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Abstract. This study introduces AerSett v1.0 (AERosol SETTling version 1.0), a model giving the settling speed of big

spherical aerosols in the atmosphere without going through an iterative equation resolution. We prove that, for all spherical

atmospheric aerosols with diameterD up to 1000µm, this direct and explicit method including the drag coefficient formulation

of Clift and Gauvin (1971) and the Davies (1945) slip correction factor gives results within 2% of the exact solution obtained

from numerical resolution of a non-linear fixed-point equation. This error is acceptable considering the uncertainties on the5

drag coefficient formulations themselves. For D < 100µm, the error is below 0.5%. We provide a Fortran implementation of

this simple and straightforward model, hoping that more Chemistry-Tranport models and General Circulation models will be

able to take into account large-particle drag correction to the settling speed of big spherical aerosol particles in the atmosphere,

without performing an iterative and time-consuming calculation.

1 Introduction10

One of the main purposes of chemistry-transport modeling is to simulate the aerosol concentration in the atmosphere as ac-

curately as possible. The settling velocity of aerosols is a key driver of their dry removal from the atmosphere (Zhang et al.,

2001). Dry removal being the only sink for atmospheric aerosol under dry conditions, any error on representing the settling

velocity of atmospheric aerosol will have a direct impact on their modelled concentrations. Fortunately, for particles with di-

ameter D < 10µm, which are the most significant for health effects, the Stokes law (Stokes, 1851) along with slip correction15

factors (Cunningham, 1910; Davies, 1945) gives a straightforward and accurate way to calculate the settling speed of aerosol

particles.

However, dust particles exist in the atmosphere with different sizes from diameter D ' 0.1µm to D > 100µm (Ryder et al.,

2019). These authors classify mineral dust particles according into three modes as follows:

– 0.1µm<D < 2.5µm: accumulation mode20

– 2.5µm<D < 20µm: coarse mode

– 20µm<D <∞: giant mode
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The contribution of the giant mode is substantial, at least over the Sahara: Ryder et al. (2019) show that not taking into account

giant dust particles over the Sahara results in underestimating mass concentration by 40%, and extinction by as much as 18%

for shortwave radiation and 26% for longwave radiation. Dust particles with diameter up to 100µm are present not only above25

the Sahara (Ryder et al., 2019) but also far away from emission sources: Betzer et al. (1988) have observed dust particles with

D > 75µm in the atmosphere more than 10000km away from their source. More recently, van der Does et al. (2018) have

observed dust particles with diameter up to 450µm over the Atlantic Ocean, more than 2400km away from the West-African

coast. Modelling coarse and giant dust particles is still a very challenging task. For example, Drakaki et al. (2022) show that

the WRFV4.2.1 model with a version of the GOCART-AFWA dust scheme modified to include coarse and giant dust particles30

underestimates the lifetime of coarse and giant dust particles in the atmosphere. They show that their simulation results are

closer to observation when they include an artificial reduction of particles’ settling velocities by 60% to 80% (depending on

the diameter). This reduction is a way to account for underrepresented mechanisms such as non-sphericity of particles (Mallios

et al., 2020), or their electric charges, which have been discussed as possible factors explaining a longer atmospheric lifetime

of coarse dust particles (Adebiyi and Kok, 2020). Several observational and modelling studies have addressed the question of35

coarse and giant dust particles in the atmosphere: doing an exhaustive bibliographical overview on this question falls beyond

the scope of the present study. For a more complete bibliography, the reader is referred to van der Does et al. (2018), Ryder

et al. (2019) and Drakaki et al. (2022).

The settling speed of giant particles deviates substantially from the Stokes law, an effect that can be taken into account

using mathematical formulations known as large-particle drag corrections. Usually, these large-particle drag corrections are40

performed by using empirical formulations of the drag-coefficient Cd as a function of the Reynolds number Re (typically the

one provided by Clift and Gauvin (1971)), and numerically solving an equation to obtain an estimate of the settling speed v∞

as a function of the characteristics of the particle and of ambient air. This method is robust and permits to perform studies

like Drakaki et al. (2022) taking into account this effect, but incurs in large calculation costs. Since the important impact of

giant dust particles on the dust concentration and optical effect has been demonstrated (e.g. Ryder et al. (2019)), there is an45

emerging need to solve the problems that hinder the representation of giant dust particles in CTMs and General circulation

models. Designing a robust and efficient method to calculate the settling speed of giant dust particles is a step in this direction.

