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Abstract 
There have been consistent efforts to improve the spatiotemporal representations of biogenic/anthropogenic 
emission sources for photochemical transport modeling for better accuracy of local/regional air quality 
forecasts. While biogenic emissions, bi-directional NH3 from fertilizer applications, and point-source plume 
rise are dynamically coupled in CMAQ “inline”, there are still known meteorology-induced emissions sectors 15 
(e.g., onroad mobile, residential heating, and livestock wastes) with little or no accounting of meteorological 
impacts in current operational chemical and aerosol forecasts but are represented with static, no-weather-
aware annual or monthly county total emissions and standard monthly/weekly/daily temporal allocation 
profiles to disaggregate them on finer time scales for the hourly air quality forecasts. It often results in poor 
forecasting performance due to the poor spatiotemporal representations of precursor pollutants during high 20 
ozone and PM2.5 episodes. The main focus of this study is to develop a dynamic “inline” coupler within 
CMAQ system for the onroad mobile emission sector that requires significant computational resources in 
current modeling application. To improve their accuracy and spatiotemporal representations, we developed 
the “inline” coupler module called “CMAQ-MetEmis” for Meteorology-Induced Emission sources within 
the Community Multiscale Air Quality (CMAQ) version 5.3.2 modeling system. It can dynamically estimate 25 
meteorology-induced hourly gridded onroad mobile emissions within the CMAQ using simulated 
meteorology without any computational burden to the CMAQ modeling system.  
To understand the impacts of meteorology-driven onroad mobile emissions on local air quality, the CMAQ 
is applied over the continental U.S. for two months (January and July 2019) for two emissions scenarios: a) 
“static” onroad vehicle emissions based on static temporal profiles, and b) “inline” CMAQ-MetEmis onroad 30 
vehicle emissions. Overall, the “CMAQ-MetEmis” coupler allows us to dynamically simulate onroad vehicle 
emissions from the MOVES onroad emission model for CMAQ with a better spatiotemporal representation 
based on the simulated meteorology inputs, compared to the “static” scenario. The domain total of daily VOC 
emissions from the “inline” scenario shows the largest impacts from the local meteorology, which is 
approximately 10% lower than the ones from the “static” scenario. Especially, the major difference of VOC 35 
estimates was shown over the California region. These local meteorology impacts on onroad vehicle 
emissions via CMAQ-MetEmis revealed an improvement in hourly NO2, daily maximum ozone, and daily 
average PM2.5 patterns with a higher agreement and correlation with daily ground observations. 
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1. Introduction 
Since the industrial revolution, the chemical pollutants in the atmosphere have impacted human society due 
to their adverse health effects. The primary gases and particles directly emitted from their emission sources 
are chemically transformed into secondary pollutants through complex chemical reactions under various local 
meteorological conditions.  Over last three decades, sophisticated multiscale chemical transport models 45 
(CTM) have been developed to predict the concentrations of primary and secondary chemicals in the lower 
atmosphere, and actively used for air quality regulatory planning applications as well as for air quality 
forecasting for the general public health (Wong et al., 2012; Byun and Schere, 2006; Dennis et al., 2010; Rao 
et al., 2011; Hogrefe et al., 2001). The CTM simulation results strongly rely on two major inputs: 
meteorology and emissions, thus requiring accurate estimation of both to simulate the transport, chemical 50 
transformation, and removal of the pollutants. Depending on their chemical reactivity and gravitational 
behaviors, some pollutants can be chemically transformed and travel a long distance from their source of 
origin, while some are deposited near their release locations. 
To accurately predict regional and global chemicals in the future, spatially and temporally resolved 
meteorology and emissions are critical and required to be rapidly updated based on the aerosol direct/indirect 55 
meteorology impacts within a fully coupled air quality modeling system. There have been considerable 
amounts of efforts in meteorology prediction enhancements actively conducted (Jacob and Winner, 2009; 
Grell and Baklanov, 2011; Fiore et al., 2012; Wong et al., 2012). However, there have been only limited 
“inline” emissions modeling enhancements made to CTM system wherein emissions from meteorologically 
driven air pollutant emission processes are dynamically coupled within the regional/global CTM modeling 60 
system, rather than being estimated a priori and statically provided as model inputs based on “offline” spatial 
and temporal allocations. Simulating emissions “inline” is especially crucial for real-time air quality 
forecasting (Tong et al., 2012). In particular, the system of the National Oceanic and Atmospheric 
Administration (NOAA) National Air Quality Forecast Capability (NAQFC) allows to induce the influences 
of the forecast meteorology on emissions from key sources, such as stationary power plants, vegetation, 65 
fertilizer applications, such as mineral dust (Knippertz and Todd, 2012), sea salt (Foltescu et al., 2005; Pierce 
and Adams, 2006), biogenic volatile organic compounds (BVOCs) (Lathière et al., 2005; Chen et al., 2018), 
and biomass burning events (Grell et al., 2011; Pavlovic et al., 2016). Despite these scientific advancements 
and model improvements, true process-based interaction between local meteorology and meteorology-
induced anthropogenic pollutant emissions from onroad vehicles, livestock wastes, and residential heating 70 
remain incomplete or overlooked (Pouliot, 2005; Tong et al., 2012).  
The mobile/transportation sector is one of the most important anthropogenic emissions sectors in 
metropolitan regions where most of high ozone and PM2.5 concentration episodes often occur (Andrade et al., 
2017; Kumar et al., 2018; Perugu, 2019). It is also known that the performance and emissions of mobile 
engines are sensitive to local weather conditions, such as ambient temperature and humidity (Lindhjem et al., 75 
2004; Iodice and Senatore, 2014; Choi et al., 2017; Mellios. et al., 2019). The incomplete fuel combustion 
can be occurred under cold ambient temperature and high humidity, leading to higher emissions emitted. The 
effect of humidity on internal combustion engines, including spark-ignition engines (gasoline, LPG, and 
natural gas) and compression ignition or diesel engines, has been known for many years, with evidence 
indicating that higher humidity results in lower NOx emissions (Lindhjem et al., 2004; USEPA, 2015). 80 
Additional emissions also come from energy usage of air conditioning at higher ambient temperatures. These 
meteorological impacts can be accounted for using the state-of-science mobile emissions models such as the 
U.S. EPA’s MOtor Vehicle Emission Simulator (MOVES) version 3.0 (USEPA, 2020). However, it lacks 
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transparency of air pollutant emission algorithms, including key parameters such as emission factors. 
Furthermore, it requires significant computational resources to generate these high-quality spatiotemporal 85 
emissions from onroad vehicles (Li et al., 2016; Xu et al., 2016; Liu et al., 2019; Perugu, 2019). To generate 
the “offline” weather-aware onroad mobile emissions outside the current CMAQ, the MOVES has been 
integrated with the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system, called SMOKE-
MOVES integration tool (Baek et al., 2010) by processing (reading/storing/accessing) MOVES emission 
factors (EF) datasets. However, it demands significant computational time and memory in the SMOKE-90 
MOVES integration approach due to the high traffic of input/output (I/O) data, which largely prohibits its 
usage in real-time air quality forecasting. As an example, the latest version of SMOKE version 4.8.1 can 
require approximately 1.9 computing hours with up to 20GB RAM memory to generate 25 hours CMAQ-
ready gridded hourly emissions over Continental U.S. (CONUS) modeling domain (12km *12km grid size) 
offline.  95 
To enable the indirect/direct feedback effects of aerosols and local meteorology in an air quality modeling 
system without any computational bottleneck, we have developed an “inline” meteorology-induce emissions 
coupler module within the US EPA’s CMAQ modeling system, called “Meteorologically-induced 
anthropogenic Emissions: CMAQ-MetEmis”, to dynamically model the complex MOVES onroad mobile 
emissions inline. To address the shortcomings (computational time and memory requirements) in the current 100 
slow “offline” SMOKE-MOVES integration approach, we first re-restructured the SMOKE-MOVES 
integration tool by storing the ambient temperature-specific gridded hourly emissions into a pseudo-layer 
structure for easy and fast access. Each pseudo-layer holds the gridded chemically-speciated hourly emissions 
by incremental temperature bin (e.g., 10F, 20F, and so on).  The CMAQ-MetEmis coupler was developed to 
estimate the gridded hourly emissions with a simple linear interpolation between two temperature-bins 105 
gridded hourly emissions based on a simulated hourly ambient temperature. With an instance interpolation 
calculation approach, the new “inline” CMAQ-MetEmis approach significantly enhances the computational 
efficiency compared to the existing “offline” SMOKE-MOVES approach without losing any accuracy of 
emission estimates. We also evaluate the performance of the CMAQ-MetEmis coupler module in CMAQ, 
which includes their computational performance, the feasibility of CMAQ-MetEmis implementation as a 110 
forecasting application, and the responses of O3 and PM2.5 to the meteorological impacts on anthropogenic 
emissions. 

