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There have been consistent efforts to improve the spatiotemporal representations of biogenic/anthropogenic

emission sources for photochemical transport modeling for better accuracy of local/regional air quality

forecasts. While biogenic emissions, bi-directional NH;3 from fertilizer applications, and point-source plume

rise are dynamically coupled in CMAQ “inline”, there are still known meteorology-induced emissions sectors

(e.g., onroad mobile, residential heating, and livestock wastes) with little or no accounting of meteorological

impacts in current operational chemical and aerosol forecasts but are represented with static, no-weather-

aware annual or monthly county total emissions and standard monthly/weekly/daily temporal allocation

profiles to disaggregate them on finer time scales for the hourly air quality forecasts. It often results in poor
forecasting performance due to the poor spatiotemporal representations of precursor pollutants during high
ozone and PMy s episodes. The main focus of this study is to develop a dynamic, “inline” coupler within
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CMAQ system for the pnroad mobile emission sector that requires significant computational resources in

current modeling application. To improve fheir accuracy and spatiotemporal representations, we developed
the “inline” coupler module called “CMAQ-MetEmis” for Meteorology-Induced Emission sources within

the Community Multiscale Air Quality (CMAQ) version 5.3.2 modeling system. It can dynamically estimate
meteorology-induced hourly gridded onroad mobile emissions within the CMAQ using simulated
meteorology without any computational burden to the CMAQ modeling system,
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To understand the impacts of meteorology-driven onroad mobile emissions on local air quality, the CMAQ
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is applied over the continental U.S. for two months (January and July 2019) for two emissions scenarios: a)
“static” onroad vehicle emissions based on static temporal profiles, and b) “inline” CMAQ-MetEmis onroad

* (Deleted: . The CMAQ
1 (Deleted: modeling system

vehicle emissions. Overall, the “CMAQ-MetEmis” coupler allows us to dynamically simulate onroad vehicle
emissions from the MOVES onroad emission model for CMAQ with a better spatiotemporal representation

based on the simulated meteorology inputs. compared to the “static” scenario, The domain total of daily VOC
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emissions from the “jnline” scenario shows the largest impacts from the local meteorology, which is

approximately 10% lower than the ones from the “szatic” scenario. Especially, the major difference of VOC

estimates was shown over the California region. These local meteorology impacts on onroad vehicle * -

emissions via CMAQ-MetEmis revealed an improvement in hourly NO2, daily maximum ozone, and daily
average PM s patterns with a higher agreement and correlation with daily ground observations.

Keywords: CMAQ, CTM, weather-aware emissions, vehicle emissions, inline modeling
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1. Introduction

Since the industrial revolution, the chemical pollutants in the atmosphere have impacted human society due
to their adverse health effects. The primary gases and particles directly emitted from their emission sources
are chemically transformed into secondary pollutants through complex chemical reactions under various local
meteorological conditions. Over last three decades, sophisticated multiscale chemical transport models
(CTM) have been developed to predict the concentrations of primary and secondary chemicals in the lower
atmosphere, and actively used for air quality regulatory planning applications as well as for air quality
forecasting for the general public health (Wong et al., 2012; Byun and Schere, 2006; Dennis et al., 2010; Rao
et al., 2011; Hogrefe et al., 2001). The CTM simulation results strongly rely on two major inputs:
meteorology and emissions, thus requiring accurate estimation of both to simulate the transport, chemical
transformation, and removal of the pollutants. Depending on their chemical reactivity and gravitational
behaviors, some pollutants can be chemically transformed and travel a long distance from their source of
origin, while some are deposited near their release locations.

To accurately predict regional and global chemicals in the future, spatially and temporally resolved
meteorology and emissions are critical and required to be rapidly updated based on the aerosol direct/indirect
meteorology impacts within a fully coupled air quality modeling system. There have been considerable
amounts of efforts in meteorology prediction enhancements actively conducted (Jacob and Winner, 2009;
Grell and Baklanov, 2011; Fiore et al., 2012; Wong et al., 2012). However, there have been only limited
“inline” emissions modeling enhancements made to CTM system wherein emissions from meteorologically
driven air pollutant emission processes are dynamically coupled within the regional/global CTM modeling
system, rather than being estimated a priori and statically provided as model inputs based on “offline” spatial
and temporal allocations. Simulating emissions “inline” is especially crucial for real-time air quality
forecasting (Tong et al., 2012). In particular, the system of the National Oceanic and Atmospheric
Administration (NOAA) National Air Quality Forecast Capability (NAQFC) allows to induce the influences
of the forecast meteorology on emissions from key sources, such as stationary power plants, vegetation,
fertilizer applications, such as mineral dust (Knippertz and Todd, 2012), sea salt (Foltescu et al., 2005; Pierce
and Adams, 2006), biogenic volatile organic compounds (BVOCs) (Lathiére et al., 2005; Chen et al., 2018),
and biomass burning events (Grell et al., 2011; Pavlovic et al., 2016). Despite these scientific advancements
and model improvements, true process-based interaction between local meteorology and meteorology-
induced anthropogenic pollutant emissions from onroad vehicles, livestock wastes, and residential heating
remain incomplete or overlooked (Pouliot, 2005; Tong et al., 2012).

