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Abstract. The Single Column Atmospheric Model (SCAM) is an essential tool for analyzing and improving the physics

schemes of Community Atmosphere Model (CAM). Although it already largely reduces the compute cost from a complete

CAM, the exponentially-growing parameter space makes a combined analysis or tuning of multiple parameters difficult
:::::
single

::::::
column

::::::
model,

::::
with

:::
its

::::::::::
advantages

::
of

::::
low

::::::::::::
computational

::::
cost

:::
and

::::
fast

::::::::
execution

::::::
speed,

::::
can

:::::
assist

::::
users

:::
in

::::::
gaining

::
a
:::::
more

:::::::
intuitive

::::::::::::
understanding

::
of

:::
the

::::::
impact

::
of

::::::::::
parameters

::
on

:::
the

:::::::::
simulated

::::::
results

::
of

:::::::
climate

::::::
models.

::
It
:::::
plays

::
a

::::::
crucial

:::
role

:::
in

:::
the5

::::
study

:::
of

::::::::::::::
parameterization

::::::::
schemes,

:::::::
allowing

:::
for

::
a
:::::
more

:::::
direct

::::::::::
exploration

::
of

:::
the

::::::::
influence

::
of

::::::::::
parameters

:::
on

::::::
climate

::::::
model

:::::::::
simulations. In this paper, we propose a hybrid framework that combines parallel execution and a learning-based surrogate

model, to support large-scale sensitivity analysis (SA) and tuning of combinations of multiple parameters . We start with a

workflow (with modifications to the original SCAM)to support the execution and assembly of a large number of sampling,

sensitivity analysis, and tuning tasks. By reusing the sampling instances with the variation of 11 parameters, we train a10

learning-based surrogate model that achieves both accuracy and efficiency (with the computational cost reduced by several

orders of magnitude). The improved balance between cost and accuracy enables us to integrate learning-based grid search

into the traditional optimization methods to achieve better optimization resultswith fewer compute cycles. Using such a hybrid

framework, we explore the joint sensitivity of multi-parameter combinations to multiple cases using a set of three parameters,

identify the most sensitive
::::::::
employed

::::::
various

:::::::
methods

::
to
:::::::
conduct

:::::::::
sensitivity

:::::::
analysis

::
on

:::
the

::
11

:::::::::
parameters

::
of
:::
the

::::::
Single

:::::::
Column15

::::::::::
Atmospheric

::::::
Model

::::::::
(SCAM).

:::
We

:::::::
explored

:::::
their

:::::
impact

:::
on

:::::
output

::::::::
variables

::::
such

::
as

:::::::::::
precipitation,

:::::::::::
temperature,

::::::::
humidity,

:::::
cloud

:::::
cover,

::::::
among

::::::
others,

::::::
across

::::
five

:::
test

::::::
cases.

::
To

:::::::
further

:::::::
expedite

::::::::::::::
experimentation,

:::
we

:::::::
utilized

::::::::
machine

:::::::
learning

:::::::
methods

:::
to

::::
train

::::::::
surrogate

::::::
models

:::
for

:::
the

:::::::::::::
aforementioned

:::::
cases.

:::::::::::
Additionally,

:
three-parameter combination out of eleven, and perform a
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tuning process that reduces the error of precipitation by 6.4% to 24.4% in different cases
::::
joint

::::::::::
perturbation

::::::::::
experiments

:::::
were

::::::::
conducted

:::::
based

:::
on

:::::
these

::::::::
surrogate

::::::
models

::
to

:::::::
validate

:::
the

::::::::
combined

:::::::::
parameter

::::::
effects

::
on

:::
the

::::::
results.

::::::::::::
Subsequently,

::::::::
targeting20

::
the

::::::::
sensitive

::::::::
parameter

::::::::::::
combinations

::::::::
identified

::::
from

:::
the

:::::::::::::
aforementioned

:::::::::::
experiments,

:::
we

::::::
further

:::::::::
conducted

::::::::
parameter

::::::
tuning

::
for

:::
the

::::::::::::
corresponding

:::
test

:::::
cases

::
to

::::::::
minimize

::
the

::::::::::
discrepancy

:::::::
between

:::
the

::::::
results

::
of

::::::
SCAM

:::
and

:::::::::::
observational

:::::
data.

:::
Our

::::::::
proposed

::::::
method

:::
can

::::
not

::::
only

::::::::
enhances

:::
the

::::::
model

::::::::::
performance

:::
but

::::
also

::::::::
expedites

::::
the

:::::
speed

::
of

:::::::::
parameter

::::::::::
adjustment,

::::::::::::
demonstrating

::::
good

::::::::
generality

::
at
:::
the

:::::
same

::::
time.

1 Introduction25

Earth System Models (ESMs) are important tools to help people recognize and understand the effects of global climate change.

Community Earth System Model (CESM) is one of the most popular and widely used ESMs, which includes atmosphere,

ocean, land, and other components (Bacmeister et al., 2014)
::::::::::::::::
(Hurrell et al., 2013). Of these components, the Community Atmo-

sphere Model (CAM) (Dennis et al., 2012)
:::::::::::::::::::::::::::::::
(Neale et al., 2010; Zhang et al., 2018), plays an important role as the atmospheric

component of CESM. Most of the physics parts in CAM are described as parameterization schemes with tunable parame-30

ters that are often derived from limited measurements or theoretical assumptions. However, since CAM needs to simulate all

the grids, it takes a long time and a large amount of resources to run(Zhang et al., 2018). Thus, Single Column Atmospheric

Model (SCAM) (Bogenschutz et al., 2013; Gettelman et al., 2019) has been developed as a cheaper and more efficient alter-

native model for the purpose of tuning physics parameters (Bogenschutz et al., 2020). And in order to tune the parameters, we

often need to conduct a large number of simulated experiments. This will result in significant computational costs. Meanwhile,35

SCAM only needs to simulate one single column, and only one process is required for each run of one case to complete the

simulation. As a result, SCAM becomes a natural tool for studying how the parameters would affect the uncertainty in the mod-

eling results, and the use of SCAM for large-scale experiments is more practicable due to its advantage of lower requirements

for computing resources.

Climate models are among some of the most complex models, for a model, we can abstract it as a function with numerous40

independent and dependent variables, and there exists uncertainty between them. In research, identifying independent vari-

ables that significantly affect the dependent variable can help to quickly understand the relationship between them. Sensitivity

analysis (SA) is an important method used to achieve this purpose. (Saltelli et al., 2010). A rich set of numerical and statistical

methods have been developed over the years to study the uncertainty in models in many different domains, ranging from natural

sciences, to engineering, and risk management in finance and social sciences (Saltelli et al., 2008). SA of climate models gener-45

ally involves two steps: generating representative samples with different values of parameters using a specific sampling method;

and explore and identify the sensitivity metrics between the model output and the parameters to study. Typical approaches in-

clude: the Morris One-At-a-Time (MOAT) method that uses the Morris sampling scheme (Morris, 1991), which generates

samples uniformly and has a good compute efficiency. To go with it, Morris SA can give the individual sensitivity of each

parameter, including their interaction sensitivity. However, this is not intuitive enough if the user wants to know directly from a50

combined perspective which set of parameters has the most significant effect on the results. and the Sobol method that uses the
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probabilistic framework and adopts the decomposition of variance of the output to describe the sensitivities (Sobol, 1993). In

contrast to the Morris method, ,
::::
and the variance-based Sobol method generally requires a lot more samples to achieve a good

coverage of the space (Sobol’, 1967; Saltelli, 2002), but has the advantage of being capable to study the interaction effects

between different parameters. Other similar ideas to achieve a good representation of the sample space with a quasi-random55

sequence include the quasi-Monte Carlo (QMC) (Caflisch, 1998) and the Latin hypercube (LHC) (McKay et al., 2000) sam-

pling methods.
:::
The

:::::::
samples

:::::::
obtained

:::::
from

::::
these

::::::::
sampling

::::::::
methods

:::
can

:::
be

::::::::
combined

::::
with

:::::::::
sensitivity

:::::::
analysis

:::::::
methods

:::::
such

::
as

:::::::::::::::::
Sobol(Sobol’, 1967),

:::::::::::::::
High-dimensional

::::::
model

::::::::::::
representation

::::::::
(HDMR,

:::::::::::::
Li et al. (2010)

:
),

:::::::
Random

:::::::
balance

:::::::
designs

::::::
fourier

::::::::
amplitude

:::::::::
sensitivity

:::
test

:::::::::::
(RBD-FAST,

:::::::::::::::::
Goffart et al. (2015)

:
),
:::::
Delta

::::::::::::::::::
moment-independent

:::::::
measure

::::::::::::::::::
(Plischke et al., 2013),

::::
etc.

::::
This

:::::
allows

:::
for

::
an

::::::::::
assessment

::
of

::
the

:::::::::
individual

::::::::
parameter

:::::::
impacts

::
on

::::::
global

::::::::
outcomes,

:::
as

:::
well

::
as
:::
the

:::::::::::::::
interrelationships

:::::::
between60

::::
pairs,

::::
i.e.,

:::::::::::
second-order

:::::::::
sensitivity.

