
Objective identification of meteorological fronts: climatologies from

ERA-Interim and ERA5

Philip G. Sansom1,2 and Jennifer L. Catto1

1Faculty of Environment, Science and Economy, University of Exeter, North Park Road, Exeter, EX4 4QE, UK

2Met Office, FitzRoy Road, Exeter, EX1 3PB, UK

Correspondence: Jennifer L. Catto (j.catto@exeter.ac.uk)

Abstract. Meteorological fronts are important for their associated surface impacts, including extreme precipitation and extreme

winds. Objective identification of fronts is therefore of interest in both operational weather prediction and research settings.

We have implemented a number of changes to a previous implementation of an objective front identification algorithm, applied

these to reanalysis datasets, and present the improvements associated with these changes. The previous implementation used a

different order of operations when identifying fronts compared to the the original algorithm. First, we show that the originally5

proposed order of operations yields smoother fronts with fewer breaks. Next, we propose the selection of the front identification

thresholds in terms of climatological quantiles of the threshold fields. This allows for comparison between datasets of differing

resolutions. Finally, we include a number of numerical improvements in the implementation of the algorithm, such as more

accurate finite differencing, direct calculation of the wet-bulb potential temperature, and better handling of short fronts, which

yield further benefits in smoothness and number of breaks. This updated version of the algorithm has been made fully portable10

and scalable to different datasets in order to enable future climatological studies of fronts and their impacts.

1 Introduction

Atmospheric fronts are of great importance for the day-to-day variability of weather in the mid-latitudes. They are associated

with a large proportion of total and extreme precipitation, as demonstrated with numerous case studies (Browning, 2004),

modelling, and more recently, long-term climatologies (Berry et al., 2011b; Parfitt et al., 2017b; Schemm et al., 2017). They15

are also strongly linked to extreme wind events (Dowdy and Catto, 2017; Catto et al., 2019; Raveh-Rubin and Catto, 2019; Catto

and Dowdy, 2021), and are key for air-sea interaction (Parfitt et al., 2017b). With a wealth of global gridded observationally-

constrained and model-produced data, there is a desire to be able to objectively identify these frontal features in the gridded

data. This avoids the huge time requirements of a manual analysis, and allows the features to be linked to high impact weather,

such as extreme precipitation or winds (Catto et al., 2012; Catto and Pfahl, 2013; Dowdy and Catto, 2017). The application of20
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the methods to model data of historical and future climate also allows the models to be evaluated for their ability to capture

the dynamical features and their connection to precipitation events (Leung et al., 2022), and to investigate the future of such

features and how they may impact water resources and natural hazards (Catto et al., 2014).

A number of methods have been developed to perform such objective identification in recent years. Hewson (1998) compiled

a summary of methods used to identify frontal features in gridded data, and further developed the methods based on a thermal25

front parameter. Thomas and Schultz (2019) highlighted the three main factors required in identifying fronts with such a

thermal front parameter: first, the thermal variable and vertical level to be considered, e.g., temperature, potential temperature,

or equivalent (or wet-bulb) potential temperature at 850 hPa; second, a function of the variable, e.g., the gradient, or some

second or third derivative; and finally, some thresholds. They found that different thermal variables each had pros and cons,

and could be selected depending on the purpose of the study. The study by Jenkner et al. (2010) used equivalent potential30

temperature and its second derivative to place the frontal lines. This results in the fronts lying in the centre of a frontal zone,

rather than at the leading edge as a synoptic meteorologist would typically put them. Berry et al. (2011b) directly applied the

methods of Hewson (1998) to gridded data at 2.5°×2.5° resolution, placing fronts on the warm side of the strong temperature

gradient. This also included the addition of a numerical line-joining algorithm, which is the final piece of the front identification

puzzle.35

Other methods have used dynamical information to identify fronts. Simmonds et al. (2012) used information solely on

wind shifts. This method was found to work better in the Southern Hemisphere than the Northern Hemisphere by Schemm

et al. (2015). A combination of this and the thermal method was used by Bitsa et al. (2021) to identify cold fronts in the

Mediterranean, with the method tailored to suit the smaller spatial scale of fronts in this region. Parfitt et al. (2017b) used

a combination of vorticity and temperature, requiring both a thermal gradient and a wind shift. While each method has its40

advantages and disadvantages, many of the methods typically identify many of the same features (Hope et al., 2014).

A major difficulty in applying objective front identification is the many datasets and differing resolutions. This is particularly

an issue when using gradients of thermal properties, since the resolution of the data will have a large impact on these gradients.

The thresholds used to define fronts need to be varied depending on the resolution. For example, the threshold used in Berry

et al. (2011b) was −8×10−12Km−2, while in Dowdy and Catto (2017) on the higher resolution data was −5×10−11Km−2.45

Recently, Soster and Parfitt (2022) investigated the sensitivity of results to the use of different datasets and found a large

difference in front frequency between the datasets. Higher resolution datasets consistently show higher frequency of frontal

points, with the differences reduced when re-gridded to a common grid. This was shown lead to large differences between

datasets in the proportion of precipitation attributed to fronts.