Until now, the gravitational settling speed in most chemistry-transport models is calculated with a plain Stokes formulation and

a slip correction factor for the smallest particles, as in Zhang et al. (2001), but without a large-particle drag correction (e.g.,

Sič et al. (2015), Rémy et al. (2019), Shu et al. (2021)). An exception to this is the recent development exposed by Drakaki50

et al. (2022) in the GOCART-AFWA dust scheme of WRFV4.2.1. In that study, the Clift and Gauvin (1971) drag coefficient

correction is taken into account by a bisection method, performed at each time step, in each model cell and for each model size

bin to calculate the settling speed as a function of the particle properties and the atmospheric conditions.

Since it has been highlighted by Drakaki et al. (2022) that taking into account large-particle drag correction is important

for representing the settling of giant dust particles, the goal of this article is to give a simple, robust and computationnally55

efficient expression to calculate the settling speed of spherical atmospheric aerosol, including large-particle drag correction.

As discussed thoroughly in Goossens (2019), several parameterizations exist for the drag coefficient, each of them fitting the
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reference data only in part. These parameterizations give drag coefficients which differ between them and from measurements

by a few percents. Among these parameterizations, the Clift and Gauvin (1971) and Cheng (2009) formulations seem to perform

better according to the objective scores presented in Table 2 of Goossens (2019). In the present study, we base our calculations60

on the Clift and Gauvin (1971) drag coefficient formulation, and use Cheng (2009) as a benchmark of the uncertainty that can

exist between several state-of-the-art drag coefficient formulations.

In Section 2 we review the basic equations that govern the settling speed of spherical aerosol particles in the atmosphere

(leaving aside slip correction); in Section 3 we lay the basis for a new methodology for finding the settling speed of the particle

as a function of the particle and surrounding gas parameters. In section 4, we apply this method to the case of the drag coefficient65

parameterization of Clift and Gauvin (1971) and give an approximated expression of the large-particle drag correction factor.

Sections 2, 3 and 4 focus on the large-particle drag correction, ignoring the slip correction factor. In section 5, we extend the

results of the previous sections by showing how to combine the slip correction factor with the large-particle drag correction,

and present the equations that define the AerSett method, including both effects. In Section 6, we evaluate the computational

benefit of this method compared to other numerical resolution strategies, before concluding in Section 7 by summarizing the70

method we propose for the calculation of the settling speed of large spherical aerosol particles as well as future prospects for

improving the representation of the settling speed of aerosol particles in chemistry-transport models.

2 Basic equations

We will follow the notations of Mallios et al. (2020). The settling speed v∞ of a spherical particle with diameter D is given by:

1

2
CdApρav

2
∞ = (ρp− ρa)Vpg, (1)75

Where Cd is the drag coefficient, Ap the projected area of the particle normal to the flow, ρa the density of air, ρp the density

of the settling particle, v∞ the settling speed of the particle, Vp the particle volume and g the acceleration of gravity.

In the case of spherical particles and for extremely small Reynolds numbers, Stokes (1851) has shown that:

Cd =
12

Re
, (2)

where the Reynolds number Re is defined as:80

Re=
ρaDv∞

2µ
. (3)

For all the calculations below, we have use the following empirical expression for dynamic viscosity µ (NOAA/NASA/USAF

(1976)):

µ=
βT

3
2

T +S
, (4)
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with β = 1.458× 10−6 kgs−1m−1K−
1
2 and S = 110.4K.85

While Eq. 2 holds only for extremely small Reynolds number (Re < 0.1), Clift and Gauvin (1971) has given an empirical

expression of Cd as a function of Re, which holds up to Re= 105:

