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Abstract. The local inertial two-dimensional (2D) flow model on LISFLOOD-FP, so-called ACC uniform grid solver, has been 10 

widely used to support fast, computationally efficient fluvial/pluvial flood simulations. This paper describes new releases, on 

LISFLOOD-FP 8.1, for parallelised flood simulations on the graphical processing units (GPU) to boost efficiency of the existing 

parallelised ACC solver on the central processing units (CPU) and enhance it further by enabling a new non-uniform grid version. 

The non-uniform solver generates its grid using the multiresolution analysis (MRA) of the multiwavelets (MWs) to a Galerkin 

polynomial projection of the digital elevation model (DEM). This sensibly coarsens the resolutions where the local topographic 15 

details are below an error threshold ε and allows to properly adapt classes of land use. Both the grid generator and the adapted 

ACC solver on the non-uniform grid are implemented in a GPU new codebase, using the indexing of Z-order curves alongside a 

parallel tree traversal approach. The efficiency performance of the GPU parallelised uniform and non-uniform grid solvers are 

assessed for five case studies, where the accuracy of the latter is explored for ε = 10-4 and 10-3 in terms of how close it can 

reproduce the prediction of the former. On the GPU, the uniform ACC solver is always found to be 2-28 times faster than the CPU 20 

predecessor with increased number of elements on the grid, and the non-uniform solver can further increase the speed up to 320 

times with increased reduction in the grid’s elements and decreased variability in the resolution. LISFLOOD-FP 8.1, therefore, 

allows faster flood inundation modelling to be performed at both urban and catchment resolutions. It is openly available under the 

GPL v3 license, with additional documentation at https://www.seamlesswave.com/LISFLOOD8.0 (last access: 12 March 2023). 

 25 
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1 Introduction 

LISFLOOD-FP is a raster-based open-source hydrodynamic modelling framework that has been applied in many fields of earth 

sciences, including morphodynamic modelling (Coulthard et al., 2013; Ziliani et al., 2020), urban drainage modelling (Wu et al., 30 

2018; Yang et al., 2022), population mapping (Zhu et al., 2020), coastal flooding (Hirai and Yasuda, 2018; Seenath, 2018; Irwan 

et al., 2021), uncertainty quantification (Liu and Merwade, 2018; Beevers et al., 2020; Jafarzadegan et al., 2021; Karamouz and 

Mahani, 2021; Yin et al., 2022; Zeng et al., 2022) and coupled hydrological-hydraulic modelling (Siqueira et al., 2018; Towner et 

al., 2019; Hoch et al., 2019; Rajib et al., 2020; Makungu and Hughes, 2021; Nandi et al., 2022). It has undergone extensive 

developments and testing since its conception (e.g., Bates and De Roo, 2000; Hunter et al., 2005; Bates et al., 2010; Sosa et al., 35 

2020; Shustikova et al., 2020; Zhao et al., 2020), becoming a state-of-the-art tool for flood modelling applications at urban, 

catchment, regional and continental scales (e.g., Amarnath et al., 2015; Chaabani et al., 2018; Zhu et al., 2019; O'Loughlin et al., 

2020; Zare et al., 2021; Bessar et al., 2021; Chone et al., 2021; Asinya et al., 2021; Zhao et al., 2021). 

LISFLOOD-FP includes a variety of numerical schemes to solve the two-dimensional (2D) shallow water equations, 

which can be written as: 40 
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where Eq. (1) is the mass conservation equation and Eqs. (2-3) are the momentum conservation equations. In these equations h [L] 

represents the water depth, and qx = hu and qy = hv [L2/T] are the discharge per unit width in the x and y orthogonal directions, 45 

respectively, expressed involving the velocity components u and v [L/T]; r [L/T] is the prescribed rainfall rate, g [L/T2] is the 

gravitational acceleration, z [L] is the two-dimensional topographic elevation and nM is Manning’s coefficient [L1/6]. Along with 

the finite volume and discontinuous Galerkin schemes that solve the full form of Eqs. (1)-(3) (Shaw et al., 2021), two simplified 

schemes are also available in LISFLOOD-FP: a diffusive wave scheme, that neglects both acceleration and advection terms, and a 

local inertial scheme, that neglects the advection term but includes the acceleration term (hence, referred to as the ACC solver). 50 

The extra complexity of including the acceleration term in the ACC solver pays off with larger and more stable time steps than the 

diffusive wave solver (Hunter et al., 2006; Hunter et al., 2008; Bates et al., 2010; Wang et al., 2011). Compared to the finite 

volume and Galerkin schemes, the ACC solver is faster to run since it also does not involve an approximate Riemann solver 

(Shaw et al, 2021): it uses a hybrid finite difference/volume numerical scheme, in a staggered approach that evaluates continuous 

discharges across the grid elements to then achieve an element-wise update of averaged water levels (Bates et al., 2010). This 55 

staggered approach allows for retaining a compact computational stencil allowing to avoid the costs of deploying an approximate 

Riemann solver. Consequently, the ACC solver has been favoured to run fast and sufficiently accurate simulations for fluvial 

floods from rivers and/or for rainfall-driven pluvial floods, featured with gradually propagating 2D flows over rough areas with 

Manning parameters higher than 0.03 m1/6 (Neal et al., 2012b; de Almeida and Bates, 2013). It has received further developments 

to sustain its utility and speed for such applications: for instance, the ACC solver has been enabled with a subgrid channel model 60 

to integrate the flow from river channels with any width below that of the grid resolution (Neal et al., 2012a), and its efficiency 

maximised on the Central Processing Unit (CPU) with shared-memory parallelisation with an optimised treatment of wet-dry 

zones (Neal et al., 2018). Still, the ACC solver can be further sustained with alternative speed-up measures to enable faster and 

more efficient simulations across a wide range of spatial scales and grid resolutions (Guo et al., 2021).   

One useful speed-up measure is the capability of running the ACC solver on a non-uniform grid with sensibly coarsened 65 

resolutions in the smooth portions of the digital elevation model (DEM) alongside proper distribution of different classes of land 

use such as, for example, different classes of Manning parameters. Such a non-uniform grid can be generated by while introducing 

one error threshold parameter, ε: by reshaping the DEM into a planar Galerkin projection and then applying the multiresolution 

analysis (MRA) of multiwavelets (MWs) (Kesserwani et al., 2019; Kesserwani and Sharifian, 2020; Özgen-Xian et al., 2020). The 

scheme of the ACC solver can readily be adapted to the non-uniform grid, hereafter referred to as the non-uniform grid solver. 70 

Another useful speed-up measure is to further exploit the parallelism of the GPU architecture. This can be achieved without any 

complication for the uniform solver due to the uniformity of the indexing system, using nested grid-stride loops in the existing 

GPU codebase developed in Shaw et al. (2021). However, an ad-hoc codebase must be designed to make the non-uniform grid 

solver run efficiently on the GPU, namely, to accommodate the irregular grid resolution layout featured in the MRA process of the 

grid generator and handle data reindexing, access, distribution and update on the non-uniform grid.   75 

This paper describes the design and integration of a non-uniform grid solver on LISFLOOD-FP 8.1 that runs on the GPU. 

The portability of the uniform solver to existing GPU codebase (Shaw et al. 2021) is straightforward and won’t therefore be 

presented. In Sect. 2, the non-uniform grid solver is described, with a focus on: (i) the grid generator that sensibly coarsens local 

DEM resolutions, (ii) the adaptation of the ACC scheme to conserve fluxes across non-uniformly sized elements, and (iii) the ad-
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hoc codebase to efficiently implement both the grid generator and the adapted scheme on the GPU. In Sect. 3, the accuracy of the 80 

non-uniform solver is assessed for five realistic flooding case studies for selected ε values, considering the level of closeness of its 

predictions to those of the uniform solver. The ratio of runtimes is used to evaluate the speed-up gain from the GPU version of the 

uniform solver with respect to the CPU version, and of the non-uniform solver with respect to the uniform solver on the GPU. In 

Sect. 4, conclusions are drawn on the potential utility of the GPU accelerated local inertial solvers. The codes of these solvers are 

openly available (https://doi.org/10.5281/zenodo.6912932) for non-commercial use under the GPLv3.0 licence, with a user guide 85 

available on www.seamlesswave.com/LISFLOOD8.0. 