2. CMAQ-MetEmis Development 
NOAA has developed the NAQFC, operated by the National Weather Service (NWS), in partnership with 
the U.S EPA using the state-of-science air quality modeling system, CMAQ, to forecast concentrations of O3 115 
and PM2.5 over the contiguous continental U.S. (CONUS), Alaska and Hawaii (Tong et al., 2015; Lee et al., 
2017; Tang et al., 2017). Unlike weather forecasting, air quality forecasting requires full atmospheric 
chemistry along with the physical state and tendency of the weather in the near future. Accurate prediction 
of meteorology and emissions for CMAQ plays a critical role in the accuracy of 48- and 72-hour air quality 
forecasting. The current NOAA/NWS operational requirements specify that the post-processing of the 120 
simulated/forecasted meteorological data, emission data, and air quality chemistry model simulations be 
completed in a reasonable time frame to meet the air quality forecasting time constraints.  Since the 
processing of the meteorological data and the execution of the air quality chemistry model are the most time-
consuming part of CMAQ, minimizing the processing time of the emissions needs is desirable. A typical 
emission-processing over U.S. CONUS national domain for one day may take up to 2 hours on a single CPU 125 
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(Intel Xeon Gold 6240R @ 2.4GHz) using SMOKE and other emission post-processing tools. To expedite 
the operational forecasting streamlines, non-meteorological dependent emissions are generally processed in 
advance (Tong et al., 2015). Only the meteorologically induced emission sources are processed during the 
air quality forecasting simulation runs. So then, the accuracy of the emission processing can be maintained, 
and the forecast can be completed within the required time constraints. 130 
 
2.1 Meteorology-Induced Mobile Emissions 
Mobile emissions from onroad and off-network (e.g., vehicle start-up, running exhaust, break-tire wear, hot 
soak, and extended idling) are sensitive to temperature and humidity due to various factors, 1) cold engine 
starts that enhance emissions at lower ambient temperatures due to the incomplete fuel combustion, 2) 135 
evaporative losses of volatile organic compounds (VOCs) due to expansion and contraction caused by 
ambient diurnal temperature variations, 3) enhanced running emissions at higher ambient temperatures, 4) 
atmospheric moisture suppression of high combustion temperatures that lower nitrogen oxide emissions at 
higher humidity, and 5) indirect increased emissions from air conditioning at higher ambient temperatures 
(Choi et al., 2017; Iodice and Senatore, 2014; Lindhjem et al., 2004; Mellios. et al., 2019; USEPA, 2015). 140 
McDonald et al. (2018) found that NOx emissions from NEI estimated from the U.S. EPA’s MOVES are 
underestimated, leading to a failure of prediction of high ozone days (8-hr max ozone>70 ppb). (McDonald 
et al., 2018) 
The dependency of mobile emissions on local meteorology can vary by vehicle types (light-duty, heavy-duty, 
truck and bus), fuel types (gasoline, diesel, hybrid, and electric), road types (interstate, freeway, local roads), 145 
processes (vehicle start-up, running exhaust, break-tire wear, hot soak, and extended idling), vehicle speed 
for onroad vehicles, hour of the day for off-network vehicles, as well as by pollutants such as CO, NOX, SO2, 
NH3, VOC, Particulate Matter (PM). Figure 1 shows the dependency of MOVES emission factors of CO, 
NOx, VOC, and PM2.5 from gasoline-fueled vehicles on ambient temperature from onroad and off-network, 
respectively. All pollutant emissions vary with the temperature, particularly under lower speeds. The CO, 150 
VOC, and NOx emissions increase with the temperature while the opposite relationship is suggested between 
PM2.5 emissions and temperature, implying the complexity of meteorology impacts on different pollutant 
emissions. For off-network emissions from gasoline-fueled vehicles, CO, NOx, and PM2.5 show negative 
correlations with temperature, while the VOC exhibits a nonlinear response to the temperature variation. The 
largest meteorology dependency occurs in the daytime when emissions are the greatest. Further detailed 155 
meteorology dependency of MOVES emission factors on local meteorology can be found in Choi et al., 2017. 
 