Despite the many methods of identifying fronts, and issues and uncertainties associated with each of them, the thermal front50

parameter method of Hewson (1998) has been successful in identifying the key climatological features of front frequency and

the link to other variables in a number of studies (e.g., Berry et al., 2011b, a; Catto et al., 2012; Catto and Pfahl, 2013; Catto

et al., 2014; Dowdy and Catto, 2017). The code developed by Berry et al. (2011b) and applied in those subsequent studies was

originally developed on the European Centre for Medium-Range Weather Forecasts’ (ECMWF) ERA-40 reanalysis (Uppala

et al., 2005) at 2.5°× 2.5° resolution, and later to the ECMWF ERA-Interim (Dee et al., 2011) reanalysis at 0.75°× 0.75°55
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resolution. However, that implementation was not easily portable due to being written in a mixture of NCL and Fortran, and

would not scale to the ECMWF ERA5 reanalysis at 0.25°× 0.25° or other high resolution datasets. The aim of this study

is to create a portable implementation of the front identification method of (Hewson, 1998), as implemented by Berry et al.

(2011b), that is able to scale to contemporary high resolution (re-)analyses with horizontal grid-spacings of 0.25° or less. We

demonstrate a quantile based method of tuning the thresholds. First the data used are described in Section 2. Section 3 gives a60

description of the thermal front parameter method, and the improvements over the previous implementation of the algorithm.

In Section 4 we compare the front climatology using the new method with previous methods and different datasets. We finish

in Section 5 with a discussion of the benefits and challenges associated with such objective identification methods.

2 Data

The updated front identification procedure is applied to the ECMWF ERA-Interim reanalysis (ECMWF Reanalysis - Interim,65

Dee et al., 2011). The data used here have a resolution of 0.75°× 0.75° on a regular longitude-latitude grid. The 6-hourly

instantaneous air temperature and specific humidity fields at the 850 hPa level were used to compute the wet-bulb potential

temperature θW , using the direct method of Davies-Jones (2008, Equation 3.8), in order to identify fronts. The 6-hourly

eastward and northward wind components at 850 hPa were used to compute the front speed using the method of Hewson

(1998, Equation 13), allowing classification into cold, warm or quasi-stationary fronts. ERA-Interim was chosen over the more70

recent ERA5 reanalysis (ECMWF Reanalysis v5, Hersbach et al., 2020) for the primary analysis since the updated procedure

is of greatest benefit in middle and low resolution models, and the resolution of ERA-Interim is equal to that of the highest

resolution among standard CMIP6 GCMs. Our baseline for comparison is the global climatology of fronts in ERA-Interim at

0.75°×0.75° produced by Dowdy and Catto (2017) using the method of Berry et al. (2011b). We also present a high resolution

climatology based on applying the updated front identification procedure to the ERA5 reanalysis using the same 6-hourly fields75

as ERA-Interim but with a grid spacing of 0.25°× 0.25°.

3 Methodology

Following Hewson (1998) and Berry et al. (2011b), fronts are identified in the wet-bulb potential temperature field θW at

850 hPa. As described in Hewson (1998, their Equation 5), and implemented in Berry et al. (2011b), fronts are located as the

zero contour of:80

∇ ·∇|∇θW |= 0 or ∇2 |∇θW |= 0. (1)

For a one-dimensional front (Type 1 front in Hewson (1998)), this is simply the third derivative of the wet-bulb potential

temperature θW (see Figure 3 of Hewson (1998) for an intuitive explanation). We will refer to Equation 1 as the thermal

front locator (TFL). In practice, most atmospheric fronts are curved and not simple one-dimensional objects. Hewson (1998)

derived an alternative (their Equation 6) to Equation 1, based on the computation of “five-point mean axes”, designed to85
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mitigate the effects of frontal curvature on the computation of Equation 1, which can lead to noise and exaggerated frontal

curvature. Although the alternative definition was preferred by Hewson (1998), we keep the definition in Equation 1 primarily

for compatibility with Berry et al. (2011b) and the numerous studies which have utilised that implementation. However, the

option to use the alternative definition may be included in a future version of the code documented by this study.

Hewson (1998) defined two additional criteria that must be met in order for a zero contour of the Equation 1 to be considered90

a front. First, the rate of change of θW across the front in the direction of cold air must exceed some threshold value K1. This

criterion was formalised in Equation 9 of Hewson (1998) as:

∇|∇θW | · ∇θW
|∇θW |

<K1, where K1 ≤ 0Km−2. (2)

This is the thermal front parameter (TFP) defined by Renard and Clarke (1965). For a one-dimensional front, this criterion

simply states that the second derivative of θW must be negative, placing the front on the warm side of the gradient. Second,95

the gradient of θW in the adjacent baroclinic zone (ABZ) must be greater than some threshold value K2. This criterion was

formalised in Equation 11 of Hewson (1998) as:

|∇θW |ABZ >K2, where K2 ≥ 0Km−1, (3)

with

|∇θW |ABZ = |∇θW |+mχ |∇|∇θW || ,100

where m= 1/
√
2 and χ is the grid length. For a one-dimensional front, this criterion simply states that the magnitude of the

gradient of θW must be greater than K2 a fraction m of a grid length in the direction of greatest increase in the gradient of

θW , i.e., inside the adjacent baroclinic zone. The value of m= 1/
√
2 was suggested by Hewson (1998) and we found it to

be effective at the resolution of ERA-Interim (0.75°) and ERA5 (0.25°), but it may require additional tuning in very high

resolution data sets.105

Fronts are identified as warm, cold or quasi-stationary using the front speed defined by Equation 13 of Hewson (1998),

which is given here as:

V · ∇|∇θW |
|∇|∇θW ||

, (4)

where V = (u,v) is the vector wind field at 850 hPa. Following Berry et al. (2011b), we adopt a threshold of K3 = 1.5ms−1

such that front points are defined as belonging to warm fronts if they have speed exceeding 1.5ms−1, and as belonging to cold110

fronts if they have speed less than −1.5ms−1. All other front points are defined as belonging to quasi-stationary fronts.
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The automatic front identification method described by Equations 1–4 has been re-implemented in the R statistical comput-

ing language (R Core Team, 2021). The new implementation includes one key methodological change described in Section 3.1,

as well as number of numerical updates compared to that of Berry et al. (2011b).

