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Abstract. The single column model, with its advantages of low computational cost and fast execution speed, can assist users in

gaining a more intuitive understanding of the impact of parameters on the simulated results of climate models. It plays a crucial

role in the study of parameterization schemes, allowing for a more direct exploration of the influence of parameters on climate

model simulations. In this paper, we employed various methods to conduct sensitivity analysis on the 11 parameters of the

Single Column Atmospheric Model (SCAM). We explored their impact on output variables such as precipitation, temperature,5

humidity, cloud cover, among others, across five test cases. To further expedite experimentation, we utilized machine learning

methods to train surrogate models for the aforementioned cases. Additionally, three-parameter joint perturbation experiments

were conducted based on these surrogate models to validate the combined parameter effects on the results. Subsequently, tar-

geting the sensitive parameter combinations identified from the aforementioned experiments, we further conducted parameter

tuning for the corresponding test cases to minimize the discrepancy between the results of SCAM and observational data.10

Our proposed method not only enhances model performance but also expedites parameter tuning speed, demonstrating good

generality at the same time.
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1 Introduction

Earth System Models (ESMs) are important tools to help people recognize and understand the effects of global climate change.

Community Earth System Model (CESM) is one of the most popular and widely used ESMs, which includes atmosphere,15

ocean, land, and other components (Hurrell et al., 2013). Of these components, the Community Atmosphere Model (CAM)

(Neale et al., 2010; Zhang et al., 2018), plays an important role as the atmospheric component of CESM. Most of the physics

parts in CAM are described as parameterization schemes with tunable parameters that are often derived from limited measure-

ments or theoretical assumptions. However, since CAM needs to simulate all the grids, it takes a long time and a large amount

of resources to run. Thus, Single Column Atmospheric Model (SCAM) (Bogenschutz et al., 2013; Gettelman et al., 2019) has20

been developed as a cheaper and more efficient alternative model for the purpose of tuning physics parameters (Bogenschutz

et al., 2020). And in order to tune the parameters, we often need to conduct a large number of simulated experiments. This will

result in significant computational costs. Meanwhile, SCAM only needs to simulate one single column, and only one process

is required for each run of one case to complete the simulation. As a result, SCAM becomes a natural tool for studying how

the parameters would affect the uncertainty in the modeling results, and the use of SCAM for large-scale experiments is more25

practicable due to its advantage of lower requirements for computing resources.

Climate models are among some of the most complex models, for a model, we can abstract it as a function with numerous

independent and dependent variables, and there exists uncertainty between them. In research, identifying independent vari-

ables that significantly affect the dependent variable can help to quickly understand the relationship between them. Sensitivity

analysis (SA) is an important method used to achieve this purpose. (Saltelli et al., 2010). A rich set of numerical and statistical30

methods have been developed over the years to study the uncertainty in models in many different domains, ranging from nat-

ural sciences, to engineering, and risk management in finance and social sciences (Saltelli et al., 2008). SA of climate models

generally involves two steps: generating representative samples with different values of parameters using a specific sampling

method; and explore and identify the sensitivity metrics between the model output and the parameters to study. Typical ap-

proaches include: the Morris One-At-a-Time (MOAT) method that uses the Morris sampling scheme (Morris, 1991), which35

generates samples uniformly and has a good compute efficiency, and the variance-based Sobol method generally requires a lot

more samples to achieve a good coverage of the space (Sobol’, 1967; Saltelli, 2002). Other similar ideas to achieve a good

representation of the sample space with a quasi-random sequence include the quasi-Monte Carlo (QMC) (Caflisch, 1998) and

the Latin hypercube (LHC) (McKay et al., 2000) sampling methods. The samples obtained from these sampling methods can

be combined with sensitivity analysis methods such as Sobol(Sobol’, 1967), High-dimensional model representation (HDMR,40

Li et al. (2010)), Random balance designs fourier amplitude sensitivity test (RBD-FAST, Goffart et al. (2015)), Delta moment-

independent measure (Plischke et al., 2013), etc. This allows for an assessment of the individual parameter impacts on global

outcomes, as well as the interrelationships between pairs, i.e., second-order sensitivity.

However, in practical applications, the number of parameters that need to be tuned is often more than two. When tuning

multiple parameters, considering the intricate connections between them, there will inevitably be mutual influences. Just like45

the three-body problem in astronomy, when simultaneously tuning three or more parameters, the complexity will be much

2



greater than tuning each of these three parameters individually. Therefore, whether the sensitivity analysis results obtained

based on existing methods can accurately provide us with the optimal combination of multiple parameters is a question worth

considering. Investigating the overall impact of combined parameters on the system output is worthy of further exploration.

This holds true for climate models as well.50

After we have determined the combination of parameters to be tuned, we can then tune them to improve the performance

of the model. With a general goal to achieve modeling results as close to the observations as possible, we can apply different

optimization methods, such as the Genetic Algorithm (GA) (Mitchell, 1996), Differential Evolution (DE) (Storn and Price,

1997), Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 2002), etc., to identify the most suitable set of parameters.