Cd =
12

Re

(
1+0.2415Re0.687

)
+

0.42

1+ 19019
Re1.16

, (5)

where exponents 0.687 and 1.16 and coefficients 0.2415, 0.42 and 19019 are empirical values that permit Eq. 5 to fit

experimental data. Hereinafter, we will refer to Eq. 5 as the Clift-Gauvin formula.90

Equations 1 and 5 are two equations for two unknowns, v∞ and Cd. For small Reynolds numbers (Re < 0.1), Eq. 5 reduces

to Eq. 2 and we obtain:

vStokes∞ =
D2 (ρp− ρa)g

18µ
. (6)

If the Reynolds number exceeds 0.1, Eq 2 does not hold, and v∞ does not have a general analytical expression. The solution

to Eq. 2 can be obtained by an iterative fixed-point method as suggested in van Boxel (1998), or by a bisection method as95

in Drakaki et al. (2022). The results of this numerical calculation is shown in Fig. 1. Fig. 1a shows that the Stokes equation

(Eq. 6) gives excellent results for D < 20µm, but that deviations from it due to the departure of the drag coefficient from

Eq. 2 gradually arise when D exceeds 20µm, reaching −30% when D ' 100µm, and −90% when D ' 1000µm (Fig. 1c).

While particles with diameter D ' 1000µm are not a concern for chemistry-transport modelling, those with D ' 100µm are

an emerging concern, due to recent observations of particles with such diameters far away from their source (van der Does100

et al. (2018)).

Solving Eq. 1 with an iterative method as suggested in van Boxel (1998) demands several iterations when the diameter of

the particle gets close to 100µm or beyond (see Section 6). This is why we will expose a way to estimate v∞ from the physical

parameters of the problem in a straightforward way.

3 Expressing v∞ from the parameters of the problem105

To slightly generalize matters, let us rewrite Eq. 5 as:

Cd =
12

Re
(1+ f (Re)) , (7)

where f is a function characterizing the deviation of Cd from its Stokes (1851) expression.

Injecting Eq. 7 into Eq. 1, with Ap = πD2

4 and Vp = πD3

6 , we obtain:

v∞ =
D2 (ρp− ρa)g

18µ
× 1

(1+ f (Re))
(8)110

= vStokes∞ × 1

(1+ f (Re))
(9)
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(a) (b) (c)

Figure 1. (a) settling speed of a spherical particle with ρ= 2650kgm−3 in air with P = 101325Pa and T = 293.15K as a function of

diameter with Cd from equations 5 (blue) and 6 (orange). (b) Reynolds number from equations 5 (blue) and 6 (orange), and (c) relative

difference of v∞ from vStokes
∞

Of course, Eq. 9 does not give an explicit formulation of v∞ since Re depends on v∞ (Eq. 3). However, we are looking for

a way to take advantage of Eq. 9 to obtain an explicit estimate of v∞, so that we introduce the deviation of v∞ from vStokes∞ ,

δ, as:

v∞ = vStokes∞ (1+ δ) (10)115

The terminal Reynolds number of the particle is equal to:

Re=
ρaDv

Stokes
∞ (1+ δ)

2µ
= (1+ δ)

ρaD
3 (ρp− ρa)g
36µ2

(11)

Let us introduce:

R=
ρaD

3 (ρp− ρa)g
36µ2

(12)

R is the Reynolds number of the particle if it would have if it would be falling at speed vStokes∞ : we will call it the virtual120

Reynolds number. The Reynolds number of the particle falling at its corrected settling speed v∞ is R (1+ δ). With these

modifications, Eq. 9 can be rewritten as:

1+ δ =
1

1+ f ((1+ δ)R)
(13)

In this equation, R is a non-dimensional number that depends on the characteristics of the problem (Eq. 12), and f is the

relative deviation of the drag coefficient Cd from 12
Re (Eq. 7). Independantly of the formulation of f (Re), the relative deviation125

δ of v∞ from vStokes∞ is the solution of the fixed-point equation 13. Therefore, δ is a function of R, and only of R, which we

will note δ (R). In other words the settling speed of particles can be expressed as:
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v∞ =
D2 (ρp− ρa)g

