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Abstract. Monotonicity is an important property of remapping operators for coupled weather and climate models. However,

it is often challenging to design highly accurate operators that avoid the generation of new extrema or keep a remapped

field between physically prescribed bounds. To that end, this paper explores several traditional and novel approaches for both

conservative and non-conservative monotone remapping on the sphere. The accuracy and effectiveness of these algorithms are

evaluated in the context of several different real and idealized fields and meshes.5

1 Introduction

An important operation in global climate models is the transferring, or remapping, of data between different component grids.

For example, information needs to be exchanged at the interface between the atmosphere and ocean models, when both are

typically defined on different grids. Atmospheric models often use icosahedral or cubed sphere grids, while ocean models have

relied on unstructured meshes (Satoh et al., 2008; Taylor et al., 2007; Ringler et al., 2013). Remapping of data between grids10

whose structures differ greatly is a challenging and important problem, as doing so inaccurately can impact the stability of

coupled simulations (Beljaars et al., 2017). There are other circumstances where accurate remapping operators are important,

such as post-processing and mesh refinement. In the former case, the grid on which a simulation is performed may not be

ideal for carrying out analysis, and transferring data onto a structured mesh that is more amenable for analysis is often useful.

In the latter case, grid nesting (Harris and Lin, 2014) and adaptive grids (Jablonowski et al., 2006; Skamarock and Klemp,15

1993) have been used to resolve the complex multiscale nature of the atmosphere. Ensuring the accurate interpolation of data

between the different component grids in these simulations is crucial to preserving the models overall accuracy (Slingo et al.,

2009; Mahadevan et al., 2020).

There are a number of desirable properties of remapping operators, in addition to accuracy. These properties include consis-

tency, conservation, and monotonicity and correspond, respectively, to the mapping of the constant field to the constant field,20

preservation of total mass, and no generation of new extrema (Ullrich and Taylor, 2015). These properties are necessary for

ensuring important physical consistency of model simulations. Some fields, like mass (which is usually stored as density), are

required to be conserved, while others, like tracers or mixing ratios, are required to satisfy certain bounds following the remap-

1



ping process. It is therefore imperative for schemes that remap these fields to preserve conservation and global monotonicity

constraints, so as not to introduce artificial sources of error (Kritsikis et al., 2017).25

The main property of remapping schemes that we are concerned with in this paper is monotonicity. In the case of conservative

remapping, monotonicity is often achieved by way of limiters (Barth and Jespersen, 1989). In the conservative case, we are

interested in applying the “clip and assured sum” (CAAS) method, which acts as a post-processing filter operation on the

remapped field (Bradley et al., 2019). In the non-conservative case, we are interested in linear monotone remapping operators

that depend only on the mesh structures, and can be computed once and then applied in an offline manner.30

TempestRemap (Ullrich and Taylor, 2015; Ullrich et al., 2016) is a widely used package for generating conservative, consis-

tent and (optionally) monotone linear maps between arbitrary grids on the sphere, with data stored as volume averages (finite

volume method) or as coefficients of a finite element expansion. Although conservative remapping is necessary for ensuring,

for example, fluxes at the ocean-atmosphere interface preserve global invariants, when remapping states or vectors it is often

the case that monotonicity and accuracy are more important than conservation. Indeed, when mapping from a coarse grid to35

a fine grid, conservative and monotone schemes will appear blocky because each fine grid volume completely within a coarse

grid volume must exactly preserve the state of the coarse grid volume. Consequently, the Energy Exascale Earth System Model

(Golaz et al., 2019, E3SM), which uses TempestRemap maps under the hood, falls back on bilinear maps for transferring state

data when mapping from coarse resolution to fine resolution grids. To support the operational remapping of data in this manner,

the methods developed in this paper have been implemented in v2.1.6 of the TempestRemap package (Ullrich et al., 2022).40

This paper consists of three main sections. First, we will describe the basic setup of remapping problems, the test cases

that are used in our numerical experiments, and the metrics used to asses the accuracy of the remapping schemes. In the next

section, we will look at monotone conservative remapping. In general, it is difficult to construct remapping operators that

satisfy conservation and monotonicity, while still maintaining high order accuracy. So one of the main purposes of this section

is to examine the extent to which a conservative and monotone remapping operator can maintain the accuracy of it’s non-45

monotone counterpart. We will also analyze the effectiveness of this conservative and monotone operator in minimizing the

errors associated with the remapping of discontinuous source fields, as well its ability to remap real data fields accurately. The

subject of the next section is non-conservative monotone remapping, and it is divided into two main parts. The first part focuses

on traditional approaches to monotone remapping, and includes a description of the bilinear method used in the Earth System