Continuous efforts have been put into the tunable parameters in climate models, especially for the their physics parame-55

terization schemes (Yang et al., 2013; Guo et al., 2015; Pathak et al., 2021). Yang et al. (2013) analysed the sensitivity of

nine parameters in the ZM deep convection scenario for CAM5 and used the Simulated Stochastic Approximation Annealing

method to optimize the precipitation performance in different regions by zoning. Zou et al. (2014) conducted a sensitivity anal-

ysis for seven parameters in the MIT-Emanuel cumulus parameterization scheme in RegCM3. The precipitation optimization

process for the CORDEX East Asia domain was carried out using the Multiple Very Fast Simulated Annealing method.60

For all the stages mentioned above, the compute cost of running the model become a major constraining factor that stop us

from exploring more samples and identifying more optimal solutions. People sometimes use surrogates (such as the generalized

linear model (GLM) (Nelder and Wedderburn, 1972)) instead of the actual model to further reduce the compute cost. For

example, the study of the sensitivity of simulated shallow cumulus and stratocumulus clouds to the tunable parameters of the

subnormal uniform cloud layer (CLUBB) (Guo et al., 2015) investigated the sensitivity of 16 specific parameters, using the65

QMC sampling method and GLM as a surrogate, with experiments on three different cases (BOMEX, RICO, and DYCOMS-II

RF01). A key problem to consider for the SA stage is to achieve a balance between the accuracy and the economy of compute

(Saltelli et al., 2008). Another study (Pathak et al., 2021) used the single-column case ARM97 to explore 8 parameters related

to the cloud processes, with Sobol as the sampling method, and spectral projection (SP) and basis pursuit denoising (BPDN) as

the surrogate model. In an ideal case, a more thorough study of the parameters that can provide more concrete guidance for the70

parameter selection, would require a joint SA and tuning of different single-column cases, as well as combinational study of

the most sensitive parameters. There are toolkits such as PSUADE (Tong, 2016), DAKOTA (Dalbey et al., 2021) and STATA

(Harada, 2012) that can implement SA and tuning. These software tools have made remarkable contributions to advancing

the development of generic frameworks. However, with the progress of high-performance computing, usability and ease of

deployment have become crucial aspects for existing application scenarios. Particularly, in recent years, rapid advancements in75

fields like machine learning have made it meaningful to leverage machine learning methods to accelerate research progress.

In this paper, to facilitate researchers to better utilize SCAM, and to support a more efficient and convenient parameter tuning

for the physical schemes in SCAM, we propose a learning-based method, LB-SCAM for efficient large-scale SA and tuning.

In summary, our proposed LB-SCAM mainly make the following contributions.

1. We selected 11 parameters from three different physical schemes in SCAM, sampled them within a certain range, and80

utilized machine learning methods to train surrogate models for the response of model outputs to parameter variations.

3



We then selected five typical cases from SCAM and trained individual surrogate models for each of them. This further

enhances the efficiency of conducting large-scale parameter testing for SCAM.

2. With the samples obtained in the previous step, we conducted sensitivity analyses using five typical sensitivity analysis

methods to assess the impact of these 11 parameters on four output variables in SCAM. Additionally, based on the85

surrogate models trained in the previous step, we conducted single-parameter and three-parameter joint perturbation

experiments separately. This allowed us to identify, for each case, the most sensitive combination of three parameters.

3. Building upon the first two steps, we further conducted a parameter optimization process for the mentioned cases and

variables. Additionally, we delved deeper into the patterns observed in the total precipitation (PRECT) variable. This

exploration included examining the distribution patterns in the three-dimensional parameter space and identifying distinct90

characteristics among the various cases.

Using our proposed LB-SCAM, we conducted an extensive set of SA and tuning experiments for five cases of SCAM,

targeting precipitation performance. In addition to SA analysis, which provides sensitivity evaluation of each single parameter,

we were able to study the sensitivity of combinations of three, four, or even five arbitrary parameters. During the tuning stage,

our improved optimization scheme (targeting the same parameters) resulted in a 24.4% increase in the accuracy of precipitation95

output compared to control experiments. Furthermore, it achieved a more than 50% reduction in compute cost compared to

using only the optimization algorithm.

2 Enabling a workflow of SA and parameter tuning

2.1 Model description

This paper focuses on the single column model of the atmospheric model CAM5, i.e. SCAM5 (Bogenschutz et al., 2012),100

extracted from CESM version 1.2.2, one of the two versions that are efficiently supported on the Sunway TaihuLight Super-

computer (Fu et al., 2016). Our research of this paper is mainly based on five typical cases in SCAM5, as shown in Table 1.

Among the five cases, two cases are located in the Southern Great Plains, which mainly study land convection. The other three

cases are located in the tropics and mainly study tropical convection (Thompson et al., 1979; Webster and Lukas, 1992; May

et al., 2008).105

As shown in Table 23, the number of observations included in the IOP (Intensive Observation Periods, Gettelman et al.

(2019)) file varies from case to case. In order to explore a joint parametric sensitivity analysis and tuning across all the five

cases, we pick the intersection of the data owned by these cases, PRECT, Q850, T850 and CLDTOT as the main research

subject. The parameters listed in Table 4 are the main study targets (Qian et al., 2015) in this paper and the ones tested in

the workflow. The parameters are selected from the ZM deep convection scheme (Zhang, 1995), the UW shallow convection110

scheme (Park, 2014), and cloud fraction (Gettelman et al., 2008). In the experiments in this paper, the lower and upper bounds

of each parameter are 50% and 150% of the default value, respectively. For parameters with physical constraints, such as

cldfrc_rhminh and cldfrc_rhminl, the values are ratios, so they are not more than 1.
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Table 1. The five typical SCAM cases studied in this paper.

Case Full name Lat Lon Date Type

ARM95 ARM Southern Great Plains 36 -97 July 1995 Land convection

ARM97 ARM Southern Great Plains 36 -97 June 1997 Land convection

GATEIII GATE Phase III 9 -24 August 1974 Tropical convection

TOGAII Tropical W. Pacific Convection -12 131 December 1992 Tropical convection

TWP06 Tropical Ocean Global Atmosphere -2 154 January 2006 Tropical convection

Table 2. The inclusion of variables in the IOP files of the SCAM cases studied in this paper.

