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Abstract. Meteorological fronts are important for their associated surface impacts, including extreme precipitation and extreme

winds. Objective identification of fronts is therefore of interest in both operational and research settings. We have implemented

a number of changes in a widely used objective front identification algorithm, and present the improvements associated with

these changes. First, we show that a change to the order of operations from applying a mask then joining frontal points to

contouring the thermal field then applying the mask, yields smoother fronts with fewer breaks. Next we address the selection5

of the identification parameters, including the thresholds and number of smoothing passes. This allows a comparison between

datasets of differing resolutions. Finally, we have made a number of numerical improvements in the implementation of the al-

gorithm, such as more accurate finite differencing, direct calculation of the wet-bulb potential temperature, and better handling

of short fronts, which yield further benefits in smoothness and number of breaks. This updated version of the algorithm has

been made fully portable and scalable to different datasets in order to enable future climatological studies of fronts and their10

impacts.

1 Introduction

Atmospheric fronts are of great importance for the day-to-day variability of weather in the mid-latitudes. They are associated

with a large proportion of total and extreme precipitation, as demonstrated with numerous case studies (Browning, 2004),

modelling, and more recently, long-term climatologies (Berry et al., 2011b; Parfitt et al., 2017b; Schemm et al., 2017). They15

are also strongly linked to extreme wind events (Dowdy and Catto, 2017; Catto et al., 2019; Raveh-Rubin and Catto, 2019; Catto

and Dowdy, 2021), and are key for air-sea interaction (Parfitt et al., 2017b). With a wealth of global gridded observationally-

constrained and model-produced data, there is a desire to be able to objectively identify these frontal features in the gridded

data. This avoids the huge time requirements of a manual analysis, and allows the features to be linked to high impact weather,

such as extreme precipitation or winds (Catto et al., 2012; Catto and Pfahl, 2013; Dowdy and Catto, 2017). The application of20
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the methods to model data of historical and future climate also allows the models to be evaluated for their ability to capture

the dynamical features and their connection to precipitation events (Leung et al., 2022), and to investigate the future of such

features and how they may impact on water resources and natural hazards (Catto et al., 2014).

A number of methods have been developed to perform such objective identification in recent years. Hewson (1998) compiled

a summary of methods prior to then, used to identify frontal features in gridded data, and further developed the methods based25

on a thermal front parameter. Thomas and Schultz (2019) highlighted the three main factors required in identifying fronts with

such a thermal front parameter. First, the thermal variable and vertical level to be considered, such as temperature, potential

temperature, or equivalent (or wet-bulb) potential temperature at, say, 850 hPa. The second, a function of the variable, such as

the simple gradient or some second or third derivative. And third, some thresholds. They found that different thermal variables

each had pros and cons, and could be selected depending on the purpose of the study. The study by Jenkner et al. (2010)30

used a thermal variable (equivalent potential temperature), and the second derivative of that variable to place the frontal lines.

This results in the fronts lying in the centre of a frontal zone, rather than at the leading edge as a synoptic meteorologist

would typically put them. A very similar method was developed by Berry et al. (2011b), which directly applied the methods

of Hewson (1998) to gridded data at 2.5◦× 2.5◦ resolution, and placing fronts on the warm side of the strong temperature

gradient. This also included the addition of a numerical line-joining algorithm, which is a final piece of the front identification35

puzzle.

Other methods have used dynamical information to identify fronts. Simmonds et al. (2012) use information solely on wind

shifts. This method was found to work better in the Southern Hemisphere than the Northern Hemisphere by Schemm et al.

(2015). A combination of this and the thermal method was used by Bitsa et al. (2021) in the Mediterranean, to identify cold

fronts with the method benefiting the smaller spatial scale of fronts in this region. Parfitt et al. (2017b) use a combination40

of vorticity and temperature, requiring both a thermal gradient and a wind shift. While each method has its advantages and

disadvantages, many of the methods typically identify many of the same features (Hope et al., 2014).

A major difficulty in applying objective front identification is the many datasets and differing resolutions. This is particularly

an issue when using gradients of thermal properties, since the resolution of the data will have a large impact on these gradients.

