𝐻 , 𝑊  and  𝐶  denote layer, current prediction time, map height, map width and feature channel, 

respectively. The feature map guides the lower layers to generate images. STIC Attention is designed to assign weights to 

different rainfall regions after the third layer. The purpose of this weight assignment is to intensify the previous feature 135 

sequence in the spatiotemporal dimension, especially the heavy rainfall features. Then, the intensified 𝑅2
𝑇  is fed to the next 

layer for more accurate image. STIC Attention is designed to focus on the importance of different rainfall regions after the 

third layer. The purpose is to better maintain spatiotemporal features during information transmission within the model. After 

passing through STIC Attention, the features are fed to the lower layers, aiming to avoid blurring or to maintain the intensity 

during extrapolation. The calculation method of STIC-Prediction is: 140 

𝐴𝑙
𝑇 = {

𝑥𝑇

𝑀𝐴𝑋𝑃𝑂𝑂𝐿(𝛾(𝑓(𝐸𝑙−1
𝑇 )))

      
𝑖𝑓 𝑙 = 0

0 < 𝑙 < 𝐿
 ,        (1) 
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�̂�𝑙
𝑇 = 𝛾(𝑓(𝑅𝑙

𝑇)) ,                                                                (2) 

𝐸𝑙
𝑇 = [𝛾(𝐴𝑙

𝑇 − �̂�𝑙
𝑇) ;  𝛾(�̂�𝑙

𝑇 − 𝐴𝑙
𝑇) ] ,                                                            (3) 

𝑅𝑙
𝑇 =   {

𝑎𝑟𝑔𝑐𝐿𝑆𝑇𝑀(𝐸𝑙
𝑇−1,  𝑅𝑙

𝑇−1)                                                                   𝑖𝑓 𝑙 = 𝐿          

𝑎𝑟𝑔𝑐𝐿𝑆𝑇𝑀(𝐸𝑙
𝑇−1,  𝑅𝑙

𝑇−1,  𝑈𝑃𝑆𝐴𝑀𝑃𝐿𝐸(𝑆𝑇𝐼𝐶(𝑅𝑙+1
0 : 𝑅𝑙+1

𝑇 )))     𝑖𝑓 𝑙 = 1          

𝑎𝑟𝑔𝑐𝐿𝑆𝑇𝑀(𝐸𝑙
𝑇−1,  𝑅𝑙

𝑇−1,  𝑈𝑃𝑆𝐴𝑀𝑃𝐿𝐸(𝑅𝑙+1
𝑇 ))              𝑙 = 0 𝑎𝑛𝑑 1 < 𝑙 < 𝐿

    (4) 

Here, 𝑥𝑇 denotes the initial input, 𝑀𝐴𝑋𝑃𝑂𝑂𝐿 denotes the maximum pooling operation, 𝛾 denotes relu activation function, 𝑓 145 

denotes the convolution operation, 𝑎𝑟𝑔𝑐𝐿𝑆𝑇𝑀 denotes Advanced Reduced-Gate Convolutional LSTM (Zheng et al., 2022), 

and 𝑆𝑇𝐼𝐶 denotes STIC Attention. 

The CS-Convolution discriminator is composed of a four-layer convolution structure and a CS Attention module. The 

Cconvolution structure is responsible for extracting the echo features of from the input radar echo images. CS Attention is 

embedded after the first-layer convolution structure. The This module is designed to intensify spatial information of echo 150 

features focus on radar echo features, especially heavy rainfall features. The purpose is to enhance discriminative ability and 

provide better guidance for the generator. The hyperparameters of the generator and discriminator are provided in the 

supplement (Table S7 and S8). 
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Figure 1 2: This is theThe structure of GAN-argcPredNet v2.0. Fifteen radar echo images are used in the testing set. Fifteen radar 155 
echo images are used as a test sequence. Here, the first five images are used as the input sequence, and the last ten images are used 

as the gGround-truth images. The generator generates images based on input sequences. The discriminator judges both the 

predictive images and Ground-truth images. The adversarial loss is then obtained to optimize the model. 
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Figure 23: This is the structure of STIC-Prediction. Modules are in 𝒍 = 𝟐 at time 𝑻. The STIC-Prediction structure at time 𝑻 with 160 

𝒍 = 𝟏 (𝒍 = 𝟎, 𝟏, 𝟐, 𝟑). STIC Attention is after the third layer. Before 𝑹𝒍+𝟏
𝑻  enters the 𝑹𝒍

𝑻 module, 𝑹𝒍+𝟏
𝑻  forms a sequence 𝑹𝒍+𝟏

𝟎 : 𝑹𝒍+𝟏
𝑻  

with the previous 𝑹𝒍+𝟏. STIC Attention focuses on the importance of different regions of the sequence. Finally, the new 𝑹𝒍+𝟏
𝑻  is fed 

to the 𝑹𝒍
𝑻 module. See Section 2.2 for further explanation. 

