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Abstract. Many methods exist to model snow densification in order to calculate the depth of a single snow layer or the depth

of the total snow cover from its mass. Most of these densification models need to be tightly integrated with an accumulation

and melt model and need many forcing variables at high temporal resolution. However, when trying to model snow depth on

climatological timescales, which is often needed for winter tourism related applications, these preconditions can cause barriers.

Often, for these types of applications empirical snow models are used. These can estimate snow accumulation and melt based5

on daily precipitation and temperature data, only. To convert the resultant snow water equivalent time series into snow depth,

we developed the empirical model SWE2HS. SWE2HS has been calibrated on a data set derived from a manual observer

station network in Switzerland and validated against independent data from automatic weather stations in the European Alps.

The model fits the calibration data with root mean squared error (RMSE) of 8.4 cm, coefficient of determination (R2) of 0.97

and BIAS of 0.2 cm and is able to reach RMSE of 20.5 cm, R2 of 0.92 and BIAS of 2.5 cm on the validation data. The temporal10

evolution of the bulk density can be reproduced reasonably well on both data sets. Due to its simplicity, the model can be used

as post-processing tool for output of any other snow model that provides daily snow water equivalent output. SWE2HS is

available as a Python package which can be easily installed and used.

1 Introduction

Seasonal snow cover is an important variable with regard to ecology, water resource management, and tourism industry. Ac-15

cordingly, a large range of models of different complexity exist to calculate various properties of the snow cover. Traditionally,

snow models were emerging from the hydrological community in order to estimate water resources from snow. Therefore,

the focus was set on snow water equivalent (SWE) of the snow cover for the first simple approaches such as the empirical

temperature-index models. Over time, more complex models were developed which are capable to calculate snow density,

snow temperature profiles (Jordan, 1991), and snow microstructure (Lehning et al., 2002; Vionnet et al., 2012). Most of these20

more complex, physically based models require a rich set of input parameters such as incoming short and long wave radia-

tion, wind speed, precipitation, and temperature at sub-daily temporal resolution. However, when applying models on longer

timescales e.g. for climatological analyses, the required input parameters are often limited with regard to availability and tem-

poral resolution. Accordingly, simpler empirical models are still often used for climatological analyses instead of employing
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more complex physically based models. Empirical models, however, usually do not calculate snow depth (HS), which would be25

desirable when model output is addressed to stakeholders that usually deal with snow depth rather than snow water equivalent,

such as in the winter tourism sector.

Snow depth is the result of SWE and the bulk snow density (ρ), where SWE = HS · ρ. Snow depth can be measured either

manually by reading from snow stakes or automatically with lasers or ultrasonic devices (Kinar and Pomeroy, 2015). While

modeling SWE requires the representation of snow mass accumulation and ablation, modeling snow depth needs to address30

different types of densification processes. These processes involve densification due to stress induced by overlying snow and

metamorphic processes that change the size and shape of the snow crystals and thus affect snow density (Anderson, 1976).

Metamorphic processes can be either destructive (at constant temperature), constructive (within a temperature gradient) or melt

metamorphic (for melt refreeze cycles) (Sommerfeld and LaChapelle, 1970).

All densification models need to initialize the density of a snow layer or of the whole snowpack. Since there is yet no simple35

method to derive new snow density from a physical snowfall model, in snow models new snow density is either parameterized

or kept at a fixed value. Parameterizations are usually made by estimating new snow density as a function of wind speed,

temperature and relative humidity and various parameterizations exist (see e.g. Helfricht et al., 2018; Valt et al., 2018). When

applied on a daily resolution, the quality of such parameterizations is declining due to unknown timing of a snowfall event

during the day and simultaneous occurrence of settling over the course of the day (Meister, 1986).40

There exist several methods to model snow densification either per layer or for the entire snowpack which can be roughly

classified into three categories. The first category is purely empirical whereby describing the densification dynamic via expo-

nential settling functions. This approach has first been proposed by Martinec (1956) and Martinec (1977) while variations of

the method exist (e.g. Dawson et al., 2017; Koch et al., 2019; Essery, 2015; Aili et al., 2019; Brown et al., 2003, 2006). Dawson

et al. (2017) for example use a non constant e-folding time of the settling rate based on air temperature with an additive over-45

burden term, Essery (2015) use two different maximum densities for cold and melting snow where the exponential function

converges to and Brown et al. (2006) use a maximum density based on snow depth. The second category of snow densification

models is the semi-empirical method of Anderson (1976) which employs a two stage compaction due to metamorphism and

pressure from overlying snow. The compaction due to stress uses a parameterized viscosity coefficient based on temperature.