The mobile/transportation sector is one of the most important anthropogenic emissions sectors in
metropolitan regions where most of high ozone and PM» 5 concentration episodes often occur (Andrade et al.,
2017; Kumar et al., 2018; Perugu, 2019). It is also known that the performance and emissions of mobile
engines are sensitive to local weather conditions, such as ambient temperature and humidity (Lindhjem et al.,
2004; Iodice and Senatore, 2014; Choi et al., 2017; Mellios. et al., 2019). The incomplete fuel combustion
can be occurred under cold ambient temperature and high humidity, leading to higher emissions emitted. The
effect of humidity on internal combustion engines, including spark-ignition engines (gasoline, LPG, and
natural gas) and compression ignition or diesel engines, has been known for many years, with evidence
indicating that higher humidity results in lower NOx emissions_(Lindhjem et al., 2004; USEPA, 2015).
Additional emissions also come from energy usage of air conditioning at higher ambient temperatures. These
meteorological impacts can be accounted for using the state-of-science mobile emissions models such as the
U.S. EPA’s MOtor Vehicle Emission Simulator (MOVES) version 3.0 (USEPA, 2020). However, it lacks
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transparency of air pollutant emission algorithms, including key parameters such as emission factors.
Furthermore, it requires significant computational resources to generate these high-quality spatiotemporal
emissions from onroad vehicles (Li et al., 2016; Xu et al., 2016; Liu et al., 2019; Perugu, 2019). To generate
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the “offline” weather-aware onroad mobile emissions outside the current CMAQ, the MOVES has been
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integrated with the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system, called SMOKE-
MOVES integration tool (Baek et al., 2010) by processing (reading/storing/accessing) MOVES emission

factors (EF) datasets. However, it demands significant computational time and memory_in the SMOKE-

MOVES integration approach due to the high traffic of input/output (I/O) data, which largely prohibits its

usage in real-time air quality forecasting. As an example, the latest version of SMOKE version 4.8.1 can
require approximately 1.9 computing hours with up to 20GB RAM memory to generate 25 hours CMAQ-

ready gridded hourly emissions over Continental U.S. (CONUS) modeling domain (12km *12km grid size)
offline.
To enable the indirect/direct feedback effects of aerosols and local meteorology in an air quality modeling

system without any computational bottleneck, we have developed an “inline” meteorology-induce emissions
coupler module within the US EPA’s CMAQ modeling system, called “Meteorologically-induced
anthropogenic Emissions: CMAQ-MetEmis”, to dynamically model the complex MOVES onroad mobile
emissions inline, To address the shortcomings (computational time and memory requirements) in the current

slow “offline” SMOKE-MOVES integration approach, we first re-restructured the SMOKE-MOVES
integration tool by storing the ambient temperature-specific gridded hourly emissions, into a pseudo-layer

structure for easy and fast access. Each pseudo-layer holds the gridded chemically-speciated hourly emissions
by incremental temperature bin (e.g., 10F, 20F, and so on). The CMAQ-MetEmis coupler was developed to
estimate the gridded hourly emissions with a simple linear interpolation between two temperature-bins
gridded hourly emissions based on a simulated hourly ambient temperature. With an instance interpolation
calculation approach, the new “inline” CMAQ-MetEmis approach significantly enhances the computational
efficiency compared to the existing “offline” SMOKE-MOVES approach without losing any accuracy of
emission estimates. We also evaluate the performance of the CMAQ-MetEmis coupler module in CMAQ,
which includes their computational performance, the feasibility of CMAQ-MetEmis implementation as a
forecasting application, and the responses of O3 and PM s to the meteorological impacts on anthropogenic

emissions.

2. CMAQ-MetEmis Development

NOAA has developed the NAQFC, operated by the National Weather Service (NWS), in partnership with
the U.S EPA using the state-of-science air quality modeling system, CMAQ, to forecast concentrations of O3
and PM s over the contiguous continental U.S. (CONUS), Alaska and Hawaii (Tong et al., 2015; Lee et al.,
2017; Tang et al., 2017). Unlike weather forecasting, air quality forecasting requires full atmospheric
chemistry along with the physical state and tendency of the weather in the near future. Accurate prediction
of meteorology and emissions for CMAQ plays a critical role in the accuracy of 48- and 72-hour air quality
forecasting. The current NOAA/NWS operational requirements specify that the post-processing of the
simulated/forecasted meteorological data, emission data, and air quality chemistry model simulations be
completed in a reasonable time frame to meet the air quality forecasting time constraints. Since the
processing of the meteorological data and the execution of the air quality chemistry model are the most time-
consuming part of CMAQ, minimizing the processing time of the emissions needs is desirable. A typical
emission-processing over U.S. CONUS national domain for one day may take up to 2 hours on a single CPU
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(Intel Xeon Gold 6240R @ 2.4GHz) using SMOKE and other emission post-processing tools. To expedite
the operational forecasting streamlines, non-meteorological dependent emissions are generally processed in
advance (Tong et al., 2015). Only the meteorologically induced emission sources are processed during the
air quality forecasting simulation runs. So then, the accuracy of the emission processing can be maintained,
and the forecast can be completed within the required time constraints.,

2.1 Meteorology-Induced Mobile Emissions .
Mobile emissions from onroad and off-network (e.g., vehicle start-up, running exhaust, break-tire wear, hot

soak, and extended idling) are sensitive to temperature and humidity due to various factors, 1) cold engine

starts that enhance emissions at lower ambient temperatures due to the incomplete fuel combustion, 2)
evaporative losses of volatile organic compounds (VOCs) due to expansion and contraction caused by
ambient diurnal temperature variations, 3) enhanced running emissions at higher ambient temperatures, 4)
atmospheric moisture suppression of high combustion temperatures that lower nitrogen oxide emissions at

higher humidity, and 5) indirect increased emissions from air conditioning at higher ambient temperatures
(Choi et al., 2017; lodice and Senatore, 2014; Lindhjem et al., 2004; Mellios. et al., 2019; USEPA, 2015).
McDonald et al. (2018) found that NOx emissions from NEI estimated from the U.S. EPA’s MOVES are
underestimated, leading to a failure of prediction of high ozone days (8-hr max ozone>70 ppb). (McDonald
etal., 2018)

The dependency of mobile emissions on local meteorology can vary by vehicle types (light-duty, heavy-duty,*
truck and bus), fuel types (gasoline, diesel, hybrid, and electric), road types (interstate, freeway, local roads),
processes (vehicle start-up, running exhaust, break-tire wear, hot soak, and extended idling), vehicle speed
for onroad vehicles, hour of the day for off-network vehicles, as well as by pollutants such as CO, NOx, SOz,
NHs, VOC, Particulate Matter (PM). Figure 1 shows the dependency of MOVES emission factors of CO,
NOx, VOC, and PM2 5 from gasoline-fueled vehicles on ambient temperature from onroad and off-network,
respectively. All pollutant emissions vary with the temperature, particularly under lower speeds. The CO,