The thresholds used to define fronts need to be varied depending on the resolution. For example, the threshold used in Berry45

et al. (2011b) was−8×10−12 Km−2, while in Dowdy and Catto (2017) on the higher resolution data was−5×10−11 Km−2.

Recently, Soster and Parfitt (2022) investigated the sensitivity of results to the use of different datasets and found a large

difference in front frequency between the datasets. Higher resolution datasets consistently show higher frequency of frontal

points, with the difference reduced when re-gridding to a common grid. This can impact the attribution of precipitation to

fronts.50

Despite the many methods of identifying fronts, and issues and uncertainties associated with each of them, the thermal front

parameter method of Hewson (1998) has been successful in identifying the key climatological features of front frequency and

the link to other variables in a number of studies (Berry et al., 2011b, a; Catto and Pfahl, 2013; Dowdy and Catto, 2017). The

aim of this study is to create a portable implementation of the front identification method of (Hewson, 1998) that is able to scale

to contemporary high resolution (re-)analyses. We demonstrate a method that can be used to avoid the subjective tuning of the55
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thresholds. First the data used are described in Section 2. Section 3 gives a description of the thermal front parameter method,

and the new techniques and improvements implemented in the current version of the algorithm. In Section 4 we compare the

front climatology using the new method with previous methods and different datasets. We finish in Section 5 with a discussion

of the benefits and challenges associated with such objective identification methods.

2 Data60

The updated front identification procedure is applied to European Centre for Medium-Range Weather Forecasts’ (ECMWF)

reanalysis ERA-Interim (Dee et al., 2011). The data used here have a resolution of 0.75◦×0.75◦ on a regular longitude-latitude

grid. The 6-hourly instantaneous air temperature and specific humidity fields at the 850 hPa level were used to compute the

wet-bulb potential temperature θW in order to identify fronts. The wet-bulb potential temperature θW is computed using the

direct method of Davies-Jones (2008, Equation 3.8). The 6-hourly eastward and northward wind components at 850 hPa were65

used to compute the front speed for classification into cold, warm or quasi-stationary fronts. ERA-Interim was chosen over

the more recent ERA5 reanalysis for the primary analysis since the updated procedure is of greatest benefit in middle and low

resolution models, and the resolution of ERA-Interim is equal to that of the highest resolution standard CMIP6 GCMs. Our

baseline for comparison is the global climatology of fronts in ERA-Interim at 0.75◦× 0.75◦ produced by Dowdy and Catto

(2017) using the method of Berry et al. (2011b). We also present a high resolution climatology based on applying the updated70

front identification procedure to the ERA5 reanalysis (Hersbach et al., 2020) using the same 6-hourly fields as ERA-Interim

but with a grid spacing of 0.25◦× 0.25◦.

3 Methodology

Following Hewson (1998) and Berry et al. (2011b), fronts are identified in the wet-bulb potential temperature field θW at

850 hPa. As described in Hewson (1998, their Equation 5) and used in Berry et al. (2011b), fronts are located as the zero75

contour of:

∇ ·∇|∇θW |= 0 or ∇2 |∇θW |= 0. (1)

In one dimension, this is simply the third derivative of the wet-bulb potential temperature θW (see Figure 3 of Hewson (1998)

for an intuitive explanation). We will refer to Equation 1 as the Thermal Front Locator (TFL).

Hewson (1998) defined two additional criteria that must be met in order for a zero contour of the Equation 1 to be considered80

a front. First, the rate of change of θW across the front in the direction of cold air must exceed some threshold value K1. This

criterion was formalised in Equation 9 of Hewson (1998) as:

∇|∇θW | ·
∇θW

|∇θW |
< K1 where K1 ≤ 0Km−2. (2)
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This is the Thermal Front Parameter (TFP) defined by Renard and Clarke (1965). In one dimension, this criterion simply states

that the second derivative of θW must be negative, placing the front on the warm side of the gradient. Second, the gradient85

of θW in the adjacent baroclinic zone (ABZ) must be greater than some threshold value K2. This criterion was formalised in

Equation 11 of Hewson (1998) as:

|∇θW |ABZ > K2 where K2 ≥ 0Km−1 (3)

with

|∇θW |ABZ = |∇θW |+ mχ |∇|∇θW ||90

where m = 1/
√

2 and χ is the grid length. In one dimension, this criterion simply states that the magnitude of the first derivative

of θW must be greater than K2 a fraction of a grid length in the direction of increasing gradient, i.e. inside the adjacent

baroclinic zone.