Settling is enhanced when wet snow in the snowpack occurs. The scheme of Anderson (1976) has been adopted widely and50

is used in many snow and land surface models such as SNTHERM (Jordan, 1991), AMUNDSEN (Marke et al., 2015; Hanzer

et al., 2016; Marke et al., 2018; Warscher et al., 2021), SNOWGRID-CL (Olefs et al., 2020) and CLM5 (van Kampenhout

et al., 2017; Lawrence et al., 2019). Due to its need to determine wet snow in the snowpack, the method of Anderson (1976)

has to be tightly integrated with a snow melt model. The third and most sophisticated category of snow densification models

is using a snow viscosity coefficient which is parameterized based on temperature and/or microstructure of the snow. Snow55

compaction is then modeled by applying stress due to weight of overlying snow. This requires a complex physical model in

order to be able to represent the processes which affect e.g. snow microstructure and is realized by the two physical energy

balance models models Crocus (Brun et al., 1992; Vionnet et al., 2012) and SNOWPACK (Bartelt and Lehning, 2002; Lehning

et al., 2002).
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To our knowledge, none of the above described densification models can be easily used as a standalone model to transfer60

daily SWE to snow depth independently of the snow model, while many approaches exist to do the opposite, convert HS into

SWE (e.g. Jonas et al., 2009; Winkler et al., 2021; McCreight and Small, 2014; Mizukami and Perica, 2008; Guyennon et al.,

2019; Pistocchi, 2016). With new methods being developed to derive SWE from global navigation satellite system (GNSS)

signal attenuation (Koch et al., 2019) or by cosmic ray attenuation (Gugerli et al., 2019), it would be even more desirable to be

able to model snow depth from the derived SWE data (Capelli et al., 2022). Therefore, we developed a simple empirical snow65

densification model which uses daily SWE as sole forcing and transforms SWE to HS using exponential settling equations

for individual layers inspired by Martinec (1977); Dawson et al. (2017); Koch et al. (2019); Essery (2015). We make an

implementation of the model available as a Python package which can be downloaded and installed from the Python packaging

index (PyPI).

The remainder of the paper is structured as follows. In Sect. 2 we describe the model as well as the technical implementation.70

In Sect. 3 we describe the data used for calibration and validation of the model alongside the used calibration methods. In Sect. 4

we show the performance of the calibrated model in alpine snow environments and discuss the scope and limitations of the

model in Sect. 5.

2 Density model

The density model SWE2HS calculates snow depth at a daily resolution and is driven by the daily snow water equivalent of the75

snow cover only. In the following, we use the unit mm w.e. for SWE. The model creates a new layer with a fixed new snow

density ρnew for every increase in SWE such that, over time, a snowpack of individual layers builds up. The density of a layer

increases exponentially with time towards a time-varying maximum density. The maximum density is starting with an initial

value at creation time of the layer and is subsequently increasing towards a higher value based on the overburden a layer has

experienced and the occurrence of SWE losses in the snow pack. When SWE decreases, the model removes SWE from the top80

of the snowpack. The layer number n can thus undergo changes over time based on the number of SWE increases and losses

in the snowpack. The model neglects constructive metamorphism, refreezing, and is not able to capture rain-on-snow events

which might lead to an increase in SWE but no increase in snow depth.

2.1 Settling mechanisms

The density of a layer at day i is asymptotically converging towards the time-varying ρmax of the layer via the following85

exponential function:

ρi = ρmax− (ρmax− ρi−1) · exp(
−1
R

) (1)

Where ρi is the density of day i and ρi−1 is the layer density of the day before. The settling resistance (e-folding time) R is

a model parameter which is optimized in model calibration.
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The maximum density to which the density of a snow layer is converging, ρmax in Eq. 1, is also evolving over time. We90

model the maximum density of a snow layer based on three assumptions. The first assumption is that snow which experienced

a high load is reaching a higher maximum density. The second assumption is that a snow layer is initially dry and that wet

snow has a higher maximum density than dry snow. The third assumption is that the the time-varying maximum density cannot

decrease. Accordingly, the maximum density of a snow layer undergoes changes during its lifetime and transitions from the

model parameters ρmax,init to the model parameter ρmax,end. At the time of deposition, the layer has a theoretical maximum95

snow density of ρmax,init. Afterwards, ρmax is increasing towards ρmax,end by two mechanisms as described following.