Variable Description ARM95 ARM97 GATEIII TOGAII TWP06

Prec Precipitation rate X X X X X

totcld Total cloud X X - - X

shflx Surface sensible heat flux X X - X X

lhflx Surface latent heat flux X X - X X

U Eastward wind speed X X X X X

V Northward wind speed X X X X X

Q W.V. Mixing Ratio X X X X X

T Temperature X X X X X

omega vertical motion X X X X X

windsrf Surface wind speed X X - X X

REHUM Relative humidity - - X - X

CAPE Convective available potential energy - - X - -

In the original version of SCAM, only some of the parameters to be studied are tunable, while the rest are hard-coded in the

model. To improve the flexibility of the model so that the 11 parameters we want to study are tunable, we have modified the115

source code of the model, to support the tuning and study of a wider range of parameters. The corresponding Fortran source

code, as well as the XML documentation are also modified accordingly.

2.2 The workflow of sampling, SA and parameter tuning

The submission of assignments and the collection of results are important issues when carrying out a large number of model

experiments at the same time. Prior to conducting the experiments, the user is often presented with a broad set of boundaries120

of the parameters to be tuned, and the specific configuration of each experiment has to be decided in detail according to these

ranges of values. After a large number of experiments have been completed, as the output of SCAM is stored in binary files in

NetCDF format, the precipitation variables we want to study need to be extracted from a large number of output files in order
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Figure 1. The overall workflow of the proposed method. Part I involves sampling and collecting results from parallel instances. In Part II,

traditional SA methods are utilized to derive sensitivities of individual parameters, while simultaneously reusing the samples to develop

learning-based surrogate models. By combining these surrogate models, we can then perform joint sensitivity analysis of a set of parameters.

Guided by the SA results from Part II, Part III conducts parameter tuning, also using the surrogate models. The SCAM launcher, the data

collector, and the jobs therein represent the batch execution of the SCAM cases, which is further explained in Figure 2.
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Table 3. The variables under study in this paper and their respective meanings.

Variable Description

PRECT Total (convective and large-scale) precipitation rate (liq + ice)

Q850 Specific Humidity at 850 mbar pressure surface

T850 Temperature at 850 mbar pressure surface

CLDTOT Vertically-integrated total cloud

Table 4. List of parameters in the framework that can be tuned and applied to the experiment.

Abbr. Name Description Low Range Default High Range Category

pz1 c0_lnd Deep convection precipitation efficiency over land 0.00295 0.0059 0.00885 ZM Deep convection

pz2 c0_ocn Deep convection precipitation efficiency over ocean 0.0225 0.045 0.0675 ZM Deep convection

pz3 ke Evaporation efficiency of precipitation 5e-7 1e-6 1.5e-6 ZM Deep convection

pz4 tau Time scale for consumption rate deep CAPE 1800 3600 5400 ZM Deep convection

pz5 capelmt Threshold value for CAPE 35 70 105 ZM Deep convection

pz6 alfa Maximum cloud downdraft mass flux fraction 0.05 0.1 0.15 ZM Deep convection

pu1 rpen Penetrative updraft entrainment efficiency 2.5 5.0 7.5 UW Shallow convection

pu2 kevp Evaporative efficiency 1e-6 2e-6 3e-6 UW Shallow convection

pu3 rkm Updraft lateral mixing efficiency 7 14 21 UW Shallow convection

pc1 rhminh Threshold relative humidity for stratiform high clouds 0.7 0.8 0.9 Cloud fraction

pc2 rhminl Threshold relative humidity for stratiform low clouds 0.7975 0.8975 0.9975 Cloud fraction

to proceed to the next step. It is therefore necessary to provide the researcher with an automated experiment-diagnosis process.

In general, which parameters to tune and how to tune them are questions that deserve our attention.125

Based on the above needs, we have designed the SCAM parameter sampling, SA, tuning and analysis workflow. We integrate

the collection and processing script for the post-sampling results. It supports a fully-automated parameter tuning and diagnostic

analysis process, a large number of concurrent model tests, and the search for the best combination of parameter values for

SCAM performance within a given parameter space. Also, with the help of the training surrogate model, more parameter fetches

can be tested in less time. The simulation results of the real model will be used as validation. This will further accelerate the130

degree of automation of scientific workflows (Guo et al., 2023) and thus accelerate the conduct of research in this area of the

earth system models.

The overview of the whole scientific workflow is shown in Figure 1. In order to make full use of computing resources and

complete the sampling process as soon as resources allow, the proposed method supports parallel sampling processes, as shown

in Figure 2. Since SCAM is a single-process task and the computation time per execution is also short, it is feasible to execute135

a large batch of SCAM instances during the sampling stage.
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Figure 2. A detailed parallelism schematic is provided for running a large number of instances of multiple cases simultaneously. In this

process, the launcher simultaneously initiates the required SCAM tasks, while the data collector gathers the results of their runs.

Specifically for the application scenario in this paper, the execution process of the workflow is as follows.

1. Sampling and data collection (shown as Part I in Figure 1): In this part, our tool generates the sequence of samples to

investigate in the sampling step. Our tool currently supports the Sobol sequence, which can later be used by the Sobol,

Delta (Plischke et al., 2013), HDMR (Li et al., 2010), and RBD (Plischke et al., 2013) SA methods, and the Morris140

sampling sequence, which can later be used by the MOAT method (Morris, 1991). Users are suggested to adjust the size

of the sequence according to the currently available computational resources. As the results of this step will be used as

the training set for generating the surrogate model, users are encouraged to run a large batch when parallel resources are

available, so as to improve the performance of the resulting surrogate model. The process of launching the parallel cases

and collecting the results is handled by the SCAM launcher and collector.145

2. Surrogate model training and sensitivity analysis (shown as Part II in Figure 1): Based on the sampling results from the

Morris or the Sobol sequence, we integrate existing methods, such as MOAT, Sobol, Delta, HDMR, and RBD to achieve

their individual evaluations of each single parameter’s sensitivity, as well as a comparison result of these methods. We

also use the sampling results of the Saltelli sequence and the Morris sequence, to train regression including neural

network (NN) based surrogate models. In this section, different regression methods are used to compare their fits and150
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the best fitting method to train the final surrogate model. With the efficiency to project a result in seconds rather than

minutes, we can apply it for evaluation of sensitivities of a combination of multiple parameters.