Fronts are identified as warm, cold or quasi-stationary using the front speed defined by Equation 13 of Hewson (1998),

which is given here as:95

V · ∇|∇θW |
|∇|∇θW ||

(4)

where V = (u,v)T is the vector wind field at 850 hPa. Following Berry et al. (2011b), we adopt a threshold of K3 = 1.5ms−1

such that front points are defined as belonging to warm fronts if they have speed exceeding 1.5 ms−1, and as belonging to cold

fronts if they have speed less than −1.5 ms−1. All other front points are defined as belonging to quasi-stationary fronts.

The automatic front identification method described by Equations 1, 2, 3 and 4 has been reimplemented in the R statistical100

computing language (R Core Team, 2021). The new implementation includes one key methodological improvement, as well

as number of numerical updates compared to that of Berry et al. (2011b).

3.1 Methodological changes

The key methodological change we present is in the order of operations when locating the linear front objects. Berry et al.

(2011b) take what we will call a “mask-then-join” approach. First they locate all those grid boxes that satisfy Equation 2 to105

form a mask (the criterion in Equation 3 is not used). Zero points of Equation 1 are located by an exhaustive search using linear

interpolation between only those grid boxes included in the mask defined Equation 2. Finally, a line-joining algorithm is used

to join the zero points of Equation 1 into lines representing fronts. Points are joined to their nearest neighbour if the two points

are separated by less than a threshold amount specified in degrees.

Instead, we propose a “contour-then-mask” approach. We simultaneously identify zero points in the complete field defined110

by Equation 1 and join them into lines using a contouring algorithm, specifically the contourLines() function in R. Zero

points are again located by linear interpolation, but only joins between adjacent grid boxes are considered. We then interpolate

4
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Figure 1. Front identification in ERA-Interim at 00:00 on 2001-01-01. (a) Using the mask-then-join approach, and (b) using the contour-
then-mask approach. Thick black lines are contours of the∇·∇|∇θW |= 0. Red shading indicates regions where TFP≤−5×10−11 Km−2

by masking in (a) and interpolation in (b). Points indicate front points located by each algorithm.

the values of the fields defined by Equations 2 and 3 onto the points located by the contouring algorithm. Only points that meet

the criteria defined by Equations 2 and 3 are retained, leaving a set of pre-joined line segments representing fronts.

The two approaches are compared in Figure 1. Zero points in Equation 1 usually occur between grid points. That means that115

adjacent grid boxes meeting the criteria in Equation 2 are required in order to find zero points using Equation 1 by the mask-

then-join approach. In even moderately high resolution analyses such as ERA-Interim, the region that satisfies Equation 2 is

often narrow, frequently only one grid box wide. Therefore, the mask-then-join approach frequently fails to locate front points

when the zero contour strays to the edge of a grid box, or grid boxes are adjacent diagonally. This may result in some features

not being identified at all or, more frequently, gaps in what should be continuous features. The line-joining algorithm used by120

Berry et al. (2011b) attempts to mitigate this by using a search radius larger than one grid length, but this is only partially
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effective. The weak front extending from the Mediterranean to the east and north of the Alps (Figure 1) is a typical example.

The mask-then-join approach in Figure 1(a) flags the northern half as a possible front but is unable to identify front points due

to the tight masking. The contour-then-mask approach approach in Figure 1(b) is able to successfully identify the front as a

single object. Overall, the contour-then-mask approach results in more fronts and front points identified, and fewer breaks.125

3.2 Choosing the thresholds

Although automated methods offer the promise of objective feature identification, it is still usually necessary to set some

key parameters. For front identification there are three parameters we can change: the amount of smoothing applied to the

θW field, the TFP threshold K1, and the gradient threshold K2. Some studies have compared outputs with manual analyses

by meteorologists to calibrate the parameters. This is difficult, time consuming and calibrates the algorithm to the subjective130

judgement of a single meteorologist. Also, all three parameters depend on the resolution of the data. Therefore, the calibration

must be repeated for each new dataset, or datasets brought to a common resolution for comparison. Instead, we offer some

suggestions for objective calibration criteria.