1. If a layer experiences an overburden σ > 0mm, its maximum density ρmax is increased linearly with overburden. We

calculate σ as a proxy for overburden stress by summing the amount of SWE above a layer and half of the SWE of the

layer itself. If the overburden weight is equal or larger than the model parameter σmax, ρmax is capped at ρmax,end.

ρ∗max =





(ρmax,end−ρmax,init)
σmax

·σ + ρmax,init if σ < σmax

ρmax,end if σ ≥ σmax

(2)100

If the updated ρ∗max is lower or equal than the value of the day before (ρmax i−1), the value of the current day (ρmax i)

is not updated which which could otherwise cause a decrease of ρ if the density ρi−1 equals ρmax i−1 (see Eq. 1).

ρmax,i =





ρ∗max if ρ∗max ∈ (ρmax i−1,ρmax,end]

ρmax i−1 if ρ∗max ≤ ρmax i−1

(3)

2. SWE losses are defined by SWEi−SWEi−1 < 0. Whenever SWE in the snowpack is decreasing, we assume that the

snowpack has become wet entirely as we attribute all SWE losses to runoff. In doing so, we neglect losses in SWE due to105

sublimation. If SWE decreases, we assume melt metamorphism is active and the maximum snow density ρmax of each

layer is increased towards ρmax,end by

ρmax i = ρmax,end− (ρmax,end− ρmax i−1) · exp(−vmelt) (4)

Where ρmax i is the maximum density of day i, ρmax i−1 is the maximum density of the day before and vmelt is a model

parameter for the speed of that transition.110

At the end of every time step, the snow depth of the snowpack is calculated by summing up the thickness of all n snow

layers in the snowpack as

HS =
n∑

k=1

SWEk · ρwater

ρk
(5)

where ρwater is the density of water with 1000 kg m−3 and SWEk and ρk are SWE and density of layer k, respectively. All

free model parameters that need to be calibrated are listed in Table 2.115
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2.2 Technical implementation

We provide an implementation of the model as a Python package under GNU General Public License v3.0 (GPLv3). One-

dimensional station data and two dimensional model grids of SWE time series can be transformed to snow depth with the above

described snowpack evolution. Additionally, a step by step processing mode with caching of the model state variables for two

dimensional SWE grids of consecutive days is available for operational applications. Python, being a high-level, interpreted120

general-purpose programming language has been chosen due to its easy-to-read syntax, growing user base and community

support for scientific computing and data analysis. Our implementation is using the just-in-time Python compiler Numba (Lam

et al., 2015) for increasing runtime efficiency. Additionally, it depends on the libraries NumPy (Harris et al., 2020) for numerical

computations, Pandas (Reback et al., 2022) for one dimensional input series, and xarray (Hoyer and Hamman, 2017) for mul-

tidimensional input grids. The multidimensional, distributed versions of the model can make use of Dask (Dask Development125

Team, 2016) which makes it possible to execute the model in parallel on standalone computers or high performance computing

environments. Processing 23 years of the Swiss 1 x 1 km domain (8401 x 365 x 272 pixels) including file IO took ~10 min on a

desktop PC (8 cores, Intel Core i7-4790 CPU @ 3.60 GHz, 24 GB RAM). The model implementation can be installed from

the official third-party software repository for Python, The Python Package Index (PyPI: https://pypi.org/project/swe2hs, last

access: 20.10.2022), the source code of SWE2HS is hosted on a Gitlab instance of the Swiss Federal Institute for Forest, Snow130

and Landscape Research WSL (https://code.wsl.ch/aschauer/swe2hs, last access: 20.10.2022), and the software version which

was used for this publication is archived at https://doi.org/10.5281/zenodo.7228066 (Aschauer, 2022).