18µ
× (1+ δ (R)) , with (14)

R=
ρaD

3 (ρp− ρa)g
36µ2

. (15)

This shows that the dependance of v∞ on parameters D, ρp, ρa, g, µ and on function f (Re) has a very specific form, and130

that, if one wants to tabulate the solutions, the values of δ (R) could be obtained once and for all solving Eq. 13 for the entire

relevant range of the possible values of R (where the virtual Reynolds number R is defined by Eq. 12), instead of tabulating

v∞ for all the possible combinations of D, ρp, ρa, g and µ. Instead of performing such a tabulation, in the next section, we will

show that it is possible to find an analytical expression approximating δ (R).

4 The δ (R) function in the Clift-Gauvin case135

Now, we proceed supposing that the expression of Cd as a function of Re is that of Clift and Gauvin (1971) (Eq. 5), yielding

the following expression for f (Re):

f(Re) = 0.2415Re0.687 +
Re

12
× 0.42

1+ 19019
Re1.16

(16)

Equation 13 can then be solved iteratively, as suggested in van Boxel (1998). The resulting function δ (R) is shown on

Fig. 2a. Due to the sigmoid shape of δ (R), fitting it with a logistic function of lnR is tempting, and gives relatively good140

results. However, a generalized logistic function gives an even better agreement with the exact solution (Fig. 2a). The equation

obtained with this fit is:

δ(R)' −
(
1+ e−0.4335(ln R−0.8921)

)−1.905
(17)

' −

(
1+

(
R

2.440

)−0.4335)−1.905
(18)

This expression of δ(R) yields an error relative to the exact solution < 1% up to Re= 10 and < 2.5% up to Re= 103145

(Fig. 2b). Considering that Goossens (2019) indicate that the Clift-Gauvin empirical formulation of the drag coefficient (Eq. 5)

is true within 7% of the reference drag coefficient values of Lapple and Sheperd (1940), approximating δ (R) by the generalized

logistic function given in Eq. 18 is accurate enough not to degrade the evaluation of the settling speed, at least until Re= 103,

which is well beyond the typical range of Reynolds number for atmospheric aerosol in free fall (Fig. 1b). Figure 2c indeed

shows that the error commited by applying the fit formula (Eq. 18) instead of actually solving Eq. 13 is smaller than the150

discrepancy between the Clift and Gauvin (1971) formulation and the Cheng (2009) parameterization. The Clift and Gauvin

(1971) and Cheng (2009) drag formulations being the two best performing formulations according to the objective scores
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(a) (b) (c)

Figure 2. (a) δ (R) (solution of Eq. 13) as a function of R when f is defined from the Clift-Gauvin expression (Eq. 16). The red line is a fit

of the solution by a generalized logistic function (Eq. 18). (b) percent error of the fitted expression of v∞ relative to the exact solution. (c)

Percent difference of the settling speed v∞ calculated with the Clift and Gauvin (1971) parameterization relative to the one calculated with

the Cheng (2009) parameterization.

(a) (b)

Figure 3. (a) v∞ from the Clift-Gauvin expression (Eq. 16) as a function of atmospheric pressure P and particle diameter D for an atmo-

spheric particle with density ρ= 2650kgm−3. The dependance of temperature on pressure has been taken from the US standard atmosphere

(NOAA/NASA/USAF, 1976). Black contours are iso-Re contours. (b) percent error committed by using Eq. 18 instead of solving Eq. 13.

presented in Goossens (2019) (their Table 2), this confirms that the error introduced by using Eq. 18 instead of the exact

solution of Eq. 13 is smaller than the uncertainty of state-of-the-art drag coefficient formulations.