We first address the smoothing problem, since the amount of smoothing applied to θW affects the choice of K1 and K2. The

purpose of smoothing is to remove local minima and maxima that might break up otherwise smooth features. We particularly135

wish to avoid local extrema in the TFL field defined by Equation 1. Local extrema will appear as short closed contours

of TFL = 0Km−3. Therefore, it makes sense to examine the effect of smoothing on the average length of the contours of

TFL = 0Km−3. Previous studies applying the method of Berry et al. (2011b) to ERA-Interim used n = 2 passes of a simple

five-point average to smooth the θW field. In testing on ERA-Interim, it was found that the average length of the contours

of TFL = 0Km−3 initially increases rapidly with the number of passes of the five-point smoother, but after 6–10 passes, the140

effect of further smoothing diminishes. Therefore, we settled on n = 8 passes of a five-point smoother.

It is common to define weather phenomena as events exceeding some percentile of the climatological distribution. Therefore,

we propose a quantile based approach to setting the thresholds K1 and K2. When considering the choice of threshold, it may

be necessary to consider both location and season. In practice, there is little monthly variation in the climatological averages of

TFP or the magnitude of the gradient (Equation 3). However, there is considerable spatial variation, as illustrated in Figure 2.145

The climatological zonal averages of both the TFP and magnitude of gradient are relatively constant in the extratropical regions,

but very different in the tropics and polar regions. Since most fronts occur in the extratropical regions, we will focus our

attention there. We set the first threshold K1 to the 25th percentile of the climatological distribution of the TFP. In the Northern

Hemisphere extra-tropics this is around −1.6× 10−11 Km−2. We take the 25th percentile of the TFP since we require that

K1 < 0Km−2 in order that the location represents a minimum, and the 50th percentile of TFP is approximately 0 Km−2. We150

set the second threshold K2 equal to the 50th percentile of the climatological distribution of the magnitude of the gradient of

θW . In the Northern Hemisphere extra-tropics (23.4◦N–66.6◦N) this is around 7.5× 10−6 Km−1. In the absence of strong

physical reasoning, these quantiles have a simple symmetry and were found to identify continuous fronts in good agreement

with published charts for the North Atlantic and Europe. For comparison, previous studies applying the method of Berry et al.

(2011b) to ERA-Interim used thresholds of K1 =−5× 10−11 Km−2 and K2 = 0Km−1 after n = 2 smoothing passes. Our155
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Figure 2. Choosing the thresholds K1 and K2. (a) The 25th percentile of the zonal TFP, and (b) the 50th percentile of |∇θW |. Each coloured
line represents a different month: blue for DJF, yellow for MAM, red for JJA, and orange for SON. Horizontal dotted lines represent the
major circles of latitude. Vertical dashed lines indicate the thresholds chosen in the text.

threshold K1 is lower in part due to the additional smoothing, and in part due to the addition of the second threshold K2 which

was previously set to 0 and thus had no effect.

3.3 Comparing fronts from different datasets

When comparing analyses from different weather and climate datasets, the most common approach is to interpolate all the

datasets to a common resolution, usually the lowest resolution among the datasets of interest. For some features such as fronts160

that are more easily identified in higher resolution data, this can be limiting. The objective calibration criteria described in

Section 3.2 provide one route by which fronts could be identified at the native resolution of each dataset and then compared.