2 Non-uniform solver on the GPU architecture 

LISFLOOD-FP 8.1 includes a non-uniform grid solver that runs on the GPU architecture. The solver is made of two components: 

the grid generator that applies the MRA of MWs to a planar Galerkin projection of DEM data to sensibly coarsen resolutions and 

accordingly adapt classes of land use parameters (Sect. 2.1); and the adapted ACC scheme on the generated grid to aggregate the 90 

discharges across non-uniformly sized elements of the grid (Sect. 2.2). Both the grid generator and the adapted ACC scheme are 

packed in a new codebase to efficiently implement the non-uniform grid solver on the GPU (Sect. 2.3).   

2.1 Non-uniform grid generator with spatially-varying distribution of friction 

Given a 2D rectangular domain spanned by a raster-formatted DEM at resolution R, with px × py pixels (px and py being the 

number of pixels in the x and y directions, respectively), a maximum refinement level L, is deduced such that 2L ≥ px and 2L ≥ py. 95 

Then, a hierarchy of grids of decreasing refinement levels L, L - 1, …, 0 is assumed in a dyadic manner, so that the finest grid has 

2L × 2L elements at resolution R, while the coarsest grid has only a single element at resolution 2LR. Figure 1a shows an example 

of a hierarchy of grids with L = 3. The grid generator starts by reshaping the topography data over each element on level L as a 

planar Galerkin projection (Shaw et al., 2021). The planar data are then recursively produced for the elements on the coarser grids 

at refinement levels L - 1, L - 2, …, 1, 0 in a process known as “encoding” (Kessewani and Sharifian, 2020). Encoding produces 100 

the “details”, representing the encoded difference between the topography data across two subsequent refinement levels, which are 

generated from the MWs supplements to the planar topographic representation. These details become increasingly significant 

where there is sharp variation in the topography data, but remain small otherwise. The details are then analysed by comparing 

their magnitude to a user-specified error threshold ε, to only retain a tree-like structure of elements with significant details. Figure 

1b shows such a tree-like structure, with “leaf elements” at the end of each branch, specified in colour depending on their 105 

refinement level. These leaf elements are then used to assemble a non-uniform grid made of non-overlapping elements at various 

resolutions, as shown in Figure 1c. The grid generator can also be used to adapt a spatially-varying distribution of land use 

parameters on the assembled grid. Here, it was used to adapt different classes of Manning’s friction parameters by applying the 

MRA to a raster-formatted Manning's data map that is initially available at resolution level L.  
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(a) (b) (c) 

Figure 1. Outline of MRA: (a) hierarchy of grids, (b) elements associated with the leaf elements of a tree of significant details and (c) 110 
non-uniform grid assembled from these elements.  

2.2 Adaptation on the non-uniform grid 

The non-uniform grid (e.g. Figure 1c) includes non-uniformly sized faces as each element can have a coarser neighbour or 

multiple finer neighbours. To adapt the scheme of the ACC solver to such a non-uniform grid, amendments must be made to 

aggregate the discharge estimates across non-uniformly sized faces from the side of the elements with finer resolution levels. 115 

Figure 2 shows an example of an element at position (i,j) (blue element) that is adjacent to an element of one level coarser 

resolution (yellow element, e3) and two elements on two levels finer resolution (red elements, e1 and e2) over its eastern face. For 

instance, the x-directional discharge, Qx (m3/s), across element (i,j) and element e1, is calculated as:  

𝑄𝑥𝑒1
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where Δx is the size of element (i,j), Δxe1 is the size of element e1, 𝑞𝑥𝑒1
𝑛  is the discharge per unit width, 𝜂 = h + z is water surface 120 

elevation at each element, and hf (m) is calculated as:  

ℎ𝑓 = 𝑚𝑎𝑥(ℎ𝑖,𝑗 + 𝑧𝑖,𝑗 , ℎ𝑒1 + 𝑧𝑒1) − 𝑚𝑎𝑥(𝑧𝑖,𝑗 , 𝑧𝑒1)        (5) 

After computing the discharges over all other three neighbouring interfaces e1, e2 and e3, the total discharge across the eastern 

face of the element (i,j) is aggregated as  
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to be used in mass conservation equation to evolve the water depth as 

ℎ𝑖,𝑗
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where 𝑄𝑥𝑖−1/2,𝑗
𝑛+1 , 𝑄𝑦𝑖,𝑗−1/2

𝑛+1  and 𝑄𝑦𝑖,𝑗+1/2
𝑛+1  are discharge estimates at the western, southern and northern faces, respectively, 

computed in the same manner, and Ai,j is the area of element (i,j). Note that the rainfall source term is treated separately such that, 

at each time step, the water depth updated by Eq. (7) is subsequently updated with the prescribed rainfall rate r.  130 

 

Figure 2. Schematic layout of neighbouring elements on a non-uniform grid, where a coarse element (in blue) is adjacent to one- and 

two-level finer elements (in yellow and red, respectively). 

2.3 GPU implementation  

The grid generator of the non-uniform solver entails an irregular grid resolution layout to perform the recursive operations of the 135 

MRA process and to reindex, access, distribute and update the flow data on the non-uniform grid via the adapted scheme of the 

ACC solver. In what follows, the GPU implementation of the non-uniform solver is presented with a focus on the parallel 

handling of the MRA process (Sect. 2.3.1) and preserving neighbourhood relationships on the non-uniform grid (Sect. 2.3.2). 

  
e
 
1

  
e
 
1

  
e
 
2

  
e
 
2

  
e
 
 

  
e
 
 

  
 
 
 
 
 

  
 
 
 
 
 

  
 
 
e
 
 

  
  e
 
2

  
 
 
e
 
1

   
e
 
 

   
e
 
1

  



5 

 

2.3.1 Accommodating MRA process using Z-order curves  

To efficiently perform MRA on the GPU, a data structure based on the Z-order curve is deployed, which maps the hierarchy of 140 

grids to a single 1D array. A Z-order curve can be created for a 2l × 2l grid by following the so-called Morton codes of the grid 

elements, which are obtained by bit interleaving the x and y indices of each element. Since a Morton code is represented by a 64-

bit integer, the two binary representations that are interleaved to produce the Morton code can use up to 32 bits each. Therefore, 

each binary representation is effectively represented by a 32-bit integer. An example of the creation of a Z-order curve using the 

Morton codes for a 22 × 22 grid is shown in Figure 3. As seen in Figure 3a, X and Y indices are stored in binary form and bit 145 

interleaved, as indicated by the alternating red and black digits. After bit interleaving of the X and Y indices, the resulting Morton 

codes are converted to their equivalent decimal indices that are then joined in an ascending order to create the Z-order, as seen in 

Figure 3b. 

  

(a) (b) 

Figure 3. Indexing the elements of a grid using a Z-order curve: (a) bit interleaving the X and Y indices of each element, in binary 

form and (b) Morton codes for each element from interleaving, in decimal form. 150 

Z-order curves are created for each grid in the hierarchy of grids to map the hierarchy into a single 1D array residing in 

GPU memory. Figure 4a shows a hierarchy of grids with L = 3 that has been mapped to a 1D array using the Z-order curve. This 

indexing allows to efficiently perform the encoding process (e.g., the elements with indexes 9, 10, 11, and 12 that are required to 

get the details on element 2 all reside in adjacent locations in memory) and form the tree of significant details, as shown in Figure 

4b. 155 

After getting the tree of significant details, a number of GPU threads equal to the number of elements on the finest grid, 

here 23 × 23 = 64 threads, are launched. All these threads start at the element with index 0 and climb the branches of the tree until 

they reach the leaf element and record it, as shown in Figure 4c. Depending on the resolution level of the leaf elements, some 

threads might record duplicate indices. These duplicate indices are removed to reduce the number of threads when assembling the 

non-uniform grid, as shown in Figure 4d.  160 
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(a) (b) (d) 

Figure 4. (a) Indexing of each grid in the 3D hierarchy of grids using Z-order curves, (b) the tree of significant details indexed using Z-

order curves, (c) indices recorded by each GPU thread, including duplicate indices, (d) the Z-order curve of the final assembled non-

uniform grid after removing duplicate indices.  

2.3.2 Preserving neighbourhood relationships on the non-uniform grid  

The element-wise update using the non-uniform solver’s scheme requires aggregating the discharges at each face it shares with the 165 

other neighbouring elements. Therefore, each element must find and store neighbour relationships about all of its neighbours to be 

able to loop over the faces. These relationships can be stored by an equivalent representation of the non-uniform grid projected 

onto the finest grid, as shown in Figure 4c. In Figure 4c, element 1 is located at refinement level l = 1 and comprises 16 duplicate 

indices. It has 4 neighbours on the northern, eastern, southern and western sides. Considering the array of 16 duplicates, by 

knowing both current resolution level l and the maximum refinement level L, the Morton codes of two points located at the 170 

southwest and northeast of the array can be found. Using these two Morton codes all the indices at the four sides of element 1 can 

be identified while removing the duplicate indices to locate and save the actual neighbouring elements.    