2.2 SMOKE-MOVES Integration Tool 
In 2010, U.S. EPA introduced the process-based onroad mobile emissions model, MOVES, which is a state-
of-the-science MySQL database-driven software for calculating bottom-up vehicular emissions from onroad 160 
and off-network. Depending on its application, the MOVES can generate onroad mobile emissions in two 
different modes. The “Inventory Mode” can generate the county-level monthly total emissions inventory, 
while the “Emission Rates Mode” can generate the complex emission rates, which are a function of local 
meteorological variables, such as ambient temperature and humidity. They play a key role in the emissions 
from vehicles on the roads. The county total emissions inventory in a unit of tons/month or tons/year from 165 
the “Inventory Mode” can be directly processed through the SMOKE modeling system with the static 
temporal allocation profiles (e.g., weekly and diurnal profiles) to generate the CMAQ-ready gridded hourly 
emissions. However, the “Emission Rates Mode” can generate the complex emission factors for SMOKE to 
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dynamically estimate the temporally and spatially enhanced onroad mobile emissions with the simulated 
meteorology inputs. Unlike the “Inventory Mode,” the “Emission Rates Mode” MOVES runs can take up to 170 
30 hours to generate the detailed emission factors for each county. MOVES can generate the emission factors 
for off-network emission processes (e.g., parked engine-off, the engine starts, idling, and fuel vapor venting), 
which are hour-dependent due to vehicle activity assumptions built into the MOVES model; the emission 
rate in a unit of grams/mile/hour depends on both hours of the day and temperature. It can also generate detail 
emission factors for onroad emission processes (e.g., running exhaust, crankcase running exhaust, brake wear, 175 
tire wear, and on-road evaporative), on the other hand, do not depend on the hour but are expressed in 
grams/mile.  
MOVES is approved for use in any official state implementation plan (SIP) submissions to U.S. EPA and for 
conformity emissions inventory development outside of California. Furthermore, it can be used to estimate 
onroad vehicle emissions for a variety of different purposes: to evaluate the national and local emissions 180 
trends, to compare different emission scenarios, to analyze the benefits of mobile source control strategies, 
and to provide inputs for air quality modeling. Although MOVES estimates of mobile emissions include the 
dependence on vehicle activities and simulated hourly meteorology, its computational requirements are 
prohibitive in real-time air quality forecasting applications. The dynamic “offline” SMOKE-MOVES tool 
was developed by integrating MOVES emission factor (EF) outputs with the SMOKE modeling system prior 185 
to the CMAQ simulation (Baek, 2010), with the objective of improving the accuracy of mobile emissions for 
air quality modeling applications. The tool can dynamically estimate hourly mobile emissions based on 
vehicle activity inventories (i.e., miles traveled, population, and operating hours), MOVES EFs (a function 
of vehicle type, road type, and local meteorology), and simulated hourly ambient temperatures, and humidity. 
It first estimates spatially and temporally averaged county-level hourly meteorological inputs (temperatures 190 
and humidity). It then prepares driver and post-processing scripts to set up and run MOVES to generate 
county-specific MOVES EF lookup tables (LUT), and to sort them by average vehicle speed, ambient 
temperatures, humidity, operating hours, day of the week, and/or hour of the day. Finally, the tool runs a 
SMOKE program called “Movesmrg” designed to process the MOVES EF LUTs to estimate air quality 
model-ready gridded hourly emissions with simulated hourly meteorology (Figure 2a). 195 
Based on the latest 2017 National Emissions Inventory (NEI) Emissions Modeling Platform (EMP) (USEPA, 
2022), the SMOKE-MOVES integration tool processes over 668 county-level MOVES EF LUT files (334 
files per season) ranging from 60MB up to 150MB to model over 3,100 counties in their modeling domain 
(e.g., 12kmx12km grid over U.S. Continental) which requires significant computational resources, such as 
memory, computing time (> 1.9 computing hours for 25 hours processing), and storage spaces. The SMOKE-200 
MOVES integration step for the onroad mobile emission sector requires the most computational time, and it 
is not feasible for us to implement it into the current NAQFC forecasting system, which will significantly 
delay its processing time due to its computational resource requirement. Details on its computational 
requirements will be described in later section.  
 205 
2.3 MetEmis Dynamic Coupler 
Although the current “offline” SMOKE-MOVES integration tool can estimate weather-aware onroad mobile 
emissions for CTMs using their local meteorology, it is not fully coupled with CTM to dynamically provide 
aerosol direct/indirect feedback to climate and meteorology, and to enhance the air quality forecast modeling 
applications in seasonal-to-sub seasonal predictions due to its slow computation process.  210 
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In this study, we developed the Meteorologically-induced Emissions coupler module (MetEmis) within the 
CMAQ modeling system to enhance the current NAQFC with the weather-aware emissions modeling 
capability without any computational burden to the system. Pouliot (2005) indicated that the main obstacle 
to implementing weather-aware mobile emissions into air quality simulation is a significant computational 
resource requirement, especially for air quality forecasting applications. To address these potential 215 
shortcomings (computational time and memory requirements) without compromising any accuracy compared 
to the current “offline” SMOKE-MOVES integration tool, we first implemented a new optional feature in the 
Movesmrg program in the SMOKE v5.0 modeling system to generate the temperature-specific pre-gridded 
hourly emissions called “MetEmis_TBL” that holds them into the pseudo-layer structure for easy and fast 
access for later weather-aware emissions coupler (Figure 2). Each pseudo-layer holds the pre-gridded hourly 220 
emissions based on pre-defined temperature bins (e.g., 5oC, 10oC, 15oC, and so on). Thus, the single 
MetEmis_TBL file that holds both fuel months (January-Winter and July-Summer) can replace the entire 
MOVES EF LUT files for SMOKE and CMAQ modeling system to generate the CTM-ready weather-aware 
mobile emissions. 
There are two ways to process the “MetEmis_TBL” emissions output file from the SMOKE (Movesmrg) to 225 
develop weather-aware emissions easier and faster: (a) “SMOKE-MetEmis”, and (b) “CMAQ-MetEmis”. 
The “SMOKE-MetEmis” is an “offline” approach which is practically the same as the SMOKE-MOVES 
integration other than processing the MetEmis_TBL emissions file, instead of over 668 ASCII-formatted 
MOVES EF LUTs files from MOVES. Both SMOKE-MetEmis and SMOKE-MOVES approaches generate 
identical “offline” gridded hourly emissions prior to the CMAQ simulations, but the SMOKE-MetEmis is 230 
significantly faster (Figure 2a). The updated Mrggrid utility tool from the SMOKE v5.0 will first read and 
process the “MetEmis_TBL” emissions file with the simulated forecast meteorology prior to the CMAQ 
simulations. However, the “CMAQ-MetEmis” is a true “inline” approach based on the CMAQ version 5.3.2 
with a new dynamic emission coupler module called “MetEmis” that can generate weather-aware emissions 
with “MetEmis_TBL” within the CMAQ simulations (Figure 2b). It means that it can be dynamically coupled 235 
to estimate weather-aware emissions “inline” without any computational burdens under the CMAQ 
parallelized simulations. The details of computational enhancements are discussed in next section. 
 