::::::::
However,

::
in

:::::::
practical

:::::::::::
applications,

:::
the

:::::::
number

:::
of

:::::::::
parameters

:::
we

:::::
need

::
to

:::::
adjust

::
is
:::::

often
:::::
more

::::
than

::::
two.

::::::
When

::::::::
adjusting

::::
more

::::::::::
parameters,

::::::::::
considering

:::
the

::::::::
intricate

::::::::::
connections

:::::::
between

::::::
them,

::::
there

::::
will

:::::::::
inevitably

:::
be

::::::
mutual

:::::::::
influences.

::::
Just

::::
like

::
the

::::::::::
three-body

:::::::
problem

::
in

:::::::::
astronomy,

:::::
when

:::::::::::::
simultaneously

::::::::
adjusting

::::
three

:::
or

::::
more

::::::::::
parameters,

:::
the

::::::::::
complexity

:::
will

:::
be

:::::
much

::::::
greater

::::
than

:::::::
adjusting

:::::
each

::
of

:::::
these

::::
three

:::::::::
parameters

:::::::::::
individually.

:::::::::
Therefore,

:::::::
whether

:::
the

:::::::::
sensitivity

:::::::
analysis

:::::
results

::::::::
obtained65

:::::
based

::
on

:::::::
existing

:::::::
methods

:::
can

:::::::::
accurately

:::::::
provide

::
us

::::
with

:::
the

:::::::
optimal

::::::::::
combination

:::
of

:::::::
multiple

:::::::::
parameters

::
is

:
a
::::::::
question

:::::
worth

::::::::::
considering.

:::::::::
Therefore,

:::::::::::
investigating

:::
the

::::::
overall

::::::
impact

:::
of

::::::::
combined

::::::::::
parameters

:::
on

:::
the

::::::
system

::::::
output

::
is

::::::
worthy

:::
of

::::::
further

::::::::::
exploration.

::::
This

::::
holds

::::
true

:::
for

::::::
climate

:::::::
models

::
as

::::
well.

:

After we have determined the combination of parameters to be tuned, we can then tune them to improve the performance

of the model. With a general goal to achieve modeling results as close to the observations as possible, we can apply different70

optimization methods, such as the Genetic algorithm (GE) (Mitchell, 1996), Differential Evolution (DE) (Storn and Price,

1997), Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 2002), etc., to identify the most suitable set of parameters.

Continuous efforts have been put into the tunable parameters in climate models, especially for the their physics parame-

terization schemes (Yang et al., 2013; Guo et al., 2015; Pathak et al., 2021). Yang et al. (2013) analysed the sensitivity of

nine parameters in the ZM deep convection scenario for CAM5 and used the Simulated Stochastic Approximation Annealing75

method to optimize the precipitation performance in different regions by zoning. Zou et al. (2014) conducted a sensitivity anal-

ysis for seven parameters in the MIT-Emanuel cumulus parameterization scheme in RegCM3. The precipitation optimization

process for the CORDEX East Asia domain was carried out using the Multiple Very Fast Simulated Annealing method.

For all the stages mentioned above, the compute cost of running the model become a major constraining factor that stop

us from exploring more samples and identifying more optimal solutions. People sometimes use surrogates (such as the gen-80

eralized linear model (GLM) (Nelder and Wedderburn, 1972)) instead of the actual model to further reduce the compute cost.

For example, the study of the sensitivity of simulated shallow cumulus and stratocumulus clouds to the tunable parameters

of the subnormal uniform cloud layer (CLUBB) (Guo et al., 2015) investigated the sensitivity of 16 specific parameters, us-

ing the QMC sampling method and GLM as a surrogate, with experiments on three different cases (BOMEX, RICO, and

DYCOMS-II RF01). A key problem to consider for the SA stage is to achieve a balance between the accuracy and the econ-85

omy of compute (Saltelli et al., 2008). Another study (Pathak et al., 2021) used the single-column case ARM97 to explore 8
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parameters related to the cloud processes, with Sobol as the sampling method, and spectral projection (SP) and basis pursuit

denoising (BPDN) as the surrogate model. In an ideal case, a more thorough study of the parameters that can provide more

concrete guidance for the parameter selectionin CAM, would require a joint SA and tuning of different single-column cases,

as well as combinational study of the most sensitive parameters. There are toolkits such as PSUADE (Tong, 2016), DAKOTA90

(Dalbey et al., 2021) and STATA (Harada, 2012) that can implement SA and tuning. However, such a joint and combined

exploration that involve multiple parameters and multiple cases would increase the space to explore in an exponential manner,

and make the SA and tuning almost an impossible job
::::
These

::::::::
software

::::
tools

::::
have

:::::
made

::::::::::
remarkable

:::::::::::
contributions

::
to

:::::::::
advancing

::
the

:::::::::::
development

:::
of

::::::
generic

:::::::::::
frameworks.

::::::::
However,

::::
with

::::
the

:::::::
progress

::
of

:::::::::::::::
high-performance

::::::::::
computing,

::::::::
usability

:::
and

::::
ease

:::
of

:::::::::
deployment

:::::
have

::::::
become

::::::
crucial

::::::
aspects

:::
for

:::::::
existing

:::::::::
application

:::::::::
scenarios.

::::::::::
Particularly,

::
in

:::::
recent

:::::
years,

:::::
rapid

::::::::::::
advancements

::
in95

::::
fields

::::
like

:::::::
machine

:::::::
learning

::::
have

:::::
made

::
it

:::::::::
meaningful

::
to
::::::::
leverage

:::::::
machine

:::::::
learning

:::::::
methods

::
to

:::::::::
accelerate

:::::::
research

:::::::
progress.

In this paper, to facilitate researchers to better utilize SCAM, and to support a more efficient and convenient parameter

tuning for the physical schemes in SCAM, we propose a learning-based method,
::::::::::
LB-SCAM for efficient large-scale SA and

tuning. We start with a scientific workflow (with modifications to the original SCAM) to support the execution and assembly

of a large number of sampling, sensitivity analysis, and tuning tasks, which can support parallel execution of hundreds to100

thousands of parallel instances, and highly-efficient exploration of combinations of multiple parameters. In contrast to the

packages mentioned above, from a method perspective, we add the comparison of the new SA methods in recent years, which

haven’t been fully supported by all the packages above. In terms of training surrogate models based on regression analysis, our

proposed workflow uses more types of neural networks and supports the adaptive selection of the best performing network to

train the surrogate model.105

Therefore, in summary, we mainly make the following contributions. (1) We enable a scientific workflow (with modifications

to the original SCAM) to support the configuration of parameters through the namelist, and execution and assembly of

a large number of sampling, sensitivity analysis, and tuning tasks. (2) By reusing the sampling instances in the sampling

stage, we innovatively introduce five different regression methods to train the surrogate model, and select the ResNet with

the best results as the final test solution. The use of surrogate model is easier to obtain results and more tractable, which110

enables us to do sensitivity analysis of combinations of multiple parameters in a more efficient way. (3) We also integrate

NN-based grid search into the traditional optimization methods. With a better capability to jump out of local optimums, we

can achieve better optimization results with fewer compute cycles.
::
In

::::::::
summary,

::::
our

::::::::
proposed

:::::::::
LB-SCAM

:::::::
mainly

:::::
make

:::
the

::::::::
following

:::::::::::
contributions.

:

1.
:::
We

:::::::
selected

::
11

::::::::::
parameters

::::
from

:::::
three

:::::::
different

:::::::
physical

::::::::
schemes

::
in

:::::::
SCAM,

:::::::
sampled

::::
them

::::::
within

::
a

::::::
certain

:::::
range,

::::
and115

::::::
utilized

:::::::
machine

:::::::
learning

::::::::
methods

::
to

::::
train

::::::::
surrogate

::::::
models

:::
for

:::
the

::::::::
response

::
of

::::::
model

::::::
outputs

::
to

:::::::::
parameter

:::::::::
variations.

:::
We

:::::::
selected

::::
five

::::::
typical

:::::
cases

:::::
from

::::::
SCAM

::::
and

::::::
trained

:::::::::
individual

::::::::
surrogate

:::::::
models

:::
for

::::
each

:::
of

:::::
them.

::::
This

:::::::
further

:::::::
enhances

:::
the

:::::::::
efficiency

::
of

:::::::::
conducting

:::::::::
large-scale

:::::::::
parameter

::::::
testing

::
for

:::::::
SCAM.

:

2.
::::
With

:::
the

:::::::
samples

:::::::
obtained

::
in
:::
the

::::::::
previous

::::
step,

:::
we

:::::::::
conducted

::::::::
sensitivity

::::::::
analyses

:::::
using

:::
five

::::::
typical

:::::::::
sensitivity

:::::::
analysis

:::::::
methods

::
to

::::::
assess

:::
the

::::::
impact

:::
of

:::::
these

::
11

::::::::::
parameters

:::
on

::::
four

::::::
output

::::::::
variables

::
in

:::::::
SCAM.

::::::::::
Meanwhile,

::::::
based

::
on

::::
the120
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Table 1. List of single column atmosphere model cases tested.