VOC, and NOx emissions increase with the temperature while the opposite relationship is suggested between
PM25 emissions and temperature, implying the complexity of meteorology impacts on different pollutant
emissions. For off-network emissions from gasoline-fueled vehicles, CO, NOx, and PM» s show negative
correlations with temperature, while the VOC exhibits a nonlinear response to the temperature variation. The
largest meteorology dependency occurs in the daytime when emissions are the greatest, Further detailed
meteorology dependency of MOVES emission factors on local meteorology can be found in Choi et al., 2017,
2.2 SMOKE-MOVES Integration Tool «
In 2010, U.S. EPA introduced the process-based onroad mobile emissions model, MOVES, which is a state-
of-the-science MySQL database-driven software for calculating bottom-up vehicular emissions from onroad
and off-network. Depending on its application, the MOVES can generate onroad mobile emissions in two
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different modes. The “Inventory Mode” can generate the county-level monthly total emissions inventory

while the “Emission Rates Mode” can generate the complex emission rates, which are a function of local

meteorological variables, such as ambient temperature and humidity. They play a key role in the emissions

from vehicles on the roads. The county total emissions inventory in a unit of tons/month or tons/year from
the “Inventory Mode” can be directly processed through the SMOKE modeling system with the static
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temporal allocation profiles (e.g., weekly and diurnal profiles) to generate the CMAQ-ready gridded hourly

emissions. However, the “Emission Rates Mode” can generate the complex emission factors for SMOKE to
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dynamically estimate the temporally and spatially enhanced onroad mobile emissions with the simulated

meteorology inputs. Unlike the “Inventory Mode.” the “Emission Rates Mode” MOVES runs can take up to

30 hours to generate the detailed emission factors for each county. MOVES can generate the emission factors

for off-network emission processes (e.g.. parked engine-off, the engine starts, idling, and fuel vapor venting)
which are hour-dependent due to vehicle activity assumptions built into the MOVES model; the emission
rate in a unit of grams/mile/hour depends on both hours of the day and temperature. It can also generate detail

emission factors for onroad emission processes (e.g., running exhaust, crankcase running exhaust, brake wear,

tire wear, and on-road evaporative), on the other hand, do not depend on the hour but are expressed in
grams/mile.

MOVES is approved for use in any official state implementation plan (SIP) submissions to_U.S. EPA and for
conformity emissions inventory development outside of California. Furthermore, it can be used to estimate
onroad vehicle emissions for a variety of different purposes: to evaluate the national and local emissions
trends, to compare different emission scenarios, to analyze the benefits of mobile source control strategies,
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and to provide inputs for air quality modeling. Although MOVES estimates of mobile emissions include the
dependence on vehicle activities and simulated hourly meteorology, its computational requirements are
prohibitive in real-time air quality forecasting applications. The dynamic “offline” SMOKE-MOVES tool

was developed by integrating MOVES emission factor (EF) outputs with the SMOKE modeling system prior
to the CMAQ simulation (Baek, 2010), with the objective of improving the accuracy of mobile emissions for
air quality modeling, applications. The tool can dynamically
vehicle activity inventories (i.e., miles traveled, population, and operating hours), MOVES EFs (a function
of vehicle type, road type, and local meteorology), and simulated hourly ambient temperatures, and humidity.
It first estimates spatially and temporally averaged county-level hourly meteorological inputs (temperatures
and humidity). It then prepares driver and post-processing scripts to set up and run MOVES to generate
county-specific MOVES EF lookup tables (LUT), and to sort them by average vehicle speed, ambient
temperatures, humidity, operating hours, day of the week, and/or hour of the day. Finally, the tool runs a

SMOKE program called “Movesmrg” designed to process the MOVES EF LUTSs to estimate air quality

model-ready gridded hourly emissions with simulated hourly meteorology (Figure 2a).
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Based on the latest 2017 National Emissions Inventory (NEI) Emissions Modeling Platform (EMP) (USEPA,
2022), the SMOKE-MOVES integration tool processes over 668 county-Jevel MOVES EF LUT files (334 /-

files per season) ranging from 60MB up to 150MB,_to model over 3.100 counties in their modeling domain .

(e.g., 12kmx12km grid over U.S. Continental) which requires significant computational resources, such as

memory, computing time (> 1.9 computing hours for 25 hours processing), and storage spaces. The SMOKE-

MOVES integration step for the onroad mobile emission sector requires the most computational time, and it

is not feasible for us to implement it into the current NAQFC forecasting system, which will significantly

delay its processing time due to its computational resource requirement. Details on its computational

requirements will be described in later section.

v

2.3 MetEmis Dynamic Coupler
Although the current “offline” SMOKE-MOVES integration tool can estimate weather-aware onroad mobile
emissions for CTMs using their local meteorology, it is not fully coupled with CTM to dynamically provide

aerosol direct/indirect feedback to climate and meteorology. and to enhance the air quality forecast modeling
applications in seasonal-to-sub seasonal predictions due to its slow computation process.
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in poor forecasting performance due to the poor
spatiotemporal representations of precursor pollutants during
high ozone and PM 5 episodes (Tong et al., 2012).
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In this study, we developed the Meteorologically-induced Emissions coupler module (MetEmis), within the
CMAQ modeling system to enhance the current NAQFC with the weather-aware emissions modeling
capability without any computational burden to the system. Pouliot (2005) indicated that the main obstacle

to implementing weather-aware mobile emissions into air quality simulation is a significant computational
resource requirement, especially for air quality forecasting applications. To address these potential
shortcomings (computational time and memory requirements) without compromising any accuracy compared
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to the current “offline” SMOKE-MOVES integration tool, we first implemented a new optional feature in the

Movesmrg program in the SMOKE v5.0 modeling system to generate the temperature-specific pre-gridded

hourly emissions called “MetEmis_ TBL,” that holds them into the pseudo-layer structure for easy and fast

access for later weather-aware emissions coupler (Figure 2). Each pseudo-layer holds the pre-gridded hourly
emissions based on pre-defined temperature bins (e.g., 5°C, 10°C, 15°C, and so on). Thus, the single
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MetEmis TBL file that holds both fuel months (January-Winter and July-Summer) can replace the entire
MOVES EF LUT files for SMOKE and CMAQ modeling system to generate the CTM-ready weather-aware
mobile emissions.