3.1 Methodological changes115

The intention of this study was to create a portable and scalable implementation of the front identification method of Hewson

(1998) as implemented by Berry et al. (2011b), since that implementation has been successfully used in a number of other

studies (e.g., Berry et al., 2011a; Catto and Pfahl, 2013; Dowdy and Catto, 2017). However, one key methodological change

was implemented regarding the order of operations when locating front objects as lines. Berry et al. (2011b) take what we will

call a “mask-then-join” approach. First they locate all those grid boxes that satisfy Equation 2 to form a mask (the criterion120

in Equation 3 is not used). Zero points of Equation 1 are located by an exhaustive search using linear interpolation between

only those grid boxes included in the mask defined Equation 2. Finally, a line-joining algorithm is used to join the zero points

of Equation 1 into lines representing fronts. Points are joined to their nearest neighbour if the euclidean distance calculated in

degrees of longitude and latitude between two points is less than a specified threshold. This requires the repeated calculation

of the distance between the current point and all remaining un-joined points, making the algorithm computationally expensive.125

Berry et al. (2011b) also apply a minimum front length criteria of 250 km.

In contrast, Hewson (1998) originally proposed a “contour-then-mask” approach, which we adopt here. We identify zero

points in the complete field defined by Equation 1 and join them into lines using a contouring algorithm, specifically the

contourLines() function in R. Zero points are again located by linear interpolation, but only zero points located in adjacent

grid boxes are considered for joining into lines, reducing the computational expense compared to an exhaustive search and130

avoiding the need for repeatedly calculating the distance between large numbers of points. We then interpolate the values of

the fields defined by Equations 2 and 3 onto the points located by the contouring algorithm. Only points that meet the criteria

defined by Equations 2 and 3 are retained, leaving a set of pre-joined line segments representing fronts.

The two approaches are compared in Figure 1. Zero points in Equation 1 usually occur between grid points. That means

that adjacent grid boxes meeting the criteria in Equation 2 are required in order to find zero points using Equation 1 by the135

mask-then-join approach. At or below the 0.75°×0.75° resolution of ERA-Interim, the region that satisfies Equation 2 is often

narrow, frequently only one grid box wide. Therefore, the mask-then-join approach frequently fails to locate front points. This

behaviour can be seen in Figure 1a where no front points are identified between 44.25N adn 45.75N since two zonally adjacent

grid boxes would be required for successful interpolation of a zero point between two masked points, given the orientation of

the front. This may result in some features not being identified at all or, more frequently, gaps in what should be continuous140

features. The line-joining algorithm used by Berry et al. (2011b) attempts to mitigate this by using a search radius larger than

one grid length, but this is only partially effective. In Figure 1a, the search radius is effective in joining the southern-most

located point, but fails to bridge the gap between 44.25N and 45.75N to the region between 46.5N and 48.0N where multiple

adjacent grid points might once again enable the location of zero points. The number of points located in that northern region

is then too small to meet the minimum front length criteria on their own. The contour-then-mask approach approach originally145
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(b) Contour−then−mask

Figure 1. Front identification in ERA-Interim at 00:00 on 2001-01-01. (a) Using the mask-then-join approach, and (b) using the contour-
then-mask approach. Black contours show ∇·∇|∇θW |= 0 and red shading indicates regions where TFP ≤−5×10−11Km−2 by masking
in (a) and interpolation in (b). Circles indicate front points located by each algorithm.

proposed by Hewson (1998) and demonstrated in Figure 1b is able to successfully identify the whole front as a single object.

The masked region is shown for illustration only, in practice the masking variables are interpolated directly on to the potential

front points located on the zero contour. Overall, the contour-then-mask approach results in more fronts and front points

identified, and fewer breaks, as can be seen in the examples in Figures 3a and 3b, and the climatologies in Figures 4b and 4c.

The expected decrease in the number of fronts due to there being fewer breaks is compensated by the number of new fronts150

located due to the increased sensitivity of the contour-then-mask approach to identifying potential front points. In some cases

these new fronts were missed completely by the mask-then-join approach, in others they fail to meet the length criteria without

additional points located by the contour-then-mask approach.
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3.2 Choosing the thresholds and level of smoothing

Although automated methods offer the promise of objective feature identification, it is still usually necessary to set some key155

parameters. For front identification there are three parameters that require tuning: the amount of smoothing applied to the

θW field, the TFP threshold K1, and the gradient threshold K2. Some studies have compared outputs with manual analyses

by meteorologists to calibrate the parameters. This is difficult, time consuming and calibrates the algorithm to the subjective

judgement of a single meteorologist. Also, all three parameters depend on the resolution of the data. Therefore, the calibration

must be repeated for each new dataset, or datasets brought to a common resolution for comparison. Instead, we offer some160

suggestions for objective calibration criteria.

We first address the smoothing problem, since the amount of smoothing applied to θW affects the choice of K1 and K2.