3.2 2.3 STIC Attention 

The STIC Attention (Fig. 34) combines MaxPool3D (3D = map height, map width and time) and AvgPool3D to focus on the 165 

spatial information ofin feature sequences from both the maximum and average perspectives. This step focuses on heavy 

rainfall echoes while considering non-heavy rainfall. The introduction of 3D convolution enables extraction of spatiotemporal 

changes in the feature sequences. The module calculates weights for evolutionary information, which are then used to intensify 

the feature sequencesThe module calculates the importance of evolutionary information, which aims to suppress the blurring 

effect and reduce the negative bias. Following are the detailed steps. 170 

Given the feature sequence 𝐹 ∈ 𝑅𝑡×𝐻×𝑊×𝐶  as input, where 𝑡  denotes time. Two feature sequences 𝐹𝑚𝑎𝑥
𝑡𝑠 ∈ 𝑅𝑡×𝐻×𝑊×1  and 

𝐹𝑎𝑣𝑔
𝑡𝑠 ∈ 𝑅𝑡×𝐻×𝑊×1, are obtained by pooling operations, which denote the maximum and average feature along the channel axis, 

respectively. The feature sequences are then connected and 3D convoluted. The activation function is hard_sigmoid. By 

introducing linear behavior, hard_sigmoid allows gradients to flow easily in the unsaturated state, and provides a crisp decision 

in the saturated state, resulting in far less computational expense (Courbariaux et al., 2015; Gulcehre et al., 2016; Nwankpa et 175 

al., 2018). Then, the STIC Attention map sequence 𝑀𝑆𝑇𝐼𝐶 ∈ 𝑅𝑡×𝐻×𝑊×1 is obtained. Finally, the output feature sequence 𝐹1 ∈

𝑅𝑡×𝐻×𝑊×𝐶, is calculated by element-wise multiplication of 𝑀𝑆𝑇𝐼𝐶 and 𝐹. In short, the calculation method of STIC Attention 

is:  

𝑀𝑆𝑇𝐼𝐶 = 𝜎(𝑓7×7×5((𝑀𝑎𝑥𝑃𝑜𝑜𝑙3𝐷(𝐹))𝑐𝑜𝑛𝑐𝑎𝑡(𝐴𝑣𝑔𝑃𝑜𝑜𝑙3𝐷(𝐹)))) = 𝜎(𝑓7×7×5(𝐹𝑚𝑎𝑥
𝑡𝑠 concat𝐹𝑎𝑣𝑔

𝑡𝑠 )) ,   (5) 
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𝐹1 = 𝑀𝑆𝑇𝐼𝐶𝐹 ,                                                                (6) 180 

Here, 𝑐𝑜𝑛𝑐𝑎𝑡  denotes the connection operation, 𝑀𝑎𝑥𝑃𝑜𝑜𝑙3𝐷  denotes the 3D maximum pooling operation, 𝐴𝑣𝑔𝑃𝑜𝑜𝑙3𝐷 

denotes the 3D average pooling operation, 𝑓7×7×5 denotes the 3D convolution operation with a convolution kernel of 7×7×5, 

and 𝜎 denotes the hard_sigmoid activation function, and  denotes the element-wise multiplication. 

 

Figure 34: This is tThe structure of STIC Attention. The first line represents the calculation process of the STIC Attention map 185 
sequence. The second line represents the process of applying the STIC Attention map sequence to the input feature sequence. 