There are two ways to process the “MetEmis_TBL” emissions putput file from the SMOKE (Movesmrg) to+ -

develop weather-aware emissions_easier and faster: (a) “SMOKE-MetEmis”, and (b) “CMAQ-MetEmis”.
The “SMOKE-MetEmis” is an “offline” approach which is practically the same as the SMOKE-MOVES

CDeIeted: input
(Formatted: Justified
[Deleted: based on the updated SMOKE modeling system

with the “...

integration other than processing the MetEmis_TBL, emissions file, instead of over 668 ASCII-formatted

CDeIeted: ” that can dynamically estimate weather-aware

MOVES EF LUTs files from MOVES. Both SMOKE-MetEmis and SMOKE-MOVES approaches generate
identical “offline” gridded hourly emissions prior to the CMAQ simulations, but the SMOKE-MetEmis is

significantly faster (Figure 2a). The updated Mrggrid utility tool from the SMOKE v5.0 will first read and
process the “MetEmis TBL” emissions file with the simulated forecast meteorology prior to the CMAQ
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with “MetEmis TBL” within the CMAQ simulations (Figure 2b). It means that it can be dynamically coupled

to_estimate weather-aware emissions, “in/ine” without any computational burdens under the CMAQ

parallelized simulations, The details of computational enhancements are discussed in next section.

2.4 MetEmis Computational Efficiency -
While estimating meteorologically-induced onroad mobile emissions using local meteorology accurately
provides the emissions to CTM, the current “offline” SMOKE-MOVES integration tool approach has faced
many challenges, such as computational burdens, and the data portability and distributions due to the size of
data files and computationally expensive I/O data processing. Accurately generating the onroad mobile
emissions for the U.S. continental using MOVES onroad emission model requires a significant amount of
computational resources as well as processing time. It takes approximately, 12 computing hours to generate
one county MOVES EF LUT table per month using MOVES (Baek et al., 2010). Simulating over 3,100 *
counties in the U.S. continental (CONUS) for 12 calendar months (>37,400 MOVES simulations) will
require a tremendous amount of computational resources and time. Thus, U.S. EPA has adopted the
representative county approach to reduce the number of counties as well as the number of modeling months.
Each representative county was classified according to its state, altitude (high or low), fuel region, the
presence of inspection and maintenance programs, the mean light-duty age, and the fraction of ramps (CRC,
2019). A total of 296 representative counties for CONUS and 38 for Alaska, Hawaii, Puerto Rico, and the
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US Virgin Islands (USEPA, 2022). Each representative county holds two fuel months to represent all 12
calendar months. ,

To generate one day (25 hourly time steps) CMAQ-ready gridded hourly emissions, SMOKE needs to read

and process 334 MOVES EF LUT as well as many other SMOKE-ancillary input files such as VMT activity,
temporal profiles, chemical speciation profiles, spatial surrogates, and so on. The most computational
resources are consumed in I/O (inputs and outputs) of huge amount of data files while it processes the
complex datasets. Table | shows the estimated computational resources and time per each onrad mobile
sector (e.g., RatePerDistance (RPD), RatePerVehicle (RPV), and RatePerHour (RPH)). Among the mobile
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sectors, RPD and RPV are the slowest sectors processed in the SMOKE modeling system. Each mobile sector
contains a total of 668 MOVES LUT files (334 counties X 2 fuel months), and a total of 2004 (=668 x 3
sectors) MOVES LUT files are processed to generate the mobile sector-specific CMAQ-ready gridded hourly
emissions.

Based on the latest 2017 NEI EMP, CMAQ-ready gridded hourly emissions in our modeling domain (e.g.,
J12x12km grid over U.S. Continental) requires approximately 1.9 hours per day (RPD: 90 minutes, RPV: 18

minutes, and RPH: 1 minute) to generate the complete set of onroad mobile daily emissions including RPD,
RPV and RPH modes. It may require over 638.5 hours (~29 days) of computational time to generate CONUS
gridded hourly emissions for 365 days. While the CMAQ-MetEmis “inline” approach (Figure 2b) does not
cause much computational processing time since the 1/O of NetCDF/IOAPI binary format MetEmis TBL
input file in the CMAQ modeling system is instantaneous. There was less than 1 minute per day of CMAQ
computational time with 96 CPUs of parallel processing.

The latest version of SMOKE, can generate a single MetEmis_ TBL output file as an option. It can hold the

25 temperature-bins gridded hourly emissions for 334 representative counties for one fuel month from 0°F
to 125°F temperature (25 bins with 5°F increment). Correction equations for humidity are applied to estimate
grid-cell-hour adjustment factors for NOx emissions by fuel type (USEPA, 1997). Because onroad sectors
(e.g., RPD, RPV. and RPH) share the same linear interpolation to estimate the emission factors between two
temperature bins from the MOVES LUT files, the sector-specific MetEmis_ TBL files can be merged and
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represent all sectors with one-time interpolation through SMOKE-MetEmis and CMAQ-MetEmis modules.
Thus, the merged MetEmis TBL file can represent the entire U.S. with 334 representative county-specific
MOVES LUTs files per fuel month with 25 temperature bins. The size of MOVES_TBL is approximately
16GB which is significantly smaller than the size for all 2004 MOVES LUTs files, for all RPD, RPV, and

RPH sectors, which is ~ 97.3 GB (62.8GB;+34.5GB+48MB) (Table 1). Approximately 6 hours are required

to generate the MetEmis TBL file once with SMOKE per fuel month, prior to the CMAQ-MetEmis
simulations. This MetEmis_TBL can hold more than a single fuel month with the increased file size, and
replace the entire 2,004 MOVES LUT files (~97.3GB) for both fuel months (e.g.. January-Winter and July-
Summer) with the single MetEmis_TBL file (~16GB). The final merged MetEmis TBL file is portable and
can be a direct input to CMAQ-MetEmis coupler in the CMAQ modeling system.