2.4 MetEmis Computational Efficiency 
While estimating meteorologically-induced onroad mobile emissions using local meteorology accurately 240 
provides the emissions to CTM, the current “offline” SMOKE-MOVES integration tool approach has faced 
many challenges, such as computational burdens, and the data portability and distributions due to the size of 
data files and computationally expensive I/O data processing. Accurately generating the onroad mobile 
emissions for the U.S. continental using MOVES onroad emission model requires a significant amount of 
computational resources as well as processing time. It takes approximately 12 computing hours to generate 245 
one county MOVES EF LUT table per month using MOVES (Baek et al., 2010). Simulating over 3,100 
counties in the U.S. continental (CONUS) for 12 calendar months (>37,400 MOVES simulations) will 
require a tremendous amount of computational resources and time. Thus, U.S. EPA has adopted the 
representative county approach to reduce the number of counties as well as the number of modeling months. 
Each representative county was classified according to its state, altitude (high or low), fuel region, the 250 
presence of inspection and maintenance programs, the mean light-duty age, and the fraction of ramps (CRC, 
2019). A total of 296 representative counties for CONUS and 38 for Alaska, Hawaii, Puerto Rico, and the 
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US Virgin Islands (USEPA, 2022). Each representative county holds two fuel months to represent all 12 
calendar months.  
To generate one day (25 hourly time steps) CMAQ-ready gridded hourly emissions, SMOKE needs to read 255 
and process 334 MOVES EF LUT as well as many other SMOKE-ancillary input files such as VMT activity, 
temporal profiles, chemical speciation profiles, spatial surrogates, and so on. The most computational 
resources are consumed in I/O (inputs and outputs) of huge amount of data files while it processes the 
complex datasets. Table 1 shows the estimated computational resources and time per each onrad mobile 
sector (e.g., RatePerDistance (RPD), RatePerVehicle (RPV), and RatePerHour (RPH)). Among the mobile 260 
sectors, RPD and RPV are the slowest sectors processed in the SMOKE modeling system. Each mobile sector 
contains a total of 668 MOVES LUT files (334 counties × 2 fuel months), and a total of 2004 (=668 × 3 
sectors) MOVES LUT files are processed to generate the mobile sector-specific CMAQ-ready gridded hourly 
emissions. 
Based on the latest 2017 NEI EMP, CMAQ-ready gridded hourly emissions in our modeling domain (e.g., 265 
12×12km grid over U.S. Continental) requires approximately 1.9 hours per day (RPD: 90 minutes, RPV: 18 
minutes, and RPH: 1 minute) to generate the complete set of onroad mobile daily emissions including RPD, 
RPV and RPH modes. It may require over 638.5 hours (~29 days) of computational time to generate CONUS 
gridded hourly emissions for 365 days.  While the CMAQ-MetEmis “inline” approach (Figure 2b) does not 
cause much computational processing time since the I/O of NetCDF/IOAPI binary format MetEmis_TBL 270 
input file in the CMAQ modeling system is instantaneous. There was less than 1 minute per day of CMAQ 
computational time with 96 CPUs of parallel processing.  
The latest version of SMOKE can generate a single MetEmis_TBL output file as an option. It can hold the 
25 temperature-bins gridded hourly emissions for 334 representative counties for one fuel month from 0oF 
to 125oF temperature (25 bins with 5oF increment). Correction equations for humidity are applied to estimate 275 
grid-cell-hour adjustment factors for NOx emissions by fuel type (USEPA, 1997). Because onroad sectors 
(e.g., RPD, RPV, and RPH) share the same linear interpolation to estimate the emission factors between two 
temperature bins from the MOVES LUT files, the sector-specific MetEmis_TBL files can be merged and 
represent all sectors with one-time interpolation through SMOKE-MetEmis and CMAQ-MetEmis modules. 
Thus, the merged MetEmis_TBL file can represent the entire U.S. with 334 representative county-specific 280 
MOVES LUTs files per fuel month with 25 temperature bins. The size of MOVES_TBL is approximately 
16GB which is significantly smaller than the size for all 2004 MOVES LUTs files for all RPD, RPV, and 
RPH sectors, which is ~ 97.3 GB (62.8GB+34.5GB+48MB) (Table 1). Approximately 6 hours are required 
to generate the MetEmis_TBL file once with SMOKE per fuel month, prior to the CMAQ-MetEmis 
simulations. This MetEmis_TBL can hold more than a single fuel month with the increased file size, and 285 
replace the entire 2,004 MOVES LUT files (~97.3GB) for both fuel months (e.g., January-Winter and July-
Summer) with the single MetEmis_TBL file (~16GB). The final merged MetEmis_TBL file is portable and 
can be a direct input to CMAQ-MetEmis coupler in the CMAQ modeling system. 