Case Full name Lat Lon Date Type

ARM95 ARM Southern Great Plains 36 -97 July 1995 Land convection

ARM97 ARM Southern Great Plains 36 -97 June 1997 Land convection

GATEIII GATE Phase III 9 -24 August 1974 Tropical convection

TOGAII Tropical W. Pacific Convection -12 131 December 1992 Tropical convection

TWP06 Tropical Ocean Global Atmosphere -2 154 January 2006 Tropical convection

:::::::
surrogate

:::::::
models

::::::
trained

::
in
::::

the
:::::::
previous

:::::
step,

:::
we

:::::::::
conducted

::::::::::::::
single-parameter

:::
and

::::::::::::::
three-parameter

::::
joint

:::::::::::
perturbation

::::::::::
experiments

:::::::::
separately.

::::
This

:::::::
allowed

::
us

::
to

:::::::
identify,

:::
for

::::
each

::::
case,

:::
the

:::::
most

:::::::
sensitive

:::::::::::
combination

::
of

::::
three

::::::::::
parameters.

:

3.
:::::::
Building

:::::
upon

:::
the

::::
first

::::
two

:::::
steps,

:::
we

:::::::
further

:::::::::
conducted

:
a
:::::::::

parameter
:::::::::::

optimization
:::::::
process

:::
for

:::
the

::::::::::
mentioned

:::::
cases

:::
and

::::::::
variables.

:::::::::::
Additionally,

:::
we

::::::
delved

:::::::
deeper

:::
into

:::
the

::::::::
patterns

:::::::
observed

:::
in

:::
the

::::
total

:::::::::::
precipitation

::::::::
(PRECT)

::::::::
variable.

::::
This

:::::::::
exploration

::::::::
included

:::::::::
examining

:::
the

:::::::::
distribution

:::::::
patterns

::
in
:::
the

:::::::::::::::
three-dimensional

:::::::::
parameter

:::::
space

:::
and

::::::::::
identifying125

:::::::
different

::::::::::::
characteristics

::::::
among

:::
the

:::::::
different

:::::
cases.

:

Using our proposed learning-based surrogate models
:::::::::
LB-SCAM, we perform an extensive set of SA and tuning experiments

for five cases of SCAM (both independently and jointly), targeting the precipitation performance. Besides SA analysis that

provides sensitivity evaluation of each single parameter, we are also able to study the sensitivity of a combination of three, four

or even five arbitrary parameters. At the tuning stage, our improved optimization scheme (targeting the same parameters) leads130

to 24.4% more accurate output of precipitation compared to control experiments, with a more than 50% saving in compute cost

compared to using only the optimization algorithm. At the end of the paper, we also explore the relationship between several

cases, and show the output distribution trend of the simulation results in the same parameter space with a 3D figure.This also

suggests potential improvements for future location-based parameter tuning.

2 Enabling a workflow of SA and parameter tuning135

2.1 Model description

This paper focuses on the single column model of the atmospheric model CAM5, i.e. SCAM5 (Bogenschutz et al., 2012),

extracted from CESM version 1.2.2, one of the two versions that are efficiently supported on the Sunway TaihuLight Super-

computer (Fu et al., 2016). Our research of this paper is mainly based on five typical cases in SCAM5, as shown in Table 1.

Among the five cases, two cases are located in the Southern Great Plains, which mainly study land convection. The other three140

cases are located in the tropics and mainly study tropical convection (Thompson et al., 1979; Webster and Lukas, 1992; May

et al., 2008).
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Table 2. Observed variables included in the IOP file of each case.

Variable Description ARM95 ARM97 GATEIII TOGAII TWP06

Prec Precipitation rate X X X X X

totcld Total cloud X X - - X

shflx Surface sensible heat flux X X - X X

lhflx Surface latent heat flux X X - X X

U Eastward wind speed X X X X X

V Northward wind speed X X X X X

Q W.V. Mixing Ratio X X X X X

T Temperature X X X X X

omega vertical motion X X X X X

windsrf Surface wind speed X X - X X

REHUM Relative humidity - - X - X

CAPE Convective available potential energy - - X - -

Table 3. Output variables studied in this paper and their meanings.

Variable Description

PRECT Total (convective and large-scale) precipitation rate (liq + ice)

CLDTOT Vertically-integrated total cloud

Q850 Specific Humidity at 850 mbar pressure surface

T850 Temperature at 850 mbar pressure surface

As shown in Table 2
:
3, the number of observations included in the IOP (Intensive Observation Periods, Gettelman et al.

(2019)) file varies from case to case. In order to explore a joint parametric sensitivity analysis and tuning across all the five

cases, we pick the intersection of the data owned by these cases, the total precipitation (PRECT), which is also one of the most145

important outputs of the model,
:::::::
PRECT,

:::::
Q850,

:::::
T850

:::
and

::::::::
CLDTOT

:
as the main research subject. The parameters listed in Table

4 are the main study targets (Qian et al., 2015) in this paper and the ones tested in the workflow. The parameters are selected

from the ZM deep convection scheme (Zhang, 1995), the UW shallow convection scheme (Park, 2014), and cloud fraction

(Gettelman et al., 2008). In the experiments in this paper, the lower and upper bounds of each parameter are 50% and 150% of

the default value, respectively. For parameters with physical constraints, such as rhminh and
:::::::::::
cldfrc_rhminh

::::
and

::::::
cldfrc_rhminl,150

the values are ratios, so they are not more than 1.

In the original version of SCAM, only some of the parameters to be studied are tunable, while the rest are hard-coded in

the model. To improve the flexibility of the model so that the 11 parameters we want to study are tunable, we have modified

the source code of the model, to support the tuning and study of a wider range of parameters. The corresponding Fortran

source code, as well as the XML documentation are also modified accordingly. In addition, the programs running on Sunway155
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Table 4. List of parameters in the framework that can be tuned and applied to the experiment.

Abbr. Name Description Low Range Default High Range Category

pz1 c0_lnd Deep convection precipitation efficiency over land 0.00295 0.0059 0.00885 ZM Deep convection

pz2 c0_ocn Deep convection precipitation efficiency over ocean 0.0225 0.045 0.0675 ZM Deep convection

pz3 ke Evaporation efficiency of precipitation 5e-7 1e-6 1.5e-6 ZM Deep convection

pz4 tau Time scale for consumption rate deep CAPE 1800 3600 5400 ZM Deep convection

pz5 capelmt Threshold value for CAPE 35 70 105 ZM Deep convection

pz6 alfa Maximum cloud downdraft mass flux fraction 0.05 0.1 0.15 ZM Deep convection

pu1 rpen Penetrative updraft entrainment efficiency 2.5 5.0 7.5 UW Shallow convection

pu2 kevp Evaporative efficiency 1e-6 2e-6 3e-6 UW Shallow convection

pu3 rkm Updraft lateral mixing efficiency 7 14 21 UW Shallow convection

pc1 rhminh Threshold relative humidity for stratiform high clouds 0.7 0.8 0.9 Cloud fraction

pc2 rhminl Threshold relative humidity for stratiform low clouds 0.7975 0.8975 0.9975 Cloud fraction

TaihuLight needed to be recompiled due to the adoption of a different architecture. We recompiled using a compiler compatible

with Sunway after making the above improvements, to enable execution of a larger number of concurrent instances on the

Sunway supercomputer. With these upgrades, all parameters in Table 4 are supported for tuning.

2.2 The workflow of sampling, SA and parameter tuning

The submission of assignments and the collection of results are important issues when carrying out a large number of model160

experiments at the same time. Prior to conducting the experiments, the user is often presented with a broad set of boundaries

of the parameters to be tuned, and the specific configuration of each experiment has to be decided in detail according to these

ranges of values. After a large number of experiments have been completed, as the output of SCAM is stored in binary files in

NetCDF format, the precipitation variables we want to study need to be extracted from a large number of output files in order

to proceed to the next step. It is therefore necessary to provide the researcher with an automated experiment-diagnosis process.165

In general, which parameters to tune and how to tune them are questions that deserve our attention.

Based on the above needs, we have designed the SCAM parameter sampling, SA, tuning and analysis workflow. We integrate

the collection and processing script for the post-sampling results. It supports a fully-automated parameter tuning and diagnostic

analysis process, a large number of concurrent model tests, and the search for the best combination of parameter values for

SCAM performance within a given parameter space. Also, with the help of the training surrogate model, more parameter fetches170

can be tested in less time. The simulation results of the real model will be used as validation. This will further accelerate the

degree of automation of scientific workflows and thus accelerate the conduct of research in this area of the earth system models.

The overview of the whole scientific workflow is shown in Figure 1. In order to make full use of computing resources and

complete the sampling process as soon as resources allow, the proposed method supports parallel sampling processes, as shown
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User Configure Sampler SCAM
launcher

Jobs

Data
collectorⅠ: Sampling and data collection

Ⅱ: Training of surrogate
 models and SA

Ⅲ: Parameter optimization and validation

Sampling of cases with
sample sequences

Sampling
Results

SA methods

Morris Delta
Sobol HDMR

RBD-FAST

Single 
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Combined
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Optimized
results
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Finer parameter
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LR RF

MLP
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Figure 1. The overall workflow of the proposed method. Part I performs the sampling and the collection of results of parallel instances. Part II

uses traditional SA methods to derive sensitivities of individual parameters, and at the same time, reuse the samples to derive learning-based

surrogate models. Combining the surrogate models, we can then also perform joint sensitivity analysis of a set of parameters. Guided by the

SA results from Part II, Part III performs parameter tuning, also with the surrogate models. SCAM launcher, the data collector and the jobs

therein represent the batch execution of the SCAM algorithm, which is described in more detail in Figure 2.
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Data
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Job(0,0)

Figure 2. Detailed parallelism schematic when running a large number of instances of multiple cases simultaneously. In this process the

required SCAM tasks are launched simultaneously by the launcher and the results of their runs are collected by the data collector.

in Figure 2. Since SCAM is a single-process task and the computation time per execution is also short, it is feasible to execute175

a large batch of SCAM instances during the sampling stage.