The quantile based criteria will identify the same fraction of grid boxes potentially containing front points at any reasonable

resolution or number of smoothing passes. However, computing the required climatologies is time consuming. An alternative is
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to keep the thresholds K1 and K2 constant, and adjust the number of smoothing passes so that the climatological distributions165

of the TFP and magnitude of gradient fields are similar between datasets. Specifically, the quantiles used to set the thresholds

should be similar. In testing, it was found that matching the threshold percentile of the TFP field provided a more consistent

comparison than the gradient field. The percentiles can be compared for only a small subset of the data, provided the same

subset is used for each dataset, avoiding the need to compute a long climatology. In testing, one month of data in the Northern

Hemisphere extra-tropics was sufficient to consistently determine an appropriate number of smoothing passes.170

3.4 Numerical updates

The biggest single numerical update relates to the computation of the quantities in Equations 1, 2 and 3. Berry et al. (2011b)

used repeated applications of a simple central finite difference approximation to the first derivative. The simple approxima-

tion uses one grid box either side of the object to approximate the derivative to second order accuracy. However, repeated

applications of the simple approximation degrades its accuracy for higher derivatives. In contrast, we use explicit central175

finite difference approximations for the second derivatives in order to maintain second order accuracy throughout. The in-

creased accuracy comes at minimal computation cost, but is valuable due to the small scale of the quantities of interest, e.g.,

K1 =−5× 10−11 Km−2 in Dowdy and Catto (2017).

Other numerical differences include using the mixed-phase parametrization of relative humidity from the ECMWF Integrated

Forecasting System (ECMWF, Section 7.4.2) rather than the table based approach from the NCAR Command Language (NCL).180

In the new implementation, the wet-bulb potential temperature (θW ) is computed using the direct method of Davies-Jones

(2008, Equation 3.8), rather than an iterative method. The final numerical difference between the two implementations is how

short fronts are handled. In the original application, Berry et al. (2011b) reject any fronts less than three points long. In later

applications this was updated to a distance based criteria where fronts whose end points are less than 250 km apart are rejected.

In our implementation, we sum the distance between all adjacent points in each front and reject fronts whose total length is185

less than 250 km.

4 Results

4.1 Comparison with previous implementations

Figure 3 illustrates the difference between the mask-then-join and contour-then-mask methods, and the effect of the updated

parameter choices (i.e. smoothing passes, K1, and K2) in ERA-Interim at 00:00 on 2001-01-01. The mask-then-join approach190

using the original parameters in Figure 3(a) is clearly identifying fronts, but they are fractured with frequent gaps. The contour-

then-mask in Figure 3(b) results in much smoother front features with fewer gaps, and more fronts identified. Figure 3(c)

shows the results of the updated parameters with more smoothing cycles and stronger thresholds. Compared to the original

parameters, the front features are smoother, with fewer breaks and many spurious local fronts have been removed. One feature
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Figure 3. Comparison of methods. (a) Mask-then-join with n = 2, K1 =−5× 10−11 Km−2 and K2 = 0Km−1, (b) contour-then-mask
with n = 2, K1 =−5×10−11 Km−2 and K2 = 0Km−1, (c) contour-then-mask with n = 8, K1 =−1.6×10−11 Km−2 and K2 = 7.5×
10−6 Km−1, (d) ERA5 with n = 96, K1 =−1.6× 10−11 Km−2 and K2 = 7.5× 10−6 Km−1. Thin black lines indicate contours of wet-
bulb potential temperature θW . Thick blue lines indicate cold fronts, thick red lines indicate warm fronts and thick black lines indicate
quasi-stationary fronts. All fronts were classified using a threshold of K3 = 1.5ms−1

that can be seen is the warm front directly to the southeast of the cold front that crosses the south of the UK. This is a common195

feature and tends to relate to pre-frontal troughs that are often analysed on synoptic charts.

Figure 4 compares the front frequency climatologies from three different implementations of the Hewson (1998) algorithm

applied to ERA-Interim with identical parameters (i.e. the same number of smoothing passes, and thresholds K1 and K2).