3.32.4 CS Attention 

CS Attention consists of Channel Attention and Spatial Attention (Fig. 45). For input feature 𝐹′ ∈ 𝑅𝐻×𝑊×𝐶 , the channel 

attention map 𝑀𝑐 ∈ 𝑅1×1×𝐶  is first generated. After element-wise multiplication with initial feature image, the spatial attention 

map 𝑀𝑠 ∈ 𝑅𝐻×𝑊×1, is generated by the Spatial Attention module. Finally, the output feature 𝐹2
′ ∈ 𝑅𝐻×𝑊×𝐶 is obtained in the 190 

same way. In short, the calculation process is as follows: 

𝐹1
′ = 𝑀𝑐𝐹′ ,                                                                (7) 

𝐹2
′ = 𝑀𝑠𝐹1

′ ,                                                                (8) 

Here,  denotes the element-wise multiplication, and 𝐹1
′ is the middle feature. 

 195 

Figure 45: This is tThe structure of CS Attention. The calculation order is first through the Channel Attention module and then 

through the Spatial Attention module. 
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The Channel Attention module (Fig. 56) studies the relationship between among different feature channels. The global 

maximum and average pooling are used to gather spatial maximum and average information for each channel. The combination 

of these methods allows for a more comprehensive judgment of the importance of different feature channels. Then, the 200 

correlation between feature channels is obtained by learning the respective parameters in a dense layer. The Channel Attention 

assigns more weight to module focuses more on meaningful feature channels. The detailed steps are as follows: 

The feature map 𝐹′ is input into the Channel Attention module. Two 1D feature maps 𝐹𝑚𝑎𝑥
𝑐 ∈ 𝑅1×1×𝐶 and 𝐹𝑎𝑣𝑔

𝑐 ∈ 𝑅1×1×𝐶, are 

obtained by applying global pooling, which denote the global maximum and global average pooling features, respectively. 

Then, the correlation between these features is extracted through dense layers. In order to reduce parameter overhead, the 205 

number of neurons in the first dense layer is set to 𝐶 𝑟⁄ , where 𝑟 is the compression ratio. Finally, hard_sigmoid is used as the 

activation function and the hard_sigmoid activation function is applied to obtain final channel attention map 𝑀𝑐. In short, the 

channel attention map is calculated as follows: 

𝑀𝑐 = 𝜎(𝜑11(𝛾(𝜑10(𝐺𝑀𝑃(𝐹′)))) + 𝜑21(𝛾(𝜑20(𝐺𝐴𝑃(𝐹′))))) = 𝜎(𝜑11(𝛾(𝜑10(𝐹𝑚𝑎𝑥
𝑐 ))) + 𝜑21(𝛾(𝜑20(𝐹𝑎𝑣𝑔

𝑐 )))) ,  (9) 

Here, 𝐺𝑀𝑃 denotes the global maximum pooling, 𝐺𝐴𝑃 denotes the global average pooling, 𝜑10, 𝜑11 denotes the first and 210 

second dense layer of 𝐹𝑚𝑎𝑥
𝑐 , 𝜑20 , 𝜑21  denotes the first and second dense layer of 𝐹𝑎𝑣𝑔

𝑐 , and 𝛾 denotes the relu activation 

function. 

 

Figure 56: This is tThe structure of Channel Attention. Channel Attention utilizes maximum pooling outputs and average pooling 

outputs with their respective networks. 215 

The Spatial Attention module (Fig. 67) studies the importance of each part in the same channel. The maximum and average 

pooling are used along the channel axis, which obtains echoes information of the feature image. The 2D convolution operation 

extracts feature and generates a spatial attention map with the same size as the input image. The detailed steps are as follows: 

After the Channel Attention module, the feature map 𝐹1
′ ∈ 𝑅𝐻×𝑊×𝐶  is input into the Spatial Attention module. Two 2D feature 

maps 𝐹𝑚𝑎𝑥
𝑠 ∈ 𝑅𝐻×𝑊×1 and 𝐹𝑎𝑣𝑔

𝑠 ∈ 𝑅𝐻×𝑊×1, are obtained by applying pooling operation, which denote the maximum pool 220 

feature and average pool feature on the channel respectively. The feature maps are then connected and 2D convoluted, using 
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hard_sigmoid as the activation function to obtain final spatial attention map 𝑀𝑠. In short, the calculation method of spatial 

attention map is: 

𝑀𝑠 = 𝜎(𝑓7×7((𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷(𝐹1
′))𝑐𝑜𝑛𝑐𝑎𝑡(𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝐷(𝐹1

′)))) = 𝜎(𝑓7×7(𝐹𝑚𝑎𝑥
𝑠 concat𝐹𝑎𝑣𝑔

𝑠 )) ,    (10) 

Here, 𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷 denotes the 2D maximum pooling operation, 𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝐷 denotes the 2D average pooling operation, and  225 

𝑓7×7 denotes the 2D convolution operation with a convolution kernel of 7×7. 