2.4 Updates to LISFLOOD-FP utilities for running the non-uniform 

The non-uniform ACC solver is distributed as a new release for LISFLOOD-FP 8.1 and follows the same standard usage for the 

other solvers with a few updates to input/output components. In order to use the solver, first, the user needs to reshape the DEM 175 

data as planar Galerkin projected data (recall Sect. 2.1). This is achieved by using a utility application called generateDG2DEM, 

which loads the raw DEM raster file and generates three new raster files containing the average (i.e., .dem format), x-slope and y-

slope topography coefficients (i.e., .dem1x and .dem1y format). Configuring a specific simulation using the non-uniform ACC 

solver requires setting one additional parameter of the error threshold, ε, and extracting the maximum refinement level parameter, 

L, from the DEM (recall Sect. 2.1). To account for the rainfall, the model follows the so-called rain-on-grid approach (Costabile et 180 

al., 2021), which simply imposes the prescribed rainfall data at grid elements. These prescribed rainfall data can be imported from 

a simple text file (i.e., .rain format) for spatially-uniform and temporally-varying rains, or from a NetCDF file (i.e., .nc 

format) for spatially- and temporally-varying rains. By default, the outputs of the new non-uniform ACC solver can be saved as 

multiresolution grids in VTK file format to enable the use of visualisation tools such as ParaView (https://www.paraview.org/) to 

plot the non-uniform grid and data. Also, the outputs are further converted to raster files to allow benchmarking on uniform grids. 185 

Basic checkpoint/restart capabilities are available to resume computations from a previously saved snapshot. Starting with the 8.0 

version, LISFLOOD-FP has transitioned to a new CMake-based build system, following the general trend in the open-source 

software community, which allows hassle-free building/compiling in a cross-platform manner. A step-by-step guide on how to 

download and install the code, along with instructions on simulating selected case studies using the new non-uniform solver are 

given in a series of supplementary videos (Sharifian and Kesserwani, 2022), along with instructions on 190 

www.seamlesswave.com/LISFLOOD8.0.  

3 Performance evaluation and benchmarking 

The efficiency of the GPU versions of the uniform and non-uniform grid solvers are assessed by applying them to reproduce 

realistic fluvial and/or pluvial flooding scenarios. Five case studies are selected and investigated to demonstrate the potential 



7 

 

utility of the solvers for both catchment-scale and urban-scale flood simulations. The case studies are described in Table 1, which 195 

also includes information on the maximum refinement level, L, used to generate the grid with the non-uniform solver, and on the 

DEM resolution, R, at which the uniform solver was run. Non-uniform and uniform grid simulations were run on an Nvidia 

Quadro RTX 2070 SUPER GPU card. The uniform grid simulations were also run for the CPU version reported in Neal et al. 

(2018), on a 3.8 GHz Intel i7 8700 with 12 CPU threads, which led to identical predictions to those achieved on the GPU version. 

The closeness of the predictions from the non-uniform simulations to those of the uniform grid simulations depends on the choice 200 

for the error threshold, ε. As this choice needs to be such that ε ≤ 10-3 to preserve an acceptable level of closeness (Kesserwani and 

Sharifian, 2020), the non-uniform solver simulations were run considering ε = 10-3 and 10-4. In this sense, the accuracy will 

hereafter refer to the level of closeness of the non-uniform solver simulations to those achieved by the uniform solver simulations 

on the finest resolution, R, that can be available on its grid. 

Table 1. Selected case studies used: to benchmark the accuracy of the non-uniform grid solver against the uniform grid solver, to 205 
analyse the speed-up gain from the uniform grid solver on the GPU architecture compared to the CPU architecture, and to also analyse 

the speed-up gain acquired by the non-uniform solver over the GPU version of the uniform grid solver.  

Case studies Source Type Elements* (in k) L R (m) Ts (hr) 
Lower Triangle catchment Özgen-Xian et al., 2020 Pluvial 149, 594, 3700 10, 11, 12 10, 5, 2 72 
Upper Lee catchment Xia and Liang, 2018 Pluvial 2712 12 20 120 
Eden catchment Xia et al., 2019 Fluvial 6276 13 20 132 
Glasgow urban area Neelz and Pender, 2013 Pluvial 95 9 2 5 

Cockermouth urban area Muthusamy et al., 2021 Fluvial 2160 11 1 144 

* The number of elements only involves the valid pixels of the DEM, excluding the ones without data.  

The maximum flood extent predicted by the non-uniform grid solver is compared to that of the uniform solver using the 

hit rate (H), false alarm (F) and critical success index (C) (Wing et al., 2017; Hoch and Trigg, 2019). The metric H measures how 210 

much the extent predicted by the uniform solver is covered by that predicted by the non-uniform solver (i.e., H = 1 indicates full 

coverage and 0 otherwise). The metric F measures how much of the extent the extent predicted by the non-uniform solver is 

outside that predicted by the uniform solver (i.e., F = 0 indicates that there are no predicted portions by the non-uniform solver 

that outside of the extent predicted by the uniform solver, and F = 1 indicates that extent predicted by the former is entirely outside 

that predicted by the latter). The C metric combines H and F to weigh how much of the sum of both the extents predicted by the 215 

uniform and non-uniform solvers is covered by the extent predicted by the non-uniform solver (i.e., C = 1 indicates full coverage 

and 0 otherwise). Interpreting the C metric requires some bespoke judgement to each test case: larger flooded zones in a smaller 

perimeter of the domain area and represented at increasingly finer resolution are expected to increase the C score as well as the 

predictive capability of the non-uniform solver (shown later in Sects. 3.4 and 3.5). Nevertheless, as C gets close to 0.8 the 

predicted flood extent can be deemed to be sufficiently accurate. 220 

The speed-up gain associated with the use of the GPU version of the uniform grid solver, over the CPU version, will be 

quantified by looking at the ratio of their respective runtimes to complete a simulation. The enhancement in speed-up associated 

with the use of the non-uniform solver simulation over the uniform solver will be quantified similarly for the GPU versions. The 

grid predicted by the non-uniform solver entails a reduction in the number of elements with reference to the grid of the uniform 

solver. Table 2 includes the simulation runtimes and the number of elements consumed by solvers for the selected case studies, 225 

from which the speed-up ratios and the reduction in the number of elements will be quantified. 

Table 2.  Simulation runtimes and number of elements on the grid for the uniform solvers (on CPU and GPU architectures) and for the 

non-uniform solver (GPU architecture) for all the selected case studies.  

 
                  Uniform solvers 

 
Non-uniform solver at ε = 10-3 

 
Non-uniform solver at ε = 10-4 

Number of 

elements (in k) 
CPU time 

(in sec.) 
GPU time 
(in sec.)  

 
Number of 

elements (in k) 
GPU time 
(in sec.)  

 
Number of 

elements (in k) 
GPU time  

(in sec.) 
  
Lower Triangle catchment (Sect. 3.1) 
R = 2 m 3700 35700 16640 

 
60 764 

 
272 2923 
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R = 5 m 594 2080 1257 
 

24 165 
 

109 410 
R = 10 m 149 320 359 

 
12 75 

 
51 150 

 
Upper Lee catchment (Sect. 3.2)   
R = 20 m 2712 55189 2557 

 
726 820 

 
2050 1960 

 
Eden catchment (Sect. 3.3) 
R = 20 m  6276 202390 7333 

 
984 620 

 
4011 1944 

 
Glasgow urban area (Sect. 3.4) 
R = 2 m 95 97 69 

 
35 13 

 
60 18 

 
Cockermouth urban area (Sect. 3.5) 
R = 1 m  2160 71084 8019 

 
871 7101 

 
1362 9434 

3.1 Lower Triangle catchment 

The case study reproduces a real-world rainfall-runoff event over a mountainous catchment considering three DEM resolutions of 230 

2, 5 and 10 m, which were downscaled from the available 0.5 m DEM resolution in Wainwright and Williams (2017). It aims to 

assess the accuracy of the non-uniform grid solver with increasingly coarser DEM resolution. The catchment is a sub-catchment 

of the East River watershed in Colorado, USA, with a surface area of 14.84 km2 featured by high-elevation topography, with steep 

slopes towards the main river stream located in the middle of the catchment (Figure 5). The 72-hour flood event was induced by a 

storm that occurred in August 2016, based on the rainfall time series shown in Figure 5, which was given at 30-minute intervals 235 

(Wainwright and Williams, 2017). The friction parameter is uniformly set to nM = 0.035 m1/6 over the domain that was initially dry 

before a simulation starts. A simulation starts by loading the temporally-varying rainfall data, uniformly into all elements on the 

grid.  