Specifically, the implementation of Berry et al. (2011b) used by Dowdy and Catto (2017) in Figure 4(a), a version incorporating

our numerical updates but using the original mask-then-join approach in Figure 4(b), and our final version using the contour-200

then-mask approach in Figure 4(c). Figure 4(d) shows that our numerical updates result in slightly greater numbers of fronts

identified in almost all regions, with the exception of areas of very high orography and the far Southern Ocean. Figures 4(e) and

(f) compare our final version with the implementation of Berry et al. (2011b) and the version incorporating only the numerical

updates. The greatest increases in the number of fronts identified are seen in or adjacent to regions where fronts were already

common, highlighting the effectiveness of the contour-then-mask approach at reducing the breaks in the fronts. In the densest205

region of the North Atlantic storm track, the number of fronts identified increases by almost 100 %.
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Figure 4. Comparison of global climatologies of front frequency as a percentage of 6-hourly times. (a) Dowdy & Catto (2017), (b) updated
implementation using the mask-then-join approach (c) updated implementation using the contour-then-mask approach, (d) difference be-
tween mask-then-join and Dowdy & Catto (2017), (e) difference between contour-then-mask and Dowdy & Catto (2017), and (f) difference
between contour-then-mask and mask-then-join. All climatologies were computed with n = 2 smoothing cycles, K1 =−5× 10−11 Km−2

and K2 = 0Km−1

While changing the implementation of the front identification leads to an increase in the number of fronts identified, as shown

in Figure 4, the next aspect of the updated method is a change to the parameters used. Figure 5 compares the climatology of

front frequency of our final version with updated parameters (i.e. smoothing passes, and thresholds K1 and K2) applied to

ERA-Interim against the implementation by Berry et al. (2011b) with the original parameters. The updated parameters result210

in slightly fewer fronts identified in almost all regions, due to the increased smoothing, making the climatology more similar

to earlier estimates, but with the smoother individual fronts given by the contour-then-mask method. The greatest decreases

are seen on the edge of the tropics, adjacent to regions with high front activity. This pattern is to be expected due to the rapid

drop-off in the climatology of the masking parameters in the tropics in Figure 2.
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Figure 5. Updated parameters. Difference between ERA-Interim climatology of front frequency computed using updated parameters n = 8,
K1 =−1.6×10−11 Km−2 and K2 = 7.5×10−6 Km−1, and the original parameters n = 2, K1 =−5×10−11 Km−2 and K2 = 0Km−1.
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Figure 6. Updated global climatologies of front frequency as a percentage of times. (a) Cold fronts, (b) warm fronts, (c) quasi-
stationary fronts, (d) all fronts. All climatologies were computed with n = 8 smoothing cycles, K1 =−1.6× 10−11 Km−2 and K2 =
7.5× 10−6 Km−1 and K3 = 1.5ms−1.

4.2 Fronts identified in moderate resolution reanalysis data215

Figure 6 shows the climatology of front frequency of our final version with updated parameters applied to ERA-Interim, includ-

ing the breakdown into cold, warm and quasi-stationary fronts. Figure 6(d) allows a direct comparison with the climatologies
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in Figure 4, showing that while the updated parameters reduce the number of fronts identified compared to the updated nu-

merical implementation only, overall more fronts are still identified in almost all regions than in earlier versions. Figure 6(a)

and (b) show that warm and cold fronts occur with similar frequencies in most extra-tropical regions. Figure 6(c) shows that220

quasi-stationary fronts occur most often in the tropics where gradients are weaker, and adjacent to very high orography, as

expected.

Figure 7 breaks the classification of fronts down still further, reporting cold and warm fronts by season. Unsurprisingly, cold

fronts in the Northern Hemisphere are most common at the beginning of the storm track regions of both the Atlantic and Pacific

oceans in northern winter (DJF) in Figure 7(a). In contrast, warm fronts in northern summer in in Figure 7(g) tend to outnum-225

ber cold fronts in in Figure 7(c). In agreement with Berry et al. (2011b), the seasonal distribution of fronts in the Southern

Hemisphere is much more stable. Somewhat surprisingly, cold fronts are slightly more common though less widely distributed

in the Southern Hemisphere during southern summer (DJF, Figure 7(a)) than in southern winter (JJA, Figure 7(c)). When the

storm track moves poleward in Southern winter there are larger numbers of warm fronts near Antarctica in Figure 7(g).