 

Figure 67: This is the The structure of Spatial Attention. Spatial Attention utilizes the maximum and average pooling outputs along 

the channel axis and forwards them to the convolutional layer. 

43 Data and experimental setup 230 

4.1 3.1 Dataset description 

The paper uses This study used the South China radar echo data provided by Guangzhou Meteorological Administration. The 

radar mosaic comes from 11 weather radars. The median filtering algorithm iswas used to control radar data quality, which 

eliminates errors caused by isolated clutter. In addition, the mirror filling and continuity checks arewere applied to remove 

traditional radar error sources. After quality control, there is the data contains only an extremely small amount of strong 235 

interference, which has a negligible impact on the training of the model. 

From 2015 to 2016, a total of 32,010 consecutive echo images with rainfall are were randomly selected as the training set. For 

the testing phase, 7,995 consecutive images are were randomly selected for testing from March to May 2017. The original 

resolution of the each image is 1050 × 880 pixels, and each image covers covering an area of 1050 km × 880 km. The Each 

pixel denotes thea resolution of 1 km × 1 km. The reflectivity range is 0-80 dBZ, and the amplitude limit is between 0 and 255. 240 

The reflectivity values range from 0 to 80 dBZ, with the amplitude limit set between 0 and 255. The data iswas collected every 

6 minutes, with the height of 1 km. which is the Constant Altitude Plan Position Indicator (CAPPI) data at a height of 1 km. 

To speed up the training and reduce the hardware load, the central 128 × 128 images arewere segmented. 

Due to the relationship between radar reflectivity and rainfall type, the value on the radar echo image is converted to the 

corresponding rainfall rate. The calculation formula is as follows: 245 

𝑍 = 10 𝑙𝑜𝑔10 𝑎 + 10𝑏 𝑙𝑜𝑔10 𝑅 ,          (11) 
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Here, 𝑎 is set to 58.53 and 𝑏 is set to 1.56, 𝑍 denotes the radar reflectivity intensity, 𝑅 denotes the rainfall intensity. The 

correspondence between rainfall rate, rainfall radar reflectivity intensity and rainfall level are referred to Table 1 (Shi et al., 

2017). 

Table 1: This is the The rainfall level table. Rain Rate, Radar Reflectivity Intensity and Rainfall Level correspond to each other. 250 

Rain Rate (mm h-1) Radar Reflectivity Intensity (dBZ) Rainfall Level 

0 ≤   𝑅 < 0.5 𝑍 < 12.98 No / Hardly noticeable 

0.5 ≤  𝑅 < 2 12.98 ≤  𝑍 < 22.37 Light 

2 ≤   𝑅 < 5 22.37 ≤  𝑍 < 28.58 Light to moderate 

5 ≤   𝑅 < 10 28.58 ≤  𝑍 < 33.27 Moderate 

10 ≤   𝑅 < 30 33.27 ≤  𝑍 < 40.72 Moderate to heavy 

30 ≤   𝑅 40.72 ≤  𝑍 Rainstorm warning 

4.2 3.2 Evaluation metrics  

As for evaluation, the paper uses study used four metrics to evaluate the prediction accuracy of all 128 × 128 pixels, which are 

Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI) and Heidke Skill Score (HSS). POD 

evaluates hit ability, and while FAR is the metric of false alarms. The combination of them can evaluate the model more 

objectively. CSI and HSS are two composite metrics that provide a direct judgment of the model effectiveness. CSI measures 255 

the fraction of observed and/or forecast events that are correctly predicted. HSS measures the fraction of correct forecasts after 

eliminating those forecasts which would be correct due purely to random chance. To measure information loss, the paper also 

uses the Bias metric To measure the blurring effect, the study also used the Bias Score, which evaluates the ratio ofbetween 

the frequency of forecast events toand the frequency of observed events. The formulas for calculating these five metrics are as 

follows: 260 

𝑃𝑂𝐷 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,                                                                (12) 

𝐹𝐴𝑅 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
 ,                                                                (13) 

𝐶𝑆𝐼 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
 ,                                                                (14) 

𝐻𝑆𝑆 =
2(𝑇𝑃×𝑇𝑁−𝐹𝑁×𝐹𝑃)