3. Parameter tuning and validation (shown as Part III in Figure 1): With the NN-based surrogate model to cover expanded

search space with less time, we also propose an optimization method that combines grid searches by the surrogate model,

which achieves better results with less compute time. The results of parameter tuning are then validated through running155

of real SCAM cases. In addition, at the very end, we perform a comparison on the optimization results between the joint

optimization across five cases and the independent optimization of the five cases. Results demonstrate the different and

the correlation of different cases, and the potential of performing grid-specific tuning in the future.

3 Methodology

3.1 Sampling of SCAM160

As an important preprocedure, the sampling provides the basis for analysis of SA. It will generate a sequence of changing

inputs and parameters to observe the corresponding change in the output. The different mathematical approach that we take to

perform sampling would certainly affect the features that can be captured from the system.

In our proposed workflow, we integrate both Morris and Saltelli for the sampling step in our tuning workflow, as both of

them are still used in many climate model related SA studies (Pathak et al., 2021). The Morris sampling drives the MOAT165

SA module afterwards, while the Saltelli sampling drives four different SA modules (Sobol, Delta, HDMR, and RBD-FAST)

shown in Table 5.

After sampling, we will conduct a preliminary analysis of the sampled results to find out the proportion distribution in which

the output results are better than the control trials under different values of each parameter. RMSE (Root mean square error)

will be used to measure the error between the output and the observed values and is defined as follows.170

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (1)

Where ŷi is the output at the ith time step of the current sample, while yi is the observation at the corresponding time step.

3.2 Training a learning-based surrogate model

Surrogate models are an important tool to speed up our large-scale parametric experiments. It can replace the running process

of the original model, thus saving computing resources. The essence of training surrogate models for SCAM is a regression175

analysis problem. In this paper, we introduce the following regression methods to generate surrogate models. These include

Linear regression (LR,Yan et al. (2015)), but also ensemble learning methods such as Random forest (RF, Breiman (2001)) and

eXtreme Gradient Boosting (XGBoost, Wang et al. (2018)). Meanwhile, we also incorporate methods that use neural networks,

such as Multilayer Perceptron (MLP, Tang et al. (2016)) and Residual Network (ResNet, He et al. (2016); Shi et al. (2022)).

9



Table 5. SA methods integrated in the workflow and used as a cross-reference to the proposed method.

Name of method Abbr. Reference

Morris sensitivity analysis Morris Morris (1991)

Delta moment-independent measure Delta Plischke et al. (2013)

Sobol’ sensitivity analysis Sobol Sobol (1993)

High-dimensional model representation HDMR Li et al. (2010)

Random balance designs fourier amplitude sensitivity test RBD-FAST Goffart et al. (2015)

In order to integrate the various regression analysis methods described above, we have designed an adaptive scheme to180

determine the method that best captures the non-linear characteristics of the original model, thus obtaining the most appro-

priate surrogate model. To maintain an acceptable level of accuracy in the surrogate models, we opt to train separate models

for each distinct SCAM case. The underlying assumption is that the model should learn the different patterns present in vari-

ous SCAM case locations. Given that the Saltelli sequence of samples provides a comprehensive representation of the entire

parameter space, we anticipate the model to perform well across different parameter combinations. Furthermore, we will con-185

duct ablation experiments on the hyperparameters during the surrogate model training process to determine the most suitable

hyperparameters, leading to better training.

3.3 Sensitivity analysis for a single parameter and combinations of parameters (enabled by the NN-based surrogate

model)

The SA methods, similar to the climate model itself, have corresponding uncertainties. These methods provide the best es-190

timation of each parameter’s sensitivity based on their respective analytical principles. Therefore, each method may have its

advantages and disadvantages in different ranges of parameter values.

As a result, in our workflow shown in Figure 1, we choose to integrate multiple SA methods, including the ones that can be

built on the Sobol sequence, such as Delta, HDMR, and RBD-FAST, and the Morris method, which is still used often for climate

models, due to its efficiency advantage. The integration of multiple methods enables us to better evaluate the uncertainty of195

different SA methods. As the sensitivity values calculated by the different methods are of different orders of magnitude, these

sensitivities have been normalised using min-max method for comparison purposes.

The parameters may interact with each other, and the effects of multiple parameters on the simulation results may be super-

imposed. Therefore, tuning multiple parameters generally has a more significant effect than tuning a single parameter. With the

help of commonly used sensitivity analysis methods mentioned above, it is easy to obtain the sensitivity of individual param-200

eters. However, in cases where we need to identify and tune a set of parameters in combination, both the sensitivity analysis

and the tuning task would require a significantly increased level of computational resources.
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An obvious benefit of using a surrogate model for training is its rapid computational speed. Since the model has been trained,

the time required to output the surrogate results is significantly reduced. Therefore, we can explore as many combinations

of parameters as possible with fewer computational resources. By applying the trained surrogate model, we can assess the205

maximum fluctuation in the output of each case when tuning different numbers of parameters simultaneously. This will aid

in our decision-making process to determine the scale of meaningful and beneficial large-scale multi-parameter perturbation

tests.

The utilization of the learning-based surrogate model, on the other hand, offers a more feasible solution to this problem.

Since the surrogate model has a very short running time and almost does not require consideration of job queuing time, it210

enables the completion of a large-scale parameter experiment in a short time.