3 Model calibration and validation

As for every empirical model, parameters in our density model need to be calibrated. Calibrated parameters may differ de-

pending on the station, snow type and snow climatological setting. Here, we try to find one single generic optimal parameter135

set which suits most snow climatological conditions in Switzerland and the European Alps in general. We do so by calibration

over a data set which covers a large range of different altitudes and climatologic settings in Switzerland (see Section 3.1) and

test the found parameters on another independent data set from stations in the European Alps (see Section 3.2). Our model

has 6 model parameters which need to be calibrated. Before calibration, we define upper and lower bounds of possible values

for each model parameter (see Table 2) and apply the constraints that ρmax,init needs to be smaller than ρmax,end and ρnew140

needs to be smaller than ρmax,init. For parameter calibration, we use the Differential Evolution algorithm which is a stochastic

population based method for minimizing nonlinear and non-differentiable continuous space functions as implemented in SciPy

(Storn and Price, 1997; Virtanen et al., 2020). We chose Differential Evolution due to its gradient free nature and ability to

overcome local minima (Storn and Price, 1997). After an initial Sobol’ sequence sampling (Sobol’, 1967), the algorithm draws

parameter candidate samples from the parameter space by mutating the current best member of the sample population with the145

difference of two other randomly chosen members. After the global optimization with the Differential Evolution algorithm, the

result is refined by the L-BFGS-B method of Byrd et al. (1995) which is a Quasi-Newtonian method that estimates the Hessian

of the objective function based on the recent parameter sample history and can handle bound constraints.
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We optimize the model by minimizing the root mean squared error (RMSE) which is a measure of the distance between the

predicted values from the model ŷ to the reference y. It is defined as150

RMSE(y, ŷ) =

√√√√ 1
n

n∑

i=1

(ŷi− yi)2 (6)

with yi and ŷi being the i-th element of the i = 1, ...,n elements in y and ŷ, respectively. Additionally, we use the two statistical

error measures coefficient of determination (R2) and BIAS in order to evaluate the model. The R2 score is representing the

proportion of variation in the data y that can be predicted from the model and is defined as

R2(y, ŷ) = 1−
∑n

i=1(yi− ŷi)2∑n
i=1(yi− ȳ)2

(7)155

with ŷi being the predicted value of the i-th sample, yi being the associated reference value for total n samples and ȳ being

the mean of y. The BIAS is a measure for the systematic tendency of a model to over- or under represent the reference data.

Therefore, it has large implications in climatological contexts. We calculate the BIAS for a sample of size n as follows:

BIAS(y, ŷ) =
1
n

n∑

i=1

yi− ŷi (8)

where ŷi is the predicted value of the i-th sample and yi is the associated reference value. All presented score values RMSE,160

R2 and BIAS are calculated only for the subset of ŷ and y where any of the two vectors is not zero.

In order to assess the importance of individual model parameters on the result, we perform a sensitivity analysis on the

validation data set by calculating R2 and BIAS on 114688 parameter sets sampled after the method of Saltelli (2002) and

calculate the global sensitivity indices (STi) after Sobol’ (2001). These indices give an estimate about the proportion of variance

in R2 and BIAS that can be attributed to a model parameter and all its interactions with other model parameters. We perform165

the sensitivity analysis within the Python framework SALib of Herman and Usher (2017).

3.1 Data from Swiss manual observer stations

For calibrating the SWE2HS model, we use data from 58 Swiss manual observer stations between 1080 and 2620 m a.s.l.

operated by the WSL Institute for Snow and Avalanche Research SLF (Marty et al., 2017). Snow depth is measured daily with

a snow stake and SWE is measured every two weeks in a snow pit on the same site. In order to get daily SWE data, HS data is170

transformed to SWE with the ∆SNOW model of Winkler et al. (2021). In order to improve the accuracy of the daily SWE time

series, the ∆SNOW model parameters were optimized for each station individually using the biweekly SWE measurements

from the manual observer profiles. Due to its destructive nature, the snow pit is not at the exact same location as the snow

stake and consequently the profile cut height can deviate from the measured height at the snow stake. Therefore, the biweekly

SWE data were corrected by calculating the bulk density from the profile and applying it to the measured height from the snow175

stake. ∆SNOW model parameter optimization was done by minimizing the RMSE between modeled SWE and corrected SWE

from the profiles while we allowed the ∆SNOW parameters ρmax (maximum density) to vary between 300 and 600 kg m−3, ρ0
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Table 1. Automatic weather stations from which we used snow water equivalent and snow depth data for validation of the model. The number

of years refers to complete hydrological years (Sep-Aug) included after data cleaning, the average snow depth (HS) is calculated in the winter

months from November to April.