Modeling Framework (ESMF) (Hill et al., 2004), as well as two additional approaches that may provide advantages in some50

circumstances. In the second partwe, we show that the accuracy of these traditional approaches is reduced when remapping

from source meshes that are finer than the target mesh, and a method is introduced to correct this. We end with conclusions

and future research directions.
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2 Preliminaries

Let Ω denote the unit sphere. Given a source mesh, Ωs, and a target mesh, Ωt, the remapping operator, R, is a matrix constructed55

to satisfy

ψt = Rψs, (1)

where ψs = (ψs
1, . . . ,ψ

fs
s ) ∈ Rfs , and ψt = (ψt

1, . . . ,ψ
ft
t ) ∈ Rft , are vectors of discrete density values on the source and target

meshes, respectively. The number of degrees of freedom on the source mesh is denoted by fs, and the number of degrees of

freedom on the target mesh is denoted by ft. Here, ψs corresponds to the discretization of a function ψ : Ωs→ R, either by60

sampling ψ at a a set of discrete nodes by pointwise sampling, or over a set of regions, by area averaging. The operators that

discretize the function ψ into the discrete vectors ψs and ψt are denoted by Ds and Dt. Degrees of freedom on the source

and target meshes can be stored in various ways, though in this paper we focus on finite-volume or finite-element methods.

In the former case, degrees of freedom on the mesh correspond to area or volume averages, and in the latter, they are stored

as coefficients of basis functions with compact support. For instance, for the spectral element method, a type of finite element65

method, it is typical to store degrees of freedom at a set N2
p Gauss-Lobatto-Legendre (GLL) nodes within each face.

Following Ullrich and Taylor (2015), the metrics that are used to asses the accuracy of the remapping schemes in this paper

are as follows:

L1 ≡
It[|RDs(ψ)−Dt(ψ)|]

It[|Dt(ψ)|]
(2)

L2 ≡

√
It[|RDs(ψ)−Dt(ψ)|2]√

It[|Dt(ψ)|2]
(3)70

L∞ ≡
max|RDs(ψ)−Dt(ψ)|

max|Dt(ψ)|
(4)

Lmin ≡
min|RDs(ψ)| −min|Dt(ψ)|

min|Dt(ψ)|
(5)

Lmax ≡
max|RDs(ψ)| −max|Dt(ψ)|

max|Dt(ψ)|
, (6)

where Is and It are the integration operators on the source mesh given by

Is[ψs] =

fs∑
i=1

ψs
i J

s
i , (7)75
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with Js
i denoting the weight of the ith degree of freedom on the source mesh. The integration operator on the target mesh, It,

is defined similarly.

We will use several idealized test cases for our numerical experiments, including a low frequency harmonic denoted by Y 2
2 ,

and given by the equation

ψ = 2 + cos2(θ)cos(λ), (8)80

a high frequency harmonic, Y 16
32 , given by

ψ = 2 + sin16(2θ)cos(16λ) (9)

and a vortex represented by

ψ = 1− tanh
[ρ′
d′

sin(λ′−ω′t)
]
, (10)

where r′ = r0 cos(θ′) is the radius, ω is the angular velocity with85

ω =


0, if ρ′ = 0

Vt
ρ′

if ρ′ 6= 0,
(11)

and Vt is the tangential velocity with

Vt =
3
√

3

2
sech2(ρ′)tanh(ρ′). (12)

Here, (λ′,θ′) are the coordinates in a rotated spherical coordinate system whose pole is at (0,0.6), and we set r0 = 3, d= 5,

and t= 6 (Ullrich and Taylor, 2015).90

3 Monotone Conservative Remapping

The focus of this section is on monotone conservative remapping, and assessing potential improvements in accuracy that arise

from employing a nonlinear remapping technique to enforce bounds preservation. We consider fields whose total mass needs to

be conserved across the remapping process, and that need to remain between specified bounds. This form of “bounds preserva-

tion" is important for fields such as mixing ratios, which are required to remain between zero and unity, and it corresponds to a95

global form of monotonicity where no new global extrema are generated. We also consider local forms of bounds preservation,

which are stronger than global monotonicity in the sense that they will not introduce any new local extrema.

High order remapping methods can lead to overshoots or undershoots of the remapped field, which is problematic for several

reasons. For instance, high order remapping of discontinuous source fields may lead to oscillatory behavior of the remapped

field similar to the Gibbs phenomenon (Gottlieb and Shu, 1997; Mahadevan et al., 2022). Preserving the bounds of these fields,100

as well as minimizing Gibbs oscillation is critical to maintaining the accuracy of coupled simulations.
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One method used to guarantee bounds preservation is
:::::::::::
Conservative

::::
and

::::::
bounds

:::::::::
preserving

::::::::
schemes

::::
have

:::::
been

::::
used

:::
in

::::::::::::::
semi-Lagrangian

:::::::
schemes

:::::::::::::::
(Zerroukat, 2010).