3.4 Parameter tuning enhanced with NN-based surrogate model and grid search

After the most sensitive sets of parameters have been found, the stage of optimization will begin.

In the optimization stage, on the basis of combining the existing optimization algorithms (such as GA, PSO, WOA, etc.),

we propose an enhanced optimization method based on grid search. By using grid search, the search scope can be further215

narrowed before and during the call to the existing optimization algorithm, so as to improve the efficiency of searching for

better solutions. The process is as follows.

1. Determine the overall parameter space range for conducting the grid search based on the initial setup of the experiments.

2. The simulation output values corresponding to these grids are calculated using the surrogate model. Subsequently, the

best-performing points are selected, and a new, finer-grained search space is determined based on the aggregation of220

these points.

3. The optimization algorithm is executed in the newly defined space, and depending on the available computational re-

sources, it is determined whether SCAM is invoked to compute in each iteration round. Additionally, the final results

will also be validated by substituting them into SCAM.

4. If the same optimization result is obtained in three consecutive iterations, or if there is less than a certain threshold of225

improvement compared to the last, the grid search operation of the first two steps is performed again, further reducing

the search space, as illustrated in Algorithm 1. In this step, a new parameter space will be constructed with the position

of the current best point at the center and the distance of each parameter from the last best point as the radius.

5. After refining the parameter search space, if the result remains unchanged, the optimization process can be considered

complete, and SCAM can be run again using the derived parameters to verify the optimization results.230

In Algorithm 1, Yi is the value of the function in the ith iteration, ε is the threshold at which the results converge, p is the

total number of parameters to be tuned, xj,i is the coordinates of xj in the ith iteration,Xj denotes the maximum and minimum

values initially set for xj , and X∗
j denotes the maximum and minimum values of xj in the upcoming grid search. Note that if
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Algorithm 1 Optimization process combined with grid search.

if Yi−Yi−1 < ε and Yi−1−Yi−2 < ε then

for j = 1 to j = p do

if xj,i− |xj,i−xj,i−3|>Xj,min then

X∗
j,min = xj,i− |xj,i−xj,i−3|

else

X∗
j,min =Xj,min

end if

if xj,i + |xj,i−xj,i−3|<Xj,max then

X∗
j,max = xj,i + |xj,i−xj,i−3|

else

X∗
j,max =Xj,max

end if

end for

end if

Grid seach.

return xj,i+1 and Yi+1

one of these coordinates is outside the initial parameter space, the original parameter space boundary will be used as the new

boundary.235

3.5 Case correlation analysis based on Pearson correlation coefficient

Following the end of the tuning process, we further perform a comparison study among different cases, to derive valuable in-

sights that would potentially lead to a physics module design that can accommodate the different features in different locations.

In our proposed method, the Pearson correlation coefficient method is used to measure the similarity between two cases

(Schober et al., 2018). This coefficient is defined as the quotient of the covariance and standard deviation between two variables.240

By analyzing the similarity between the ‘optimal’ parameters of each case, these cases can be clustered. In this process, we

can explore whether for similar types of case, they may have similar responses to various parameters. This will also help us

choose better parameter combinations when analyzing other cases, and even regional and global models, so as to achieve better

simulations. The implementation is shown below.

1. Search the sensitive parameter sets for each output variable in each case.245

2. For each case, the occurrence times of each parameter in the sensitive parameter combination are accumulated to obtain

a variable of M dimension, where M is the number of parameters. For example, for a combination of three parameters,

the vector can be expressed as (V alue1,V alue2,V alue3).

3. The correlation between vectors of each case can be computed by the Pearson correlation coefficient method.
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By the above procedure, we can obtain the similarity of the set of sensitive parameters among the cases. The correlation250

between different cases can also be analyzed for the case of finding the optimal values in the same parameter space. After each

case has found its optimal parameter values, this set of parameter values can also be represented by vectors. The same approach

can be used to analyze the correlation between these vectors.

4 Experiments

4.1 Sampling of the SCAM cases255

As mentioned earlier, the sampling scheme, which determines the set of points to represent the entire parameter space, is of

essential importance for the following sensitivity analysis and parameter tuning steps. Considering the compatibility between

the sampling methods and the SA methods, our platform includes both the Morris (driving the MOAT SA method) and the

Sobol sampling scheme (driving the Sobol, Delta, HDMR, and RBD-FAST SA methods). We use a total of 7,680 samples,

with 1,536 samples for each of the five SCAM case. Of these, half (i.e. 768 samples) are used for MOAT, while the remaining260

half are used for the Sobol sequence. In this part of the experiment, we use the job parallelism mechanism mentioned earlier in

the text to execute these sample cases.

In our sampling, SA, and tuning study, we focus on the total precipitation output (PRECT). Figure 3 reflects the proportion

of PRECT that outperforms the control experiments when each parameter is tuned from low to high in the range of values

taken. From the results, we can see that for different cases there are differences in their response to parameter changes. Of265

particular interest is the distribution of pz4(tau). We can clearly see that for GATEIII, when the value of tau is small, there are

more good outputs; However, for the other cases, it is that when the value of tau is large, there are more outputs that perform

well. It can also be seen from the proportion that tuning tau can lead to more good outputs. This is also in line with the results

of our later experiments.

To further verify the conclusions here, we performed a single-parameter perturbation test on tau while keeping the other270

parameters as default values.

4.2 Training learning-based models for parameter tuning

After obtaining the sampling results, we can train the surrogate model for each of the five cases using the method presented

in Section 3.2. The samples generated by the two sampling methods are combined to form the dataset on which we train our

surrogate model. In other words, each case has 1536 samples, and all cases have a total of 7680 samples to participate in the275

training. We split the training and test set in an 8:2 ratio and use RMSE as the loss function during training.