3. Results 
The CMAQ air quality modeling runs are configured close to the current operational NAQFC, including 290 
the spatial coverage, emission inputs, and chemical transport model. It contains three major components: 
meteorology, emission, and chemical transport models. The Weather Research and Forecasting (WRF) 
model version 4.2.1 (Skamarock et al., 2005) is used to generate hourly meteorological fields to drive 
emission and air quality modeling. The WRF model was configured with Morrison 2-moment microphysics 
scheme, RRTMG long and short-wave radiation scheme, YSU PBL scheme, Pleim-Xiu land-surface 295 
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model, Revised MM5 (Jimenez) surface layer scheme, and GF with radiative feedback cumulus 
parameterization option. The emission input was provided using a hybrid emission modeling system that 
utilized the SMOKE model version 4.8.1 (Baek and Seppanen, 2021) to process anthropogenic emissions, 
and a suite of emission models to estimate emissions from intermittent and/or meteorology-dependent 
sources. Anthropogenic emissions were taken from US EPA 2017 NEI EMP. The CMAQ model (version 300 
5.3.2) ingests emissions and meteorology to predict spatial and temporal variations of the atmospheric 
pollutants (such as O3, NO2, and particulate matters) using a revised Carbon Bond 6 gas-phase mechanism 
and AE7 aerosol mechanism (CB6r3_AE7_AQ) (Byun and Schere, 2006; Luecken et al., 2019).  
The meteorological, emission, and air quality models have 12×12 km horizontal resolution over the 
contiguous United States, with full 35 sigma layers vertically and the domain top at 50 hPa. The WRF model 305 
was driven by the forecast fields of Global Forecast System (GFS) version 4 products with a horizontal 
resolution of 0.25° × 0.25° (available every 6 h) and was reinitialized every 24 hour to be consistent with its 
operational task. 
To understand the impacts of meteorology-induced onroad emissions on local air quality, we conducted two 
CMAQ simulation scenarios (“Base” amd “MetEmis”). All simulations were conducted for two months, 310 
January and July in the year 2019. We initiated our CMAQ simulations based on the default CMAQ 
background concentration profiles. The first three days of the CMAQ simulation were used as a spin-up 
modeling period to eliminate the influence of the initial condition (Chen et al., 2021; Lv et al., 2018; Tong 
and Mauzerall, 2006).  The configurations and simulations are listed in Table 2.2 
  315 
• “Base” scenario: Static offline approach-based (no-weather-aware) gridded hourly emissions based on 

the county total emissions with static temporal profiles (monthly, weekly, month-to-day, and hourly). 
• “MetEmis” scenario: Dynamic inline approach-based weather-aware gridded hourly emissions 

dynamically estimated with simulated meteorology using the inline “CMAQ-MetEmis” approach. 
 320 
The monthly total emissions inventories used in the “Base” scenario are based on the MOVES “Inventory 
Mode” simulation with monthly average ambient temperature and humidity, while the MOVES “Emission 
Rates Mode” simulation was used for the “MetEmis” scenarios with the simulated hourly temperature and 
humidity. In order to evaluate the impact of the “MetEmis” approach, we analyze the response of NOx, 
VOC, NH3, and PM2.5 emissions to the dynamic “inline” MetEmis coupler approach. The evaluation of the 325 
CMAQ-MetEmis air quality modeling system was performed by the comparison of the simulated ambient 
concentrations of NO2, O3, and PM2.5 with the observations where most of the meteorology-induced 
emissions are impacted by the meteorology compared to the static “offline” approach (i.e, Base). Note that 
both “Base” and “MetEmis” onroad mobile emissions are from the 2017 NEI EMP package.  
 330 
3.1 Weather-Aware Mobile Emissions 
The huge computational burden of the traditional “offline” SMOKE-MOVES approach prohibits its usage in 
providing real-time estimates of mobile emissions, which might be significantly driven by weather changes, 
resulting in considerable uncertainties in predicting emissions and air quality. The spatial monthly total 
difference plots of VOC and NOx between “Base” and “MetEmis” from Figure 3 clearly show that most of 335 
the emission differences caused by local meteorology occur from major interstate roads and metropolitan 
cities (e.g., New York, Detroit, Chicago, Los Angeles, Phoenix, and Atlanta), where onroad mobile emissions 
contribute the most. Especially, the most differences in VOC occurred over California region in July 2019, 
probably because the original temporal profiles assumed in “Base” are not suitable to represent the real 
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condition influenced by the weather. The January and July VOC emissions from the “Base” scenario were 340 
higher by over 8% and 20% than the ones from the “MetEmis” scenarios, respectively, indicating that current 
NAQFC-ready onroad mobile emissions (no-weather-aware) are significantly over-representing the VOC 
emissions compared to the weather-aware VOC dynamically estimated by MetEmis.  
Unlike the “Base” approach, the “MetEmis” approach estimates hourly emissions by multiplying the 
estimated hourly vehicle mileage traveled (VMT) in the unit of miles/hour with inventory pollutant emission 345 
rates (unit of grams/miles), which are a function of local meteorology (e.g., ambient temperature and 
humidity). The “MetEmis” emissions can enhance their spatiotemporal representations of onroad mobile 
sources. However, the hourly VMT activity data is estimated using the same temporal profiles used in the 
“Base” hourly emissions. Thus, both onroad emissions follow similar weekly and daily patterns with some 
hourly variations based on local meteorological conditions. As presented in Figure 4, which compares the 350 
hourly domain total TOG (Total Organic Gases), NOx, and PM2.5 emissions between the “Base” and the 
“MetEmis” approach, the statically estimated “Base” hourly emissions (colored blue) clearly show the 
repeated weekly patterns within the same month due to the usage of the static weekly temporal profiles, while 
the “MetEmis” (colored in red) display irregular hourly patterns due to the impacts of local hourly 
meteorology.  355 
Due to the influence of local meteorology (i.e., ambient temperature and humidity), the onroad running 
exhaust/evaporative emissions, and the off-network evaporative emissions show a moderate decrease of TOG 
and a slight increase of NOx (> 4% increase) over the entire domain due to low ambient and humidity 
condition during the winter season (January), according to “MetEmis” estimates. The most important 
enhancement in the “MetEmis” approach is allowing modelers to simulate NAQFC-ready weather-aware 360 
onroad mobile emissions. More importantly, the daily differences are also noticeable in the “MetEmis” 
approach within one month, as higher TOG and PM2.5 are shown in late January due to the increased 
temperature, while the “Base” approach failed to predict such variation. Such spatiotemporal enhancements 
of onroad mobile emissions predicted by “MetEmis”, especially near metropolitan regions, would benefit the 
NAQFC. As stated, these onroad mobile emissions from two scenarios are based on the MOVES simulations 365 
designed for the 2017 NEI EMP.  
 