The purpose of smoothing is to remove local minima and maxima that might break up otherwise continuous features. We

particularly wish to avoid local extrema in the TFL field defined by Equation 1, which will appear as short closed contours of

TFL = 0Km−3. Therefore, it makes sense to examine the effect of smoothing on the average length of these contours. Previous165

studies applying the method of Berry et al. (2011b) to ERA-Interim used n= 2 passes of a simple five-point average to smooth

the θW field. In testing on ERA-Interim data, it was found that the average length of the contours of TFL = 0Km−3 initially

increases rapidly with the number of passes of the five-point smoother, but after 6–10 passes, the effect of further smoothing

diminishes (see Figure 1 of Supplementary Material). Therefore, we settled on n= 8 passes of a five-point smoother.

The noise in the TFL field may in part be due to the choice to use Equation 1, as implemented by Berry et al. (2011b), to170

define the location of the fronts, rather than the method preferred by Hewson (1998, their Equation 6) designed to mitigate

the effects of frontal curvature. Equation 1 was retained for its simplicity, and compatibility with Berry et al. (2011b) and

subsequent studies. However, the alternative method preferred by Hewson (1998) may be made available as an option in future

versions of the code associated with this study. Jenkner et al. (2010) classify all closed contours in the front locating field

encircling an area smaller than a given threshold as being associated with (potential) local, rather than synoptic fronts. Such a175

criterion introduces additional subjectivity, but would effectively reduce the noise when identifying synoptic fronts, possibly

allowing less smoothing to be used, and further distinguish fronts associated with orography and other local features. The issue

of noise and surface driven gradients was also discussed in Hewson (2001).

It is common to define weather phenomena as events exceeding some percentile of the climatological distribution. Therefore,

we propose a quantile based approach to setting the thresholds K1 and K2. The advantage of setting thresholds in terms of180

climatological quantiles is that the thresholds should be comparable between datasets of differing resolution, while the actual

values can differ quite widely. For example, Berry et al. (2011b) used a threshold of −8× 10−12 Km−2 at 2.5° resolution in

ERA-40, compared to the threshold of −5×10−11 Km−2 at 0.75° resolution used in ERA-Interim by Dowdy and Catto (2017).

In order to compute quantiles, we require climatologies of the TFP and the magnitude of the gradient, obtained by evaluating

Equations 2 and 3, respectively, over an extended time period for the region of interest. The time period considered was 1979-185

2018 in ERA-Interim. Since most fronts occur in the extra-tropical regions, we will focus our attention there. We seek quantiles

of the TFP and the magnitude of the gradient that produce continuous fronts in good agreement with published charts for the
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Figure 2. Choosing the thresholds K1 and K2. (a) The 25th percentile of the TFP, and (b) the 50th percentile of |∇θW | by latitude and month
of the year. Each coloured line represents a different month: blue for DJF, yellow for MAM, red for JJA, and orange for SON. Horizontal
dotted lines represent the major circles of latitude. Vertical dashed lines indicate the thresholds chosen in the text: −1.6× 10−11 Km−2 in
(a); and 7.5× 10−6 Km−1 in (b).

North Atlantic and Europe, focusing on January and July 2020. Combinations of quantiles of both the TFP and the magnitude

of the gradient were systematically compared (see Supplementary Material for examples). We set the first threshold K1 to the

25th percentile (0.25 quantile) of the climatological distribution of the TFP. In the Northern Hemisphere extra-tropics this is190

around −1.6×10−11 Km−2. We set the second threshold K2 equal to the 50th percentile (0.50 quantile) of the climatological

distribution of the magnitude of the gradient of θW . In the Northern Hemisphere extra-tropics (23.4°N–66.6°N) this is around

7.5× 10−6 Km−1. These choices are subjective, and an operational meteorologist might make other choices. However, in the

absence of strong physical reasoning, these quantiles have a simple symmetry, i.e., each is approximately the 50th percentile

of the allowed range (since K1 < 0Km−2 and globally the 50th percentile of TFP is approximately 0Km−2), and produce195

continuous fronts in good agreement with published charts.
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Figure 2 illustrates the monthly and latitudinal climatological variation in the chosen quantiles of TFP and the magnitude of

the gradient of θW . The distributions of both TFP and the magnitude of the gradient are very different in the tropics compared

to the extra-tropics. The value of TFP chosen for K1 is biased towards the upper latitudes of the northern hemisphere extra-

tropics where fronts are frequently observed and associated with extra-tropical cyclones. The chosen value of the magnitude of200

gradient lies in the middle of the seasonal variation in the extra-tropics, which is fairly constant between around 35°N–65°N

and 30°S–50°S, with greater spread in the northern hemisphere. The chosen values are broadly representative of the quantiles

across the seasons in both the northern and southern hemisphere extra-tropics. Given the relative insensitivity to reasonable

values of the K1 and K2 shown in the Appendix, the chosen values should be representative across the seasons and both

hemispheres for both criteria.205

For comparison, previous studies applying the method of Berry et al. (2011b) to ERA-Interim used a threshold of K1 =

−5×10−11Km−2 after n= 2 smoothing passes. The second threshold K2 in Equation 3 was not implemented by Berry et al.

(2011b), equivalent to setting K2 = 0Km−1 since |∇θW | ≥ 0 by definition. Our threshold K1 is higher primarily due to the

additional smoothing, but the exclusion of the second threshold K2 may have caused Berry et al. (2011b) to choose a lower

threshold for K1 in order to remove unwanted features that could more effectively have been eliminated by implementing the210

second threshold K2.