Site name Source Altitude [ma.s.l.] #years of data HS (Nov-Apr) [m]

Col de Porte (FR) Lejeune et al. (2019) 1325 13 0.51

Davos (CH) SLF 1563 1 0.48

Fellhorn (DE) LWZ Bavaria 1610 14 0.88

Kühroint (DE) LWZ Bavaria 1420 13 0.75

Kühtai (AT) Krajci et al. (2017) 1920 21 0.80

Laret (CH) SLF 1513 2 0.69

Spitzingsee (DE) LWZ Bavaria 1100 9 0.47

Wattener Lizum (AT) BFW Innsbruck 1994 8 0.59

Weissfluhjoch (CH) SLF 2536 12 1.35

Zugspitze (DE) LWZ Bavaria 2420 9 1.64

(new snow density) to vary between 65 and 135 kg m−3, and the remaining parameters to vary by ±25 % from the optimized

value found in Winkler et al. (2021). For optimization, we again used Differential Evolution as described in Sect 3. In order

to further increase the reliability of the calibration data set, we only kept station-winters with more than 2 SWE profiles and180

RMSE below 7.5 mm in the resulting daily SWE data set from the ∆SNOW model. Since we did not want certain stations with

long SWE and HS records to bias the calibration, we shortened the length of station records longer than 15 years by randomly

selecting 15 water years from the full station record. The resulting set consists of 741 station-years from 58 stations. Compared

with the biweekly manual SWE measurements, the modeled daily SWE calibration set has an RMSE of 30.0 mm and BIAS of

-1.09 mm. We however cannot assess the uncertainty for the dates between the biweekly SWE measurements.185

While we are aware that it might be preferable to calibrate a model on measured data instead of output from another model,

we still chose the above described approach in order to have an exhaustive calibration data set which a) covers a wider range

of altitudes, expositions and snow climatic settings in our target region, b) does not have problems of potential over- and under

measurement from automatic SWE measurement devices (Johnson and Marks, 2004), and c) does not contain measurement

noise which is not properly tackled in the SWE2HS model.190

3.2 Data from automatic weather stations in the European Alps

As validation data set, we gathered data of 10 different automatic weather stations (AWSs) in Austria, France, Germany, and

Switzerland that automatically measure SWE with either a snow pillow or a snow scale and measure snow depth with an ultra-

sonic measurement device at sub-daily resolution (see Table 1). The raw SWE and HS data with a temporal resolution ranging

between 15 min and 1 h were resampled to daily resolution by taking the median of all measurements between 6 a.m. and195
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Figure 1. Schematic modeled snow pack evolution for the station Kühroint (validation data set, see Table 1) in the winter 2020/21. The red

dotted line is the measured snow depth (HS), the black solid line bounding the colored area is the modeled snow depth, the thin black lines

depict the layer borders within the modeled snowpack, and the coloring refers to the modeled layer densities. The bottom panel shows the

daily snow water equivalent time series which was used to force the model.

8 a.m. local time. Any systematic offset errors from raw sensors were corrected by subtracting the mode of the summer months

(MJJASON) from the SWE or HS time series of each hydrological year. Missing data gaps shorter than 5 consecutive days in

SWE have been filled by linear interpolation. For longer gaps, the time period before the gap in the respective hydrological

year is included and data after the gap is discarded. Short gaps in snow depth are accepted since it is not required to drive the

density model but for evaluating the quality of the model. Missing HS data points will thus not be included when calculating200

any score metrics. All hydrological years that were included in the final validation data set have been quality checked by visual

inspection and by ensuring the bulk density stays below 700 kg m−3.