(𝑇𝑃+𝐹𝑁)(𝐹𝑁+𝑇𝑁)+(𝑇𝑃+𝐹𝑃)(𝐹𝑃+𝑇𝑁)
 ,         (15) 

𝐵𝑖𝑎𝑠 =
𝑇𝑃+𝐹𝑃

𝑇𝑃+𝐹𝑁
 ,                                                                (16) 265 

Here, 𝑇𝑃  denotes that the real and predicted value reach specified threshold, 𝐹𝑁  denotes that the real value reaches the 

specified threshold and the predicted value does not reach, 𝐹𝑃 denotes that the real value does not reach specified threshold 
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and the predicted value reaches, and 𝑇𝑁 denotes that the real value and predicted value do not reach specified threshold. In 

the study, we have applied threshold rain rates of 0.5, 2, 5, 10 and 30mm h-1 for calculating these metrics. 

In order to evaluate the quality of generated images objectively, Mean Square Error (MSE) and Mean Structural Similarity 270 

(MSSIM) arewere also chosen for the experiment (Wang et al., 2004; Inoue and Misumi, 2022).  

4.3 3.3 Experimental setting 

Radar echo extrapolation is the prediction of future radar echo images based on real images. This paper study sets the input 

sequence 𝑀 and output sequence 𝑁 to 5 and 10, respectively. 

 GAN-argcPredNet v2.0 iswas first compared with the optical flow, ConvLSTM, ConvGRU, GA-ConvGRU, and GAN-275 

argcPredNet v1.0 in comparison experiments. The first three are common models in radar echo extrapolation, and the last one 

is the model we designed before. The first one is a traditional method, and the code comes from the Pysteps library (Pulkkinen 

et al., 2019). The last one is the model we designed before. Other models are commonly used deep learning models in radar 

echo extrapolation. The hyperparameters for all deep learning models arewere provided in the supplement (Table S1-6). Then 

the ablation study iswas designed to verify the effectiveness of STIC Attention and CS Attention. 280 

Before training, each pixel of the radar echo image iswas normalized to [0, 1]. All experiments arewere implemented by Python. 

Model training and testing based on were performed using the Keras deep learning library with Tensorflow as the backend. 

The operating environment is a Linux workstation equipped with two NVIDIA RTX 2080 Ti 11G GPUs. 

54 Results 

5.1 4.1 Comparison study 285 

In order to observe the performance of the models and evaluate information lossthe blurring effect more easily, the average 

scores of POD, FAR, CSI, HSS and Bias were calculated for all lead time in the experiment. Fig. 78 shows that, except for the 

Bias Score, most deep learning models have better scores than the optical flow. Besides the threshold of 30 mm h-1, the Bias 

Score of the optical flow is second only to GAN-argcPredNet v2.0. In deep learning models, the FAR Score of GAN-

argcPredNet v2.0 is slightly higher than those of ConvGRU and ConvLSTM at thresholds of 0.5 and 2 mm h-1, respectively. 290 

However, the other scores of GAN-argcPredNet v2.0 are always the best. The comprehensive score of GAN-argcPredNet v1.0 

is second only to GAN-argcPredNet v2.0. GA-ConvGRU performs better than the two non-GAN models in most cases. Among 

non-GAN models Between the two non-GAN models, all scores of ConvLSTM isare better than ConvGRU when the threshold 

is set to 5 and 10 mm h-1. 

GAN-argcPredNet v2.0 shows excellent performance in heavy rainfall prediction. Using GAN-argcPredNet v1.0 as baseline 295 

Compared to the baseline GAN-argcPredNet v1.0, the POD, CSI, HSS and Bias scores of GAN-argcPredNet v2.0 increase by 

20.1 %, 16.0 %, 15.4 % and 25.0 % when the threshold is set to 10 mm h-1. The FAR Score also decreases by 2.3 %. When 
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the threshold is set to 30 mm h-1, the POD, CSI, HSS and Bias scores increase by 18.8 %, 17.0 %, 17.2% and 26.3 % 

respectively. The FAR Score decreases by 3.0 %.  

 300 

Figure 78: This is tThe average scores of (a) POD, (b) FAR, (c) CSI, (d) HSS and (e) Bias under different threshold. All the time 

steps were used to compute the scores. The horizontal axis represents the threshold, in units of mm h-1. The perfect score of FAR is 

0, andwhile the others are 1.  