3.3 Comparing fronts from different datasets

When comparing analyses from different weather and climate datasets, the most common approach is to interpolate all the

datasets to a common resolution, usually the lowest resolution among them. For some features such as fronts that are more

easily identified in higher resolution data, this can be limiting. The objective calibration criteria described in Section 3.2215

provide one route by which fronts could be identified at the native resolution of each dataset and then compared. The quantile

based criteria will identify the same fraction of grid boxes potentially containing front points for any reasonable resolution

and number of smoothing passes. However, computing the required climatologies is time consuming. An alternative is to keep

the thresholds K1 and K2 constant, and adjust the number of smoothing passes such that the climatological distributions of

the TFP and the magnitude of the gradient are similar between datasets. Specifically, the quantiles used to set the thresholds220

should be similar. In testing, it was found that matching the threshold quantile of the TFP field provided a more consistent

comparison than that of the gradient field. It is sufficient to compare the quantiles for only a small subset of the data, provided

the same subset is used for each dataset, avoiding the need to compute a long climatology in order to determine. In testing,

various lengths and spatial extents of training data were considered for comparing ERA-Interim and ERA5, from one month,

to 30 years, for the Northern Hemisphere extra-tropics, Southern Hemisphere extra-tropics, or the whole globe. One month225

of data was found to be sufficient to consistently determine an appropriate number of smoothing passes. The procedure is not

sensitive to either the month of the year or the spatial extent, among those considered. In practice, we used January 2000 for

the Northern Hemisphere extra-tropics, consistent with the examples in Figures 1 and 3.
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3.4 Numerical updates

Berry et al. (2011b) used repeated applications of a simple central finite difference approximation to the first derivative to230

evaluate all the derivatives in Equations 1–4 at each grid box. The simple approximation uses one grid box on either side of

the box in question to approximate the first derivative to second order accuracy. The zonal and meridional components of the

derivatives are evaluated separately using one box to the left and right, or above and below, respectively. However, repeated

applications of the approximation to the first derivative degrades the accuracy for higher derivatives. In contrast, we use an

explicit central finite difference approximation to the second derivatives required to evaluate ∇2 when computing the TFL in235

Equation 1, avoiding the need for repeated applications of the first derivative, and maintaining second order accuracy. The

explicit approximation uses two grid boxes either side of the grid box in question. The zonal and meridional components

are evaluated separately. The computation of both the first and second derivatives was also updated to maintain second order

accuracy at the edges of the domain using forward and backward differences. The increased accuracy comes at minimal

computation cost, but is valuable due to the small scales of the quantities of interest, i.e., the thresholds K1 and K2 are very240

small, order 10−11 and 10−6, indicative of scale of the fields of TFP and |∇θW | themselves, therefore accurate and stable

numerical schemes are required to accurately locate fronts.

Other numerical differences include using the mixed-phase parametrization of relative humidity from the ECMWF Integrated

Forecasting System (ECMWF, Section 7.4.2) rather than the table based approach from the NCAR Command Language (NCL,

2019). In the new implementation, the wet-bulb potential temperature (θW ) is computed using the direct method of Davies-245

Jones (2008, Equation 3.8), rather than an iterative method. The final numerical difference between the two implementations

is how short fronts are handled. In the original application, Berry et al. (2011b) reject any fronts less than three points long. In

later applications this was updated to a great-circle distance based criterion where fronts whose end points are less than 250 km

apart are rejected. In our implementation, we sum the great-circle distance between all adjacent points in each front and reject

fronts whose total length is less than 250 km.250

4 Results

4.1 Comparison with previous implementations

Figure 3 illustrates the difference between the mask-then-join and contour-then-mask methods, and the effect of the updated

parameter choices (i.e., n, K1, and K2) in ERA-Interim at 00:00 UTC on 2001-01-01. The mask-then-join approach using the

original parameters (Figure 3a) is clearly identifying fronts, but they are fractured with frequent gaps. The contour-then-mask255

(Figure 3b) results in much smoother front features with fewer gaps, and more fronts identified. Figure 3c shows the results of

the updated parameters with more smoothing cycles and stronger thresholds. Figure 3d shows the fronts identified in ERA5,

and will be discussed further in Section 4.3. Compared to the original parameters, the front features are smoother, with fewer

breaks and many spurious local fronts have been removed. One feature that can be seen is the warm front directly to the

southeast of the cold front that crosses the south of the UK. Such features were noted by Hewson (1998), and are associated260
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Figure 3. Comparison of methods in ERA-Interim at 00:00 on 2001-01-01. (a) mask-then-join with n= 2, K1 =−5× 10−11Km−2 and
K2 = 0Km−1, (b) contour-then-mask with n= 2, K1 =−5×10−11Km−2 and K2 = 0Km−1, (c) contour-then-mask with n= 8, K1 =
−1.6× 10−11Km−2 and K2 = 7.5× 10−6Km−1, and (d) in ERA5 using contour-then-mask with n= 96, K1 =−1.6× 10−11Km−2

and K2 = 7.5×10−6Km−1. Thin black lines indicate contours of wet-bulb potential temperature θW . Thick blue lines indicate cold fronts,
thick red lines indicate warm fronts and thick black lines indicate quasi-stationary fronts. All fronts were classified using a threshold of
K3 = 1.5ms−1

with a warm conveyor belt running adjacent to the front. Hewson and Titley (2010) suggest a third masking criteria based

on potential temperature rather than wet-bulb potential temperature that may be implemented in a future version of the code

documented in this study.