:::::
Here,

:::::
we’re

::::::::
interested

::
in

:
the “Clip and Assured Sum” (CAAS) method (Bradley

et al., 2019), whereby the remapped field is cropped, and then mass is redistributed in such a way that the field remains within

specified bounds. Specifically, given a vector of source values, and lower and upper bounds l and u, the CAAS algorithm105

modifies the remapped field, Rψs, such that l≤ Rψs ≤ u while still preserving conservation.
:::
The

:::::::
operator

::
R

::
is

::::::::::
constructed

::::::::
according

::
to

:
a
::::
two

::::
stage

:::::::::
procedure

:::
for

:::::::::::
finite-volume

::::::
meshes

:::::::::::::::::
(Ullrich et al., 2016)

:
.

In this section, our goal is to examine the utility of the CAAS algorithm as a way of ensuring bounds preservation and

reducing Gibbs phenomena while still ensuring accuracy, and conservation. In particular, we are interested in documenting the

effect of CAAS on standard error norms, as implemented in TempestRemap.110

3.1 Finite-Volume to Finite-Volume

Here, we look at the case where the source and target meshes are both finite-volume. In particular, we are interested in applying

the CAAS algorithm with two different types of local bounds preservation, which we now describe.

We let

ai = min
intersecting faces

ψs
i , bi = max

intersecting faces
ψs

i (13)115

where the maximum and minimum values are computed over all source faces that intersect target face i. We then define the

local lower and upper bounds, ll,i, and ul,i, as

ll,i = ai, ul,i = bi. (14)

We have found that a variation of this type of bounds preservation gives an improvement in convergence under mesh refine-

ment, which we call “local-p bounds preservation,” and describe as follows. We define the minimum and maximum value over120

a set of adjacent faces as

ci = min
adjacent faces

ψs
i , di = max

adjacent faces
ψs

i (15)

Here, the minimum and maximum are computed over a set of (p+ 1)2 source faces adjacent to target face i, where p is the

order of the polynomial reconstruction. The choice of (p+ 1)2 was an empirical one that provided good convergence results.

The local-p lower and upper bounds, lp,i, and up,i, as are then defined as125

lp,i = min(ai, ci), up,i = max(bi,di). (16)

For our numerical tests, we use cubed sphere source meshes with ne×ne elements per panel, for ne = 15,30,60. The target is a

1◦ latitude-longitude mesh with 360 longitudinal elements and 180 latitudinal elements. The convergence results for remapping
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Figure 1. Convergence test for finite-volume to finite-volume remapping from cubed spheres to a 1◦ latitude-longitude mesh for three

different test cases. The dashed lines show the results using CAAS with local-p bounds preservation, and the solid lines are the results

without CAAS.

with and without CAAS with local-p bounds preservation for several different fields are presented in figures 1 and 2. For each

mesh, we plot the errors as functions of np, the order of the polynomial reconstruction on the source mesh.130

In all cases, theL1 convergence for the remapped field both with and without CAAS are very similar, and theL2 convergence

is qualitatively similar as well. However, the L∞ error levels off for all three test cases when CAAS is applied, particularly for

the high resolution cases. This can be understood by looking at the convergence of the corresponding Lmin and Lmax errors. For

all test cases, the remapped field overshoots and undershoots the global maximum and minimum of Dt(ψ), that is, ψ evaluated

on the target mesh. The CAAS algorithm will then clip these fields so that, at the very least, they respect the global bounds of135

ψ evaluated on the source mesh, Ds(ψ). In this case, the remapped field, after applying CAAS to it, will satisfy the inequality
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Figure 2. Convergence test for finite-volume to finite-volume remapping from a cubed sphere to a 1◦ latitude-longitude mesh for three

different test cases. Note that in all cases for np > 1, the remapped field overshoots and undershoots the absolute maximum and minimum,

respectively.

minDs(ψ)≤ Rψs ≤maxDs(ψ). The effect of the clipping operation, then, is that the L∞ error will be approximately as large

as

min(|maxDt(ψ)−maxDs(ψ)|, |minDt(ψ)−minDs(ψ)|), (17)

because the minimum and maximum of the remapped field after applying CAAS to it will be approximately equal to minDt(ψ),140

and maxDt(ψ). As can be seen in figure 2, the Lmin and Lmax errors remain essentially constant for all mesh resolutions as the

order of the polynomial reconstruction is increased. This constancy then results in an effective lower bound on the L∞ errors,

and is the reason for the flat-lines for the Y 2
2 , Y 16

32 , and vortex test cases.
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3.2 Finite Element to Finite Volume