4 Results

The model calibration on the data set described in Sect. 3.1 yielded the optimized parameters listed in Table 2. Figure 1

shows the temporal evolution during an example winter at the station Kühroint (AWS station, see Table 1) calculated with205

the optimized parameter set. Looking at the temporal development of the density and layering in the modeled snow pack, the

density rapidly increases in the first few days after layer creation leading to enhanced settlement in this period. Additionally,

the density of a layer reacts to changes in SWE in the overlying layers (see e.g. bottom three layers, end of January 2021).
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Table 2. Parameters of the model, lower and upper bounds during calibration and optimized value.

Parameter Description Unit Lower bound Upper bound Optimized value

ρmax,init Initial maximum density kg m−3 150.00 300.00 204.135

ρmax,end Final maximum density kg m−3 300.00 600.00 427.181

ρnew New snow density kg m−3 50.00 150.00 85.914

R Settling resistance - 1.00 110.00 5.923

σmax Overburden where ρmax,end is reached mmw.e. 100 2000 227

vmelt Speed of melt metamorphism transition - 0.05 2.00 0.134

Table 3. Scores values RMSE, R2 and BIAS for the calibration and validation data set after parameter calibration. The accompanying data

is visualized in Figs. 2 and 3.

RMSE [cm] R2 BIAS [cm]

Manual observer stations 8.4 0.971 -0.3

Automatic snow stations 20.5 0.919 2.5

With the optimized parameter set, the model is able to fit the calibration data with RMSE of 8.4 cm, R2 of 0.97 and negligible

BIAS of 0.2 cm (see Table 3 and Fig. 2, left panel). The seasonal evolution of the bulk density can be reproduced well on the210

calibration data set with June being the only month with considerable underestimation of the median snow depth (Fig. 3, left

panel). On the validation data set, the performance is weaker than for the calibration data set with RMSE of 20.5 cm, R2 of

0.92 and BIAS of 2.5 cm. The model slightly underestimates the median snow depth in February and March on the validation

data set and overestimates the median snow depth in the ablation months April, May and June. On the calibration data set, R2

is for 75% of the stations above 0.95, only for two stations R2 is below 0.8 (see Fig. 4). On the validation data set, R2 per215

station varies between 0.15 and 0.95 and is larger than 0.75 for 75% of the stations. On the calibration data set, the BIAS per

station is uniformly distributed around 0 and for all except of two stations smaller than ±10 cm. On the validation data set, the

BIAS per station is ranging from -7 cm to 22.7 cm with four stations having a positive BIAS larger tan 10 cm.

According to the sensitivity analysis, the settling resistance factor R is the most important model parameter with a global

sensitivity index of 0.44 and 0.43 for R2 and BIAS respectively (Fig. 5). This means, that within the 114688 samples drawn220

during the sensitivity analysis, 44% and 43% of the proportion of variance in in R2 and BIAS can be attributed to the settling

resistance factor R, respectively (see Sect. 3). For R2, the second most influential model parameter is new snow density ρnew

followed by the final maximum snow density ρmax,end. For BIAS, the model is less sensitive to ρnew than for R2. The model

is relatively insensitive to changes in the model parameters rhomax,init, vmelt, and σmax with total sensitivity indices below

0.1 for both R2 and RMSE.225
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Figure 2. Scatterplots of modeled against measured snow depth values for (a) the calibration data set from Swiss manual observer stations

and (b) the validation data set from automatic snow stations. The red dashed line is a linear fit to the data, the black solid line represents

perfect predictions. In the insets, the same data is shown as bivariate histograms indicating the density of the scatter points. Score values of

the shown data are listed in Table 3.

5 Discussion

5.1 Model complexity selection

On our way towards the model presented here, we tried models of different complexity, included and removed processes while

iterating back and forward. Some prototype model versions additionally included daily temperature as input forcing, which

we tried to use for parametrization of new snow density and onset of the wetting from top of the snowpack by using the cold230

content parameterizations used in Scheppler (2000) and Szentimrey et al. (2012). Other versions parametrized the settling

resistance R based on overburden or density of a layer or a combination of the two factors. In order to do an objective model

selection for a final model version, additionally to the scores defined in Sect. 3 we calculated the Akaike Information Criterion

(AIC) by using the RMSE as an estimator for the maximum value of the likelihood function. The AIC is a statistical error

measure that penalizes larger numbers of free model parameters. We then ranked the 4 different scores for the optimized model235

of each version and averaged the score ranks over the calibration and validation data set. This allowed us to make an informed

decision on which model version to use. In order to avoid overfitting on the calibration data set, we gave more focus on the

validation data set.