Figure 4 compares the front frequency climatologies from three different implementations of the Hewson (1998) algorithm

applied to ERA-Interim with identical parameters (i.e., the same number of smoothing passes, and thresholds K1 and K2): the265

implementation of Berry et al. (2011b) used by Dowdy and Catto (2017) (Figure 4a); a version incorporating our numerical

updates but using the original mask-then-join approach (Figure 4b); and our final version using the contour-then-mask approach

(Figure 4c). Figure 4d shows that our numerical updates result in slightly lower numbers of fronts identified in across most of

the northern and southern hemisphere extra-tropics, and slightly higher numbers of fronts identified in the tropics. Figures 4e

and 4f compare our final version with the implementation of Berry et al. (2011b) and the version incorporating only the270

numerical updates. The greatest increases in the number of fronts identified are seen in or adjacent to regions where fronts

were already common, highlighting the effectiveness of the contour-then-mask approach at reducing the breaks in the fronts.

In the densest region of the North Atlantic storm track, the number of fronts identified increases by almost 100%.
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(a) Dowdy and Catto (2017)
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(d) Percentage difference between (b) and (a)
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(e) Percentage difference between (c) and (a)
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Figure 4. Comparison of global climatologies of front frequency as a percentage of 6-hourly times. (a) Dowdy & Catto (2017), (b) updated
implementation using the mask-then-join approach (c) updated implementation using the contour-then-mask approach, (d) percentage differ-
ence between mask-then-join and Dowdy & Catto (2017), (e) percentage difference between contour-then-mask and Dowdy & Catto (2017),
and (f) percentage difference between contour-then-mask and mask-then-join. All climatologies were computed with n= 2 smoothing cy-
cles, K1 =−5× 10−11Km−2 and K2 = 0Km−1

While changing the implementation of the front identification leads to an increase in the number of fronts identified, as shown

in Figure 4, the next aspect of the updated method is a change to the parameters used. Figure 5 compares the climatology of275

front frequency of our final version with updated parameters (i.e., smoothing passes, and thresholds K1 and K2) applied to

ERA-Interim against the implementation by Berry et al. (2011b) with the original parameters. The updated parameters result

in slightly fewer fronts identified in almost all regions, due to the increased smoothing, making the climatology more similar

to earlier estimates, but with the smoother individual fronts given by the contour-then-mask method. The greatest decreases

are seen on the edge of the tropics, adjacent to regions with high front activity. This pattern is to be expected due to the rapid280

drop-off in the climatological quantile values of the masking parameters in the tropics in Figure 2.
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Figure 5. Updated parameters. Percentage difference between ERA-Interim climatology of front frequency computed using updated param-
eters n= 8, K1 =−1.6× 10−11Km−2 and K2 = 7.5× 10−6Km−1, and the original parameters n= 2, K1 =−5× 10−11Km−2 and
K2 = 0Km−1.
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Figure 6. Updated global climatologies of front frequency as a percentage of times. (a) All fronts, (b) cold fronts, (c) warm fronts, (d) quasi-
stationary fronts. All climatologies were computed with n= 8 smoothing cycles, K1 =−1.6×10−11Km−2 and K2 = 7.5×10−6Km−1

and K3 = 1.5ms−1.

4.2 Front climatology from ERA-Interim

Figure 6 shows the climatology of front frequency of our final version with updated parameters applied to ERA-Interim, includ-

ing the breakdown into cold, warm and quasi-stationary fronts. Figure 6a allows for a direct comparison with the climatologies
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in Figure 4, showing that while the updated parameters reduce the number of fronts identified compared to the updated numer-285

ical implementation only, overall more fronts are still identified in almost all regions than in earlier versions. Figure 6b and 6c

show that cold and warm fronts occur with similar frequencies in most extra-tropical regions, as previously shown in Berry

et al. (2011b). Figure 6d shows that quasi-stationary fronts occur most often where winds are weaker, particularly in the horse

latitudes and inter-tropical convergence zone, and adjacent to high orography, as expected.

Figure 7 breaks the classification of fronts down still further, reporting cold and warm fronts by season. Unsurprisingly, cold290

fronts in the Northern Hemisphere are most common at the beginning of the storm track regions of both the Atlantic and Pacific

oceans in northern winter (DJF, Figure 7a). In contrast, warm fronts in northern summer (JJA, Figure 7g) tend to outnumber

cold fronts (Figure 7c). In agreement with Berry et al. (2011b), the seasonal distribution of fronts in the Southern Hemisphere

is much more stable. Cold fronts are slightly more common though less widely distributed in the Southern Hemisphere during

southern summer (DJF, Figure 7a) than in southern winter (JJA, Figure 7c). When the storm track moves poleward in Southern295

winter there are larger numbers of warm fronts near Antarctica (JJA, Figure 7g).