3. Results
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The CMAQ air quality modeling runs are configured close to the current operational NAQFC, including <

the spatial coverage, emission inputs, and chemical transport model. It contains three major components:
meteorology. emission, and chemical transport models. The Weather Research and Forecasting (WRF)

model version 4.2.1 (Skamarock et al., 2005) is used to generate hourly meteorological fields to drive

emission and air quality modeling. The WRF model was configured with Morrison 2-moment microphysics
scheme, RRTMG long and short-wave radiation scheme, YSU PBL scheme, Pleim-Xiu land-surface
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model, Revised MM5 (Jimenez) surface layer scheme, and GF with radiative feedback cumulus
parameterization option, The emission input was provided using a hybrid emission modeling system that

utilized the SMOKE model version 4.8.1 (Baek and Seppanen, 2021) to process anthropogenic emissions,
and a suite of emission models to estimate emissions from intermittent and/or meteorology-dependent
sources. Anthropogenic emissions were taken from US EPA 2017 NEI EMP,_The CMAQ model (version
5.3.2) ingests emissions and meteorology to predict spatial and temporal variations of the atmospheric

ollutants (such as O,, NO., and particulate matters) using a revised Carbon Bond 6 gas-phase mechanism
and AE7 aerosol mechanism (CB6r3_AE7 AQ) (Byun and Schere, 2006; Luecken et al., 2019).

The meteorological, emission, and air quality models have 12x12 km horizontal resolution over the

contiguous United States, with full 35 sigma layers vertically and the domain top at 50 hPa. The WRF model

was driven by the forecast fields of Global Forecast System (GFS) version 4 products with a horizontal

resolution of 0.25° x 0.25° (available every 6 h) and was reinitialized every 24 hour to be consistent with its

operational task.
To understand the impacts of meteorology-induced onroad emissions on local air quality, we conducted two

CMAQ simulation scenarios (“Base” amd “MetEmis”), All simulations were conducted for two months, .-

January and July in the year 2019. We initiated our CMAQ simulations based on the default CMA

background concentration profiles. The first three days of the CMAQ simulation were used as a spin-up .

modeling period to eliminate the influence of the initial condition (Chen et al., 2021; Lv et al., 2018; Tong
and Mauzerall, 2006). The configurations and simulations are listed in Table 2.2

e “Base” scenario: Static offline approach-based (no-weather-aware) gridded hourly emissions based on
the county total emissions with static temporal profiles (monthly, weekly, month-to-day, and hourly).

e “MetEmis” scenario: Dynamic inline approach-based weather-aware gridded hourly emissions
dynamically estimated with simulated meteorology using the inline “CMAQ-MetEmis” approach.

The monthly total emissions inventories used in the “Base” scenario are based on the MOVES “Inventory
Mode” simulation with monthly average ambient temperature and humidity, while the MOVES “Emission
Rates Mode” simulation was used for the “MetEmis” scenarios with the simulated hourly temperature and
humidity. In order to evaluate the impact of the “MetEmis” approach, we analyze the response of NOx,

VOC. NHj3, and PM; 5 emissions to the dynamic “inline” MetEmis coupler approach. The evaluation of the

CMAQ-MetEmis air quality modeling system was performed by the comparison of the simulated ambient

concentrations of NO», O3, and PM» s with the observations where most of the meteorology-induced

emissions are impacted by the meteorology compared to the static “offline” approach (i.e, Base). Note that
both “Base” and “MetEmis” onroad mobile emissions are from the 2017 NEI EMP package.

3.1 Weather-Aware Mobile Emissions “~N

The huge computational burden of the traditional “offline” SMOKE-MOVES approach prohibits its usage in

providing real-time estimates of mobile emissions, which might be significantly driven by weather changes,

resulting in considerable uncertainties in predicting emissions and air quality. The spatial monthly total

difference plots of VOC and NOx between “Base” and “MetEmis” from Figure 3 clearly show that most of
the emission differences caused by local meteorology occur from major interstate roads and metropolitan
cities (e.g., New York, Detroit, Chicago, Los Angeles, Phoenix, and Atlanta), where onroad mobile emissions
contribute the most. Especially, the most differences in VOC, occurred over California region in July 2019,
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condition influenced by the weather. The January and July VOC emissions from the “Base” scenario were
higher by over 8% and 20% than the ones from the “MetEmis” scenarios, respectively, indicating that current
NAQFC-ready onroad mobile emissions (no-weather-aware) are significantly over-representing the VOC
emissions compared to the weather-aware VOC dynamically estimated by MetEmis.

Unlike the “Base” approach, the “MetEmis” approach estimates hourly emissions by multiplying the
estimated hourly vehicle mileage traveled (VMT) in the unit of miles/hour with inventory pollutant emission
rates (unit of grams/miles), which are a function of local meteorology (e.g., ambient temperature and
humidity). The “MetEmis” emissions can enhance their spatiotemporal representations of onroad mobile
sources. However, the hourly VMT activity data is estimated using the same temporal profiles used in the
“Base” hourly emissions. Thus, both onroad emissions follow similar weekly and daily patterns with some
hourly variations based on local meteorological conditions. As presented in Figure 4, which compares the
hourly domain total TOG (Total Organic Gases), NOx, and PM2 s emissions between the “Base” and the
“MetEmis” approach, the statically estimated “Base” hourly emissions (colored blue) clearly show the
repeated weekly patterns within the same month due to the usage of the static weekly temporal profiles, while
the “MetEmis” (colored in red) display irregular hourly patterns due to the impacts of local hourly
meteorology.