Specifically for the application scenario in this paper, the execution process of the workflow is as follows.

1. Sampling and data collection (shown as Part I in Figure 1): In this part, our tool generates the sequence of samples to

investigate in the sampling step. Our tool currently supports the Sobol sequence, which can later be used by the Sobol,

Delta (Plischke et al., 2013), HDMR (Li et al., 2010), and RBD (Plischke et al., 2013) SA methods, and the Morris180

sampling sequence, which can later be used by the MOAT method (Morris, 1991). Users are suggested to adjust the size

of the sequence according to the currently available computational resources. As the results of this step will be used as

the training set for generating the surrogate model, users are encouraged to run a large batch when parallel resources are

available, so as to improve the performance of the resulting surrogate model. The process of launching the parallel cases

and collecting the results is handled by the SCAM launcher and collector.185

2. Surrogate model training and sensitivity analysis (shown as Part II in Figure 1): Based on the sampling results from the

Morris or the Sobol sequence, we integrate existing methods, such as MOAT, Sobol, Delta, HDMR, and RBD to achieve

their individual evaluations of each single parameter’s sensitivity, as well as a comparison result of these methods. We

also use the sampling results of the Saltelli sequence and the Morris sequence, to train regression including neural
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network (NN) based surrogate models. In this section, different regression methods are used to compare their fits and190

the best fitting method to train the final surrogate model. With the efficiency to project a result in seconds rather than

minutes, we can apply it for evaluation of sensitivities of a combination of multiple parameters.

3. Parameter tuning and validation (shown as Part III in Figure 1): With the NN-based surrogate model to cover expanded

search space with less time, we also propose an optimization method that combines grid searches by the surrogate model,

which achieves better results with less compute time. The results of parameter tuning are then validated through running195

of real SCAM models. In addition, at the very end, we perform a comparison on the optimization results between the

joint optimization across five cases and the independent optimization of the five cases. Results demonstrate the different

and the correlation of different cases, and the potential of performing grid-specific tuning in the future.

3 Methodology

3.1 Sampling of SCAM200

As an important preprocedure, the sampling provides the basis for analysis of SA. It will generate a sequence of changing

inputs and parameters to observe the corresponding change in the output. The different mathematical approach that we take to

perform sampling would certainly affect the features that can be captured from the system.

In our proposed workflow, we integrate both Morris and Saltelli for the sampling step in our tuning workflow, as both of

them are still used in many climate model related SA studies (Pathak et al., 2021). The Morris sampling drives the MOAT205

SA module afterwards, while the Saltelli sampling drives four different SA modules (Sobol, Delta, HDMR, and RBD-FAST)

shown in Table 5. The number of samples generated by these two sampling methods follows the following two equations:

SMorris =NMorris × (D+1)

SSaltelli =NSaltelli × (2D+2)210

Here, S is the number of samples generated by the two methods, N is the coefficient, and D is the dimension of the problem to

be solved, that is, the number of parameters. Since D = 11 in this paper, the number of samples generated should be a multiple

of 12 for Morris. For Saltelli, the sample number needs to be a multiple of 24. Taking into account the computational resources

we have, we decide another S=768, where NMorris is 64 and NSaltelli is 32.

After sampling, we will conduct a preliminary analysis of the sampled results to find out the proportion distribution in which215

the output results are better than the control trials under different values of each parameter. RMSE (Root mean square error)

will be used to measure the error between the output and the observed values and is defined as follows.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (1)

Where ŷi is the output at the ith time step of the current sample, while yi is the observation at the corresponding time step.
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Table 5. SA methods integrated in the workflow and used as a cross-reference to the proposed method.

Name of method Abbr. Reference

Morris sensitivity analysis Morris Morris (1991)

Delta moment-independent measure Delta Plischke et al. (2013)

Sobol’ sensitivity analysis Sobol Sobol (1993)

High-dimensional model representation HDMR Li et al. (2010)

Random balance designs fourier amplitude sensitivity test RBD-FAST Goffart et al. (2015)

3.2 Training a learning-based surrogate model220

Surrogate models are an important tool to speed up our large-scale parametric experiments. It can replace the running process

of the original model, thus saving computing resources. The essence of training surrogate models for SCAM is a regression

analysis problem. In this paper, we introduce the following regression methods to generate surrogate models. These include

Linear regression (LR,Yan et al. (2015)), but also ensemble learning methods such as Random forest (RF, Breiman (2001))

and eXtreme Gradient Boosting (XGBoost, XingFen et al. (2018)). Meanwhile, we also incorporate methods that use neural225

networks, such as Multilayer Perceptron (MLP, Tang et al. (2016)) and Residual Network (ResNet, He et al. (2016); Shi et al.

(2022)). Compared to other networks, ResNet has the advantage of using less pooling. Meanwhile, most neural networks have

fully connected layers before the output layer, so they have the disadvantage of losing part of the information of the input data

as it passes through these layers. Therefore, ResNet has the advantage of retaining the complete information of the input data.

The reason is that it does not have a fully connected layer other than the output layer. ResNet18 with a depth of 18 layers is230

used in our proposed workflow.

In order to combine the various regression analysis methods described above, in this paper we design an adaptive scheme

to determine the method that best captures the non-linear characteristics of the original model, and thus obtain the most

appropriate surrogate model. To keep an acceptable level of accuracy of surrogate models, we choose to train respective

models for each different SCAM case (the underlying assumption is that the model should learn the different patterns in235

different SCAM case locations). As the Saltelli sequence of samples have a good representation of the entire parameter space,

we expect the model to perform generally well in different parameter combinations. In addition, for the hyper-parameters in

the process of training the surrogate model, ablation experiments will also be performed to determine the most appropriate

hyper-parameters, leading to better training.

11



3.3 Sensitivity analysis for a single parameter and combinations of parameters (enabled by the NN-based surrogate240

model)

The SA methods, similar to the climate model itself, have their corresponding uncertainties. The SA methods provide a best

estimation of each parameter’s sensitivity, according to their respective analytical principles. Therefore, each different method

might have its advantages and disadvantages in different ranges of the parameter values.

As a result, in our workflow shown in Figure 1, we choose to integrate multiple SA methods, including the ones that can245

be built on the Sobol sequence, such as Delta, HDMR, and RBD-FAST, and the Morrison
::::::
Morris method, which is still used

often for climate models, due to its efficiency advantage. The integration of multiple methods enables us to
:::::
better evaluate the

uncertainty of different SA methods. As the sensitivity values calculated by the different methods are of different orders of

magnitude, these sensitivities have been normalised
::::
using

::::::::
min-max

::::::
method

:
for comparison purposes.

The parameters may interact with each other, and the effects of multiple parameters on the simulation results may be su-250

perimposed. Therefore, tuning multiple parameters generally have a more significant effect than tuning a single parameter.

With the help of commonly used sensitivity analysis methods mentioned above, it is easy to obtain the sensitivity of individual

parameters. However, in cases where we need to identify and tune a set of parameters in a combined way, both the SA and the

tuning task would involve a significantly improved level of compute resources.

Here, we take an example of analyzing a combination of M different parameters, and adopt a grid-based sampling approach255

to explore the sensitivity. Assuming that we divide the possible value ranges of each parameter into L levels, to cover a complete

grid with possible changes of all M parameters, we need to explore LM different combinations. Thus, in the sampling stage,

we would need to apply the above LM parameter values to SCAM to obtain the same number of simulation results, and find

the result with the largest difference from the outputs from default value and its corresponding parameter value combination.

In this scenario, letting N be the number of simulations required to carry out a set of tests, we have:260

NMPP= C ×
(
D
p

)
×Lp

where C represents the number of cases to be tuned by user, D represents the total number of parameters used for study, p

represents the number of parameters we perturb in each test, and L represents the number of levels we cover within the value

range of each parameter.

Combining Equation , when we do a combined study to identify and tune a most sensitive set of three different parameters, if265

L= 10, the number of tasks to run is already at the level of multiple thousand. If we expand the case to four or five parameters,

the number of tasks would grow rapidly to tens of millions of runs. Even for the SCAM model, although the computational

cost of a single run is not that large, such a combined cost becomes impractical.