We trained surrogate models using five regression methods and used RMSE as a loss function to measure the training error.

A comparison of the various methods is shown in Table 6. It can be seen that ResNet has the best performance on the five

cases, and its error on the test set is lower than that of the other methods. Therefore, we will use the surrogate model trained

by ResNet-18 for the following experiments. For the hyper-parameters in training using ResNet-18, we also conduct ablation280
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Figure 3. The proportion of sampled results where the output is better than the control experiments (i.e., experiments using default values)

is shown on the x-axis, which indicates the range of values for each parameter.
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experiments to achieve better training results. The results of the ablation experiment indicate that using a learning rate of 0.01

and a batch size of 32 is appropriate.

Table 6. Comparison of errors during training using various methods. RMSE is used as the loss function. The errors are from test sets.

Case LR RF MLP XGBoost ResNet-18

ARM95 0.235 0.197 0.751 0.184 0.172

ARM97 0.188 0.158 0.555 0.136 0.121

GATEIII 0.646 0.432 1.335 0.538 0.396

TOGAII 0.179 0.112 0.223 0.118 0.107

TWP06 0.344 0.220 0.594 0.220 0.203

4.3 Single-parameter sensitivity analysis across different cases

After sampling, five SA methods listed in Table 5 are used to compute the sensitivity of these parameters to the PRECT, Q850,

T850 and CLDTOT output. In addition, for the surrogate models we trained, we also adopted the single-parameter perturbation285

method to test their sensitivities. Heat maps are used to characterize the sensitivities of each parameter. As can be seen from

Figure 4, there are differences in the results obtained from different SA methods.

From the results of PRECT, it can be seen that the response of ARM95 and ARM97 to each parameter is basically the same,

only a few quantitative differences exist in parameters such as zmconv_alfa, uwshcu_kevp and so on. Moreover, both cases

are sensitive to zmconv_tau, which significantly outweighs the other parameters. For GATEIII, we can see that zmconv_tau290

similarly has a significant influence on it, but zmconv_alfa and uwshcu_rkm also have a large influence. In addition, the two SA

methods of Morris and Sobol simultaneously show that cldfrc_rhminl also has a non-small effect. For TOGAII, it is interesting

to find that zmconv_tau and cldfrc_rhminl have similarly significant effects. However, tau still has a far greater influence than

other parameters on TWP06, which is similar to ARM95/97. Furthermore, the impact of zmconv_c0_ocn on this case is also

notable. This clearly demonstrates that cases located in different locations exhibit varied responses to parameters. To sum up,295

zmconv_tau has a very significant significance for all cases.

We also compared the differences between these SA methods. To demonstrate the applicability of using our learning-based

surrogate model in the SA process, we also show the SA results by using our trained learning-based surrogate models. For

comparison across different methods, the most sensitive parameter obtained by each method is tau, but there are differences

in the sensitivity of other parameters to some extent. For example, Delta and HDMR yield slightly greater sensitivity for the300

other parameters. In addition, Morris concluded that the sensitivity of these parameters is significantly greater than that of the

other methods, that is, the gap between tau and the other parameters is smaller. This may be related to the sampling method, as

Morris needs to use a different sequence of samples.

As can be seen from Figure 5, for the humidity variable Q850, we can clearly see that all five cases are highly sensitive to the

parameter zmconv_tau. In addition, the sensitivity of zmconv_alfa is also relatively high. The cases TOGAII/TWP06 exhibit305
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Figure 4. The comparison of the sensitivity of each parameter to PRECT is derived from different analysis methods (including our pro-

posed LB-SCAM) across five cases. Sensitivity results were normalised. (a)ARM95, (b)ARM97, (c)GATEIII, (d)TOGAII, (e)TWP06. The

qualitative and quantitative similarities and differences in the sensitivity of each case to each parameter are reflected.

higher sensitivity to zmconv_capelmt, while the other three cases show less pronounced sensitivity. In terms of sensitivity

analysis methods, the HDMR method provides more balanced parameter sensitivities, and this is particularly evident in the

TOGAII case.

As can be seen from Figure 6, for the temperature variable T850, we can observe some more interesting phenomena. In the

ARM95 case, all methods except Morris consider cldfrc_rhminl as the most significant parameter influencing the results, while310

Morris concludes that uwshcu_kevp is the strongest, followed by uwshcu_rpen. In the ARM97 case, we find that each SA

method identifies different most sensitive parameters, posing a new challenge for our next step in parameter optimization. For

the remaining three cases, there is less controversy between different methods. In each case, uwshcu_rkm has overwhelming

dominance, and in GATEIII and TOGAII, the impact of zmconv_tau is also considerable. For TOGAII, the sensitivity of

zmconv_capelmt and alfa should not be overlooked.315

For the total cloud amount CLDTOT, we can also observe interesting conclusions from Figure 7. For the ARM95/97 cases,

the results from various methods are consistent: the parameters zmconv_c0_lnd, zmconv_tau, and zmconv_alfa have a signif-

icant impact on the results. This reflects the convergence of the two cases. In the case of TWP06, the most noticeable factors

are uwshcu_rkm, followed by cldfrc_rhminl. The conclusions drawn by various methods remain consistent.
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Figure 5. The comparison of the sensitivity of each parameter to Q850 is derived from different analysis methods (including our proposed LB-

SCAM) across five cases. Sensitivity results were normalised. (a)ARM95, (b)ARM97, (c)GATEIII, (d)TOGAII, (e)TWP06. The qualitative

and quantitative similarities and differences in the sensitivity of each case to each parameter are reflected.