3.2 Weather-Aware Mobile Emissions Impacts on CTM Simulations 
Domain-level Evaluations 
This study investigated the response of NO2, O3, and PM2.5 to the meteorology-induced mobile emission 370 
changes by simulating air quality under two scenarios (Base and MetEmis). The sensitivity of air pollutant 
concentrations to these meteorology-induced emission sources was performed and analyzed in this section. 
The monthly statistical modeling evaluation metrics for these two simulations (Base and MetEmis) over the 
CONUS domain are provided in Table 3. The correlation coefficient (CORR) of O3 is 0.51 for both 
simulations, and they have the same normalized mean bias and errors (NMB and NME), while the relative 375 
mean square error (RMSE) of Base (7.03 ppb) is slightly higher than that of MetEmis (7 ppb). The 
simulated NO2 shows the best correlations (0.64) among these three pollutants in January, however, its 
RMSE, NMB, and NME are the largest. The PM2.5 simulation didn’t reproduce the variability very well 
with a lower CORR of 0.46, but it presents the best RMSE and moderate NMB/NME. In July, the CORRs 
of O3 improved from 0.51 to 0.64, while the RMSEs are also increasing because of intense concentration in 380 
summer. The NO2 and PM2.5 have the opposite pattern of O3 with decreased CORR (0.51 and 0.38, 
respectively) and improved biases and errors, except the NME of NO2. Over the entire modeling domain, 
both simulations show quite similar modeling performances against the observations, with the difference 
generally below 1%.  This is mostly attributable to the spatial pattern of emissions primarily concentrated 
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in urban areas. The most impacts of MetEmis emissions are shown over metropolitan cities where mobile 385 
emissions play a critical role in their local air quality. 
Figure 5 shows the monthly average NO2, O3, and PM2.5 concentrations from the Base scenario and the 
monthly average difference between the Base and MetEmis scenarios in July 2019. The spatial distributions 
of simulated NO2 present a close pattern with those of NOx emission in both months, demonstrating the 
effect of local NOx emission on the NO2 activities. The NO2 concentration in July is lower than in January, 390 
caused by the stronger NO2 photolysis and ventilation. In January, the NO2 simulated by MetEmis showed 
a higher concentration over the domain with more than 0.2 ppb larger over urban areas because of the 
increased NOx emission after adjustment. In comparison, the monthly simulated NO2 concentrations with 
and without emission adjustment are much closer in July, the emission adjustment makes the concentration 
increase in the east while a decrease in the west. Compared to NO2, the secondary O3 and PM2.5 formation 395 
chemical reactions involve complex nonlinear processes under various meteorological conditions and 
precursor emissions. Despite their complexity, there are strong correlations between their nonlinear 
responses and precursor emission changes. 
 
City-level Evaluation 400 
The O3 concentration is generally below 36 ppb in most areas in January because of the cold weather and 
weak photolysis process, while it presents high over the mid-western US, which is caused by the higher 
altitude over the Rocky Mountains area. The O3 significantly increases in July with an average concentration 
of 43.9 ppb, 10 ppb larger than that in January. In July, the northeastern US becomes the hot spot zone as the 
local anthropogenic emission and pollution transport are strong. Meanwhile, the O3 is also concentrated over 405 
the water, such as Great Lake and northeastern coastal areas. Most of the ozone increase occurred around the 
surrounding regions of metropolitan cities like Chicago, IL, Atlanta, GA, Denver, CO, and Pheonix, AZ, 
where both NOx and VOC emissions slightly increased during July 2019 (Figure 3). However, the San Jose 
area showed a significant decrease in ozone during the summer of 2019 due to the higher VOC estimations 
from NEI (Base) compared to the ones from the MetEmis scenario (Figure 3).  410 
The PM2.5 simulation has similar patterns in January and July, with more particles concentrating in the east. 
The southwestern areas show less particulate pollution as our emissions do not include natural sources such 
as dust storms and wildfires. The results from MetEmis present slightly higher PM2.5 in the east because of 
the increased primary PM2.5 emission. In addition, a decreased PM2.5 concentration is noted in California. 
This may attribute to the less generated secondary aerosols as the VOC emission is significantly reduced 415 
after adjustment.  
Thus, this study further examines the influence of meteorology-induced mobile emission changes on 
modeling performance, which is particularly important for air quality forecasting in NAQFC. 10 cities with 
the most changes in emissions are selected for comparison, as shown in Figure 6. In general, noticeable 
improvement is found in NO2 simulation with increasing R2 in all 10 cities except Detroit. San Jose and 420 
Atlanta exhibit the largest improvement in NO2 simulation. Apparently, the MetEmis successfully captured 
daily variations of mobile emissions, resulting in an improved temporal correlation. Meanwhile, the 
RMSEs were reduced in most of the cities (8 out of 10), suggesting the simulated biases can also be 
eliminated with MetEmis. Compared to NO2, changes in O3 and PM2.5 are smaller due to the complex 
reactions. However, improvement is also found in summer with increased R2 and reduced RMSE in more 425 
than 70% of cities, though less improvement is suggested in winter. We analyzed a few episodes with the 
largest changes for O3 and PM2.5 to demonstrate such improvement. 
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Ozone Episodic Cases Evaluation 
Based on the July 2019 CMAQ simulation between the Base and MetEmis cases, we identified the 430 
locations where the largest changes in surface ozone occurred. Especially, in July 2019, we witnessed a 
significant decrease in ozone over San Jose, CA, at 1:00 PM local time on July 24, 2019, while the most 
increase in ozone occurred over Chicago, IL, at 11:00 AM on July 5, 2019 (Table 5). Thus, we investigated 
these two episodes to understand the main drivers of these behaviors. 
 435 
Largest Ozone Increase Episode 
Figure 7 shows the spatial ozone concentrations and the differences over the Chicago region between the 
Base and MetEmis scenarios at 11 AM LST on July 5, 2019. While the highest ozone occurred around the 
south of Michigan Lake in both scenarios (Figure 7a), the largest ozone increase (~7ppb) is shown in the 
middle of Michigan Lake, where unfortunately, there is no AQS monitoring location (Figure 7b). To 440 
understand the cause of these ozone changes, we examined the differences in NOx and VOC emissions 
between Base and MetEmis scenarios. The increase of VOC emissions from the MetEmis scenario in the 
early morning (3LST-9LST) over the VOC-limited Chicago, IL region seems to be the main driver of a 
significant increase in ozone (Figure 8). The detailed information on VOC and NOx concentration changes 
on July 5th, 2019, is listed in Table 5. In the early morning, there was a decrease in NOx concentration and 445 
an increase in VOC concentrations over the Chicago area. Due to no monitoring location available over the 
lake, we could not properly perform the modeling evaluation statistics during the largest ozone increase.  
 