An obvious benefit of using a surrogate model for training is that it is very fast to compute. Since the model has been trained,

the time taken to output the surrogate results is much shorter. Therefore, we can try as many combinations of parameters as270

possible with less computational resources. By applying the trained surrogate model, we will test the maximum fluctuation in

the output of each case when the number of parameters adjusted at the same time is different. This way, we can determine the
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number of parameters in the combination, taking into account the tuning effect and the amount of computation.
::::
will

:::
aid

::
in

:::
our

:::::::::::::
decision-making

:::::::
process

::
to

::::::::
determine

:::
the

:::::
scale

::
of

::::::::::
meaningful

:::
and

::::::::
beneficial

:::::::::
large-scale

::::::::::::::
multi-parameter

::::::::::
perturbation

:::::
tests.

Here we look at which combinations of three parameters lead to the most significance in output while taking into account275

the computational overhead (using PRECT as an example). The utilization of the learning-based surrogate model, on the other

hand, provides a more feasible solution to this problem. Since the surrogate model has a very short running time and almost

does not need to consider the problem of job queuing time, it makes it possible to complete a large scale parameter experiment

in a short time.

3.4 Parameter tuning enhanced with NN-based surrogate model and grid search280

After the most sensitive sets of parameters have been found, the stage of optimization will begin.

In the optimization stage, on the basis of combining the existing optimization algorithms (such as GA, PSO, WOA, etc.),

we propose an enhanced optimization method based on grid search. By using grid search, the search scope can be further

narrowed before and during the call to the existing optimization algorithm, so as to improve the efficiency of searching for

better solutions. The process is as follows.285

1. Determine the overall parameter space range for conducting the grid search based on the initial setup of the experiments.

2. The simulation output values corresponding to these grids are calculated in the surrogate model. Then the best performing

points are selected and the new finer-grained search space is determined based on the aggregation of these points.

3. The optimization algorithm is carried out in the newly defined space and depending on the available computational

resources it is decided whether SCAM is invoked to compute in each iteration round. Meanwhile, the final results will290

also be substituted into SCAM for verification.

4. If the same optimization result is obtained in three consecutive iterations, or less than a certain threshold of improvement

compared to the last, the grid search operation of the first two steps is performed again, thus further reducing the search

space, as can be seen from Algorithm 1. In this step, a new parameter space will be constructed with the position of the

current best point at the centre and the distance of each parameter from the last best point as the radius.295

5. After the refinement of the parameter search space, if the result remains the same, the optimization process can be

considered to be over and SCAM can be run again using the derived parameters to verify the optimization results.

In Algorithm 1, Yi is the value of the function in the ith iteration, ε is the threshold at which the results converge, p is the

total number of parameters to be tuned, xj,i is the coordinates of xj in the ith iteration,Xj denotes the maximum and minimum

values initially set for xj , and X∗
j denotes the maximum and minimum values of xj in the upcoming grid search. Note that if300

one of these coordinates is outside the initial parameter space, the original parameter space boundary will be used as the new

boundary.
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Algorithm 1 Optimization process combined with grid search.

if Yi−Yi−1 < ε and Yi−1−Yi−2 < ε then

for j = 1 to j = p do

if xj,i− |xj,i−xj,i−3|>Xj,min then

X∗
j,min = xj,i− |xj,i−xj,i−3|

else

X∗
j,min =Xj,min

end if

if xj,i + |xj,i−xj,i−3|<Xj,max then

X∗
j,max = xj,i + |xj,i−xj,i−3|

else

X∗
j,max =Xj,max

end if

end for

end if

Grid seach.

return xj,i+1 and Yi+1

3.5 Case correlation analysis based on Pearson correlation coefficient

Following the end of the tuning process, we further perform a comparison study among different cases, to derive valuable in-

sights that would potentially lead to a physics module design that can accommodate the different features in different locations.305

In our proposed method, the Pearson correlation coefficient method is used to measure the similarity between two cases

(Schober et al., 2018). This coefficient is defined as the quotient of the covariance and standard deviation between two variables.

By analyzing the similarity between the ‘optimal’ parameters of each case, these cases can be clustered. In this process, we

can explore whether for similar types of case, they may have similar responses to various parameters. This will also help us

choose better parameter combinations when analyzing other cases, and even regional and global models, so as to achieve better310

simulations. The implementation is shown below.

1. Search the sensitive parameter sets for each output variable in each case.

2. For each case, the occurrence times of each parameter in the sensitive parameter combination are accumulated to obtain

a variable of M dimension, where M is the number of parameters. For example, for a combination of three parameters,

the vector can be expressed as (V alue1,V alue2,V alue3).315

3. The correlation between vectors of each case can be computed by the Pearson correlation coefficient method.

By the above procedure, we can obtain the similarity of the set of sensitive parameters among the cases. The correlation

between different cases can also be analyzed for the case of finding the optimal values in the same parameter space. After each
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case has found its optimal parameter values, this set of parameter values can also be represented by vectors. The same approach

can be used to analyze the correlation between these vectors.320

4 Experimental results
:::::::::::
Experiments

4.1 Sampling of the SCAM cases

As mentioned earlier, the sampling scheme, which determines the set of points to represent the entire parameter space, is of

essential importance for the following sensitivity analysis and parameter tuning steps. Considering the compatibility between

the sampling methods and the SA methods, our platform includes both the Morris (driving the MOAT SA method) and the325

Sobol sampling scheme (driving the Sobol, Delta, HDMR, and RBD-FAST SA methods). We use a total of 7,680 samples,

with 1,536 samples for each of the five SCAM case. Of these, half (i.e. 768 samples) are used for MOAT, while the remaining

half are used for the Sobol sequence. In this part of the experiment, we use the job parallelism mechanism mentioned earlier in

the text to execute these sample cases.

In our sampling, SA, and tuning study, we focus on the total precipitation output (PRECT). Figure 3 reflects the proportion330

of PRECT that outperforms the control experiments when each parameter is tuned from low to high in the range of values

taken. From the results, we can see that for different cases there are differences in their response to parameter changes. Of

particular interest is the distribution of pz4(tau). We can clearly see that for GATEIII, when the value of tau is small, there are

more good outputs; However, for the other cases, it is that when the value of tau is large, there are more outputs that perform

well. It can also be seen from the proportion that tuning tau can lead to more good outputs. This is also in line with the results335

of our later experiments.

To further verify the conclusions here, we performed a single-parameter perturbation test on tau while keeping the other

parameters as default values. Figure ?? shows the change of PRECT for different pz4 (tau) values in different cases. Even for

the same parameter and the same parameter space, the trend of their effects on PRECT varies, and even in opposite directions.

For example, increasing tau tends to increase total precipitation in GATEIII, while in the other cases it brings the opposite340

result. Different from other cases, this case is a ocean case and is located in the Atlantic Ocean.

4.2 Training learning-based models for parameter tuning

After obtaining the sampling results, we can train the surrogate model for each of the five cases using the method presented

in Section 3.2. The samples generated by the two sampling methods are combined to form the dataset on which we train

our surrogate model. In other words, each case has 1536 samples, and all cases have a total of 7680 samples to participate345

in the training. We split the training and test set in an 8:2 ratio and use RMSE as the loss function during training. For the

hyper-parameters in training, we also conduct ablation experiments to achieve better training results. The final hyper-parameters

used to train the neural network are shown in Table ??.
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Figure 3. The proportion of sampled results where the output is better than the control experiments (i.e. experiments using default values).

The x-axis shows the range of values for each parameter.
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Hyper-parameters including learning rate and batch size from ablation experiments. Case Learning rate Batch size MLP 0.01

32 ResNet 0.01 32350

We trained surrogate models using five regression methods and used RMSE as a loss function to measure the training error.

A comparison of the various methods is shown in Table 6. It can be seen that ResNet has the best performance on the five

cases, and its error on the test set is lower than that of the other methods. Therefore, we will use the surrogate model trained

by ResNet
:::::::::
ResNet-18 for the following experiments.

:::
For

:::
the

:::::::::::::::
hyper-parameters

::
in

:::::::
training

::::
using

::::::::::
ResNet-18,

:::
we

::::
also

:::::::
conduct

::::::
ablation

:::::::::::
experiments

::
to

::::::
achieve

:::::
better

:::::::
training

::::::
results.

::::
The

:::::
results

:::
of

::
the

:::::::
ablation

::::::::::
experiment

:::::::
indicate

:::
that

:::::
using

:
a
:::::::
learning

::::
rate355

::
of

::::
0.01

:::
and

:
a
:::::
batch

::::
size

::
of

:::
32

:
is
::::::::::
appropriate.

:

Table 6. Comparison of errors during training using various methods. RMSE is used as the loss function. The errors are from test sets.

Case LR RF MLP XGBoost ResNet
::::::::
ResNet-18

ARM95 0.235 0.197 0.751 0.184 0.038
::::
0.172

ARM97 0.188 0.158 0.555 0.136 0.045
::::
0.121

GATEIII 0.646 0.432 1.335 0.538 0.137
::::
0.396

TOGAII 0.179 0.112 0.223 0.118 0.041
::::
0.107

TWP06 0.344 0.220 0.594 0.220 0.040
::::
0.203

4.3 Single-parameter sensitivity analysis across different cases

After sampling, five SA methods listed in Table 5 are used to compute the sensitivity of these parameters to the PRECT,
::::::
Q850,

::::
T850

::::
and

::::::::
CLDTOT output. In addition, for the surrogate models we trained, we also adopted the single-parameter perturbation

method to test their sensitivities. Heat maps are used to characterize the sensitivities of each parameter. As can be seen from360

Figure 4, there are differences in the results obtained from different SA methods.