Here, we examine bounds preservation in the case where the source mesh is finite element. Local bounds preservation is defined145

similarly to how it was for finite volume source meshes, but now the minimum and maximum in equation (14) are computed

over all GLL nodes on all the faces that intersect target face i. The convergence results for standard remapping with and without

CAAS with local bounds preservation for several different fields are presented in figures 3 and 4. Here, the convergence results

are nearly identical, apart from the L∞ error for fourth order reconstruction for the Y 2
2 test case on the coarsest mesh. By

looking at the corresponding Lmin and Lmax errors, we see that the remapped field undershoots and overshoots the global150

minimum and maximum of Dt(ψ). The error induced by CAAS will once again be approximately equal to the expression

given in equation (17).

3.3 Gibbs Phenomenon

In this section, we examine the effectiveness of CAAS in reducing overshoots and undershoots associated with remapping a

discontinuous source field. To that end, we modify the vortex test case by defined by equation (10) by letting the field be equal155

to zero if it is less than a certain threshold, and equal to one if it is greater than it.

In figure 5, results are shown for four different schemes applied to the vortex test: remapping without CAAS, CAAS with

local bounds preservation, local-p bounds preservation, and global bounds preservation. By global bounds preservation, we

mean that the remapped field satisfies the equation

minDs(ψ)≤ Rψs ≤maxDs(ψ). (18)160

It is evident from this figure that without applying CAAS, the remapped field suffers from a significant loss of accuracy

close to the discontinuity, and significant undershoots of the global minimum are present. The fields obtained using CAAS

with local bounds, local-p bounds, and global bounds preservation all show a reduction of oscillations and an improvement

of accuracy, with the local bounds preservation resulting in the greatest improvement. One-dimensional cross-sections of the

remapped fields allow us to examine this reduction more closely. In particular, observe from figure 6 how sharply CAAS with165

local bounds represents the discontinuity. Although the remapped fields obtained using CAAS with local-p bounds and global

bounds remain between zero and unity, there are still slight oscillations near zero.

3.4 Real Data

To test the performance of the CAAS algorithm on real data, we use the cloud fraction data generated from the MIRA real data

emulator (Mahadevan et al., 2022), which is a field that is required to be bounded between zero and unity, and is shown in figure170

7. We perform two tests. The first is remapping the cloud fraction from an ne90 cubed sphere mesh to a 1◦ latitude-longitude

mesh, and the second is from an ne360 cubed sphere to a 0.25◦ degree latitude-longitude mesh. In each case, we compare the

accuracy of first order, second order, and second order using CAAS with global bounds preservation between zero and unity.

We see from tables 1 and 2 that the CAAS algorithm gives the smallest error norms for all metrics in both tests.
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Figure 3. Convergence test for finite-element to finite-volume remapping from a cubed sphere to latitude-longitude mesh using local bounds

preservation for three different test cases. The setup is the same as it was for finite-volume to finite-volume remapping, with the dashed lines

showing the results using CAAS with local bounds preservation, and the solid lines showing the results without CAAS.

Table 1. Error Norms for remapping from an ne90 cubed sphere to a 1◦ degree latitude-longitude mesh.

Method L1 L2 L∞ Lmin Lmax

1st order 8.69574e− 03 1.0483e− 02 6.78599e− 02 −1.60710e− 03 0.0

2nd order 6.96131e− 03 7.36387e− 03 3.40735e− 02 4.97992e− 03 1.43158e− 02

2nd order w/ CAAS 6.87982e− 03 7.30759e− 03 3.40699e− 02 −7.18568e− 05 0.0
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Figure 4. The Lmax and Lmin results of the convergence test for finite-element to finite-volume remapping from a cubed sphere to a

latitude-longitude mesh using local bounds preservation for three different test cases. Circled data points indicate that the global minimum

and maximum have been enhanced.

Table 2. Error Norms for remapping from an ne360 cubed sphere to a 0.25◦ degree latitude-longitude mesh.