4.3 Front climatology from ERA5

The ERA5 reanalysis has a higher resolution than ERA-Interim, with grid spacing of 0.25°×0.25° compared to 0.75°×0.75°

for ERA-Interim. For ERA5, a total of n= 96 smoothing cycles were required to make the climatologies of the TFP and

gradient similar to ERA-Interim. Figure 3d illustrates fronts identified over Europe and the North Atlantic at 00:00 UTC300

on 2001-01-01. As expected, the features are very similar to those identified in ERA-Interim against which it was calibrated

(Figure 3c). Figure 8 compares the frequency of fronts identified in ERA5 with that in ERA-Interim when fronts are identified in

ERA5 at 0.25°×0.25° grid spacing with n= 96 smoothing cycles but identical thresholds to those used for ERA-Interim, then

aggregated to 0.75°× 0.75° grid spacing for comparison with ERA-Interim. Aggregation is performed by counting individual

fronts identified at the higher resolution passing through the lower resolution grid. When aggregated to the same resolution,305

more fronts are identified almost everywhere in ERA5 than in ERA-Interim. Decreases in frequency are primarily associated

with areas of high orography. The pattern of increase broadly follows the general distribution of fronts, with more fronts seen

where they were already common, particularly in the storm tracks where front frequency increases by 20% to 40%. The

greatest percentage increases are seen in the inter-tropical convergence zone (ITCZ) east and west of South America where

very few fronts were identified in ERA-Interim.310

Figure 9 shows the climatology of fronts by type identified in ERA5 at its native 0.25°×0.25° resolution. Due to the smaller

grid boxes, the frequency is necessarily lower than for ERA-Interim in Figure 6 and the aggregated data in Figure 8 One ERA-

Interim grid box contains nine ERA5 grid boxes. A perfectly straight front passing through one ERA-Interim grid box would

pass through only three of the nine associated ERA5 grid boxes. Therefore, one might expect the front frequency in ERA5 at

its native resolution to be approximately one third of the frequency in ERA-Interim. Comparing Figures 6 and 9 shows that this315

is approximately the case. Figure 9d suggests that the large increases in the fronts in the ITCZ seen in Figure 8b is primarily

associated quasi-stationary fronts, due to the light winds associated with the ITCZ.
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(a) Cold fronts in DJF

−180 −150 −120 −90 −60 −30 0 30 60 90 120 150 180
−75

−60

−45

−30

−15

0

15

30

45

60

75
(b) Cold fronts in MAM
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(c) Cold fronts in JJA
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(d) Cold fronts in SON
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(e) Warm fronts in DJF
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(f) Warm fronts in MAM
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(g) Warm fronts in JJA
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(h) Warm fronts in SON
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Figure 7. Updated seasonal climatologies of front frequency. (a) Cold fronts in DJF, (b) Cold fronts in MAM, (c) Cold fronts in JJA, (d)
Cold fronts in SON, (e) Warm fronts in DJF, (f) Warm fronts in MAM, (g) Warm fronts in JJA, (h) Warm fronts in SON. All climatologies
were computed with n= 8 smoothing cycles, K1 =−1.6× 10−11Km−2 and K2 = 7.5× 10−6Km−1 and K3 = 1.5ms−1.

Figure 10 shows the seasonal breakdown of cold and warm fronts in ERA5, which is provided to be able to compare the

most up-to-date climatology from ERA5 with previous studies. In general the maximum warm front frequency occurs at higher
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(a) ERA5

  0   1   2   3   4   5   6   7   8   9  10  11  12 100
Frequency (%)

−180 −150 −120 −90 −60 −30 0 30 60 90 120 150 180
−75

−60

−45

−30

−15

0

15

30

45

60

75
(b) Percentage difference between ERA5 and ERA−Interim
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Figure 8. ERA5 compared to ERA-Interim. (a) ERA5 climatology of all fronts at 0.75°× 0.75°, and (b) percentage difference between
ERA5 and ERA-Interim. The ERA5 climatology were computed with n= 96 smoothing cycles, K1 =−1.6× 10−11Km−2 and K2 =
7.5× 10−6Km−1 and K3 = 1.5ms−1. ERA5 fronts were identified at 0.25°× 0.25° then regridded to 0.75°× 0.75° for comparison with
ERA-Interim.

latitudes than the maximum cold front frequency, due to the structure of extratropical cyclones and the associated poleward320

transport of warm air. During DJF especially, the sea surface temperature (SST) fronts associated with the Gulf Stream in the

North Atlantic and Kuroshio current in the North Pacific are clearly visible. The influence of the SST on the atmosphere is

more marked for higher resolution ocean and atmosphere (Parfitt et al., 2016, 2017a).

5 Discussion

In this paper, we have presented an updated implementation of the automatic front identification method of Berry et al. (2011b),325

based on Hewson (1998). The updated implementation was designed specifically to scale to modern high resolution data

sets. It is open source and does not require compilation, making it extremely portable. Despite not requiring compilation,

computational performance is improved over earlier versions that were implemented in NCL with compiled components.

Performance improvements come primarily from three areas: (i) the improved efficiency of the contouring algorithm compared

to the line joining algorithm; (ii) vectorization of many calculations to avoid unnecessary loops; (iii) reduced memory usage330

by avoiding pre-allocating unnecessarily large arrays. One month of global ERA-Interim data at 6-hourly intervals and 0.75°×
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(a) All fronts
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(b) Cold fronts

−180 −150 −120 −90 −60 −30 0 30 60 90 120 150 180
−75

−60

−45

−30

−15

0

15

30

45

60

75
(c) Warm fronts
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(d) Quasi−stationary fronts
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Figure 9. ERA5 global climatologies. (a) All fronts, (b) cold fronts, (c) warm fronts, (d) quasi-stationary fronts. All climatologies were
computed with n= 96 smoothing cycles, K1 =−1.6× 10−11Km−2 and K2 = 7.5× 10−6Km−1 and K3 = 1.5ms−1.

0.75° resolution can be processed in around 6 minutes using a single core of an Intel i7-8565U based laptop with a theoretical

maximum speed of 4.6GHz. The same amount of global ERA5 data at 0.25°× 0.25° can be processed in around 1 hour.