Figure 3a shows that, for all realistic particle sizes and all realistic atmospheric pressures in the troposphere, the Reynolds155

number is below 100, and Fig. 3b shows that the error induced by using Eq. 18 to evaluate the solution of Eq. 13 is less than

0.5% for all particles with D < 100µm, and less than 2% for all particles with diameter less than D < 1000µm: this shows

that the domain of applicability of Eq. 18 largely covers the size range of giant dust particles (for which the typical diameter is

below or around 100µm, with exceptional observations of particles with D ' 400µm as in van der Does et al. (2018)).
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5 Inclusion of the slip correction factor160

So far, for the sake of simplicity, we have assumed that continuum fluid mechanics apply to our falling particles. As explained

in, e.g., Seinfeld and Pandis (1997) (Chap. 8), this assumption holds only if Kn� 1, where Kn is the Knudsen number of the

falling particle:

Kn=
2λ

D
, (19)

where λ is the mean free path of molecules in air. The mean free path in air is given by the following empirical equation as165

a function of pressure P , dynamic viscosity µ and density ρa (Jennings, 1988):

λ=

√
π

8
×

µ
0.4987445√
Pρa

. (20)

From the Knudsen number, slip correction factors can be designed to account from non-continuous effect, turning Eq. 1 into:

1

2

Cd
Cc
Apρav

2
∞ = (ρp− ρa)Vpg, (21)

where the slip correction factor Cc (also known as the Cunningham (1910) correction factor) is usually estimated from the170

Davies (1945) expression:

Cc = 1+Kn

(
1.257+0.4exp

(
− 1.1

Kn

))
. (22)

From Eqs. 7 and 21, and if we introduce the Stokes terminal velocity including the slip correction term, ṽStokes∞ , as:

ṽStokes∞ = Ccv
Stokes
∞ , (23)

we obtain:175

v∞ = ṽStokes∞ × 1

(1+ f (Re))
(24)

The terminal Reynolds number of the particle is equal to:

Re=
ρaDṽ

Stokes
∞ (1+ δ)

2µ
= (1+ δ)

CcρaD
3 (ρp− ρa)g
36µ2

(25)
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Let us introduce:

R̃=
ρaDṽ

Stokes
∞
2µ

(26)180

With these notations, Re= (1+ δ)R̃, and Eq. 24 becomes:

(1+ δ) =
1(

1+ f
(
(1+ δ)R̃

)) (27)

Equation 27 is the same fixed-point equation as 13 but with parameter R̃ (defined from 26) instead of R (from Eq. 12).

Therefore, its solution is δ
(
R̃
)

, where the δ function is the same which is represented in Fig. 2a, and can be correspondingly

approximated by Eq. 18, with the same error term as represented in Fig. 2b. The fact that the introduction of the slip correction185

factor Cc changes only very slightly the mathematical method to obtain the expression of the settling speed v∞ is a fortunate

consequence of the slip correction factor being a function of the Knudsen number only, with no dependance on particle speed.

To summarize the previous development, the method we have designed to calculate v∞ including the slip correction term

and the drag correction term takes the following steps:

1. Calculate Kn from Eq. 19 and Cc from Eq. 22190

2. Calculate ṽStokes∞ from Eq. 23 and R̃ from Eq. 26

3. Calculate v∞ as v∞ = ṽStokes∞ ×

[
1−

(
1+

(
R̃

2.440

)−0.4335)−1.905]

Fig. 4 shows the impact of the slip correction term and the drag correction term on ṽ∞. Two regimes are clearly separated on

this figure, with v∞
vStokes
∞

> 1 for the smaller particles, for which the slip correction term dominates, and the larger particles for

which the drag correction term dominates. Between these two regimes exist a relatively large zone in which the departure of195

v∞ from vStokes∞ is less than 5%. This zone in which the Stokes equation is directly applicable covers the 3µm<D < 35µm

diameter range at ground-level pressure, and the 10µm<D < 50µm range at 200hPa. Some authors (e.g. Mallios et al.

(2020)) argue that the slip correction factor Cc should be applied only in the Stokes regime (Re < 0.1). However, in Fig. 4,

it has been applied regardless of the Reynolds number. Analysis of Fig. 4 shows that the choice of applying or not the slip

correction factor for Re > 0.1 has little consequence at least in the troposphere, because in all the portion of the pressure-200

diameter diagram where Re > 0.1 (above the red line in Fig. 4), Cc is comprised between 1 and 1.02, so that applying or not

this factor which is extremely close to 1 has no practical consequence on the simulated value of v∞.