4.4 Joint multi parameter sensitivity analysis using learning-based surrogate models320

As mentioned earlier, by using the learning-based surrogate models, we now have the capability to explore the sensitivity of

multi-parameter combinations. How many parameters is it reasonable to tune at the same time? Figure 8 illustrates the max-

imum PRECT output fluctuation that can be brought by different parameter combination sizes. As the number of parameters

to be tuned simultaneously increases, the fluctuations that can be brought about are also greater. However, there is also a

marginal effect as the number of parameters tuned simultaneously increases. We can see that when tuning four parameters,325

the gain effect on the result is already not significant. Therefore, considering the range of the most accurate parameter tuning,

we limit the number of parameters tuned simultaneously to three. In addition, we also note that for the ARM97 and TOGAII,

their precipitation response for four parameters is even smaller than the response of the GATEIII for tuning one parameter. An

important reason for this is that these two cases themselves have smaller precipitation values than GATEIII, whereas the Figure

8 uses the absolute values of precipitation.330

As our study investigates 11 parameters related to the four variables, there are a total of 165 three-parameter combinations.

It would be difficult to test all these combinations using the original SCAM model, due to the high computational overhead.

However, with the help of the surrogate model, we can instead accomplish these tests in less than a minute.
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Figure 6. The comparison of the sensitivity of each parameter to T850 is derived from different analysis methods (including our proposed LB-

SCAM) across five cases. Sensitivity results were normalised. (a)ARM95, (b)ARM97, (c)GATEIII, (d)TOGAII, (e)TWP06. The qualitative

and quantitative similarities and differences in the sensitivity of each case to each parameter are reflected.
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Figure 7. The comparison of the sensitivity of each parameter to CLDTOT comes from different analysis methods (including our pro-

posed LB-SCAM) in three cases. Sensitivity results were normalised. (a)ARM95, (b)ARM97, (c)TWP06. The qualitative and quantitative

similarities and differences in the sensitivity of each case to each parameter are reflected.
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Figure 8. The maximum fluctuation in the output of each case when perturbing one to four parameters. The Y-axis represents the largest gap

between the maximum and minimum values of precipitation output that can occur during the simulation period.

These combinations are listed in Table 7. Whale optimization algorithm(WOA, Mirjalili and Lewis (2016)) has been chosen

as the method in this stage. RMSE is also selected as the metric of optimization effect. Next, we will explore further the335

sensitive parameter combinations.

Table 7. The most sensitive parameter combinations of each variable in each case.

Variables ARM95 ARM97 GATEIII TOGAII TWP06

PRECT pz1, pz4, pz6 pz1, pz4, pz6 pz4, pz5, pu3 pz4, pu3, pc2 pz4, pz5, pc2

Q850 pz4, pz5, pz6 pz4, pz5, pz6 pz4, pz5, pz6 pz4, pz5, pu3 pz4, pz5, pu3

T850 pz3, pu2, pc2 pz3, pz6, pc2 pz4, pu3, pc2 pz5, pz6, pu3 pz5, pu3, pc2

CLDTOT pz1, pz4, pz6 pz1, pz4, pz6 pz6, pu3, pc2

4.5 Joint optimization for SCAM cases combined with grid search and learning-based models

Consequently, experiments combining the grid search and optimization algorithms will be performed. As above, WOA is still

used as the optimization algorithm for this stage. To verify the correctness of the surrogate model, we also compare its output

with SCAM.340

For the effectiveness of the parameter tuning, the output after tuning is compared with the output of the control experiment

(i.e. before tuning) and the observed data after the individual cases had been tuned, as shown in Figure 9. Here, the experiments

with the best optimization results are chosen for comparison. It is easy to see that in the control experiment there are several

spikes where the simulated output is significantly higher than the observed values, as is the case in the first four cases. This is

to say that these time steps, where the output is significantly larger than the observation in the control trial, are reduced after345
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Figure 9. Comparison of SCAM simulation output before and after tuning with observed values in five cases. Here, OBS indicates the

observed value, CTL indicates the output before tuning, and OPT indicates the output after tuning. (a)ARM95, (b)ARM97, (c)GATEIII,

(d)TOGAII, (e)TWP06. It can be seen that the optimized output of each case is closer to the observation.

optimization, making it closer to the observation. This demonstrates the significance of the parameter tuning provided by our

proposed LB-SCAM.

In contrast to using the optimization algorithm alone, the grid search combined with the optimization algorithm can achieve

better results on these SCAM cases. The use of NN trained surrogate models for parameter tuning can further save computa-

tional resource overhead and, in terms of results, can meet or exceed traditional optimization methods in most cases.350

In the previous sections, we mentioned that different sensitivity analysis methods yielded different conclusions for the

output variable T850. Therefore, to demonstrate the performance differences among various methods, we decided to test the

optimization results for different parameter combinations, as shown in Figure 10. Therefore, we can find that it is possible to

achieve a win-win situation in terms of computational resources and computational efficiency by training a surrogate model of

SCAM based on LB-SCAM.355

After optimization, SCAM cases can get enhancement from 6.4%-24.4% in PRECT output, 11.9%-42.3% in Q850 output,

5.72%-22.4% in T850 output, and 3.8%-26.1% in CLDTOT output. Thus, using the proposed method, the main computational

overhead comes from sampling and training. The computational overhead can be saved by more than 50% compared to the case
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Figure 10. The optimized results of sensitivity parameter combinations for the T850 output variable in ARM97 case, as provided by various

SA methods, are compared with the control experiment. "D&H" represents the common conclusions derived from the Delta and HDMR

methods.

where the above experiments are all run using the full SCAM. In particular, the proposed method demonstrates its effectiveness

and usability for situations such as large-scale grid testing, which is almost impossible to accomplish using the full SCAM.360

These results also show that the method used in the workflow outperforms previous methods in most cases. Furthermore, the

methods in the workflow test a wide range of combinations of values in the parameter space. Thus, using the workflow provides

a more complete picture of the parametric characteristics of the different cases in SCAM than optimization algorithms that only

provide results but no additional information about the spatial distribution of the parameters. Performing a finer-grained grid

search in the vicinity of the optimal value point is also an approach worth testing in the future. From the experimental results,365

it can be seen that utilizing the surrogate model through sampling with the optimization algorithm not only saves resources but

also improves the optimization effect, and meanwhile enhances the robustness of the optimization method.