We assumed it would be beneficial to use temperature in the beginning of model conceptualization and one could argue,

that when using SWE from an accumulation and ablation model, there is always at least daily mean temperature available240

used to drive a melt model. However, when quantitatively assessing the model versions with parametrized new snow density

or cold content parameterizations we did not see model improvement from the daily mean temperature inclusion and thus

decided to only use SWE. This additionally comes with the asset that the model can be plugged in as a post-processing tool to
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Figure 3. Boxplots comparing the distributions of measured and modeled data in the months from October to June for (a) the calibration

data set from Swiss manual observer stations and (b) the validation data set from automatic snow stations. A box spans the lower and upper

quartile of the data with a line at the median. The whiskers extend to last datum within 1.5 times the interquartile range while the points

represent outliers past the range of the whiskers. The lower two panels show R2 scores for the modeled data to the reference calculated for

the calibration data set (c) and the validation data set (d).

Figure 4. Boxplots of the scores R2, and BIAS calculated individually on the data from each station in the calibration data set (light blue)

and validation data set (dark blue). The black dots show the underlying data from which the boxplots were calculated.

any snow model which outputs daily SWE. Besides the best performance, another important factor to keep the model simple
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Figure 5. Global Sobol’ (2001) sensitivity indices (STi) calculated for (a) R2 and (b) BIAS of the model predictions on the AWS data set

from 114688 samples drawn with the method of Saltelli (2002).

was to reduce the risk of equifinality, meaning that an optimal solution can be achieved through different states i.e. parameter245

combinations of the model (Beven and Freer, 2001).

5.2 General remarks and limitations

As shown in Sect. 4, the model is able to fit the calibration data very well. The calibration data has been compiled from

manually measured snow depth data and modeled SWE data with the ∆SNOW model of Winkler et al. (2021). Therefore, e.g.

the occurrence of rain-on-snow events cannot degrade the model skill since the ∆SNOW model is also not able to represent rain-250

on-snow events. We still consider using modeled data for calibration a valid approach as we hold back a set of measured data for

independent validation of our optimized model parameter set (see Sect. 3.2). Additionally, SWE2HS’ main scope of application

is post-processing output from simple accumulation and melt models. The model is performing better on the ∆SNOW data set

compared to the AWSs data set. This is due to several reasons. First and foremost, the model has been calibrated on the data

in the ∆SNOW data set and not on the data in the AWSs data set. Accordingly, the fitted parameters do not necessarily suite255

the data in the AWSs data set. Other reason for weaker model performance in the AWSs data set are potentially arising from

noise and measurement uncertainties. One source of these uncertainties are problems of over- and under measurement from

the automatic SWE measurement devices (Johnson and Marks, 2004). This uncertainty increases with time during the winter
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and could be an explanation for the overestimation in the ablation season. Additionally, the measurement uncertainty of the

automatic SWE and HS data can cause small changes in SWE and HS, which are not physically based (Capelli et al., 2022). In260

this regard the SWE and HS in the calibration data set is much more consistent. We could not include a mechanism to deal with

measurement uncertainties analogous to Winkler et al. (2021) since a SWE time series does not contain any information on

settlement which could be used to correctly distinguish a signal from noise. A last source of uncertainty in the AWSs data set is

that the automatic SWE measurements are not necessarily located at the exact same place as the snow depth measurements and

we did not have a way to correct this error in the same way as we did for the manually observed SWE and HS measurements.265

Other sources of uncertainty are due to inherent limitations of our semi-empirical modeling approach. As mentioned above,

the model is not able to represent rain-on-snow events. In the exemplary snow pack evolution of the winter 2020/21 at sta-

tion Kühroint, an increase in SWE causes modeled snow depth to increase although the measured snow depth is constantly

decreasing during this time (mid of March 2021, Fig. 1). This could be an example of either erroneously measured SWE or a

rain-on-snow event which caused an increase in SWE but not in HS. The latter seems more likely since simultaneously to the270

increase in SWE, settling is enhanced for the measured HS and (as additional not-shown data demonstrates) the temperature is

rising above 0 °C in combination with precipitation. Morán-Tejeda et al. (2016) show that such events are rare and contribute

to maximum 100 mm for elevations above 2000 m a.s.l. With a changing climate, rain-on-snow events might become more

likely above 2000 m a.s.l. but might decrease for low altitudes as a decrease in rainfall and shorter snow cover duration are

thought to counteract increased temperatures. Another limitation of the model is the inability to properly track the wetting front275

which is propagating top to bottom through the snowpack over time (Marsh and Woo, 1984). Due to the choice of only using