Method L1 L2 L∞ Lmin Lmax

1st order 7.02963e− 04 1.16409e− 03 1.83186e− 02 −6.35094e− 04 0.0

2nd order 1.80731e− 04 2.34888e− 04 6.32974e− 03 −2.23843e− 04 4.68194e− 03

2nd order w/ CAAS 1.80671e− 04 2.27702e− 04 6.32968e− 03 −2.30600e− 04 0.0

4 Non-Conservative Monotone Remapping175

In this section, we describe several different approaches to monotone remapping that are consistent but non-conservative. In

general, traditional approaches to monotone remapping perform poorly when the source mesh is significantly finer than the
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Figure 5. Gibbs oscillations for a finite-volume to finite-volume remapping from a resolution 60 cubed sphere to a 1◦ latitude-longitude

mesh, with 4th order polynomial reconstruction. Figure (a) shows the results without CAAS, figure (b) shows the results using CAAS with

local bounds preservation, figure (c) shows the results using CAAS with local-p bounds preservation, and figure (d) shows the results using

CAAS with global bounds preservation.

target mesh. To correct this, we propose what we call integrated approaches to remapping, which rely on the construction of

the overlap mesh or supermesh (e.g., Farrell et al., 2009). This is in contrast to the more traditional approaches that amount to

pointwise interpolations, which we refer to as non-integrated approaches, and are used extensively in, for instance, the Earth180

System Modeling Framework (Hill et al., 2004).

In brief, for consistent and monotone remapping operators, we express the value of ψt at each spatial degree of freedom on

the target mesh as a weighted sum of N values of ψs:

ψt
j = wi1ψ

s
i1 + . . .+wiNψ

s
iN , (19)
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Figure 6. One-dimensional cross sections for remapping of a discontinuous field at the equator. Figure (a) shows the results without CAAS,

(b) shows the results using CAAS with local bounds preservation, (c) shows the results using CAAS with local-p bounds preservation, and

(d) shows the results using CAAS with global bounds preservation.

where ik denotes the index of a spatial degree of freedom on the source mesh. As we’re working with finite-volume meshes185

in this context, the spatial degrees of freedom correspond to the average value over the mesh faces. For consistency, we need

wi1 + . . .+wiN = 1, and for monotonicity, we need 0≤ wi1 , . . . ,wiN ≤ 1. The weights wik then make up the entries of the

remapping operator R given in equation (1).

4.1 Bilinear Remapping

Here, we describe the non-integrated approach to monotone bilinear remapping found in ESMF. Suppose we are given a point190

on the target mesh onto which we’re remapping. Call this point Pj . First, we need to find a triangle or quadrilateral whose
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Figure 7. The cloud fraction field used in evaluating the effectiveness of CAAS on a real data field.

vertices are source face centers that contains Pj . We assume that the edges of these triangles and quadrilaterals are great-circle

arcs. Now the source mesh is described in terms of the nodes of each face and the edges that connect them. Since the field

values at the face centroids represent second-order approximations to the average value of the field, they are the natural choice

for interpolation. To that end, the dual mesh of the source mesh is constructed, which will result in a mesh whose faces have195

source face centroids as their vertices. Once the dual mesh is available, it can be searched to find a polygon that contains Pj ,

the given point on the target mesh. If the polygon that contains Pj has greater than four sides, it is triangulated in order to find

a sub-triangle that contains Pj .

Once this polygon is found, and assuming it has to be further triangulated, we solve the following equation

(1−α−β)Qi1 +αQi2 +βQi3 = (1− γ)Pj (20)200

where Qi1 , Qi2 , and Qi3 are the coordinates of the face centers of the triangle that contains Pj . Intuitively, the solution to this

equation corresponds to first finding the intersection of the line through the origin and Pj , and the plane that passes through

the points Qi1 , Qi2 , and Qi3 , and then representing this point as a linear combination of these three points. The coefficients in
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equation (20) then define the the value of the remapped field on the target mesh:

ψt
j = (1−α−β)ψs

i1 +αψs
i2 +βψs

i3 . (21)205

Note that we have assumed that Pj is the center of the jth face on the target mesh. The weights clearly sum to one, and they

are non-negative because triangle Qi1Qi2Qi3 contains Pj . Hence, this weighting defines a monotone, consistent remapping

operator (Ullrich and Taylor, 2015). The case where the polygon that contains Pj has four sides is similar. In particular, we

solve the equation

(1−α)(1−β)Qi1 +α(1−β)Qi2 +αβQi3 +β(1−α)Qi4 = (1− γ)Pj (22)210

where Qi1 , . . . ,Qi4 are vertices of the quadrilateral that contains Pj . The coefficients in the previous equation then results in

the equation

ψt
j = (1−α)(1−β)ψs

i1 +α(1−β)ψs
i2 +αβψs

i3 +β(1−α)ψs
i4 . (23)