6 Implementation and computational efficiency

Apart from its simplicity, another possible advantage of the straightfoward evaluation of v∞ using the three above-defined

steps is its computational efficiency compared to the currently available methods:205
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Figure 4. Ratio v∞
vStokes
∞

as a function of atmospheric pressure and particle diameter for a spherical particle with ρp = 2650kgm−3 (color

shades). Black contours are iso-lines for the slip correction factor Cc =
ṽStokes
∞

vStokes
∞

, white lines are iso-lines of 1+ δ
(
R̃
)
= v∞

ṽStokes
∞

. The red

line corresponds to Re= 0.1, with Re > 0.1 above this line and Re < 0.1 below.

– Bisection method, finding Re as the solution to Re= R̃
1+f(Re) starting from Re ∈

[
0;R̃

]
and successively cutting the

solution interval [Rem;ReM] into halfs until the relative error on speed becomes smaller than ε: ReM−Rem
Rem

< ε; then

v∞ = ṽStokes∞
Re

R̃

– Fixed-point method, finding the solution δ to Eq. 27 starting from δ0 = 0 and iterating with δi+1 =
1

1+f(R̃×(1+δi))
− 1,

until the relative error on speed becomes smaller than ε: |δi+1−δi|
1+δi+1

< ε. Then, v∞ = ṽStokes∞ (1+ δ);210

– AerSett method, calculating directly v∞ = ṽStokes∞ ×

[
1−

(
1+

(
R̃

2.440

)−0.4335)−1.905]
.

The bisection and fixed-point methods depend on a tolerance parameter ε, which we have set to ε= 0.02, corresponding to

the maximal error of 2% observed using the AerSett method (Fig. 3b).

A Fortran code has been designed to estimate the calculation cost for these three methods (Fig. 5). This has been done

by performing the calculation of v∞ for 108 random values of D, at a random altitude z in the atmosphere between 0 and215

12000m. The pressure and temperature values P (z) and T (z) are estimated from the US Standard Atmospheric profile

(NOAA/NASA/USAF, 1976).

To optimize calculation speed, we have observed that for R̃ < 0.0116 we have 1+δ
(
R̃
)
> 0.99, so that for all three methods

we speed up the calculation by assuming that v∞ = ṽStokes∞ when R̃ < 0.0116. As visible on Fig. 4 (see the 0.99 iso-line of

1+ δ
(
R̃
)

), this means that for all particles with a diameter D < 20µm (the precise threshold value depends on pressure and220

temperature), no drag correction factor is applied.
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Figure 5. Execution time in ns for the three numerical methods described in Section 6 as a function of D. The estimate has been performed

for 4 ranges of D (0.1-1µm; 1-10µm; 10-100µm; 100-1000µm). In each of these intervals, the calculation of v∞ as a function of D, ρp,

ρa, λ and µ has been performed 108 times with each method, for 108 values of D selected randomly within the range. The execution time in

ns corresponds to the total execution time (for 108 calls to the function) divided by the number of calls (108) so that it represents an estimate

of the execution time for one call to the function. The test has been performed on a laptop with an Intel Core i7-1165G7 CPU.

Fig. 5 showing that, for D < 10µm the computation time (around 12ns per call) is the same for the three methods, which

is expected since the drag-correction factor is not calculated for these diameters, which result in R̃ < 0.0116. In average over

the entire interval, the bisection method and the fixed-point method are about 4 times slower than the AerSett method. For

D > 100µm, the bisection method is 6.6 times slower than AerSett, and the fixed-point method is 8 times slower. It is also225

worth noting on Fig. 5 that the fixed-point method is faster than the bisection method for small values of D, but slower for

large values of D. The average number of iterations to obtain convergence increases from 4.5 (10µm<D < 100µm) to 7.8