 

Figure 5. Lower Triangle catchment. Topographic map of the domain with a subfigure showing the time series of the spatially-uniform 240 
rainfall over the catchment.  

The ranges of resolutions for the grids predicted by the non-uniform solver are compared in Figure 6, for the two ε values 

and the three DEMs considered at 2, 5 and 10 m resolutions. With ε = 10-4 and the 2 m resolution DEM, the grid predicted shows 
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a dominance for the 8 m resolution as finer resolutions are only reached at the northwest corner with very steep gradients of the 

topography. This leads to a 93 % reduction in the number of elements, while with the 5 and 10 m resolution DEM, the reduction 245 

decreased to 82 % and 66 %, respectively, suggesting that the use of coarser DEM resolutions smoothens the representation of the 

topographic features. With ε = 10-3, the grids predicted by the non-uniform solver show dominance of coarser resolutions ranging 

between 16 to 32 m, 20 to 40 m, and 40 to 80 m with the use of a 2, 5 and 10 m DEM resolutions, respectively. In this case, there 

are higher than 92 % reductions in the number of elements with the 2, 5 and 10 m resolution DEMs, signalling that ε = 10-3 is too 

big. 250 

  
2 m  5 m  10 m  

 

 

 

(a) ε = 10-4 

   

(b) ε = 10-3 
Figure 6. Lower Triangle catchment. The resolution maps for the grids generated by the non-uniform solver considering DEM at 2, 5 

and 10 m resolutions, using: (a) ε = 10-4 and (b) ε = 10-3. 

The accuracy of the non-uniform solver predictions for the flood extent is analysed in Figure 7, which shows the maps of 

the difference in maximum flood extents for the two ε values. With ε = 10-4, at 2 m DEM resolution, the predicted maximum 255 

flooded area shows the least agreement with the extent predicted by the uniform grid solver, with a C of 0.56, leading to 

pronounced underpredictions (red areas, H = 0.69) and overpredictions (blue areas, F = 0.24) over the tributary streams (Figure 

7a). The relatively poor scores are related to the inherent limitation of the ACC solver in modeling thin fast-flowing, water depths 

occurring over a very steep terrain from the high intensity runoff (De Almeida et al 2012; Sridharan et al., 2021). This is also 

noted for the coarser 5 and 10 m DEM resolutions, where the overall agreement of the predictions by the non-uniform grid solver 260 

becomes close to the uniform grid counterparts, leading to higher C values of 0.61 and 0.67, respectively. Note that, improved 

scores are expected with the mesh coarsening (as discussed in Figure 6a) since it reduces the steepness of the topographic slopes, 
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which in turn reduces the occurrence of thin and high-velocity flows. The same tendency is observed for the larger ε = 10-3, with a 

more notable loss of accuracy in maximum flood extent predictions that occur due to the higher reductions in the number of 

elements on the non-uniform grid (Figure 6b). This loss of accuracy reduces the C values to 0.43, 0.44 and 0.48 for 2, 5 and 10 m 265 

DEM resolutions, respectively (Figure 7b). However, the C values remain close to each other at ε = 10-3, while remaining lower 

than 0.5, suggesting that this ε value may be too large for catchment-scale simulations over DEMs at a resolution of 2 m or lower 

and should, therefore, be avoided (also shown next in Sects. 3.2 and 3.3).  

 

Figure 7. Lower Triangle catchment. Difference in the maximum flood extent predicted by the non-uniform grid solver considering 270 
DEM resolutions of 2, 5 and 10 m (left to right), using: (a) ε = 10-4; and (b) ε = 10-3. Green parts flag flooded areas predicted by both the 

uniform and the non-uniform grid solvers, blue parts flag an overprediction (i.e., flooded areas only predicted by the non-uniform grid 

solver), red parts flag an underprediction (i.e., flooded areas only predicted by the uniform grid solver) and, white parts flag dry areas 

predicted by both the uniform and non-uniform solvers. The hit rate (H), false alarm (F) and critical success index (C) values are 

computed against the flood extents predicted by the uniform grid solver using respective DEMs.  275 

In terms of speed-up, the uniform solver on the GPU architecture is found to be 2.1, 1.65 and 0.9 times faster than the 

CPU architecture for the 2, 5 and 10 m DEM resolutions, respectively. The decreasing trend in speed-up ratios is expected as the 

number of elements decreases to less than 600 k and 200 k, for the 5 and 10 m DEM resolutions, respectively, for which the GPU 

parallelisation is not too effective in decreasing the runtimes (Shaw et al., 2021). With ε = 10-4, the non-uniform solver leads to 

speed-up ratios of 5.7, 3.0 and 2.4 times over the uniform solver for the 2, 5 and 10 m DEM resolutions, respectively. Such an 280 

increasing trend in speed-up with increasingly finer resolutions is expected as there is a higher reduction in the number of 

elements (Figure 6a). With ε = 10-3, the ratios become 21, 7.6 and 4.7 times, respectively. The significant speed-up achieved for 

the 2 m DEM resolution comes at the price of deteriorating accuracy (Figure 7). For the coarser 5 and 10 m DEM resolutions, the 

speed-ups are less than two and four times lower, respectively, but there is more deterioration in accuracy.  

(a)

2 m

(b)

  m

H   0.  

    0.2 

    0.  

10 m

        

H   0. 2

    0.20

    0. 1

H   0.  

    0.11

    0.  

H   0.  

    0. 2

    0.  

        

H   0.  

    0.  

    0.  

H   0. 1

    0. 0

    0.  
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This case study indicates that the uniform grid solver on GPU architecture is more or less as fast as the CPU architecture 285 

when the number of elements is 500 k or smaller, but becomes increasingly faster when the simulation entails a large number of 

elements. With ε = 10-4, the non-uniform solver somewhat preserves a fair accuracy and benefits from increasingly higher speed-

ups as its grid entails increasingly higher reduction in the number of elements. With ε = 10-3, the solver is unable to preserve an 

adequate level of accuracy when the resolution is coarse and the DEM is featured by smooth topographic variations, suggesting to 

avoid the choice of ε = 10-3 for such simulations. 290 

3.2 Upper Lee catchment  

This case study reproduces a rainfall-flood event in the Upper Lee catchment in north London, UK, which covers an area of 1180 

km2 shown in Figure 8a. The available DEM has a relatively coarse resolution, of 20 m, involving less topographic variations (i.e., 

less than 200 m), compared to the previous case study (Sect. 3.1). This catchment is also characterised by various classes of land 

use, shown in Figure 8b, which have been represented by spatially-varying Manning’s friction parameter (Table  ) by following 295 

commonly recommended values (Chow, 1959). Heavy rainfall was recorded for 120 hours between the 5th and 11th Feb 2014, 

resulting in the flood event. Figure 8c shows the time series of the mean rainfall intensity that includes several rainfall peaks. The 

initial conditions for the water depth were pre-processed in a raster format to account for the fact that the rivers are initially wet 

before the simulation starts. The simulation was then solely driven by the spatially- and temporarily-varying rainfall data. For this 

case study, an observed discharge hydrograph is available that was recorded at the gauge station located in the River Lee by the 300 

outlet of the catchment (Figure 8a). The accuracy of the non-uniform grid solver in the prediction of the flooding extent will be 

analysed for a smaller portion of the catchment (i.e., the framed portion in Figure 8a) that is located upstream of the gauge station 

from the north-eastern side. The impact on flooding extent predictions, over the whole catchment, will be analysed by comparing 

the solver predictions to the peak flows with reference to the observed hydrograph.  

 305 

 
Figure 8. Upper Lee catchment. (a) Topographic map of the domain including the position of the gauge point, a subfigure showing the 

time series of mean (spatially-varying) rainfall over the catchment, and a framed smaller portion of the domain in which the maximum 

flood extent is analysed; (b) The land use map of the domain.  

Table 3. Upper Lee catchment. Values of Manning’s friction parameter for different classes of land use. 310 

Land-use type Sub-urban Arable Grassland Woodland Urban Fresh water Mountain 
nM (m1/6) 0.13 0.125 0.075 0.16 0.03 0.015 0.15 
 

Figure 9 compares the resolution maps generated from the grid predicted by the non-uniform solver for the two ε values. 