4.1.1 Delaunay Triangulation Remapping

In this section, we describe an alternative to the remapping scheme described in the previous section. We obviate the need215

to triangulate an arbitrary polygon by constructing the Delaunay triangulation of the face centroids of the source mesh. We

outline our approach as follows. We seek a triangle on the source mesh whose vertices are source face centroids that contains

a given point on the target mesh. To that end, we divide the sphere into six panels, call them Ri for 1≤ i≤ 6. The panels

R1, . . . ,R4 are equally sized and lie along the equator between 45◦N and 45◦S. The panels R5 and R6 are equally sized caps

above and below 45◦N , and 45◦S, respectively. Let Si denote gnomonic projections of the set of source face centroids in Ri220

onto the plane tangent to the sphere at the center of Ri. So Si is a set of two-dimensional points, and we denote its Delaunay

triangulation by T (Si) ::::::::::::::
(Shewchuk, 1996). So given a point Pj on the target mesh, we first find the panel Rk that contains it.

We then compute G(Pj), the gnonomic projection onto the plane tangent to the sphere at the center of Rk. We then find the

triangle with vertices Vi1 ,Vi2 ,Vi3 ∈ T (Sk) that contains G(Pj).
::
To

::::
find

:::
this

:::::::
triangle,

:::
we

:::
use

::
a
:::
k-d

::::
tree.

::::
First,

:::
we

:::
use

:::
the

::::
tree

::
to

:::
find

:::
the

:::::::
triangle

:::::
whose

::::::
center

:
is
:::::::
nearest

::::::
G(Pj).

::
If

:::::
G(Pj)::

is
::
in

::::
this

:::::::
triangle,

::
we

:::::
stop.

::::::::
Otherwise

:::
we

::::::
search

:::::::
through

::::::::::
neighboring225

:::::::
triangles

::::
until

:::
we

:::
find

::::
one

:::
that

:::::::
contains

:::
it.

:
A
::::::::
summary

:::
of

:::
this

::::::
process

::
is
::::::
shown

::
in

:::::
figure

::
8,

:::::
where

::
a
::::::::::
triangulation

:::
of

:::
the

::::::
images

::
of

:::
the

::::::
source

::::
face

::::::
centers

:::::
under

:::
the

:::::::::
gnomonic

::::::::
projection

::
is
:::::::

shown. Now we know that the gnomonic projection maps great

circle arcs on the sphere to straight lines on the plane, so if Pi1 , Pi2 , and Pi3 are the points on the source mesh such that

G(Pi1) = Vi1 , G(Pi2) = Vi2 , and G(Pi3) = Vi3 , then we can be sure that Pj is contained within the spherical triangle whose

vertices are Pi1 , Pi2 , and Pi3 . We then approximate the value of ψt
j as230

ψt
j =

Ai1

A
ψs
i1 +

Ai2

A
ψs
i2 +

Ai3

A
ψs
i3 (24)

where, as can be seen in figure 9, Aik is the area of the spherical subtriangle that does not have Pik as a vertex, and A is the

area of the spherical triangle that contains Pj . The weights are non-negative because they correspond to triangle areas, and they
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Panel k

Target Point

Gnomonic projection

of P and the source

face centers in panel k

P

Figure 8.
:::
An

:::::::
overview

::
of

::
the

::::::::
Delaunay

:::::::::
triangulation

::::::::
remapping

:::::::
scheme,

::::
where

:::
the

::::::
images

::
of

::
the

:::::
source

::::
face

:::::
centers

:::
are

::::::::::
triangulated.

Pi1

Pi3

Pi1

Pj

Ai1

Ai2

Ai3

Figure 9. The weights used in the weighting based on the Delaunay triangulation.

are between zero and one because 0≤Aik ≤A. Hence, these weights are monotone and consistent. Note that an advantage of

this approach is that it is easily parallelized, as we can divide the sphere into an arbitrary number of panels.235
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4.1.2 Generalized Barycentric Coordinate Remapping

The final scheme we describe is based on what are called generalized barycentric coordinates (Floater, 2015). Our use of this

scheme is motivated by a desire for a systematic way of incorporating more source points into equation (19). Intuitively, we

expect such a scheme to give more accurate results, as it would incorporate more information from nearby source points for

each point on the target mesh. We first define these coordinates, and then provide a description of where we expect them to be240

most useful. Let P1, . . . ,Pn be the vertices of a polygon in the plane, and Q be a point within the polygon. The generalized

barycentric coordinates of Q with respect to the vertices, wi, satisfy

1.
n∑

i=1

wi = 1

2. wi ≥ 0

3.
n∑

i=1

wi(x)Pi = x245

The first two properties are responsible for consistency and monotonicity, and the third property, known as linear precision,

means that linear functions can be reconstructed exactly in terms of the polygon vertices, and is essentially why these weights

are second order accurate. One particular set of weights is given by the equation

wi =A(Pi−1,Pi,Pi+1)
∏

k 6=i, i−1

A(Q,Pk,Pk+1) (25)

where A(Pi−1,Pi,Pi+1) and A(Q,Pk,Pk+1) denote the areas of triangles Pi−1PiPi+1, and QPkPk+1, respectively, and wi is250

the weight corresponding to vertex Pi (Meyer et al., 2002).