(100µm<D < 1000µm) for the bisection method, and from 1.5 (10µm<D < 100µm) to 7.4 (100µm<D < 1000µm)

for the bisection method. This sharper increase in the number of iterations to obtain convergence in the fixed-point method

explains why bisection becomes more efficient for large values of D.230
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7 Conclusions

As a conclusion, we have found that the following method is suitable to evaluate the settling speed of spherical aerosol particles

in the atmosphere, v∞:

ṽStokes∞ = Cc
D2 (ρp− ρa)g

18µ
; (28)

R̃=
ρaDṽ

Stokes
∞
2µ

; (29)235

v∞ = ṽStokes∞ ×

1−
1+

(
R̃

2.440

)−0.4335−1.905
 . (30)

The slip correction factor Cc can be obtained by the Davies (1945) formula (Eq. 22). To reduce computation time, for

R̃ < 0.116, Eq. 30 can be replaced by just v∞ = ṽStokes∞ , changing the result by less than 1%.

Equations 28, 29 and 30 constitute the AerSett model v1.0 (AerSett for AERosol SETTling). The error induced by applying

this model compared to an iterative calculation of v∞ is less than 0.5% for particles with diameter D < 100µm and less240

than 2% for particles with D < 1000µm (Fig. 3b). Particles with larger diameters fall so rapidly that they are not relevant as

atmospheric aerosol: other parameterizations exist for the falling hydrometeors (Khvorostyanov and Curry (2005)), taking into

account the shape of snow flakes, the deformation of raindrops due to their speed etc. We have shown that the error due to

using Eq. 30 is smaller than the uncertainty that exists between different state-of-the-art formulations of the drag coefficient,

showing that this error is not a problem for modelling.245

Eq. 30 takes into account both the slip correction factor (for small particles) and the large-particle drag correction factor.

Fig. 4 shows that for particles smaller than D ' 10µm the slip correction factor dominates, while for particles larger than

20µm the large-particle drag correction factor dominates. The reduction in settling speed relative to vStokes∞ reaches about

25% for a particle with diameter D ' 100µm, a typical diameter for giant dust particles. So, if chemistry-transport models

are to represent the observed giant dust particles (which is still a challenge), large-particle drag correction for the gravitational250

settling speed needs to be taken into account, and we think that Eq. 30, valid for all spherical particles with D < 1000µm and

at least from the surface to p= 200 hPa (Figs. 3b and 4), is the simplest available method to do it. While designed specifically

to take into account large-particle drag correction, Eq. 30 includes the slip correction term as well, which is critical for the

finer atmospheric aerosol with D < 10µm. Using Eq. 30 yields an error smaller than 2% relative to the exact combined effect

of the Davies (1945) slip correction factor and the Clift and Gauvin (1971) large-particle drag correction factor. Therefore it255

is possible to use this formulation systematically for spherical particles in chemistry-transport models. An implementation of

Equations 28-30 in a Fortran module along with the necessary thermodynamical calculations is available for download and

use (see the code availability section). We have shown (Section 6, and in particular Fig. 5) that the use of this Fortran routine

permits to gain a factor 4 (in general) to 8 (for particles with D > 100µm) relative to bisection or fixed-point methods.

To go further in understanding the settling speed of giant dust particles and be able to represent them in chemistry-transport260

models, it is needed to extend simple models such as AerSett to the case of non-spherical particles, and give simple and
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straightforward estimates of the drag correction factor δ not only as a function of particle density and diameter, as in the

present study, but also including other factors such as particle eccentricity which have been shown to have a strong impact

on the settling speed of dust particles (Mallios et al. (2020) and references therein). To solve the persistent mystery of the

processes allowing giant dust particles to stay airborne over long distances, new findings on physical processes such as the265

electric charges of the particles and their effect on settling velocities are still needed.

Code availability. All the simulations and figures have been performed with python scripts and Fortran code available according to the GNU

General Public License v3.0 at the following doi: 10.5281/zenodo.7535171

All the available versions of the AerSett Fortran module are available according to the GNU General Public License v3.0 at the following

doi: 10.5281/zenodo.7535114270
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