4.3 Fronts identified in high-resolution reanalysis data230

The ERA5 reanalysis has a higher resolution than ERA-Interim, with grid spacing of 0.25◦× 0.25◦ compared to 0.75◦×
0.75◦ for ERA-Interim. For ERA5, a total of n = 96 smoothing cycles were required to make the climatologies of the TFP

and gradient similar to ERA-Interim. Figure 3(d) illustrates fronts identified over Europe and the North Atlantic at 00:00 on

2001-01-01. As expected, the features are very similar to those identified in ERA-Interim against which it was calibrated in

Figure 3(c). Figure 8 compares the frequency of fronts identified in ERA5 with ERA-Interim when fronts are identified in235

ERA5 at 0.25◦× 0.25◦ grid spacing with n = 96 smoothing cycles but identical thresholds then aggregated to 0.75◦× 0.75◦

grid spacing for comparison with ERA-Interim. When aggregated to the same resolution, more fronts are identified almost

everywhere in ERA5 than in ERA-Interim due to the increased ability to resolve the required derivatives. The only decreases in

frequency are seen around areas of high orography. The pattern of increase broadly follows the general distribution of fronts,

with more fronts seen where there fronts were already common. Some of the greatest increases are seen in the tropics where240

large numbers of fronts are identified as a result of the increased resolution.

Figure 9 shows the climatology of fronts by type identified in ERA5 at it’s native 0.25◦×0.25◦ resolution. Due to the smaller

grid boxes, the frequency is necessarily lower than for ERA-Interim in Figure 6 and the aggregated data in 8. Figure 9(c)

suggests that the large increases in the frequency of tropical fronts seen in Figure 8(b) are largely due to quasi-stationary

fronts, as might be expected given the more stable atmosphere of the region.245

Figure 10 shows the seasonal breakdown of cold and warm fronts in ERA5, which is provided to be able to compare the

most up-to-date climatology from ERA5 with previous studies. The increase in resolution provides a much smoother picture

of the variation in front frequency across the globe. In general the maximum warm front frequency occurs at higher latitudes

than the maximum cold front frequency, associated with the structure of extratropical cyclones and the poleward transport of

warm air. During DJF especially, the sea surface temperature (SST) front associated with the Gulf Stream is clearly visible in250
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Figure 7. Updated seasonal climatologies of front frequency. (a) Cold fronts in DJF, (b) Cold fronts in MAM, (c) Cold fronts in JJA, (d)
Cold fronts in SON, (e) Warm fronts in DJF, (f) Warm fronts in MAM, (g) Warm fronts in JJA, (h) Warm fronts in SON, All climatologies
were computed with n = 8 smoothing cycles, K1 =−1.6× 10−11 Km−2 and K2 = 7.5× 10−6 Km−1 and K3 = 1.5ms−1.

the North Atlantic. The influence of the SST on the atmosphere is more marked for higher resolution ocean and atmosphere

(Parfitt et al., 2016, 2017a).
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Figure 8. ERA5 compared to ERA-Interim. (a) ERA5 climatology of all fronts at 0.75◦×0.75◦, and (b) difference between ERA5 and ERA-
Interim. The ERA5 climatology were computed with n = 96 smoothing cycles, K1 =−1.6× 10−11 Km−2 and K2 = 7.5× 10−6 Km−1

and K3 = 1.5ms−1. ERA5 fronts were identified at 0.25◦× 0.25◦ then regridded to 0.75◦× 0.75◦ for comparison with ERA-Interim.

5 Discussion

In this paper, we have presented an updated implementation of the automatic front identification method of Berry et al. (2011b),

based on Hewson (1998). The updated implementation was designed specifically to scale to modern high resolution data sets. It255

is open source and does not require compilation, making it extremely portable. Despite not requiring compilation, performance

is improved over earlier versions. One month of global ERA-Interim data at 6-hourly intervals and 0.75◦× 0.75◦ resolution

can be processed using a single core of a 2 year old laptop in around 6 minutes. The same amount of global ERA5 data at

0.25◦× 0.25◦ can be processed in around 1 hour. Memory requirements are minimal since only one time step is processed at

once. The improved scalability enables us to present high resolution climatologies of cold, warm and quasi-stationary fronts260

for all seasons from the ERA5 reanalysis.

In addition to several numerical improvements, we present one key methodological update in the contour-then-mask ap-

proach. We have demonstrated that moving from a mask-then-join to a contour-then-mask approach offers clear benefits.