Memory requirements are minimal since only one time step is processed at once. The improved scalability enables us to

present high resolution climatologies of cold, warm and quasi-stationary fronts for all seasons from the ERA5 reanalysis.335

In addition to several numerical improvements, the revised implementation uses the contour-then-mask approach originally

proposed by Hewson (1998) rather than the mask-then-join approach used by Berry et al. (2011b). The advantages of the

contour-then-mask approach are demonstrated by example and by comparison of climatologies which show increased numbers

of fronts identified almost everywhere. Gaps in what should be continuous fronts are reduced in ERA-Interim, and greater

improvements are expected in lower resolution datasets for the reasons demonstrated in Figure 1. This improvement will be340

useful when linking frontal features to precipitation or winds (or compound extreme events) as in Catto and Dowdy (2021),

or when using more object-based connections such as Papritz et al. (2014). Computational performance is improved since the

contouring algorithm is more efficient than the line joining algorithm used by Berry et al. (2011b).

Most automatic feature detection algorithms require a calibration or training step involving comparison to analyses by

a meteorologist. While this step cannot be neglected, we propose a quantile based approach to setting thresholds for front345

identification. Setting thresholds in terms of climatological quantiles makes the thresholds more easily comparable between

data sets of differing resolution. By considering the climatological distributions of the masking variables, we have demonstrated
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(a) Cold fronts in DJF
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(b) Cold fronts in MAM
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(c) Cold fronts in JJA
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(d) Cold fronts in SON
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(e) Warm fronts in DJF

−180 −150 −120 −90 −60 −30 0 30 60 90 120 150 180
−75

−60

−45

−30

−15

0

15

30

45

60

75
(f) Warm fronts in MAM
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(g) Warm fronts in JJA
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Figure 10. ERA5 seasonal climatologies of front frequency. (a) Cold fronts in DJF, (b) Cold fronts in MAM, (c) Cold fronts in JJA, (d) Cold
fronts in SON, (e) Warm fronts in DJF, (f) Warm fronts in MAM, (g) Warm fronts in JJA, (h) Warm fronts in SON. All climatologies were
computed with n= 96 smoothing cycles, K1 =−1.6× 10−11Km−2 and K2 = 7.5× 10−6Km−1 and K3 = 1.5ms−1.

for the first time the regional and seasonal variation of the TFP and gradient fields. Subsequent analyses may consider adopting

latitudinally or seasonally varying thresholds in order to capture features that may be missed by or eliminate spurious features
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included by the used constant thresholds. We also demonstrate how the quantile based method can also be used to compare350

analyses from models or analyses at different resolutions by smoothing until the climatological quantiles are similar. In ERA5

this results in greater numbers of fronts identified even after smoothing, similar to the results of Parfitt et al. (2017b) after

interpolation to lower resolution. Smoothing has the advantage of allowing feature identification to be conducted at the native

resolution of each data set.

In addition to the various numerical and methodological improvements presented in this study, further numerical improve-355

ments, methodological choices, and alternative choices of meteorological field are possible. In addition to improving the ac-

curacy of the finite difference approximations of the second derivative fields to second order, more accurate finite difference

schemes could be used for both the first and second order derivatives. In testing, moving to fourth order accuracy for both first

and second derivative fields did yield modest increases in both the number of fronts and front points identified, for minimal

computational expense. However, the increased accuracy of the derivatives is difficult to justify given the coarse resolution of360

the fields in question. Following Berry et al. (2011b), we identify fronts as zero contours in the field defined by Equation 5 of

Hewson (1998), effectively the third derivative of the wet-bulb potential temperature field at 850 hPa. Firstly, meteorological

fields other than wet-bulb potential temperature could be considered, see Hewson (1998) for a list of previously considered

fields. Secondly, Hewson (1998) derived an alternative expression for the front locator field, designed to mitigate the effects

of frontal curvature which can otherwise lead to noise and excessive curvature in identified fronts. We retained the simpler365

definition for compatibility with Berry et al. (2011b) and subsequent studies, but the alternative definition preferred by Hewson

(1998) may be included as an option in a future version of the code associated with this study. Additional diagnostics such

as distinguishing between between local and synoptic fronts suggested by Jenkner et al. (2010), or the additional criteria pro-

posed by Hewson and Titley (2010) designed to eliminate spurious features associated with proximity to the warm conveyor

belt, could also be implemented. Furthermore, while all distance calculations are carried out on a sphere in the updated imple-370

mentation, contouring and interpolation still take place on a regular longitude-latitude grid. Greater accuracy could be achieved

at high latitudes by also carrying out these operations on a sphere.

While cyclone identification algorithms routinely include the ability to track cyclonic features over subsequent time steps,

similar feature tracking algorithms are almost absent for fronts. Front tracking is inherently more complex than cyclone tracking

since fronts are complex line objects whereas cyclones can be reduced to simple point objects or point objects with an associated375

area. Hewson and Titley (2010) proposed a sophisticated tracking scheme for cyclonic features developing on fronts, which

relies on accurate identification and classification of fronts in order to identify cyclones early in their life cycle, but is limited to

tracking point objects associated with cyclones rather than fronts themselves. To the authors’ knowledge, only Rüdisühli et al.

(2020) have documented a front tracking algorithm. An openly available front tracking algorithm would offer new possibilities

in terms of attributing and analysing impacts of individual fronts, e.g., precipitation or wind events, or understanding biases in380

weather and climate models.
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