The experiment selected athree prediction examples and drew the extrapolation comparison images (Fig. 89-11). In Fig. 9, the 

optical flow method has significant overestimation of the heavy rainfall areas. As the lead time increases, all deep learning 305 

models exhibit the phenomenon of echo attenuation in the predicted images. The attenuation of GAN-argcPredNet v2.0 is 

obviously noticeably slower. In the circular and rectangular regions, the intensity and shape of high strong echoes are well 

retained until 60 minutes. There are some false predictions on the bottom right corner, and the heavy rain area near the top 

right goes out of the domain., but  Nonetheless, the other predictions of GAN-argcPredNet v2.0 are more consistent with 

Ground-truth.  310 

In Fig. 10, as the storm rapidly grows, the optical flow method misestimates the location of strong echoes. In the rectangular 

region, GAN-argcPredNet v2.0 performs better than other deep learning models in maintaining intensity and provides more 

accurate predictions compared to the optical flow method. 
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Fig. 11 shows that the optical flow method overestimates the intensity and distorts the predicted shape of the echoes. When 

faced with storm decay, GAN-argcPredNet v2.0 still performs the best among all models, especially in the heavy rainfall areas. 315 

The optical flow method consistently exhibits overestimation or misestimation in these examples. In deep learning models, 

Tthe three GAN-based models also present better echo structure and prediction performance compared to the two non-GAN 

models.  For the echo above 40 dBZ, ConvLSTM hasexhibits the most severe attenuation. 

 

Figure 89: This is tThe example of the growth of weather system in radar echo extrapolation. From top to bottom: ground truth 320 
frames; prediction by the optical flow; prediction by ConvGRU; prediction by ConvLSTM; prediction by GA-ConvGRU; prediction 

by GAN-argcPredNet v1.0; prediction by GAN-argcPredNet v2.0. The circular and rectangular regions represent heavy rainfall 

prediction., where the performance of the models in extrapolating heavy rainfall can be observed. 
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Figure 10: The example of rapid storm growth in radar echo extrapolation. From top to bottom: ground truth frames; prediction 325 
by the optical flow; prediction by ConvGRU; prediction by ConvLSTM; prediction by GA-ConvGRU; prediction by GAN-

argcPredNet v1.0; prediction by GAN-argcPredNet v2.0. The rectangular region represents the prediction for rapid storm growth. 
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Figure 11: The example of storm decay in radar echo extrapolation. From top to bottom: ground truth frames; prediction by the 

optical flow; prediction by ConvGRU; prediction by ConvLSTM; prediction by GA-ConvGRU; prediction by GAN-argcPredNet 330 
v1.0; prediction by GAN-argcPredNet v2.0. The circular and rectangular regions represent heavy rainfall prediction. 

To evaluate the quality of generated images objectively, the experiment also calculated the MSE and MSSIM metrics. Table 

2 shows that the optical flow method has the worst score. In deep learning models. GAN-based models have better scores in 

both MAE and MSSIM, with GAN-argcPredNet v2.0 achieving the best score. Compared to GAN-argcPredNet v1.0, the MAE 

metric of GAN-argcPredNet v2.0 decreases by 2.3 %, while the MSSIM metric increases by 1.25 %. In the non-GAN models, 335 

ConvLSTM scores better. 

Table 2: This is tThe MSE and MSSIM scores of each model. The perfect score of MSE is 0 while the perfect score for MSSIM is 1. 

Bold represents the best score. 

Model MSE×102 MSSIM 

optical flow 0.296 0.751 

ConvLSTM 0.230 0.775 

ConvGRU 0.243 0.763 

GA-ConvGRU 0.223 0.782 

GAN-argcPredNet v1.0 0.218 0.797 

GAN-argcPredNet v2.0 0.213 0.807 
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5.2 4.2 Ablation study 

In the ablation study, we investigated the effects of STIC Attention and CS Attention. STIC-GAN and CS-GAN arewere 340 

constructed by adding the STIC Attention module only in the generator and the CS Attention module only in the discriminator. 

To more precisely observe the score differences, the experiment recorded the average score of each metric in a tabletabular 

format. Table 3 shows that both CS-GAN and STIC-GAN have better scores than GAN-argcPredNet v1.0. At the threshold of 

0.5 mm h-1, CS-GAN achieves the best score in the FAR metric, but other metrics still perform worse than GAN-argcPredNet 

v2.0. At thresholds of 5, 10, and 30 mm h-1, the metric scores of STIC-GAN exceed those of CS-GAN, which is closer to the 345 

GAN-argcPredNet v2.0. 