We generalize to the sphere by interpreting the areas in equation (25) as the areas of spherical triangles, rather than planar

triangular areas. An advantage of these weights is that they are general; they can be used for arbitrary polygons, not just

triangles and quadrilaterals.

As was the case with bilinear interpolation outlined in section 4.1, the dual of the source mesh is constructed. This will255

provide a mesh whose nodes are source face centers that can be searched through efficiently. We
::::
again

:::
use

::
a

:::
k-d

:::
tree

::
to

::::
find

:::
the

:::
dual

:::::
mesh

::::
face

:::
that

::::::::
contains

:
a
:::::
target

:::::
point

::
Q.

::::
The

::::::
details

:::
are

::::::
similar

::
to

::::
those

:::::::::
described

::
for

:::
the

::::::::
Delaunay

:::::::::::
triangulation

:::::::
scheme

::
in

::::::
section

:::::
4.1.1.

:::::
Once

:::
we

::::
have

::::
this

::::
face,

::::
we

:::::
apply

:::
the

:::::::
weights

:::::
given

::
in

::::::::
equation (25).

:::
We

:
point out that for the triangular

meshes we are considering, most faces on the dual mesh are hexagonal, so using the generalized barycentric coordinates given

in equation (25) will allow up to six source points to be incorporated into the remapping operator in equation (19), instead260

of the three or four points that would be used for the Delaunay triangulation weighting given in equation (24), or the bilinear

weighting in equation (21). We hypothesize that this doubling of the amount of source points in equation (19) would lead to

an increase in accuracy for remapping fields on triangular source meshes. Furthermore, the generalized barycentric coordinate

weighting will always incorporate at least as many source points as either other scheme.
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4.2 Non-Integrated Remapping: Numerical Tests265

Here we show the results of two different numerical tests. In the first case, the remapping is done from cubed spheres to a fixed

1◦ latitude-longitude mesh. The cubed spheres are of increasing resolution with ne= 5,10,20,40,80,160, and have 150, 600,

2400, 9600, 38400, and 153600 faces, respectively. The target mesh has 64800 faces. We plot the error norms as functions of

the approximate face size, which we take to be the square root of the approximate area of each face. Specifically, the face size

is defined as270

face size =

√
4π

N
, (26)

where N is the number of faces. We see from figure 10 that the schemes converge at second order, and are approximately

similar in magnitude.

For the second test, the target is still a fixed 1◦ latitude-longitude mesh, and the source meshes are triangular geodesic meshes

with 180, 720, 2880, 11520, 46080, and 184320 faces. From figure 11, we see that all schemes converge at second order and275

give similar error norms in most cases. For the high frequency and vortex tests, however, we see that the generalized barycentric

scheme gives consistently smaller L∞ errors than the Delaunay triangulation and the bilinear schemes, which indicates that the

generalized barycentric weighting is slightly more effective at resolving the sharp gradients present in these fields. So although

we hypothesized that the generalized barycentric coordinates would give perhaps a more noticeable improvement in the errors

for all cases for triangular source meshes, we found that its benefit appears to be limited to the L∞ errors for the Y 16
32 and280

vortex fields.

4.3 Integrated Remapping

The remapping schemes described in the previous sections work well when the source mesh is not too much finer than the target

mesh. However, when the resolution of source mesh is greater than that of the target mesh, pointwise sampling of the source

mesh to determine a field value on the target mesh is inappropriate and inaccurate. In this case, a large number of points on the285

source mesh contribute no weights to the remapping operator. To combat this under-sampling, we now describe an approach

that ensures all points on the source mesh are sampled via construction of the overlap mesh or supermesh. Approaches of this

type are called integrated because of their analogue to numerical quadrature, and are distinguished from the non-integrated

approaches described in sections 4.1-4.1.2. A non-integrated approach basically amounts to an interpolation, whereby we

express each value of the target field as a weighted sum of nearby source values. In the integrated approach, we recall that our290

variables correspond to face averages, and we approximate these integrals via quadrature. Specifically, for each face on the

target mesh, we apply triangular quadrature to each sub-triangle of each overlap face, where the number of overlap faces is

determined by the source mesh faces that intersect the given target face. Written out in full, we have