From the results
::
of

:::::::
PRECT, it can be seen that the response of ARM95 and ARM97 to each parameter is basically the same,

only a few quantitative differences exist in parameters such as pz6(alfa), pu2(kevp )
:::::::::::
zmconv_alfa,

::::::::::::
uwshcu_kevp and so on.

Moreover, both cases are sensitive to pz4(tau)
::::::::::
zmconv_tau, which significantly outweighs the other parameters. For GATEIII,

we can see that pz4(tau )
:::::::::
zmconv_tau

:
similarly has a significant influence on it, but pz6(alfa ) and pu3(krm)

:::::::::::
zmconv_alfa365

:::
and

:::::::::::
uwshcu_rkm also have a large influence. In addition, the two SA methods of Morris and Sobol simultaneously show that

pc2(rhminl )
:::::::::::
cldfrc_rhminl

:
also has a non-small effect. For TOGAII, it is interesting to find that tau and

::::::::::
zmconv_tau

::::
and

::::::
cldfrc_rhminl have similarly significant effects, but it is worth noting that the differences between the individual parameters

are not as wide as in the other cases. However, tau still has a far greater influence than other parameters on TWP06, which is

similar to ARM95/97. But the difference is that pz2(
::::::::::
Furthermore,

:::
the

::::::
impact

:::
of

:::::::
zmconv_c0_ocn ) affects it a little bit more.370

This is also consistent with its position
::
on

::::
this

::::
case

::
is

:::
also

::::::::
notable.

::::
This

::::::
clearly

:::::::::::
demonstrates

::::
that

:::::
cases

::::::
located

::
in

::::::::
different

:::::::
locations

::::::
exhibit

::::::
varied

::::::::
responses

::
to

:::::::::
parameters. To sum up,

:::::::
zmconv_tau has a very significant significance for all cases.
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Figure 4. The comparison of the sensitivity of each parameter to PRECT comes from different analysis methods (including our proposed

LB-SCAM) in five cases. Sensitivity results were normalised. (a)ARM95, (b)ARM97, (c)GATEIII, (d)TOGAII, (e)TWP06. The qualitative

and quantitative similarities and differences in the sensitivity of each case to each parameter are reflected.

We also perform a comparison of sensitivity analysis results between different
:::::::
compared

:::
the

::::::::::
differences

:::::::
between

:::::
these SA

methods. To demonstrate the applicability of using our learning-based surrogate model in the SA process, we also show the

SA results by using our trained learning-based surrogate models. For comparison across different methods, the most sensitive375

parameter obtained by each method is tau, but there are differences in the sensitivity of other parameters to some extent. For

example, Delta and HDMR yield slightly greater sensitivity for the other parameters. In addition, Morris concluded that the

sensitivity of these parameters is significantly greater than that of the other methods, that is, the gap between tau and the other

parameters is smaller. This may be related to the sampling method, as Morris needs to use a different sequence of samples.

::
As

:::
can

:::
be

::::
seen

::::
from

::::::
Figure

::
5,

::
for

:::
the

::::::::
humidity

:::::::
variable

:::::
Q850,

:::
we

:::
can

::::::
clearly

:::
see

::::
that

::
all

:::
five

:::::
cases

:::
are

:::::
highly

::::::::
sensitive

::
to

:::
the380

::::::::
parameter

:::::::::::
zmconv_tau.

::
In

::::::::
addition,

:::
the

::::::::
sensitivity

:::
of

::::::::::
zmconv_alfa

::
is
::::
also

::::::::
relatively

:::::
high.

::::
The

::::
cases

:::::::::::::::
TOGAII/TWP06

::::::
exhibit

:::::
higher

:::::::::
sensitivity

::
to

:::::::::::::::
zmconv_capelmt,

:::::
while

:::
the

:::::
other

:::::
three

:::::
cases

:::::
show

:::
less

:::::::::::
pronounced

:::::::::
sensitivity.

::
In

:::::
terms

:::
of

:::::::::
sensitivity

::::::
analysis

::::::::
methods,

:::
the

:::::::
HDMR

:::::::
method

:::::::
provides

:::::
more

::::::::
balanced

::::::::
parameter

:::::::::::
sensitivities,

::::
and

:::
this

::
is

::::::::::
particularly

::::::
evident

:::
in

:::
the

:::::::
TOGAII

::::
case.

:

::
As

::::
can

::
be

::::
seen

::::
from

::::::
Figure

::
6,

:::
for

:::
the

::::::::::
temperature

:::::::
variable

:::::
T850,

:::
we

:::
can

:::::::
observe

:::::
some

::::
more

:::::::::
interesting

:::::::::::
phenomena.

::
In

:::
the385

:::::::
ARM95

::::
case,

::
all

::::::::
methods

:::::
except

::::::
Morris

:::::::
consider

::::::::::::
cldfrc_rhminl

::
as

:::
the

::::
most

:::::::::
significant

::::::::
parameter

::::::::::
influencing

:::
the

::::::
results,

:::::
while

:::::
Morris

:::::::::
concludes

::::
that

:::::::::::
uwshcu_kevp

::
is
::::

the
::::::::
strongest,

::::::::
followed

::
by

::::::::::::
uwshcu_rpen.

:::
In

:::
the

:::::::
ARM97

:::::
case,

:::
we

:::
find

::::
that

::::
each

::::
SA
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Figure 5. The comparison of the sensitivity of each parameter to Q850 comes from different analysis methods (including our proposed

LB-SCAM) in five cases. Sensitivity results were normalised. (a)ARM95, (b)ARM97, (c)GATEIII, (d)TOGAII, (e)TWP06. The qualitative

and quantitative similarities and differences in the sensitivity of each case to each parameter are reflected.

::::::
method

::::::::
identifies

:::::::
different

:::::
most

:::::::
sensitive

::::::::::
parameters,

::::::
posing

:
a
::::
new

::::::::
challenge

:::
for

:::
our

::::
next

::::
step

::
in

::::::::
parameter

:::::::::::
optimization.

::::
For

::
the

:::::::::
remaining

:::::
three

:::::
cases,

:::::
there

:
is
::::

less
::::::::::
controversy

:::::::
between

::::::::
different

::::::::
methods.

::
In

::::
each

:::::
case,

::::::::::
uwshcu_rkm

::::
has

::::::::::::
overwhelming

:::::::::
dominance,

::::
and

::
in

::::::::
GATEIII

::::
and

::::::::
TOGAII,

:::
the

::::::
impact

:::
of

::::::::::
zmconv_tau

::
is
::::
also

::::::::::::
considerable.

:::
For

::::::::
TOGAII,

:::
the

:::::::::
sensitivity

:::
of390

::::::::::::::
zmconv_capelmt

:::
and

:::
alfa

::::::
should

:::
not

:::
be

::::::::::
overlooked.

:::
For

:::
the

::::
total

::::::
cloud

:::::::
amount

::::::::
CLDTOT,

::::
we

:::
can

::::
also

:::::::
observe

::::::::::
interesting

::::::::::
conclusions

:::::
from

::::::
Figure

::
7.

::::
For

:::
the

::::::::::
ARM95/97

:::::
cases,

:::
the

::::::
results

::::
from

:::::::
various

:::::::
methods

:::
are

::::::::::
consistent:

:::
the

:::::::::
parameters

::::::::::::::
zmconv_c0_lnd,

:::::::::::
zmconv_tau,

:::
and

:::::::::::
zmconv_alfa

:::::
have

:
a
:::::::::
significant

::::::
impact

::
on

:::
the

:::::::
results.

::::
This

::::::
reflects

:::
the

:::::::::::
convergence

::
of

:::
the

:::
two

::::::
cases.

::
In

:::
the

::::
case

::
of

:::::::
TWP06,

:::
the

:::::
most

:::::::::
noticeable

:::::
factors

:::
are

::::::::::::
uwshcu_rkm,

:::::::
followed

:::
by

::::::::::::
cldfrc_rhminl.

:::
The

::::::::::
conclusions

::::::
drawn

::
by

:::::::
various

:::::::
methods

::::::
remain

:::::::::
consistent.395

4.4 Joint multi parameter sensitivity analysis using learning-based
:::::::::
surrogate models

The variation of SA among different three-parameter combinations in five different cases. The same index indicates the same

combination of parameters.

Comparison of different combinations of parameters under the same optimization algorithm after SA filtering and sorting.

Three representative parameter combinations are selected for each case. It can be seen that a more sensitive parameter combination400

can lead to a better tuning effect.
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Figure 6. The comparison of the sensitivity of each parameter to T850 comes from different analysis methods (including our proposed

LB-SCAM) in five cases. Sensitivity results were normalised. (a)ARM95, (b)ARM97, (c)GATEIII, (d)TOGAII, (e)TWP06. The qualitative

and quantitative similarities and differences in the sensitivity of each case to each parameter are reflected.
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Figure 7. The comparison of the sensitivity of each parameter to CLDTOT comes from different analysis methods (including our proposed

LB-SCAM) in five cases. Sensitivity results were normalised. (a)ARM95, (b)ARM97, (c)TWP06. The qualitative and quantitative similarities

and differences in the sensitivity of each case to each parameter are reflected.
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Figure 8. The maximum fluctuation in the output of each case when perturbing one to four parameters. The Y-axis represents the largest gap

between the maximum and minimum values of precipitation output that can occur during the simulation period.