With ε = 10-4, the finest 20 m resolution is seen to cover about 70 % of the catchment area to include the tributaries converging 

into the main rivers, leading to an overall reduction of 25 % in the number of elements. With the larger ε = 10-3, the grid is 

spanned by the 40 and 80 m resolutions that cover about 90 % of the catchment area. This leads to a higher reduction of 74 %, at 315 

the price of entailing overly coarser resolutions to represent the topographic connectivities.  
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(a) ε = 10-4 (b) ε = 10-3 

Figure 9. Upper Lee catchment. The resolution maps for the grids generated by the non-uniform solver using: (a) ε = 10-4 and (b) ε = 10-

3. 

Figure 10 compares the accuracy of the predictions made by the non-uniform grid solver for the two ε values, in terms of 

maximum flood extent, for the selected portion of the catchment (Figure 8a). With ε = 10-4 (Figure 10a), the solver accurately 320 

predicts the flood extent over the majority of the tributaries and main river streams, with rather high values for H and C metrics, of 

0.86 and 0.80, respectively, and a low score for F of 0.07. Whereas, with ε = 10-3, underpredictions (red coloured) can be detected 

mainly around the main river streams and their banks (red areas in Figure 10b, with lower H, of 0.80), given the relatively coarser 

resolutions used to represent the topographic connectivity, leading to a reduction in overall accuracy with a lower C, of 0.71.  

 325 

Figure 10. Upper Lee catchment. Differences in the maximum flood extent predicted by the non-uniform grid solver using (a) ε = 10-4 

and (b) ε = 10-3, over the smaller portion of the domain framed in Figure 8a. Green parts flag flooded areas predicted by both the 

uniform and the non-uniform grid solvers, blue parts flag an overprediction (i.e., flooded areas only predicted by the non-uniform grid 

solver), red parts flag an underprediction (i.e., flooded areas only predicted by the uniform grid solver) and, white parts flag dry areas 

predicted by both the uniform and non-uniform solvers. The hit rate (H), false alarm (F) and critical success index (C) values are 330 
computed against the flood extent predicted by the uniform grid solver on 20 m resolution DEM over the whole domain. 

The predicted flow discharges at the outlet (post-processed hydrographs), are compared against the observed hydrograph 

in Figure 11. None of the simulated hydrographs closely trail the observed hydrograph, including that predicted by the uniform 

solver. This deficiency can be attributed to uncertainties in the location of the in-situ measurements, in the aggregation of the 

simulated discharges at coarse resolutions that further magnify by larger numerical diffusions accumulating on the coarser 335 

portions of the static non-uniform grid (Kesserwani and Sharifian, 2023), in the inability of the present Manning's friction law 

formula to model rain-driven overland flows in the catchment areas with low Reynolds numbers  (Kistetter et al., 2016; Taccone 

et al., 2020), and to the fact that the features of river channel bathymetry are not captured in the 20 m DEM. As shown in 

Kesserwani and Sharifian (2023), such issues could be alleviated to some extent by using dynamic grid adaptivity that deploys a 

more complex formulation combining the multiresolution analysis (MRA) of the multiwavelets with a second-order discontinuous 340 

Galerkin (MWDG2) solver. However, capturing such events more accurately with the present solvers using static grid adaptivity 

and the ACC solver formulation seems to suggest a need for deploying a DEM resolution that is at most 10 m (Ferraro et al., 

(b)

(a) (b)        
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    0. 0

H   0. 0

    0.1 

    0. 1
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2020), which is not available for this case study. Therefore, the predictability of the solvers to the flow discharge at the outlet may 

here be better evaluated by looking at the extent to which they can reproduce the primary and secondary peaks seen in the 

observed hydrograph. The uniform solver provides the closest trail to the primary peak, with a deviation of 9 %, and predicts the 345 

presence of the secondary peak at the falling limb (occurring between 80 and 90 hours). The non-uniform solver, with ε = 10-4, 

although fairly predicts the rising limb, underpredicts the primary peak with a larger deviation of 20 %, and overlooks the 

presence of the secondary peak; whereas with ε = 10-3, the solver leads to smeared predictions with a larger deviation of 38 %.  

 
Figure 11. Upper Lee catchment. Comparison of observed and simulated discharge hydrographs at the catchment outlet (marked in 350 
Figure 8a). 

In terms of speed-up, the uniform grid solver on GPU architecture is found to be 21 times faster to run than the CPU 

architecture. This speed-up is significant, although the number of elements here is one million less than in the previous case study 

for the 2 m resolution (Sect. 3.1). This may be attributed to the less steep variations of the terrain in the Upper Lee catchment, 

which reduces the chance of occurring very thin water layers flowing down-hill slopes, and therefore leads to more stability and 355 

bigger timesteps. With ε = 10-4, the non-uniform grid solver offers a marginal speed-up of 1.3 times, which is increased to 3.1 

times with the larger ε = 10-3; this is expected as the reduction in the number of elements increases from 25 % to 74 %, 

respectively (Figure 9). This retrieves the previous observation (Sect. 3.1), suggesting that the speed-up afforded by the non-

uniform grid solver is proportional to the reduction in the number of elements. Though the reduction is much higher with ε = 10-3, 

this value is again deemed impractical for such a coarse resolution catchment-scale simulation; it would in fact allow for more 360 

coarsening to a DEM resolution that is already as coarse as 20 m, which impacts accuracy. For such a simulation with the non-

uniform solver, choosing ε = 10-4 is necessary to keep a moderate level of coarsening in favour of accuracy in terms of maximum 

flood extent prediction, while expecting considerable speed-ups over the uniform solver when the reduction in the number of 

elements exceeds 30 % (shown next in Sect. 3.3). However, predicting hydrographs at critical gauge point(s) located in the 

catchment seems to signal the need for using finer DEM resolutions with both the present uniform and non-uniform solvers.   365 

3.3 Eden catchment 

This case study replicates the rainfall-driven pluvial flooding over the Eden catchment in northwest England, caused by Storm 

Desmond in December 2015. Figure 12a shows the 2500 km2 catchment, including rivers Irthing, Petteril Caldew and Eden, 

which form a confluence in the city of Carlisle (Figure 12b). The storm event was previously stimulated for DEM resolutions 

ranging from 40 m to 5 m, with a variety of uniform grid solvers formulated upon different levels of mathematical and numerical 370 

complexity (Xia et al., 2019; Ming et al., 2020; Shaw et al., 2021). In favour of computational efficiency, these studies 

recommend using the 10 m DEM resolution as it is sufficient to replicate the flood flow dynamics around the urban areas with 

enough details. Moreover, the uniform ACC solver could capture the required flow features at the coarser 20 m DEM resolution 

with minor differences (see Figure 15 in Shaw et al., 2021). For this case study, the 20 m DEM resolution was used to 

demonstrate the performance of the non-uniform grid solver. This is because the latter could not be run for the 10 m DEM 375 

resolution, hampered by the memory costs for the non-uniform grid generation for this large catchment, or in other words by the 

fact that the number of elements cumulated on the grid hierarchy exceeded the capacity of the available GPU cards. 
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Figure 12. Eden catchment. Topographic map of: (a) the catchment area covering 2500 km2; (b) the area over the city of Carlisle at the 

confluence of rivers Irthing, Petteril, Caldew and Eden. Names and locations of the 16 sampling points are marked, along with the 380 
dashed red line framing a smaller portion of the domain where the maximum flood extent was surveyed. Panel (c) shows the time series 

of mean (spatially-varying) rainfall over the catchment. © Google Maps 2021. 

A simulation starts at 00:00, 3 December 2015, with a 36-hour spin-up from an initially dry domain, and ends at 12:00, 8 

December 2015. The spatially- and temporally-varying rainfall is shown in Figure 12c, which is provided from radar data at a 1 

km spatial resolution and 5 min temporal resolution (Met Office, 2013). The rainfall file, in NetCDF file format, is loaded to start 385 

the simulation. The friction parameter is set to nM = 0.035 m1/6 for river channels and nM = 0.075 m1/6 for floodplains. The water 

levels simulated by the uniform and non-uniform grid solvers were recorded in 16 gauge points located in river channels (Figures 

12a and 12b) to enable comparison with in-situ measurements (Environment Agency, 2020). The maximum predicted flood 

extents were also recorded to enable comparison with a surveyed post-event flood extent in the portion inside the Carlisle area 

framed in Figure 12b (McCall, 2016).    390 

Figure 13 shows the range of resolutions predicted on the non-uniform grids for the two ε values. With ε = 10-4, it can be 

seen that the finest 20 m resolution covers more than 50 % of the catchment area, or otherwise the 40 m resolution dominates. The 

larger ε = 10-3 leads to 90 % dominance of the 40 and 80 m resolutions over the catchment area, with almost an equal distribution 

for the 80 m resolution. This reinforces that ε = 10-3 allows more coarsening than necessary for a DEM resolution as coarse as 20 

m (recall Sect. 3.2). The reduction in the number of elements is found to be significantly larger with ε = 10-3, to be around 85 %, 395 

compared to the 36 % reduction obtained with ε = 10-4 for which the topographic connectivities in the catchment were represented 

at the recommended resolutions (Xia et al., 2019; Shaw et al., 2021; Ming et al., 2020). 