Table 3: This is tThe average scores of POD, FAR, CSI, HSS and Bias under different threshold. All the time steps were used to 

compute the scores. Bold represents the best score. 

Model 
Threshold = 0.5 mm h-1 Threshold = 2 mm h-1 

POD FAR CSI HSS Bias POD FAR CSI HSS Bias 

GAN-argcPredNet v1.0 0.568 0.237 0.490 0.627 0.720 0.496 0.297 0.419 0.559 0.681 

CS-GAN 0.569 0.221 0.496 0.633 0.735 0.529 0.289 0.443 0.588 0.726 

STIC-GAN 0.570 0.241 0.490 0.627 0.739 0.512 0.289 0.433 0.576 0.700 

GAN-argcPredNet v2.0 0.589 0.229 0.507 0.645 0.755 0.533 0.286 0.448 0.593 0.730 

Model 
Threshold = 5 mm h-1 Threshold = 10 mm h-1 

POD FAR CSI HSS Bias POD FAR CSI HSS Bias 

GAN-argcPredNet v1.0 0.408 0.372 0.338 0.476 0.615 0.279 0.487 0.231 0.345 0.480 

CS-GAN 0.411 0.381 0.340 0.478 0.629 0.283 0.482 0.235 0.351 0.490 

STIC-GAN 0.433 0.379 0.354 0.496 0.667 0.317 0.477 0.258 0.383 0.560 

GAN-argcPredNet v2.0 0.442 0.361 0.365 0.510 0.668 0.335 0.476 0.268 0.398 0.600 

Model 
Threshold = 30 mm h-1 

POD FAR CSI HSS Bias 

GAN-argcPredNet v1.0 0.165 0.644 0.135 0.215 0.365 

CS-GAN 0.171 0.637 0.141 0.224 0.383 

STIC-GAN 0.194 0.632 0.156 0.248 0.457 

GAN-argcPredNet v2.0 0.196 0.625 0.158 0.252 0.461 

Fig. 912 shows that CS-GAN and STIC-GAN retain better echo intensity and shape compared to GAN-argcPredNet v1.0. For 

heavy rainfall, STIC-GAN shows better prediction with echoes that are closer to GAN-argcPredNet v2.0. In rectangular 350 

regions, the rainfall events are well predicted by STIC-GAN STIC-GAN accurately predicts rainfall events until 30 minutes. 

However, in the circular regions, STIC-GAN overestimates the echo intensity compared to GAN-argcPredNet v2.0. 
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Figure 912: This is tThe example of radar echo extrapolation. From top to bottom: ground truth frames; prediction by GAN-

argcPredNet v1.0; prediction by CS-GAN; prediction by STIC-GAN; prediction by GAN-argcPredNet v2.0. The circular and 355 
rectangular regions represent heavy rainfall prediction. 

65 Discussions and conclusions 

6.15.1 Discussions 

In the comparison study, the Bias Score of the optical flow is second only to GAN-argcPredNet v2.0. The result proves that, 

compared to other deep learning models, the number of rainfall events predicted by the optical flow method is closer to real 360 

rainfall events. However, the poor FAR Score indicates that there are many false predictions among these predicted events. 

Considering other metrics as well, most deep learning models perform better than the optical flow method (Fig. 8 and Table 

2). In deep learning models, the three GAN-based models have higher prediction accuracy and better image quality compared 

to the two non-GAN models (Fig. 7 and Table 2). This indicates that GAN structure has more advantages with its powerful 

image generation capability. Although ConvLSTM and ConvGRU sometimes have lower FAR scores, according to metrics 365 

such as POD, this is due to the fact that they fail to predict a large number of rainfall events. As the number of predicted rainfall 

events decreases, the false alarm rate also decreases. Combined with the Bias metric Score, ConvLSTM and ConvGRU 

generally predict a lower rainfall frequency of rainfall than other models. This indicates that they suffer from more severe 

information loss blurring effect. GA-ConvGRU and GAN-argcPredNet v1.0 improve the prediction accuracy with GAN 

structure, but the phenomenon of information loss echo attenuation also cannot be ignored.  370 

GAN-argcPredNet v2.0 hasachieves the highest prediction accuracy and quality,  while predicting more rainfall events, which 

demonstrates that it successfully curbs information loss and echo attenuation compared to other models. This is because 

important information is given more weight by intensifying the previous rainfall evolution process, making it easier to be 

retained. Meanwhile, the intensification of spatial information in the discriminator can also better guide the generator to retain 

information. suggesting its effectiveness in curbing echo attenuation compared to other models. This is because the echo 375 
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intensity and shape are better maintained by suppressing the blurring effect of rain distribution and reducing the negative bias. 