4.6 A deeper exploration of the relationships between the cases for PRECT

The training of surrogate models makes it possible to conduct larger scale experiments in a shorter period of time. For the most

sensitive combinations of parameters obtained based on the LB method in each case, we can explore the distribution pattern of370

the results using a grid search. These experiments are carried out on the surrogate model to improve experimental efficiency.

Grid search can also be performed to determine the possible aggregation range of the better-valued solution. To make it easy

to compare the same and different cases, we specify the same parameter space for each case. Based on the combined ranking of

sensitive parameters under each case, we choose zmconv_tau, zmconv_alfa and cldfrc_rhminl as the parameter space common

to all cases.The results are shown in Figure 11. The value of each parameter is also divided into 11 levels within its upper and375

lower bounds. The parameter space remains the same as originally set at the beginning of this paper.

As can be seen, after the parameter space has been replaced, the better-valued solutions for each case show a clear trend

towards aggregation, and although the distribution of TOGAII is slightly scattered, it can still be grouped into a cluster. The
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Figure 11. The distribution of parameter solutions performing better for PRECT in each case within the same 3D parameter space.

(a)ARM95, (b)ARM97, (c)GATEIII, (d)TOGAII, (e)TWP06. The points closest to the observed data are shown in red, those ranked 2-50 are

shown in olive, and those ranked 51-200 are shown in blue.

same parameter space is more conducive to cross-sectional comparisons. It is easy to see that the two land convection cases are

closer, which matches our expectations since the two cases are themselves co-located. They have relatively high zmconv_tau380

and zmconv_alfa, and relatively lowest cldfrc_rhminl. For the three tropical convective cases, their distributions have their own

characteristics. TWP06 has the highest tau and alfa, while TOGAII is in the middle for all parameters. The parametric response

distributions of GATEIII are much more different. Its better performance relies on lower tau and alfa, and higher cldfrc_rhminl.

As a site that is far away from all other cases, this also coincides with the previous results.

From the results, it can be seen that the distribution of the better values are different for different cases within the same385

parameter space. A typical example is the parameter zmconv_tau. This reflects the fact that it may be useful and necessary to

adopt different parameter configurations for different cases or regions.

Now that we have discovered the pattern that the aggregation range of the more optimal solution for each case by applying

a full-space grid search in the same parameter space. From the experimental results, it can be seen that the two cases focusing

on land convection are most similar to each other, and two of three cases focusing on tropical convection are also more similar390

to each other, except for GATEIII.
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Figure 12. The correlation of the optimal solutions of PRECT for cases within the same parameter space reveals the differences in similarity

between different cases.

Pearson correlation coefficient method is used to compare the best set of values for each case. The obtained similarity is

shown in Figure 12. The average p-value in this experiment is less than 0.05, so it is relatively reliable. From this figure, we can

see that the parameter values taken between the two cases of land convection are positively correlated in the same parameter

space. The two of three cases of tropical convection, TOGAII and TWP06, are also positively correlated with each other.395

The respective distributions of the above four cases are also positively correlated. The more special one is GATEIII, which

is negatively correlated with the remaining four cases. These results are also well matched to those obtained in the previous

experiments. It is also clear from the results above that SCAM cases in similar locations and of the same type are more relevant

when it comes to parameterization.

5 Conclusions400

In this paper, we propose a learning-based integrated method for SCAM parameter tuning, enabling a fully automated diagnos-

tic analysis process from sensitive tests to parameter optimization and case comparison. The workflow facilitates large-scale

SCAM parameter runs, thereby allowing for more trials in parametric scenario studies within a shorter timeframe. An inte-

grated approach employing several sensitivity methods is utilized for parameter sensitivity analysis. With just one sampling,

various SA methods can be invoked for analysis, and their results combined.405

With the enhancement of artificial intelligence and machine learning techniques, the role played by neural networks in

regression analysis has become increasingly evident. In our proposed experimental workflow, multiple regression methods,

including NNs incorporating sampling techniques, are likewise used in the parametric analysis process of SCAM. A precursor

to sensitivity analysis: the results of the sampling are used to train an NN-based surrogate model, which validates the accuracy

of both the sensitivity analysis and improves the parameter tuning process by the surrogate model. In these stages, a grid search410
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strategy for parameter space based on multi-parameter perturbations is used. With the development of computer performance,

the method can search for the most suitable parameter values within fewer iterations. The combination of grid search and

optimization algorithms can also improve the performance of the optimization algorithm in model parameter tuning. Addition-

ally, the application of neural network-trained surrogate models can also save computational resources, which is beneficial in

achieving the goal of green computing.415

To verify the completeness and validity of the proposed workflow, multi-group experiments based on five typical SCAM

cases are implemented. The sensitivity of the parameters to typical output variables related to precipitation is analyzed. Exper-

iments based on the proposed workflow have shown differences in parameter sensitivities with respect to different cases and

output variables. This includes differences between different convection types of cases and differences in the effects of deep

and shallow convective precipitation parameterization schemes on respective precipitation. In summary, determining appro-420

priate values for each SCAM case located at different locations is also meaningful for model development. Additionally, this

provides a heuristic for future research on similar parameterization schemes in other models.
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