Due to the influence of local meteorology (i.e., ambient temperature and humidity), the onroad running

exhaust/evaporative emissions, and the off-network evaporative emissions show a moderate decrease of TOG

and a slight increase of NOx (> 4% increase) over the entire domain due to low ambient and humidity
condition during the winter season (January), according to “MetEmis” estimates. The most important
enhancement in the “MetEmis” approach is allowing modelers to simulate NAQFC-ready weather-aware

onroad mobile emissions. More jmportantly, the daily differences are also noticeable in_the “MetEmis”
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approach within one month, as higher TOG and PMas are shown in late January due to the increased
temperature, while the “Base” approach failed to predict such variation. Such spatiotemporal enhancements
of onroad mobile emissions predicted by “MetEmis”, especially near metropolitan regions, would benefit the
NAQFC. As stated, these onroad mobile emissions from two scenarios are based on the MOVES simulations
designed for the 2017 NEI EMP.

3.2 Weather-Aware Mobile Emissions Impacts on CTM Simulations -

Domain-level Evaluations

This study investigated the response of NO2, O3, and PM2 5 to the meteorology-induced mobile emission
changes by simulating air quality under two scenarios (Base and MetEmis). The sensitivity of air pollutant
concentrations to these meteorology-induced emission sources was performed and analyzed in this section.
The monthly statistical modeling evaluation metrics for these two simulations (Base and MetEmis) over the
CONUS domain are provided in Table 3. The correlation coefficient (CORR) of O3 is 0.51 for both
simulations, and they have the same normalized mean bias and errors (NMB and NME), while the relative
mean square error (RMSE) of Base (7.03 ppb) is slightly higher than that of MetEmis (7 ppb). The
simulated NO2 shows the best correlations (0.64) among these three pollutants in January, however, its
RMSE, NMB, and NME are the largest. The PM2 s simulation didn’t reproduce the variability very well
with a lower CORR of 0.46, but it presents the best RMSE and moderate NMB/NME. In July, the CORRs
of O3 jmproved from 0.51 to 0.64, while the RMSEs are also increasing because of intense concentration in

summer. The NO2 and PMz 5 have the opposite pattern of O3 with decreased CORR (0.51 and 0.38,

respectively) and improved biases and errors, except the NME of NOz. Over the entire modeling domain,
both simulations show quite similar modeling performances against the observations, with the difference
generally below 1%. This is mostly attributable to the spatial pattern of emissions primarily concentrated
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in urban areas. The most impacts of MetEmis emissions are shown over metropolitan cities where mobile
emissions play a critical role in their local air quality.

Figure 5 shows the monthly average NO2, O3, and PM. 5 concentrations from the Base scenario and the
monthly average difference between the Base and MetEmis scenarios in July 2019. The spatial distributions
of simulated NO; present a close pattern with those of NOx emission in both months, demonstrating the

effect of local NOx emission on the NO; activities. The NOz concentration in July is lower than in January,

caused by the stronger NO» photolysis and ventilation. In January, the NO> simulated by MetEmis showed
a higher concentration over the domain with more than 0.2 ppb larger over urban areas because of the
increased NOx emission after adjustment. In comparison, the monthly simulated NO; concentrations with
and without emission adjustment are much closer in July, the emission adjustment makes the concentration
increase in the east while a decrease in the west. Compared to NO>, the secondary O3 and PMa s formation
chemical reactions involve complex nonlinear processes under various meteorological conditions and
precursor emissions. Despite their complexity, there are strong correlations between their nonlinear
responses and precursor emission changes.

City-level Evaluation
The O3 concentration is generally below 36 ppb in most areas in January because of the cold weather and

weak photolysis process, while it presents high over the mid-western US, which is caused by the higher
altitude over the Rocky Mountains area. The O; significantly increases in July with an average concentration
0f'43.9 ppb,, 10 ppb larger than that in January. In July, the northeastern US becomes the hot spot zone as the

local anthropogenic emission and pollution transport are strong. Meanwhile, the O3 is also concentrated over

the water, such as Great Lake and northeastern coastal areas. Most, of the ozone increase occurred around the

surrounding regions of metropolitan cities like Chicago, IL, Atlanta, GA, Denver, CO. and Pheonix, AZ,
where both NOx and VOC emissions slightly increased during July 2019 (Figure 3). However, the San Jose

area showed a significant decrease jn ozone during the summer of 2019 due to the higher VOC estimations

from NEI (Base) compared to the ones from the MetEmis scenario (Figure 3).
The PM2 5 simulation has similar patterns in January and July, with more particles concentrating in the east.
The southwestern areas show less particulate pollution as pur emissions do not include natural sources such

as dust storms and wildfires. The results from MetEmis present slightly higher PMz 5 in the east because of
the increased primary PMa s emission. In addition, a decreased PMa.s concentration is noted in California.
This may attribute to the less generated secondary aerosols as the VOC emission is significantly reduced
after adjustment.

Thus, this study further examines the influence of meteorology-induced mobile emission changes on

modeling performance, which is particularly important for,air quality forecasting in NAQFC. 10 cities with

the most changes in emissions are selected for comparison, as shown in Figure 6. In general, noticeable
improvement is found in NO; simulation with jncreasing R? in all 10 cities except Detroit. San Jose and

Atlanta gxhibit the largest improvement in NO; simulation. Apparently, the MetEmis successfully captured

daily variations of mobile emissions, yesulting in an improved temporal correlation. Meanwhile, the

RMSEs were reduced in most of the cities (8 out of 10), suggesting the simulated biases can also be
eliminated with MetEmis, Compared to NO», changes in O3 and PMy s are smaller due to the complex

reactions. However, improvement is also found in summer with increased R? and reduced RMSE in more
than 70% of cities, though less improvement is suggested in winter. We analyzed a few episodes with the
largest changes for Oz and PM2 s to demonstrate such improvement.
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Ozone Episodic Cases Evaluation
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Based on the July 2019 CMAQ simulation between the Base and MetEmis cases, we identified the
locations where the largest changes in surface ozone occurred. Especially, in July 2019, we witnessed a
significant decrease in ozone over San Jose, CA, at 1:00 PM local time on July 24, 2019, while the most
increase in ozone occurred over Chicago, IL, at 11:00 AM on July 5, 2019 (Table 5). Thus, we investigated