As mentioned earlier, by using the learning-based surrogate models, we now have the capability to explore the sensitiv-

ity of multi-parameter combinations. How many parameters is it reasonable to tune at the same time? Figure 8 illustrates

the maximum PRECT output fluctuation that can be brought by different parameter combination sizes. As the number of

parameters to be tuned simultaneously increases, the fluctuations that can be brought about are also greater. However, the405

computation amount increasesexponentially during the test. Therefore, although the effect of
::::
there

::
is
::::

also
::
a
::::::::
marginal

:::::
effect

::
as

:::
the

:::::::
number

::
of

::::::::::
parameters

:::::
tuned

:::::::::::::
simultaneously

:::::::::
increases.

:::
We

::::
can

:::
see

::::
that

:::::
when

:
tuning four parametersis better than

tuning three parameters
:
,
:::
the

::::
gain

:::::
effect

:::
on

:::
the

:::::
result

::
is

::::::
already

::::
not

:::::::::
significant.

:::::::::
Therefore, considering the tuning effect and

the computational overhead, we decided to use the experiment of tuning three parameters as a demonstration
::::
range

::
of

:::
the

:::::
most

:::::::
accurate

::::::::
parameter

::::::::::
adjustment,

:::
we

::::
limit

:::
the

:::::::
number

::
of

:::::::::
parameters

::::::::
adjusted

::::::::::::
simultaneously

::
to

:::::
three. In addition, we also note410

that for the ARM97 and TOGAII, their precipitation response for four parameters is even smaller than the response of the

GATEIII for tuning one parameter. An important reason for this is that these two cases themselves have smaller precipitation

values than GATEIII, whereas the Figure 8 uses the absolute values of precipitation.

As our study investigates 11 parameters related to PRECT
:::
the

::::
four

:::::::
variables, there are a total of 165 three-parameter com-

binations. It would be difficult to test all these combinations using the original SCAM model, due to the high computational415

overhead. However, with the help of the surrogate model, we can instead accomplish these tests in less than a minute.

For each case, the magnitude of the change in output has been evaluated for all possible combinations of the three parameters

in turn, with the help of the surrogate model trained. This is shown in Figure ??. It can be seen from this that there are

significant differences in the magnitude of output variation that can be brought about by different combinations of parameters.

The maximum variation relative to the default test is up to 35%. The comparison with the previous tests also fully illustrates420

that the combined tuning effect of the three parameters is more significant.

In order to show the impact of different parameter combinations on the optimization results, the first, middle and last ranked

parameter combinations are selected and combined with the same algorithm to carry out the optimization. In the scenario where
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the three parameters are tuned, there are 165 combinations of parameters that can be tuned, so the combination ranked 83rd is

chosen as the one in the middle of the ranking. These combinations are listed in Table 7. Whale optimization algorithm(WOA,425

Mirjalili and Lewis (2016)) has been chosen as the method in this stage. Set the number of whales in the optimization algorithm

to 32 and the maximum number of loop iterations to 16.

RMSE is also selected as the metric of optimization effect. As can be seen from Figure ??, the higher ranked parameter

combinations do have smaller errors for the same optimization conditions. Especially for the case TOGAII, an inappropriate

combination of parameters can hardly lead to better results, which is therefore a good example of the need to choose the right430

combination of parameters as the object to be optimized. Next, we will explore further the sensitive parameter combinations.

Table 7. The most , middle and last sensitive parameter combinations selected for comparison to evaluate the differences
::
of

:::
each

::::::
output

::::::
variable.

Rank
:::::::
Variables

:
ARM95 ARM97 GATEIII TOGAII TWP06

Most
::::::
PRECT

:::
pz1,

:
pz4, pz6 , pc2

:::
pz1,

:
pz4, pz6 , pc2 pz4, pz6

:::
pz5, pu3 pz4, pu3, pc2 pz4, pz5, pz6

:::
pc2

Middle
::::
Q850 pz2

::
pz4, pz5, pc2

::
pz6

: :::
pz4,

:
pz5, pz6 , pu1

:::
pz4,

:
pz5, pz6 , pc2 pz5, pu6

:::
pz4,

:::
pz5, pu3 pz5, pu6

:::
pz4,

:::
pz5, pu3

Last
::::
T850 pz1, pz2, pz3

:::
pz3,

::::
pu2,

:::
pc2 pz1, pz2, pz3,

::::
pz6,

:::
pc2 pz1, pz2, pz3

:::
pz4,

::::
pu3,

:::
pc2

:::
pz5,

::::
pz6,

:::
pu3

:::
pz5,

::::
pu3,

:::
pc2

:::::::
CLDTOT

:
pz1, pz3, pu1

:::
pz4,

:::
pz6

:
pz1, pz3, pu1

:::
pz4,

:::
pz6

: : : :::
pz6,

::::
pu3,

:::
pc2

4.5 Joint optimization for SCAM cases combined with grid search and learning-based models

Take the sphere test function as an example of the optimization process after combining it with grid search. SOLO means using

the optimization algorithm alone, GRID means combined with grid search. The latter leads to faster convergence.

To validate a more efficient search method, we applied typical optimization algorithms and a grid search that combines them435

to find the optimum.

In order to verify the effectiveness of the method, we first choose Sphere function (Karaboga and Basturk, 2008) as an

example to carry out an optimization test. The trend of the meaning average error during the test is shown in the Figure ??. It

can be seen that the introduction of grid search not only helps us to understand the distribution pattern of the parameters, but

also helps to improve the performance of optimization process. The optimization process can converge earlier, while obtaining440

better tuning results. The parameter space used for optimization will be reduced to the range identified in the grid search

process above and more fine-grained optimization will be carried out.

Comparison of RMSE in different experiments. CTL refers to the control experiment using the default value. Baseline refers

to an experiment using only one optimization method. Optimized refers to the optimization experiment that combines the

surrogate model and grid search.445

Comparison of computational overhead with without using the surrogate model and grid search. The Y-axis is the total

computational hours.
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Figure 9. SCAM simulation output before and after tuning versus observed values in five cases. Where OBS indicates the observed

value, CTL indicates the output before tuning and OPT indicates the output after tuning. (a)ARM95, (b)ARM97, (c)GATEIII, (d)TOGAII,

(e)TWP06. It can be seen that the optimized output of each case is closer to the observation.

Consequently, experiments combining the grid search and optimization algorithms will be performed. As above, WOA is

still used as the optimization algorithm for this stage. To verify the correctness of the surrogate model, we also compare its

output with SCAM. The pair of their RMSE performance is shown in Table ??. It can be seen that the surrogate model for450

these cases has better predictive ability. Compared with SCAM, the maximum error is also no more than 3%.

For the effectiveness of the parameter tuning, the output after tuning is compared with the output of the control experiment

(i.e. before tuning) and the observed data after the individual cases had been tuned, as shown in Figure 9. Here, the experiments

with the best optimization results are chosen for comparison. The tuning of the SCAM parameters is quite productive on the

time scale. It is easy to see that in the control experiment there are several spikes where the simulated output is significantly455

higher than the observed values, as is the case in the first four cases. This is to say that these time steps, where the output is

significantly larger than the observation in the control trial, are reduced after optimization, making it closer to the observation.

Although still below the observed level at about 1300 steps of TOGAII, improvement is also reflected. However, for TWP06,

there are cases where the default output is significantly smaller than the observed value. The performance of this case also
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Figure 10.
:::
The

::::::::
optimized

:::::
results

::
of
:::

the
::::::::
sensitivity

::::::::
parameter

::::::::::
combinations

:::
for

:::
the

::::
T850

:::::
output

::::::
variable

::
in
:::

the
:::::::
ARM97

::::
case,

::
as

:::::::
provided

::
by

::::::
various

::
SA

::::::::
methods,

::
are

::::::::
compared

::::
with

:::
the

:::::
control

:::::::::
experiment.

:::::
D&H

::::::::
represents

::
the

:::::::
common

:::::::::
conclusions

::::::
derived

::::
from

:::
the

:::::
Delta

:::
and

:::::
HDMR

:::::::
methods.

improved after optimization. This demonstrates the significance of the parameter tuning provided by the workflow for model
:::
our460

:::::::
proposed

::::::::::
LB-SCAM.

A cross-sectional comparison of the effects of these sets of experiments is shown in Figure ??. Meanwhile, the computational

overheads of the various strategies are compared, as shown in Figure ??. The computational overhead here includes the time

in the job management system when the batch is queued waiting to be allocated computational resources.

In contrast to using the optimization algorithm alone, the grid search combined with the optimization algorithm can achieve465

better results on these SCAM cases. The use of NN trained surrogate models for parameter tuning can further save computa-

tional resource overhead and, in terms of results, can meet or exceed traditional optimization methods in most cases.

::
In

:::
the

::::::::
previous

:::::::
sections,

:::
we

::::::::::
mentioned

:::
that

::::::::
different

:::::::::
sensitivity

:::::::
analysis

::::::::
methods

::::::
yielded

::::::::
different

::::::::::
conclusions

:::
for

::::
the

:::::
output

:::::::
variable

:::::
T850.