Largest Ozone Decrease Episode 
There was more than an 80ppb ozone decrease over San Jose, CA, at 11LST on July 24th, 2019.  To 450 
understand the cause of this significant decrease, we performed the analysis of precursor emissions changes 
during the episode period. The colored green AQS locations are selected for the ozone concentration 
analysis, while the red ones are for the PM2.5 monitoring locations (Figure 9a). Figure 9b shows the 
modeled hourly ozone concentrations (maximum, minimum, and mean) and AQS observations over the 
blue box targeted region from Figure 9a.  Figure 9b and Figure 10 indicate that the maximum ozone values 455 
from the “Base” scenario clearly show an overestimated ozone over San Jose, CA downwind region, while 
the MetEmis case shows a significant improvement in maximum ozone concentration during the daytime.  
The main driver of this significant ozone change over the San Jose targeted area is due to the substantial 
reduction in VOC emissions in MetEmis from Base (Figure 11a). Statistics of NOx and VOC 
concentrations from CMAQ in Table 6 show consistent findings.  460 
 
PM2.5 Episodic Case Evaluation 
Along with the significant ozone decrease in July 2019, there was a significant PM2.5 decrease from the 
CMAQ-MetEmis simulation from 42.5µg/m3 (Base) to 25µg/m3 at 10LST on January 3, 2019. 
Approximately 17.5 µg/m3 (>41%) PM2.5 decrease was witnessed in CMAQ-MetEmis simulations (Figure 465 
11). The CMAQ-MetEmis simulation shows a significant improvement in modeled PM2.5 concentration, 
compared to the ones from the AQS monitoring locations from 8a (Figure 12a). The main cause of this 
PM2.5 decrease in CMAQ-MetEmis is mainly a significant decrease in primary PM2.5 and VOC emissions 
(Figure 13). Primary hourly PM2.5 emissions from the MetEmis scenario were significantly lowered than 
the ones from the Base scenario, approximately a maximum of 20kg/hour from 3 LST to 9 LST on January 470 
3, 2019. 
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4. Conclusions 
To address the limitation of traditional estimation for onroad vehicle emissions, this study developed a novel 
method (i.e., MetEmis) by dynamically coupling the meteorology-induced onroad emissions with simulated 
meteorological data in the air quality modeling system, which significantly improves both computational 475 
efficiency and accuracy. The computational time for processing one-day onroad emission data is substantially 
reduced from 1.9 hours offline to less than 1 minute inline, enabling the onroad emission estimates 
simultaneously coupled with the meteorology forecasting. Overall, the MetEmis corrected the low biases of 
NOx and primary PM2.5 emissions domain-wide, and high-biases of VOC emissions in California. The 
MetEmis also successfully captured the temporal variation of onroad vehicle emissions, resulting in improved 480 
simulated NO2, O3, and PM2.5 concentrations with more agreement with observations compared to the ones 
using static temporal profiles. Particularly, the simulated NO2 concentration exhibits noticeable improvement 
with increased R2 and decreased RMSEs in most cities. The simulated O3 and PM2.5 concentrations were also 
improved, particularly in summer. 
The newly developed CMAQ-MetEmis model demonstrates the importance of dynamic-coupling emissions 485 
and meteorological forecasting. While this study only focused on the onroad emissions, other meteorology-
induced sectors such as residential combustions and agricultural livestock are planned to be included in the 
MetEmis development well to represent the meteorological influence on all meteorologically-induced 
anthropogenic emissions. Meanwhile, this study mainly focuses on replicating the same dynamic emissions 
from the offline SMOKE-MOVES onroad mobile emissions for the CMAQ model as the inline option. The 490 
native uncertainties from the MOVES model still exist and may lead to the uncertainties in the temporal 
profile estimated in MetEmis, which need be further improved in the following studies. 
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Tables 
 645 
Table 1. The required computational memory and time in the SMOKE modeling system. 

Sector Individual File 
Size 

Total File Size 
(668 counties) 

CPU Memory 
Usage (GB) 

CPU Computing 
Time* 

RPD 50~160 MB 62.8 GB 10~20 ~ 90 mins/day 
RPV 26~89 MB 34.5 GB 5~10 ~ 18 mins/day 
RPH 7~94 KB 43.6 MB 1~2 ~ 1 mins/day 
Total 7KB~160MB 97.3 GB 1~20 ~ 110 mins/day 

* The specification of CPU is Intel Xeon Gold 6240R @ 2.4GHz 
 

 
Table 2. CMAQ modeling domain and configurations. 650 

 Base MetEmis 

Horizontal Resolution 12km x 12km 

Meteorology 
WRFv4.0 with Global Forecasting System (GFS) acting as 

ICs/BCs, RRTMG short/long wave scheme, PX land-surface 
scheme, YSU boundary layer scheme, Revised MM5 surface layer 

scheme, GF with radiative feedback cumulus parameterization 

Boundary Condition 
 

GEOS monthly product 
 

Initial Condition CMAQ restart file 

Chemistry CMAQv5.3.2 CB6r3 AE7 

Emissions 2017 NEI: Onroad monthly 
emissions 

2017 NEI: Onroad 
Meteorology-induced 

emissions 
 
 
Table 3. Statistical metrics between observed and simulated O3, NO2 and PM2.5 in January and July, 2019 
over contiguous United States 