SWE as forcing, we can only detect the wetting front reaching the bottom which will be observable as a negative change in

SWE. Therefore, the model will likely miss the onset of the melt metamorphism in the snow pack for the upper layers. We try

to partly compensate for this flaw by increasing the maximum density with increasing overburden. As R2 is not decreasing in

spring (Fig. 3) for the calibration and validation data set, the model seems to be able to predict snow depth during the ablation280

period reasonably well nevertheless. Since the model is of empirical nature, the parameter set which is presented here for the

European Alps might not be suited for other regions on earth with different climatologic conditions. If applied to other regions,

the model parameters need to be calibrated again. However, as we never tested the model in e.g. Arctic regions, we cannot

make any statements if the model is able to represent settling dynamics in these snow climatologic conditions even if it would

be calibrated on data from there. Although the calibrated parameter set presented in this paper is thought to be representative285

for the European Alps, it can be quite off for some stations in the validation data set with BIAS of up to 22.7 cm (see Fig. 4).

This high positive BIAS is occurring at station Davos (only one year of data) and station Laret (two years of data). We suspect

that in all three years a short period of potential positive measurement errors from the SWE sensor caused the snow cover

evolution to become defective. In order to achieve the best model skill for a single location, recalibrating the model to data

from that location is necessary.290

Simple empirical models that try to conceptualize processes in a non-physical way are often subject to the risk of potential

model equifinality (Beven and Freer, 2001). While we chose to present a single calibrated parameter set in Sect. 4, there is still
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the risk that other parameter sets might lead to equally good predictions. However, an in-depth analysis of potential equifinality

is out of scope of this model description paper and might be subject of future work.

The model is less sensitive to changes in the model parameter ρnew (new snow density) for BIAS than for R2. This is likely295

due to the nature of the two statistical error metrics used. R2 is measuring the proportion of variance the model is able to

explain in the data and the BIAS is measuring if the model is on average under or overestimating the data to be predicted.

The new snow density is mainly affecting the model result for the times shortly following increases of SWE and thus is not as

important for model BIAS as for R2. Due to the sensitivity to new snow density and the fixed new snow density approach in

the model it is not reasonable to derive climatologic indices related to the amount of new snow such as the maximum increase300

in HS during three days from model output.

6 Conclusions

We present a simple snow density model which can be used to transfer continuous daily snow water equivalent data to snow

depth. The semi-empirical multi-layer model uses exponential settling equations, a fixed new snow density and assumes a

changing maximum snow density over time based on overburden and SWE losses. The model is validated on multi-year data305

from 10 automatic snow stations between 1100 and 2500 m a.s.l. in the European Alps where it can reproduce the measured

data with RMSE of 20.5 cm and BIAS of 2.5 cm. Due to its simplicity, the model can be used for climatological use cases

where input data for more sophisticated densification models is sparse. Since the only input needed to drive the model is daily

SWE, it can be also used to post-process model output from any other snow model or to transfer SWE data obtained from

automatic SWE sensors.310

Code availability. The current version of the model source code, including documentation and examples is available at https://code.wsl.ch/

aschauer/swe2hs (last access: 20.10.2022) and a Python package is available through PyPI at https://pypi.org/project/swe2hs/ (last access:

20.10.2022). The exact version that was used for this manuscript (v1.0.3) is archived at https://doi.org/10.5281/zenodo.7228066 (Aschauer,

2022).

Data availability. The data from Kühtai is described in Krajci et al. (2017) and is available from https://doi.org/10.5281/zenodo.556110.315

The data from Col de Porte is described in Lejeune et al. (2019) and is avaliable from https://doi.org/10.17178/CRYOBSCLIM.CDP.2018.

The complete validation data set is available from the authors upon request. The data set used for calibration will be made publicly available

by the time of publication of the manuscript.
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