  

(a) ε = 10-4 (b) ε = 10-3 
Figure. 13. Eden catchment. The resolution maps for the grids generated by the non-uniform solver using: (a) ε = 10-4 and (b) ε = 10-3. 
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In Figure 14, the simulated water level hydrographs extracted from the uniform grid solver (reference hydrographs) are 

included, showing the best agreement with the observed hydrographs at the 16 gauge points. In contrast to the prevuous case 400 

study, these reference hydrographs do not exhibit short time-scale events, correctly reproducing the observed rising and falling 

limbs and the peak water levels, namely at the points where the 20 m DEM resolution is sufficient (Shaw et al., 2021). These 

points include Sheepmount, Sands Centre, Linstock and Great Corby, located in river channels whose widths are 2 to 3 times 

larger than 20 m (i.e., ranging between 54 and 71 m). The other points are located in river channels whose widths are close to, or 

less, than 20 m (i.e., ranging between 8 and 33 m), showing relatively a poorer prediction of the observed rising and falling limbs. 405 

The underprediction observed at Great Musgrave occurred because of an anomaly from the localised terrain elevation differences 

between the finest-resolution DEM and riverbed elevation measurements (Xia et al., 2019). The reference hydrographs are next 

used to evaluate the accuracy of the predictions made by the non-uniform solver.   

In terms of accuracy, the non-uniform solver with ε = 10-4 predicts close water levels to the reference hydrographs 

predicted by the uniform solver at almost all the gauge points, suggesting that the non-uniform solver at ε = 10-4 can be a valid 410 

alternative to the uniform solver for such a catchment simulation at 20 m DEM resolution. With the large ε = 10-3, the non-

uniform solver leads to a less accurate trail of the reference hydrographs, such as underpredictions to the peak levels at 

Sheepmount, Sands Centre, Linstock and Great Corby alongside smearing of the hydrograph profiles at Sebergraham, Greenholm 

and Botchery Bridge. This loss in accuracy is caused by the poorer representation of the topographic features excluding river 

streams on a grid dominated by the 80 m resolution (Figure 13), which confirms the impracticability of using ε = 10-3 with the 415 

non-uniform grid solver for generic catchment-scale simulations dominated by DEM resolutions that are strictly coarser than 20 

m.   

 
Figure 14. Eden catchment. Water level time series predicted by uniform and non-uniform solvers and the in-situ measurements at 16 

gauge points (marked in Figure 12). 420 
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The impact on accuracy associated with this choice for ε can also be clearly noted in the comparison of the predicted 

differences in the maximum flood extents with respect to that predicted by the uniform solver (Figure 15). As can be seen in 

Figure 15a, the reference prediction by the uniform grid solver predicts extents that compare reasonably well with the surveyed 

extent. With ε = 10-4, the non-uniform grid solver delivers a competitive prediction to flood extent compared to the uniform grid 

solver as it achieved very close scores for H, C, and F, of 0.95, 0.93 and 0.05, respectively, with minor overpredictions (blue 425 

coloured) towards the easternmost side of the city area and minor underprediction elsewhere (red coloured). The H, C, and F 

scores became significantly lower with ε = 10-3, namely for H and C, of 0.72 and 0.67, indicating further 25 % loss in accuracy of 

the flood extent prediction, visible by the dominance of underpredictions (red coloured) in the capture of the main flood extent 

within the city area (Figure 15c).  

 430 

Figure 15. Eden catchment. Maximum flood extents predicted by (a) the uniform grid solver, and the predicted differences with respect 

to the non-uniform grid solver using (b) ε = 10-4, and (c) ε = 10-3: green parts flag flooded areas predicted by both the uniform and the 

non-uniform grid solvers, blue parts flag an overprediction (i.e., flooded areas only predicted by the non-uniform grid solver), red parts 

flag an underprediction (i.e., flooded areas only predicted by the uniform grid solver). For reference, the orange line border represents 

the measured flood extent from the Environment Agency. The hit rate (H), false alarm (F) and critical success index (C) values are 435 
computed against the flood extent predicted by the uniform grid solver. © Google Earth 2021. 

In terms of speed-up, the uniform grid solver on the GPU architecture is found to be 28 times faster to run than the CPU 

architecture. This speed-up is somewhat one order-of-magnitude higher than for the previous case study (Sect. 3.2), which is 

expected as the number of elements on the uniform grid here is more than double (i.e., 6.2 million versus 2.7 million for Upper 

Lee catchment). With ε = 10-4, the non-uniform grid solver adds on a speed-up of around 4 times, associated with a 36 % 440 

reduction in the number of elements; whereas, with ε = 10-3 the reduction is    % and this further boosts the solver’s speed-up to 

around 12 times. Nonetheless, choosing ε = 10-4 is necessary with the non-uniform grid solver for such a large-scale simulation at 

a 20 m DEM resolution to keep acceptable accuracy while benefiting from a considerable speed-up.  

Overall, the uniform grid solver on GPU architecture is a promising alternative to boost runtime efficiency for 

catchment-scale flood simulations that entail large numbers of elements. This efficiency gain can be further enhanced using the 445 

non-uniform grid solver, albeit with ε = 10-4 for the range of DEM resolution used for such simulations to keep the resolution 

coarsening moderate in favour of accuracy. The amount of enhancement in efficiency depends on the reduction in the number of 

elements, compared to the uniform grid, becoming worth consideration when this reduction is 30 % or higher. 

3.4 Glasgow urban area 

This case study mimics an urban flood event in a 400 m × 960 m low-lying area in Glasgow, UK, shown in Figure 16. It is a 450 

hypothetical scenario with a DEM at 0.5 m resolution that excludes the fine-scale urban features. Therefore, a 2 m resolution 

DEM is often used to benchmark flood modelling software (Neelz and Pender, 2013). The flood is driven by rainfall that 

overwhelms the drainage system. This causes two sources of flooding, including from spatially-uniform rainfall occurring 

between 1 and 4 minutes, with an intensity of  00 mm/h. The other source is at the location denoted by “S” in  igure 1 , where 

flow surcharges from the drainage system, during 23 and 55 minutes, reaching a peak of 5 m3/s, at t = 37 minutes. The area has 455 

two different classes of land use: roads and pavements and other land characteristics represented by nM = 0.02 m1/6 and nM = 0.05 

m1/6, respectively. The 5-hour simulation starts over an initially dry area, considering closed boundary conditions. The time series 
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of predicted water levels were recorded at 9 gauge points which are shown in Figure 16. As no observation data are available, the 

predictions from an alternative uniform grid simulation at the 0.5 m resolution were used as reference. 

 460 
Figure 16. Glasgow urban area. Topographic map of the domain, including the positions of the gauge points (P1-P9) and the source 

inflow (S), with a subfigure showing the inflow hydrograph imposed at point S.  

The grids predicted by the non-uniform solver for the two ε values are illustrated in Figure 17 (upper panels), together 

with subfigures showing the percentage of coverage for each of the resolutions selected over the area. The finest 2 m resolution is 

selected in the vicinity of the southern boundary for the two ε values, covering about 20 % and 50 % of the area with ε = 10-3 and 465 

10-4, respectively. As the DEM lacks fine-scale urban features, the 4 m resolution is selected to cover the majority of the area 

almost equally with ε = 10-3 and 10-4, at 60 % and 55 %, respectively. Notably, with ε = 10-3, there is more presence of coarser 

than 4 m resolutions leading to an overall reduction of 64 % in the number of elements, compared to with ε = 10-4 that barely uses 

coarser than 4 m resolution leading to a less reduction of 36 %. This suggests that ε = 10-3 may be suitable for the non-uniform 

solver for the 2 m resolution DEM to moderately coarsen its grid while benefiting from a higher reduction for efficiency.  470 

 
 

 

  

  
 

  

  

(a)  ε = 10-4 (b)  ε = 10-3 
Figure 17. Glasgow urban area. Grids generated by the non-uniform solver (upper panels), along with the percentage of the selected 

resolutions over the urban area; and the differences in the maximum flood extent predicted by the non-uniform grid solver (lower 

panels), using (a) ε = 10-4 and (b) ε = 10-3. In the lower panels, green parts flag flooded areas predicted by both the uniform and the non-

uniform grid solvers, blue parts flag an overprediction (i.e., flooded areas only predicted by the non-uniform grid solver), red parts flag 

an underprediction (i.e., flooded areas only predicted by the uniform grid solver) and, white parts flag dry areas predicted by both the 475 
uniform and non-uniform solvers. The hit rate (H), false alarm (F) and critical success index (C) values are computed against the flood 

extent predicted by the uniform grid solver on 2 m resolution DEM. 