these two episodes to understand the main drivers of these behaviors,

Largest Ozone Increase Episode
Figure 7 shows the spatial ozone concentrations and the differences over the Chicago region between the
Base and MetEmis scenarios at 11 AM LST on July 5, 2019. While the highest ozone occurred around the

south of Michigan Lake in both scenarios (Figure 7a), the largest ozone increase (~7ppb) is shown in the

middle of Michigan Lake, where unfortunately, there is no AQS monitoring location (Figure 7b). To

understand the cause of these ozone changes, we examined the differences jn NOx and VOC emissions
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between Base and MetEmis scenarios. The increase of VOC emissions from the MetEmis scenario in the
early morning (3LST-9LST) over the VOC:limited Chicago, IL region seems to be the main driver of a

significant increase jn ozone (Figure 8). The detailed information on VOC and NOx concentration changes

on July 5%, 2019, is listed in Table 5. In the early morning, there was a decrease in NOx concentration and
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an increase in VOC concentrations over the Chicago area. Due to no monitoring location available over the
lake, we could not,properly perform the modeling evaluation statistics during the largest ozone increase.

Largest Ozone Decrease Episode

There was more than an 80ppb ozone decrease over San Jose, CA, at 11LST on July 24", 2019. To
understand the cause of this significant decrease, we performed the analysis of precursor emissions changes
during the episode period. The colored green AQS locations are selected for the ozone concentration
analysis, while the red ones are for the PM2 s monitoring locations (Figure 9a). Figure 9b shows the
modeled hourly ozone concentrations (maximum, minimum, and mean) and AQS observations over the
blue box targeted region from Figure 9a. Figure 9b and Figure 10 indicate that the maximum ozone values
from the “Base” scenario clearly show an overestimated ozone over San Jose, CA downwind region, while
the MetEmis case shows a significant improvement in maximum ozone concentration during the daytime.
The main driver of this significant ozone change over the San Jose targeted area is due to the substantial
reduction in VOC emissions in MetEmis from Base (Figure 11a). Statistics of NOx and VOC
concentrations from CMAQ in Table 6 show consistent findings.

PM:5 Episodic Case Evaluation

Along with the significant ozone decrease in July, 2019, there was a significant PM> 5 decrease from the

CMAQ-MetEmis simulation from 42.5ug/m? (Base) to 25ug/m? at 10LST on January 3, 2019.
Approximately 17.5 pg/m? (>41%) PMz.s decrease was witnessed in CMAQ-MetEmis simulations (Figure
11). The CMAQ-MetEmis simulation shows a significant improvement in modeled PM» 5 concentration,
compared to the ones from the AQS monitoring locations from 8a (Figure 12a). The main cause of this
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PM: 5 decrease in CMAQ-MetEmis is mainly a significant decrease in primary PM» s and VOC emissions
(Figure 13). Primary hourly PMa.s emissions from the MetEmis scenario were significantly lowered than
the ones from the Base scenario, approximately a maximum of 20kg/hour from 3 LST to 9 LST on January

3,2019.
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4. Conclusions

To address the limitation of traditional estimation for onroad vehicle emissions, this study developed a novel
method (i.e., MetEmis) by dynamically coupling the meteorology-induced onroad emissions with simulated
meteorological data in the air quality modeling system, which significantly improves both computational
efficiency and accuracy. The computational time for processing one;day onroad emission data is substantially

(Deleted:

reduced from 1.9 hours offline to less than 1 minute inline, enabling the onroad emission estimates
simultaneously coupled with the meteorology forecasting. Overall, the MetEmis corrected the low,biases of
NOx and primary PMas emissions domain;wide, and high-biases of VOC emissions in California. The

MetEmis also successfully captured the temporal variation of onroad vehicle emissions, resulting in improved

simulated NO2, Os, and PM2 5 concentrations with more agreement with observations compared to the ones
using static temporal profiles. Particularly, the simulated NO> concentration exhibits noticeable improvement
with increased R? and decreased RMSEs in most cities. The simulated O3 and PM> s concentrations were also
improved, particularly in summer.

The newly developed CMAQ-MetEmis model demonstrates the importance of dynamic-coupling emissions
and meteorological forecasting. While this study only focused on the onroad emissions, other meteorology-
induced sectors such as residential combustions and agricultural livestock are planned to be included in the
MetEmis development well to represent the meteorological influence on all meteorologically-induced
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anthropogenic emissions. Meanwhile, this study mainly focuses on replicating the same dynamic emissions
from the offline SMOKE-MOVES onroad mobile emissions for the CMAQ model as the inline option. The
native uncertainties from the MOVES model still exist and may lead to the uncertainties in the temporal
profile estimated in MetEmis, which need be further improved in the following studies.|
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Digital Object Identifier (DOI) for the CMAQ-MetEmis Coupler:
https://doi.org/10.5281/zenodo.7150000

Code Availability:
The source codes of the SMOKE and the CMAQ models for MetEmis coupler can be downloaded from the
DOI website (https://doi.org/10.5281/zenodo.7150000)