Gaps in what should be continuous fronts are dramatically reduced in moderate resolution data sets such as ERA-Interim, and

improvements are even greater when applied to general circulation models. This improvement will be useful when linking265

frontal features to precipitation or winds (or compound extreme events) as in Catto and Dowdy (2021), or when using more
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Figure 9. ERA5 global climatologies. (a) Cold fronts, (b) warm fronts, (c) quasi-stationary fronts, (d) all fronts. All climatologies were
computed with n = 96 smoothing cycles, K1 =−1.6× 10−11 Km−2 and K2 = 7.5× 10−6 Km−1 and K3 = 1.5ms−1.

object-based connections such as Papritz et al. (2014). For high resolution data such as ERA5, performance is improved since

contouring is computationally cheaper than line joining.

Most automatic feature detection algorithms involve a calibration or training step involving comparison to analyses by a

human meteorologist. While this step should not be wholly neglected, we offer an objective quantile based method of setting270

thresholds for front identification. This quantile based method can also be used to compare analyses from different models at

different resolutions while allowing feature identification to be conducted at the native resolution of each model. By considering

the climatological distributions of the masking variables, we have demonstrated for the first time the regional and seasonal

variation of the TFP and gradient fields. Subsequent analyses may wish to adopt latitudinally varying thresholds, although

seasonal variation is less strong outside of the polar regions.275

In addition to the various numerical and methodological improvements presented in this study, further improvements or

alternative choices are possible. As well as improving the accuracy of the finite difference approximations of the second

derivative fields to second order, more accurate finite difference schemes could be used for both the first and second order

derivatives. In testing, moving to fourth order accuracy for both first and second derivative fields did yield modest performance

increases in front identification for minimal computational expense. However, the implied accuracy is difficult to justify given280

the coarse resolution of the fields in question. Following Berry et al. (2011b), we identify fronts as zero contours in the field

defined by Equation 5 of Hewson (1998), effectively the third derivative of the wet-bulb potential temperature field at 850 hPa.

Firstly other meteorological fields than wet-bulb potential temperature could be considered, see Hewson (1998) for a list
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Figure 10. ERA5 seasonal climatologies of front frequency. (a) Cold fronts in DJF, (b) Cold fronts in MAM, (c) Cold fronts in JJA, (d) Cold
fronts in SON, (e) Warm fronts in DJF, (f) Warm fronts in MAM, (g) Warm fronts in JJA, (h) Warm fronts in SON, All climatologies were
computed with n = 96 smoothing cycles, K1 =−1.6× 10−11 Km−2 and K2 = 7.5× 10−6 Km−1 and K3 = 1.5ms−1.

of previously considered fields. Secondly, Hewson (1998) identified three alternative expressions for the front locator field

(Equations 6, 7, & 8 of that paper), two of which they dismissed as poorly performing. The third, the so called “mean axis”285
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approach preferred by Hewson (1998) was considered for implementation here, but no performance benefit was found. As

an addition to the methodology of Berry et al. (2011b) and Hewson (1998), the distinction between local and synoptic fronts

suggested by Jenkner et al. (2010) could be implemented. While all distance calculations are carried out on a sphere in the

updated implementation, contouring and interpolation still take place on a regular longitude-latitude grid. Greater accuracy

could be achieved at high latitudes by also carrying out these operations on a sphere.290

While cyclone identification algorithms routinely include the ability to track cyclonic features over subsequent time steps,

similar feature tracking algorithms are almost absent for fronts. To the authors’ knowledge, only Rüdisühli et al. (2020) claim

a front tracking algorithm. Front tracking is inherently more complex than cyclone tracking since fronts are complex line

objects whereas cyclones can be reduced to simple point objects or point objects with an associated area. An openly available

front tracking algorithm would offer new possibilities in terms of attributing and analysing impacts of individual fronts, e.g.,295

precipitation or wind events, or understanding biases in weather and climate models.

Code availability. Code for revised method detailed in this paper are available from https://doi.org/10.5281/zenodo.7278068 and future

developments will be available at https://github.com/phil-sansom/front_id.
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