Figure 17 (lower panels) also compares the accuracy of the non-uniform grid solver with both ε values for the maximum 

flood extent predictions. The solver with ε = 10-3 and 10-4 leads to close predictions with only a noticeable difference in the 

vicinity of the western boundary where it overpredicts the flood extent with ε = 10-3 (i.e., blue coloured areas, with slightly higher 480 

F of 0.09) as compared to with ε = 10-4 (with F = 0.04), which can be expected due to relatively coarser resolution therein. The 
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remaining flooded areas are closely predicted with the two ε values (i.e., large green areas), with rather high and similar H values 

of 0.87 and 0.83, for ε = 10-4 and ε = 10-3, respectively. This confirms that the additional coarsening achieved by the non-uniform 

grid solver with ε = 10-3 only introduces an insignificant loss of accuracy and preserving a C score around 0.8. 

This accuracy of the non-uniform solver predictions at ε = 10-3 can be confirmed by comparing the results in Figure 18, 485 

which shows its predicted time series of the water levels to be comparable with those predicted the uniform solver, all agreeing 

with the reference predictions. At all the gauge points, the non-uniform solver, with both ε = 10-3 and 10-4, leads to almost similar 

accuracy compared to uniform solver predictions, successfully reproducing the double peak observed within the reference 

predictions and other predictions reported in the literature (Neelz and Pender, 2013). Hence, the non-uniform solver, with both ε = 

10-3 and 10-4, is a valid alternative to the uniform solver for such a case study featured by flooded zones within a small domain 490 

area with smooth terrain that is, moreover, represented at a fine DEM resolution of 2 m. 

 

 
Figure 18. Glasgow urban area. Water level time series predicted by uniform and non-uniform solvers and reference water levels 

predicted by the uniform solver on a 0.5 m × 0.5 m grid, at gauge points 1 to 9 (marked in Figure 16). 495 

In terms of speed-up, the uniform grid solver on the GPU architecture is only 1.4 times faster than the CPU version, 

which is expected for a number of elements as low as 95 k as discussed previously (Sect. 3.1). With ε = 10-4, the non-uniform grid 

solver boosts the speed-up to 3.8 times, which in turn increases to 5.3 times with ε = 10-3 which entails a higher reduction in the 

number of elements. All considered, ε = 10-3 is found to be a valid choice with the non-uniform grid solver for urban resolution 

flood simulations to both preserve acceptable accuracy and boost efficiency. The relevance of this choice is further investigated 500 

next for a realistic case study with an urban resolution DEM that includes small fine-scale topographic features. 

3.5 Cockermouth urban area 

The case study involves a 144-hour fluvial flooding scenario over a 1.42 km2 urban area in Cockermouth town, Cumbria, UK. The 

town is located at the confluence of river Derwent and its tributary, River Cocker (Figure 19). Like the Eden catchment (Sect. 

3.3), this area was affected by the record-breaking rainfall from Storm Desmond in 2015 that manifested in a water level increase 505 

of the River Derwent that caused river waters to inundate the town (Met Office, 2018). Measured time series of the volumetric 
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flow at 15 min intervals (from 03/12/2015 to 09/12/2015) were available at Southwaite Bridge and Ouse Bridge for the River 

Cocker and River Derwent, respectively (Environment Agency, 2018). As these two locations are considerably farther from the 

boundaries, the inflow hydrographs at Rivers Cocker and Derwent were calibrated (Muthusamy et al., 2021) and imposed (at the 

two associated points shown in Figure 19). Here, the 1 m resolution DEM is inclusive of the fine-scale urban features. Two 510 

different values were used for the friction parameter, nM = 0.035 and 0.05 m1/6 for river channels and floodplains, respectively. 

The northern, southern and eastern boundaries are set as closed, while a free outflow boundary condition is allowed at the 

downstream of river Derwent. There are two gauge points on the rivers, located at P1 (River Cocker) and P2 (River Derwent), 

marked in Figure 19, where water depths predicted by the solvers were recorded to compare with existing in-situ measurements.  

 515 

Figure 19. Cockermouth urban area. The study area and the positions of the gauge points P1 and P2. The arrows show the positions 

where the inflow hydrographs are imposed at the upstreams of Rivers Derwent and Cocker. The dashed line frames a smaller portion of 

the domain where the generated grids are compared. © OpenStreetMap contributors 2021. Distributed under the Open Data Commons 

Open Database License (ODbL) v1.0. 

Figure 20 compares the generated non-uniform grids using two ε values over the smaller portion of the domain framed in 520 

Figure 19, along with subfigures showing the percentage of the resolutions covering the whole study area. As shown in Figure 

20a, the choice of ε = 10-4 leads to an overly refined grid, where over 50 % of the area is covered with the finest 1 m resolution 

and entailing a 37 % reduction in the number of elements. Comparatively, as shown in Figure 20b, ε = 10-3 leads to a more 

sensible resolution selection as the finest 1 m resolution is only present around the urban features (e.g., the buildings), while up to 

three-level coarser resolutions, i.e., 8 m, are selected over the pathways, and even coarser resolutions, between 16 and 32 m, are 525 

selected over the river channels. This leads to a reduction of 60 % associated with a wider range and more evenly distributed 

resolution selection compared to the smaller choice of ε = 10-4 (see the subfigures in Figure 20).  
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(a) ε = 10-4 (b) ε = 10-3 

Figure. 20. Cockermouth urban area. Grids generated by the non-uniform solver using (a) ε = 10-4 and (b) ε = 10-3, over the smaller 

portion of the domain framed in Figure 19, along with the percentage of the selected resolutions over the whole urban area. 

Figure 21 assesses the accuracy of the non-uniform grid solver with both ε values in terms of water depth hydrograph 530 

predictions at gauge points P1 and P2 (Figure 21a-b) and maximum flood extent (Figure 21c-e) predictions, with reference to the 

predictions made by the uniform grid solver, while comparting with measured hydrographs and a surveyed flood extent, 

respectively. As can be seen in Figures 21a and 21b, the hydrograph predictions by the uniform grid solver follow the rising limb 

of the measured hydrograph up to the peak of the hydrograph at 70 hours, where it only shows a 20 cm underprediction. Also, the 

uniform grid solver could correctly capture the falling limb, with a slightly more gradual decrease from the measured 535 

hydrographs. The hydrographs predicted by the non-uniform grid solver with the two ε values are very close to those predicted by 

the uniform solver with a negligible difference that likely occur from the accumulation of numerical diffusion due to the coarser 

resolutions on the non-uniform grids (Kesserwani and Sharifian, 2023). This suggests that the predictability of the present non-

uniform solver to small, time-scale events improve with increased refinement of the DEM resolution (namely as small as 1 m for 

this case study). 540 

 

 

Figure 21. Cockermouth urban area. Water level time series predicted by uniform and non-uniform solvers compared to the in-situ 

measured water levels at locations (a) P1 (River Cocker) and (b) P2 (River Derwent). Maximum flood extents predicted by (c) the 

uniform grid solver, and the predicted differences with respect to the non-uniform grid solver using (d) ε = 10-4, and (e) ε = 10-3: green 

parts flag flooded areas predicted by both the uniform and the non-uniform grid solvers, blue parts flag an overprediction (i.e., flooded 545 
areas only predicted by the non-uniform grid solver), red parts flag an underprediction (i.e., flooded areas only predicted by the 

uniform grid solver). For reference, the orange line border represents the measured flood extent from the Environment Agency. The hit 

rate (H), false alarm (F) and critical success index (C) values are computed against the flood extent predicted by the uniform grid solver. 

© Google Earth 2021. 