Data availability:
All the datasets, excel and python scripts used in this manuscript for the data analysis are uploaded through
the DOI website (https://doi.org/10.5281/zenodo.7150000)
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Table 1, [Moved down [6]: CMAQ modeling domain and }
. The required computational memory and time in the SMOKE modeling system. configurations.
— . - - - CDeIeted: Table 1. )
Sector Inleldual File Total File Slze CPU Memory CPU Cpmgutlng [Move 4 down [7]: Initial Condition j
Size (668 counties) Usage (GB) Time L
RPD 50~160 MB 62.8 GB 10~20 ~ 90 mins/day . CDeIeted: Meteorology .. [5]
RPV 26-89 MB 34.5GB 5~10 ~ 18 mins/day (Deeted: C6)
RPH 7-94 KB 43.6 MB 1~2 ~ 1 mins/day (Formatted: Font: Batang )
Total 7KB~160MB 97.3 GB 1~20 ~ 110 mins/day ( Deleted: - )
* The specification of CPU is Intel Xeon Gold 6240R @ 2.4GHz CDe'eted‘ - )
N « (Deleted: - )
)25 E [Formatted: Font: Times New Roman )
Table 2.CMAQ modeling domain and configurations [F°""a“ed: Caption j
[Moved (insertion) [6] j
Base Metkmis (Deleted: )
Horizontal Resolution 12km x 12km
WRFv4.0 with Global Forecasting System (GES) acting as
Met 1 ICs/BCs, RRTMG short/long wave scheme, PX land-surface
aleteoralogy scheme, YSU boundary layer scheme, Revised MMS surface layer
scheme, GF with radiative feedback cumulus parameterization
Boundary Condition GEOS monthly product
Jnitial Condition CMAQ restart file ~( Moved (insertion) 7]
Chemistry CMAQvV5.3.2 CB6r3 AE7
2017 NEI: Onroad
Emissions 2017 NEL, Qnr.oad monthly Meteorology-induced
emissions
A [Formatted: Font: Batang
Table 3. Statistical metrics between observed and simulated O3, NOz and PM3 5 in January and July, 2019
930  over contiguous United States
January 2019 July 2019
03 NO, PM, s 03 NO, PM, 5
Base MetEmis | Base MetEmis | Base MetEmis | Base MetEmis | Base MetEmis | Base MetEmis
CORR 0.51 0.51 0.64 0.64 0.46 0.46 0.64 0.64 0.51 0.51 0.38 0.38
RMSE 7.03 7.00 8.33 8.27 5.72 5.76 9.56 9.51 5.69 5.67 5.03 5.04
NMB -0.01 -0.01 -0.32 -0.30 0.10 0.11 -0.01 -0.01 -0.15 -0.15 -0.05 -0.05
NME 17% 17% 52% 52% 46% 47% 17% 17% 62% 62% 40% 40%
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Table 4. The largest differences of ozone episodes in July 2019 over the U.S.

Episodes Date @ Time Base (ppb) MetEmis (ppb) Location
Largest Increase Jul 5,2019 @ IPM 78.3 85.9 (+7.1) Chicago, IL
Largest Decrease | Jul 24,2019 @ 1AM 112.9 31.0 (-81.9) San Jose, CA
955  Table 5. Summary of precursor (NOx and VOC) concentrations in the morning before the largest ozone
increase episode at 14LST on July 5th, 2019 over Chicago, IL.

Jul 5™, NOX (ppb) VOC (ppbC)

2019 Time Base MetEmis | Diff (M-B) Time Base MetEmis | Diff (M-B)

Mean 5-11AM 8.4 8.6 0.2 5-11AM 62 66 4.0

Max 6-7TAM 18.9 20.7 1.8 6-7AM 101 121 20.0

Min 6-7TAM 8.5 8.2 -0.3 10-11AM 74 73 -1.0

960

Table 6. Statistics of largest ozone decrease episode (July 24th, 2019) over San Jose, CA.
Jul 24™, NOX (ppb) VOC (ppbC)
2019 Time Base | MetEmis | Diff (M-B) Time Base MetEmis | Diff (M-B)
Mean 3-9AM 5.8 6.8 1.0 3-9AM 184 35 148
Max 10-11AM 9.0 22.0 13.0 8-9AM 1263 68 -1195
Min 11-12pM 10.8 10.6 -0.2 12PM-1AM 7.8 7.3 -0.5
19
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Figure 1. Meteorology-dependency of CO, VOC, NOx, and PM, s emissions from gasoline-fueled light-
duty vehicles by average speed bin (a), and the off-network by the hour of day (b).
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Figure 7. Base hourly ozone (ppb) (a) and the hourly ozone difference (MetEmis-Base) (b) at 14LST on
July 5th, 2019. Black color indicates the concentration above the color scale maximum (120 ppb
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Figure 8. Spatial differences of NOx (a) and VOC (b) emissions in early morning (3AM-9AM) on Jul
5th, 2019.

70

5 'CFormatted: Right: 0.25"

28 o7



75

80

85

90

95

00

05

10

15

20

E .
Mt Moo fry *.’“(”
s %
S G \‘. k
| PM,5 AQS'1 @gp, . AQS 2
g swogn

@ Ozone AQS 1

Mergan e

_ 0z0neAQS2 @

of
.

Watsorite

120

100

80

60

20

2019 07 24 SanJose Ozone

® Ozone AQS 1
® Ozone AQS 2

——- Max Ozone (Base)
Max Ozone (MetEmis)
--- Mean Ozone (Base)
Mean Ozone (MetEmis)

33
NP

hour

Figure 9. (a) U.S. EPA's Air Quality System (AQS) ozone and PM>.s monitoring locations, and (b) diurnal

variation of ozone (maximum and mean) on July 24, 2022 over San Jose, CA. The base map layer of this

figure was made by Esri (Esri, 2013).

29

,'(Formatted: Right: 0.25"



1125

30

(a) Ozone [ Base ]
20190724 hour 11

184

134

34

-16

South - North (km)

-66

-116

-2308 -2258 -2208 -2158 -2108 -2058
West - East (km)

-2008

Figure 10. Base hourly ozone concentration
11LST on July 24th, 2019.

O3 ppb

b) (a) and the hourly ozone difference (MetEmis-Base) (b) at

30

South - North (km)

-116

(b)
184

Ozone [ MetEmis-Base ]
20190724 hour 11

134

34

-16

-66

-2308

-2258 -2208 -2158 -2108 -2058
West - East (km)

-2008

96

64

32

o
03 ppb

CFormatted: Right: 0.25"




(a)
184

NOx [ MetEMIS-Base ]

1344

84

34

South - North (km)

216 4

.66 4

116

20190724 hour 3 AM - 9 AM

-2308

Figure 11. Spatial differences of NOx (a) and VOC (b) emissions from 3LST to 9LST on July 24, 2019 over
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Figure 12. (a)Diurnal variation of PM, 5 (maximum and mean) concentrations over San Jose
targeted region, and (b) the spatial difference of PMy.s at I0LST on January 3, 2019.
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Figure 13. Spatial difference of PM» 5 (a) and VOC (b) emissions over San Jose region from 3LST to

9LST on January 3, 2019.
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