 January 2019 July 2019 

 O3 NO2 PM2.5 O3 NO2 PM2.5 

 Base MetEmis Base MetEmis Base MetEmis Base MetEmis Base MetEmis Base MetEmis 

CORR 0.51 0.51 0.64 0.64 0.46 0.46 0.64 0.64 0.51 0.51 0.38 0.38 

RMSE 7.03 7.00 8.33 8.27 5.72 5.76 9.56 9.51 5.69 5.67 5.03 5.04 

NMB -0.01 -0.01 -0.32 -0.30 0.10 0.11 -0.01 -0.01 -0.15 -0.15 -0.05 -0.05 

NME 17% 17% 52% 52% 46% 47% 17% 17% 62% 62% 40% 40% 
 655 
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Table 4. The largest differences of ozone episodes in July 2019 over the U.S. 

Episodes Date @ Time Base (ppb) MetEmis (ppb) Location 
Largest Increase Jul 5, 2019 @ 1PM 78.3 85.9 (+7.1) Chicago, IL 
Largest Decrease Jul 24, 2019 @ 11AM 112.9 31.0 (-81.9) San Jose, CA 

 665 
 
Table 5. Summary of precursor (NOx and VOC) concentrations in the morning before the largest ozone 
increase episode at 14LST on July 5th, 2019 over Chicago, IL. 

Jul 5th, 
2019 

NOx (ppb) VOC (ppbC) 
Time Base MetEmis Diff (M-B) Time Base MetEmis Diff (M-B) 

Mean 5-11AM 8.4 8.6 0.2 5-11AM 62 66 4.0 
Max 6-7AM 18.9 20.7 1.8 6-7AM 101 121 20.0 
Min 6-7AM 8.5 8.2 -0.3 10-11AM 74 73 -1.0 
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Table 6. Statistics of largest ozone decrease episode (July 24th, 2019) over San Jose, CA. 

 675 
  

Jul 24th, 
2019 

NOx (ppb) VOC (ppbC) 
Time Base MetEmis Diff (M-B) Time Base MetEmis Diff (M-B) 

Mean 3-9AM 5.8 6.8 1.0 3-9AM 184 35 148 
Max 10-11AM 9.0 22.0 13.0 8-9AM 1263 68 -1195 
Min 11-12pM 10.8 10.6 -0.2 12PM-1AM 7.8 7.3 -0.5 
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Figure 1. Meteorology-dependency of CO, VOC, NOx, and PM2.5 emissions from gasoline-fueled light-
duty vehicles by average speed bin (a), and the off-network by the hour of day (b). 

(a) on road by speed bin (b) off-network by the hour of day 

(b)

) 

(a)

) 
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Figure 2. Meteorological-Induced Emissions coupler module "MetEmis" with air quality modeling system: 
a) "SMOKE-MetEmis", and b) "CMAQ-MetEmis". 
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  690 

Figure 3. Spatial comparison of monthly total emissions of VOC, NO, and PM2.5. The colors indicate the 
MetEmis is larger than Base (red) or smaller (blue) for  (a) VOC in January, (b) VOC in July, (c) NOX in 
January, (d) NOx in July,(e) PM2.5 in January and (f) PM2.5  in July. 
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Figure 4. Temporal comparisons of daily domain total emissions of  (a) Total Organic Gas (TOG) in 
January, (b) TOG in July, (c) NOX in January, (d) NOx in July,(e) PM2.5 in January and (f) PM2.5  in July 
from the Base (blue line) and MetEmis scenarios (red line). 
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 January July 

 (a) Base (b) ∆(MetEmis-Base) (c) Base (d) ∆(MetEmis-Base) 

NO2 
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PM2.
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Figure 5. spatial distribution of NO2, O3 and PM2.5 concentrations and difference figures: (a) January 
averaged concentrations from Base scenario, (b) the differences between Base and MetEmis scenarios in 
January, (c) July averaged concentrations from Base scenario, and (d) the differences between Base and 
MetEmis scenarios in July 705 
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O3 

  

PM2.5 

  
 

Figure 6. Comparison of model performance in simulating NO2, O3 and PM2.5 concentrations between Base 710 
and MetEmis scenarios. The columns panels show the different model evaluation metrics in January (panel 
a and b) and July (panel c and d). The rows present different species including NO2, O3, and PM2.5. RMSE 
is Root-mean-square deviation, R is correlation coefficient. delta is (MetEmis - Base)/Base; when ∆R > 0 
and ∆RMSE < 0, indicate the improvement in MetEmis. 

* NO2 in January in Denver is -0.002, increased to 0.008 with MetEmis; Observed O3 data is missing in 715 
Chicago and Atlanta in January. 
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Figure 7. Base hourly ozone (ppb) (a) and the hourly ozone difference (MetEmis-Base) (b) at 14LST on 
July 5th, 2019. Black color indicates the concentration above the color scale maximum (120 ppb) 
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Figure 8. Spatial differences of NOx (a) and VOC (b) emissions in early morning (3AM-9AM) on Jul 
5th, 2019. 
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Figure 9. (a) U.S. EPA's Air Quality System (AQS) ozone and PM2.5 monitoring locations, and (b) diurnal 
variation of ozone (maximum and mean) on July 24, 2022 over San Jose, CA. The base map layer of this 755 
figure was made by Esri (Esri, 2013). 
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(a) (b)
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Figure 10. Base hourly ozone concentration (ppb) (a) and the hourly ozone difference (MetEmis-Base) (b) at 
11LST on July 24th, 2019. 
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Figure 11. Spatial differences of NOx (a) and VOC (b) emissions from 3LST to 9LST on July 24, 2019 over 
San Jose, CA. 
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(b)(a) 

Figure 12. (a)Diurnal variation of PM2.5 (maximum and mean) concentrations over San Jose 
targeted region, and (b) the spatial difference of PM2.5 at 10LST on January 3, 2019. 
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Figure 13. Spatial difference of PM2.5 (a) and VOC (b) emissions over San Jose region from 3LST to 
9LST on January 3, 2019.  