:::::::::
Therefore,

:::
to

::::::::::
demonstrate

:::
the

:::::::::::
performance

:::::::::
differences

::::::
among

:::::::
various

:::::::
methods,

:::
we

:::::::
decided

::
to

::::
test

:::
the

::::::::::
optimization

::::::
results

:::
for

:::::::
different

:::::::::
parameter

::::::::::::
combinations,

::
as

::::::
shown

::
in

:::::
Figure

::::
10. Therefore, we can find that it is possible to470

achieve a win-win situation in terms of computational resources and computational efficiency by training a surrogate model of

SCAM based on NN. The model can get an enhancement in performance
:::::::::
LB-SCAM.

:

::::
After

:::::::::::
optimization,

:::::::
SCAM

::::
cases

::::
can

:::
get

:::::::::::
enhancement

:
from 6.4%-24.4% in precipitation

::::::
PRECT

::::::
output,

::::::::::::
11.9%-42.3%

::
in

::::
Q850

:::::::
output,

:::::::::::
5.72%-22.4%

::
in

:::::
T850

::::::
output,

:::
and

:::::::::::
3.8%-26.1%

::
in

::::::::
CLDTOT

:
output. Thus, using the proposed method, the main

computational overhead comes from sampling and training. The computational overhead can be saved by more than 50% com-475

pared to the case where the above experiments are all run using the full SCAM. In particular, the proposed method demonstrates

its effectiveness and usability for situations such as large-scale grid testing, which is almost impossible to accomplish using

the full SCAM.
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These results also show that the method used in the workflow outperforms previous methods in most cases. Furthermore, the

methods in the workflow test a wide range of combinations of values in the parameter space. Thus using the workflow provides480

a more complete picture of the parametric characteristics of the different cases in SCAM than optimization algorithms that

only provide results but no more information about the spatial distribution of the parameters. Doing a finer-grained grid search

in the vicinity of the optimal value point is also an approach that is worth testing in the future. From the experimental results, it

can be seen that utilizing the surrogate model through the sampling with the optimization algorithm not only saves resources,

but also improves the optimization effect, and meanwhile improves the robustness of the optimization method.485

4.6 A deeper exploration of the relationships between the cases
:::
for

:::::::
PRECT

The training of surrogate models makes it possible to conduct larger scale experiments in a shorter period of time. For the

most sensitive combinations of parameters in each of the cases obtained based on the NN method, we are able to explore the

distribution pattern of the results using a grid search. These experiments are carried out on the surrogate model for reasons of

improving experimental efficiency.490

Grid search can also be performed to determine the possible aggregation range of the better-valued solution. To make it

easy to compare the same and different cases, we specify the same parameter space for each case. Based on the combined

ranking of sensitive parameters under each case, we choose pz4(tau), pz6(alfa ) and pc2(rhminl )
::::::::::
zmconv_tau,

:::::::::::
zmconv_alfa

:::
and

:::::::::::
cldfrc_rhminl

:
as the parameter space common to all cases.The results are shown in Figure 11. The value of each parameter

is also divided into 11 levels within its upper and lower bounds. The parameter space remains the same as originally set at the495

beginning of this paper.

When tuning the same sensitive parameter combination, the value of each parameter after optimization. Parameter ARM95

ARM97 GATEIII TOGAII TWP06 Multi(a)Multi(b)Multi(c)Multi(d) pz4 5118 5343 1800 3000 5400 5343 3800 4600 5199

pz6 0.1297 0.1234 0.0722 0.0833 0.1389 0.1361 0.0611 0.13710.0796 pc2 0.8006 0.8006 0.9308 0.8419 0.8863 0.80060.8197

0.8006 0.8131500

As can be seen, after the parameter space has been replaced, the better-valued solutions for each case show a clear trend

towards aggregation, and although the distribution of TOGAII is slightly scattered, it can still be grouped into a cluster. The

same parameter space is more conducive to cross-sectional comparisons. It is easy to see that the two land convection cases

are closer, which matches our expectations since the two cases are themselves co-located. They have relatively high tau and

::::::::::
zmconv_tau

:::
and

::::::::
zmconv_alfa, and relatively lowest

::::::
cldfrc_rhminl. For the three tropical convective cases, their distributions505

have their own characteristics. TWP06 has the highest tau and alfa, while TOGAII is in the middle for all parameters. The

parametric response distributions of GATEIII are much more different. Its better performance relies on lower tau and alfa, and

higher
:::::
cldfrc_rhminl. As a site that is far away from all other cases, this also coincides with the previous results.

From the results, it can be seen that the distribution of the better values are different for different cases within the same

parameter space. A typical example is the parameter pz4 (tau)
::::::::::
zmconv_tau. This reflects the fact that it may be useful and510

necessary to adopt different parameter configurations for different cases or regions.
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Ranked 1

Ranked 2-50

Ranked 51-200

(a) (b)

(c) (d) (e)

Figure 11. The distribution of better performing parameter solutions for PRECT in each case in the same 3D parameter space. (a)ARM95,

(b)ARM97, (c)GATEIII, (d)TOGAII, (e)TWP06. The points closest to the observed data are shown in red, those ranked 2-50 are shown in

olive, and those ranked 51-200 are shown in blue.

Now that we have discovered the pattern that the aggregation range of the more optimal solution for each case by applying

a full-space grid search in the same parameter space. From the experimental results, it can be seen that the two cases focusing

on land convection are most similar to each other, and two of three cases focusing on tropical convection are also more similar

to each other, except for GATEIII.515

Subsequently, we tried to combine several cases together for multi-objective grid search experiment. Based on the above

results, we classify the combination of cases into the following four scenarios: (a) two land convection cases, (b) three tropical

convection cases, (c) two western tropical Pacific cases, and (d) all five cases. The results are shown in Figure ??. It can be seen

that the distributions in scenario (a) is very close to the individual cases it contain. This is also in line with our expectations,

since the two cases themselves are located in the same location. Due to the inclusion of GATEIII in (b), its result is between520

GATEIII, TOGAII and TWP06. Considering that TOGAII and TWP06 are closer to each other, we designed (c) group of trials.

It is relatively closer to the results in TWP06. The results in (d) are closer to those in (a) and (c). At the same time, it also

exhibits greater clustering. The specific values are shown in Table ??. This can provide a basis for designing regional parameter

combinations and values later.
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Figure 12. Correlation of the optimal solutions of
:::::
PRECT

:::
for

:
the cases in the same parameter space. The similarity difference between

different cases can be seen.

Pearson correlation coefficient method is used to compare the best set of values for each case. The obtained similarity is525

shown in Figure 12. The average p-value in this experiment is less than 0.05, so it is relatively reliable. From this figure, we can

see that the parameter values taken between the two cases of land convection are positively correlated in the same parameter

space. The two of three cases of tropical convection, TOGAII and TWP06, are also positively correlated with each other.

The respective distributions of the above four cases are also positively correlated. The more special one is GATEIII, which

is negatively correlated with the remaining four cases. These results are also well matched to those obtained in the previous530

experiments. It is also clear from the results above that SCAM cases in similar locations and of the same type are more relevant

when it comes to parameterization.

5 Conclusions

In this paper, a learning-based integrated method for SCAM parameter tuning on the HPC is proposed which enables a fully

automated diagnostic analysis process from sensitive tests to parameter optimization and case comparison. The workflow535

makes it possible to run SCAM parameters on a large scale, thus allowing more trials on parametric scenario studies to be

carried out in a shorter period of time. An integration of several sensitivity methods approach is used for sensitivity analysis of

parameters, with just once sampling, the different SA methods can be invoked for analysis and their results combined.

With the enhancement of artificial intelligence and machine learning techniques, the role played by neural networks in

regression analysis has become increasingly evident. In our proposed experimental workflow, multiple regression methods540

including NNs incorporating sampling techniques are likewise used in the parametric analysis process of SCAM. A precursor

to sensitivity analysis: the results of the sampling are used to train an NN-based surrogate model, which validates the accuracy

of both the sensitivity analysis and improves the parameter tuning process by the surrogate model. In these stages, a grid
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search strategy for parameter space based on multi-parameter perturbations is used. With the computational capabilities of

the HPC, the method can search the most suitable parameter values within less iterations. The combination of grid search545

and optimization algorithms can also improves the performance of the optimization algorithm in model parameter tuning. In

addition, the application of neural network-trained surrogate models can also saves computational resources, which is beneficial

in achieving the goal of green computing.

To verify the completeness and validity of the proposed workflow, multi-group experiments based on five typical SCAM

cases is implemented on the workflow. The sensitivity of the above parameters to typical output variables related to precipi-550

tation is analyzed. Experiments based on the proposed workflow have shown that there are differences in the sensitivities of

the parameters with respect to the different cases and different output variables. This includes both the differences between the

different convection types of cases and the differences in the effects of the deep and shallow convective precipitation param-

eterization schemes on the respective precipitation. To summarise, determining the appropriate values for each of the SCAM

cases located at different locations facilitates is also meaningful for model development. This also provides a heuristic for555

future research on similar parametric schemes on other models.
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