ψt
i ≈

1

|Ωt
i|

Nov∑
j=1

NT∑
k=1

Nq∑
m=1

ψs(xm,k,j)dWm (27)
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Figure 10. Convergence results for several non-integrated monotone remapping schemes for a fixed latitude-longitude target mesh, and cubed

sphere source meshes.
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Figure 11. Convergence results for several non-integrated monotone remapping schemes for a fixed latitude-longitude target mesh, and

triangular source meshes.
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where |Ωt
i| is the area of target face i, Nov is the number of source faces that overlap target face i, NT is the number of295

sub-triangles per overlap face, Nq is the number of quadrature points per sub-triangle, dWm is the quadrature weight for mth

quadrature point, and xm,k,j is the location of the mth quadrature point within each sub-triangle of each overlap face. Now we

don’t know the value of ψs(xm,k,j), so we need to estimate it. In our numerical tests, we will use all of three of the weightings

described in section 4. In particular, we estimate ψs(xm,k,j) as

ψs(xm,k,j) =

N∑
l=1

wlψ
t
pil

(28)300

where the pi1 , . . . ,piN , denote the faces on the source mesh whose centers form the polygon that contains xm,k,j , and

w1, . . . ,wiN are the corresponding weights given by equations (24), (25), and (21) or (23), depending on the source mesh.

Because the integration is performed by way of the overlap mesh, we can be sure that every degree of freedom on the source

mesh contributes weights to the remapping operator.

4.4 Integrated Remapping: Numerical Tests305

This section again consists of two tests. The first test is to establish second order convergence of the integrated schemes, and it

is identical to the setup of the first test shown in section 4.2. In figure 12, we compare the results of the integrated versions of all

three remapping schemes described in section 4. All three schemes give similar error norms to their non-integrated counterparts

shown in figure 10. In particular, the error norms of the generalized barycentric, and bilinear schemes are nearly identical. This

is to be expected, as in both schemes, the value at each point on the target mesh depends on four source points.310

In the next test, we consider a setup where the source meshes are refined beyond the resolution of the target mesh. The source

meshes are cubed spheres with ne= 15,30,60,120,240,480, and have 1350, 5400, 21600, 86400, 345600, and 1382400 faces,

respectively. The target mesh is a fixed latitude-longitude mesh of 2◦ resolution. We see from figure 13 that the accuracy of the

non-integrated scheme is degraded, but the integrated scheme remains second order. In particular, observe that the accuracy

of the non-integrated bilinear scheme starts to diminish relative the the integrated one when the face size is between 10−1.5315

and 10−2 which corresponds to a source mesh with no more than approximately 125000 faces. Before this point, the errors of

both schemes are similar.
::
We

:::::
point

:::
out

::::
that

::
we

:::::
only

::::::
include

:
a
::::::::::
comparison

::
of

:::
the

:::::::::
integrated

:::
and

::::::::::::
non-integrated

::::::::
versions

::
of

:::
the

::::::
bilinear

:::::::
scheme,

::
as

:::
the

::::::
results

::::
look

:::::
nearly

::::::::
identical

:::
for

::::
both

:::
the

:::::::::
generalized

::::::::::
barycentric

:::
and

::::::::
Delaunay

:::::::::::
triangulation

::::::::
schemes.

5 Conclusion

In this paper we have examined a number of different schemes for conservative and non-conservative monotone remapping. For320

monotone conservative remapping, we showed that the clip and assured sum method provides an accurate way of remapping

conservative fields that are required to stay bounded, and is effective at reducing the Gibbs-like oscillations associated with

discontinuous source fields.

We then described several different approaches to non-conservative remapping. Two of these have, to the best of our knowl-

edge, never been applied to remapping problems on the sphere. These methods have what are referred to as non-integrated and325
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Figure 12. Convergence results for several integrated monotone remapping schemes for a fixed latitude-longitude target mesh, and cubed

sphere source meshes.
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Figure 13. Convergence results for the integrated and non-integrated bilinear remapping schemes from cubed spheres to a fixed latitude-

longitude mesh.
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integrated versions, and it was shown that the integrated versions are capable of maintaining second accuracy across arbitrary

::::
order

::::::::
accuracy

:::::
across

:
a
:::::
wide

:::::
range

::
of source mesh resolutions by systematically sampling the degrees of freedom on the source

mesh, albeit at higher computational costs.

As discussed in the introduction, the methods described in this paper have been implemented as part of v2.1.6 of the Tem-

pestRemap software package (Ullrich et al., 2022).330
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