According to the scores at the thresholds of 10 and 30 mm h-1, it can be observed that GAN-argcPredNet v2.0 exhibits the best 

improvement in predicting heavy rainfall.  

GAN-argcPredNet v2.0 maintains the evolution trend well, but there are still some special cases (Fig. 89). There are some 

false predictions on the bottom right corner, and the rain area near the top right goes out of the domain. This is because in the 380 

input sequence (Fig. 1013), the rainfall on the bottom right corner shows a growing trend, and the rain area near the top right 

shows a trend of moving towards the upper left. Our model retains the information and maintains the trend through the attention 

mechanism, but there are still some deviations from the Ground-truth. This may be overcome by increasing the dataset and 

strengthening training on special cases. Also, the strong echoes outside the center of the echo images are not as well represented 

as the main features during the extrapolation. This is because in the input sequence, the other strong echoes have a smaller 385 

range, making them more susceptible to attenuation during extrapolation. Although our model can curb the attenuation, its 

effectiveness is not as significant as in the central region. However, Ccompared to other models, the overall result of GAN-

argcPredNet v2.0 is more competitive. 

 

Figure 1013: This is tThe input radar images sequence. The example in Fig. 89 is extrapolated based on these five images. 390 

In the ablation study, we find that the scores of CS-GAN and STIC-GAN are mostly better than GAN-argcPredNet v1.0 (Table 

3 and Fig. 912). This indicates that both STIC Attention and CS Attention can reduce information loss curb echo attenuation 

and improve prediction accuracy. As the threshold increases, the scores of STIC-GAN become closer to that of GAN-

argcPredNet v2.0. This is because the STIC Attention focuses more on the rapidly evolving areas of the radar images. The CS 

Attention helps GAN-argcPredNet v2.0 achieve better overall performance. 395 

6.25.2 Conclusions 

The study improves precipitation nowcasting by reducing information loss and echo attenuation. With the intensification of 

the rainfall evolution information, By avoiding blurring or maintaining the intensity, GAN-argcPredNet v2.0 reduces 

information loss curbs the attenuation and improves the rainfall prediction accuracy, especially for heavy rainfall. STIC 

Attention intensifies the previously input feature sequence suppresses the blurring effect of rain distribution and reduces the 400 

negative bias, allowing the generator to curb echo attenuation generate more accurate images. CS Attention intensifies the 

spatial information of features, enabling enables the discriminator to better guide the generator to retain information maintain 

echo intensity and shape. Meanwhile, the model is designed based on the generative adversarial structure, which achieves 

high-quality radar echo extrapolation. 
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In practice, a predictive software has been developed based on our model. After the software accesses the radar data and 405 

establishes a prediction task, rainfall prediction results are output as dataset. Then the dataset can be fed into the urban flood 

warning system. The improvement of rainfall prediction has a positive impact on flood prediction and urban-operation safety. 

Overall, GAN-argcPredNet v2.0 is a spatiotemporal process intensification enhancement model based on GAN, which 

achieves more accurate rainfall prediction.  

Future work can be considered from two aspects. The prediction accuracy of the model proposed in the study still has room 410 

for improvement. False predictions may be reduced by increasing the dataset and strengthening training on special cases. High-

resolution prediction is often limited by hardware, such as graphics card.  Therefore, it is possible to reduce the need for 

hardware by optimizing the algorithm complexity and the number of parameters. 

Code and data availability 

The radar data used in the paper comes from Guangdong Meteorological Administration. Due to the confidentiality policy, we 415 

only provide a sequence of 12 images. If you need to access more data, please contact Kun Zheng (ZhengK@cug.edu.cn) and 

Qiya Tan (ses_tqy@cug.edu.cn). The GAN-argcPredNet v2.0 model is open source. You can find the source code from 

https://doi.org/10.5281/zenodo.7505030. 
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