The equally good accuracy for the non-uniform solver predictions with the two ε values can also be confirmed by the fact 550 

that their predicted maximum flood extents (Figures 21d and 21e) are visually comparable (green coloured areas) to the one 

predicted by the uniform grid solver (Figure 21c) that in turn agrees well with the surveyed extent (Environment Agency, 2018). 

The accuracy of the non-uniform solver prediction can be quantitatively confirmed by computing the H, F and C metrics with 

reference to the predicted maximum flood extent by the uniform solver. The scores for H, F and C achieved by the non-uniform 

grid solver with ε = 10-4 and ε = 10-3 are very similar, with a C value exceeding 0.9, suggesting very close accuracy in the flood 555 
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extent predicted by the uniform grid solver. As opposed to the case study of the Glasgow urban area (Sect. 3.4), the C score, of 

0.96, is preserved despite increasing ε from 10-4 to 10-3, but this is more related to the fact that there is one consolidated flooded 

zone occurring in a small perimeter area represented at a 1 m DEM resolution.  

In terms of speed-up, the uniform grid solver on GPU architecture ran 8.9 times faster than the CPU architecture. This is 

in line with the previous findings (Sects. 3.1 to 3.3), as more than one million elements were involved in the grid for this case 560 

study, confirming the utility of the GPU architecture to run faster simulations with a large number of elements. However, this gain 

in speed-up can get compromised when using the non-uniform grid solver. With ε = 10-4, the non-uniform grid solver is in fact a 

bit slower (1.1 times) than the uniform grid solver, which may be expected as the grid is dominated by the finest resolution 

(Figure 20a) with 37 % reduction. Remarkably, with ε = 10-3, which led to a much coarser grid with a 60 % reduction, the speed-

up is insignificant, only 1.2 times faster than the uniform grid solver. This little gain in speed-up could be explained by contrasting 565 

the depth, variability, and distribution of the resolutions selected on the non-uniform grids to those in the other case studies (Sects. 

3.1 to 3.4). It can be noted that the non-uniform grids in the other case studies are featured by the dominance of one or at most two 

resolutions, depending on the choice for ε. This means that the non-uniform grid solver has more access to regularly sized 

neighbours, which helps maximise its efficiency. In contrast, the grids here are featured by more depth and variability in 

resolution, selected with a quite even distribution, in particular with ε = 10-3 (Figure 20b). This culminates in a high number of 570 

differently-sized elements, causing an overhead in the solver calculation at those elements surrounded by too many neighbouring 

elements with different sizes. Such a knock-on effect on the efficiency of the non-uniform solver would be expected to 

increasingly reduce as the modelled area of interest is larger and more inclusive of rural surroundings at coarser resolutions. Still, 

the speed-up analysis confirms that the non-uniform solver with ε = 10-3 is a good choice for urban-scale simulations, to keep 

close accuracy to the uniform solver on GPU architecture and remain more efficient. As the modelled area of interest becomes 575 

smaller and the terrain features are well-resolved in the DEM, the efficiency gain over the uniform solver may not be substantial 

and this makes it a competitive first choice for such a type of urban-scale simulations.  

4 Conclusions and recommendations 

The two-dimensional ACC uniform grid solver has been widely used to run efficient simulations for a wide range of flood 

modelling applications. The efficiency of the ACC solver is owed to a reduced form of the shallow water equations solved by a 580 

simple numerical scheme, and optimisation measures for the Central Processing Unit (CPU) architecture with effective handling 

of wet-dry zones. This paper presented two potentially faster versions that run on the Graphical Processing Unit (GPU): a uniform 

grid version built on the existing codebase (Shaw et al. 2021), and a non-uniform grid version within an ad-hoc codebase with 

guidance on how to set-up and run these new versions on www.seamlesswave.com/LISFLOOD8.0.  

The non-uniform solver has a grid generator that uses the multiresolution analysis (MRA) of the multiwavelets to a 585 

planar Galerkin projection of the digital elevation model (DEM), while only requiring one user-specified parameter as error 

threshold, ε. This allowed to sensibly coarsen resolutions and to properly distribute different classes of Manning’s parameters at 

the coarsened elements. The A   solver’s scheme is adapted to aggregate the discharges across non-uniformly sized grid 

elements. Both the grid generator and the adapted scheme are implemented in a new codebase to efficiently run on the GPU 

architecture.  590 

The performance of the GPU versions of the uniform and non-uniform grid solvers is assessed for five pluvial/fluvial 

flooding case studies at the catchment- and urban-scale. The non-uniform solver simulations were run for two ε values, 10-3 and 

10-4, according to which accuracy was measured in terms of prediction closeness to those of the uniform solver run at DEM 

resolution. The speed-up gained by using the GPU version of the uniform solver, over the CPU version, was quantified using the 

ratio of runtimes with reference to the number of elements on the grid. Similarly, the enhancement in speed-up from using the 595 

non-uniform solver over the uniform solver on the GPU was quantified with reference to the relative reduction in the number of 

elements on the non-uniform grid.  

http://www.seamlesswave.com/LISFLOOD8.0
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For the catchment-scale simulations at DEM resolution as coarse as 10 m or higher, the non-uniform solver with ε =10-4 

generated grids without excessive resolution coarsening leading to acceptable accuracy. For such simulations, ε =10-3 led to 

deterioration in accuracy due to excessively coarsened resolutions on the non-uniform grid that were much coarser than that of the 600 

DEM, and is therefore not recommended. For the urban-scale simulations at DEM resolutions as fine as 2 m or lower, both ε 

values were found valid for use with the non-uniform solver to preserve accuracy, but ε =10-3 leads to more sensible resolution 

coarsening. One important factor to note when modelling catchment-scale simulations is the instabilities resulted from the ACC 

solver’s simplified formulation in modelling thin, fast-flowing water depths. These potential instabilities for the ACC solver are 

likely to happen when modelling pluvial floods over steeply varying topographies at a fine resolution, requiring extra measures to 605 

suppress them such as introducing artificial numerical diffusion in adaptive manner (e.g., as in Sridharan et al., 2021). 

In terms of speed-ups, the GPU version of the uniform grid solver was increasing faster to run than the CPU version as 

the number of elements on the grid became increasingly larger, reaching up to 28 times with 6 million elements. On the GPU, the 

non-uniform solver could offer further enhancements in speed-up, depending on the DEM resolution and the properties of the case 

study. For coarse DEM resolutions featuring the catchment-scale simulations at the recommended ε =10-4, the speed-up 610 

enhancement increased with more reduction in the number of elements, reaching up to 4 times for a reduction of 36 %. A similar 

enhancement was identified at finer DEM resolution featuring the urban-scale simulations at the recommended ε =10-3, albeit at a 

higher reduction, exceeding 65 %, when the grid was dominated by at most two resolutions. The enhancement became moderate 

to insignificant when there was more depth and breadth in resolutions with even distributions, which is likely the case where the 

GPU version of the uniform solver should be preferred. Table 4 summarises the best practice drawn from this study to choose the 615 

most suitable ACC solver for modelling fluvial/pluvial flooding scenarios, considering the number of elements required for the 

uniform grid to achieve considerable GPU speedup, alongside the ε value for the non-uniform solver.  

 

Table 4. Summary of best practice for using uniform and non-uniform solvers on GPU. 

Flood Type Domain scale Typical DEM resolution Uniform Solver (GPU) requirement Non-uniform Solver (GPU) requirement 

Pluvial 
Catchment  > 10 m > 1,000,000 elements 

ε = 10-4; Not suitable for mountainous 

catchments with steep slopes 

Urban/City < 10 m  > 200,000 elements ε = 10-3 

Fluvial 

Catchment > 10 m > 1,000,000 elements ε = 10-4 

Urban/City < 10 m > 500,000 elements 
ε = 10-3; Not suitable for domains  

dominated by dense urban areas  

Code and Data availability 620 

LISFLOOD-FP8.1 source code (LISFLOOD-FP developers, 2022; https://doi.org/10.5281/zenodo.6912932) and simulation 

results (Sharifian et al., 2022; https://doi.org/10.5281/zenodo.6907286) are available from Zenodo. Due to access restrictions, 

readers are invited to contact the Environment Agency for access to the data used in Sect. 3.4 and to refer to the cited references 

for the data used in Sects. 3.1, 3.2, 3.3 and 3.5. 

Video supplement 625 

Step by step instructions on how to download and install the LISFLOOD-FP8.1, and reproduce the simulations for representative 

case studies (Sects. 3.2 and 3.4) are available from Zenodo at https://doi.org/10.5281/zenodo.6685125 (Sharifian and Kesserwani, 

2022). 
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