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Abstract. In recent years, there has been a growing interest in ensemble approaches for modelling volcanic plumes. The devel-

opment of such techniques enables the exploration of novel methods for incorporating real observations into tephra dispersal

models. However, traditional data assimilation algorithms, including ensemble Kalman filter methods, can yield suboptimal

state estimates for positive-definite variables such as volcanic aerosols and tephra deposits. This study proposes two new

ensemble-based data assimilation techniques for semi-positive-definite variables with highly skewed uncertainty distributions,5

including aerosol concentrations and tephra deposit mass loading. The proposed methods are applied to reconstruct the tephra

fallout deposit resulting from the 2015 Calbuco eruption using an ensemble of 256 runs performed with the FALL3D dispersal

model. Two datasets of deposit thickness measurements are considered: an assimilation dataset including 161 observations,

and a validation dataset for an independent assessment of the methods. Results show that the assimilation leads to a significant

improvement over the first-guess results, obtained from the simple ensemble forecast. The spatial distribution of the tephra10

fallout deposit thickness and the ashfall volume according to the analyses are in good agreement with estimations based on

field measurements and isopach maps reported in previous studies. Both assimilation methods show a similar performance in

terms of evaluation metrics and spatial distribution of the deposit. Finally, the potential application of the methodologies for

the improvement of ash-cloud forecasts produced for operational models is also discussed.

1 Introduction15

Multiple hazards are associated with volcanic eruptions including lava flows, pyroclastic density currents, lahars, volcanic

plumes, and tephra fallout. Specifically, the dispersal of volcanic plumes poses a serious threat to flight safety (e.g. Clarkson

et al., 2016) and the subsequent fallout of tephra can cause structural damage to buildings and infrastructures due to excessive

loading, disrupt communication networks, airports, power plants, and water and energy distribution networks (Wilson et al.,

2014). Additionally, fresh fallout deposits may be resuspended by aeolian processes affecting the air quality and prolonging20

the impacts of an eruption many years afterwards (Folch et al., 2014; Mingari et al., 2020). The characterisation and quantifi-

cation of past eruptive events is also of paramount importance for volcano hazard and risk assessment studies, which infer the

likelihood of future eruption scenarios based on the past volcano behaviour.
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Past explosive volcanic eruptions are often characterised and classified by means of tephra deposits (Bonadonna et al., 2015)

and provide critical information to infer Eruption Source Parameters (ESP) relevant to hazards, such as eruption column height,25

mass eruption rate, or total erupted volume (Martí et al., 2016; Constantinescu et al., 2022), especially for poorly monitored

volcanoes. Traditionally, volcanologists rely on simple field-based models to obtain certain ESP (e.g. erupted volume) as-

suming an exponential decay with distance for some deposit parameters such as deposit thickness (Pyle, 1989; Bonadonna

and Costa, 2013). However, it is well recognised that this simplistic approach is inappropriate for tephra fall deposits with

complex distribution patterns (e.g. Bonadonna et al., 1998; Martí et al., 2016). In fact, many deposits exhibit abrupt thick-30

ness variations over short distances, display well-developed secondary maxima, grain size bimodalidity (Durant et al., 2009),

stratified deposit with alternating layer characteristics, and include other complexities that make the reconstruction of tephra

fallout deposits challenging (Scasso et al., 1994). In contrast, physics-based approaches built upon Volcanic Ash Transport

and Dispersal (VATD) models include multiple physical parameterisations and are a much more powerful tool for representing

the distribution of tephra deposits. However, the accuracy of deterministic models is highly sensitive to uncertain model input35

parameters (e.g. eruption column height or physical properties of particles) and the underlying meteorological fields. Alterna-

tively, probabilistic modelling approaches provide a framework to incorporate uncertainties associated with model input data.

Specifically, ensemble-based modelling strategies allow one to characterise and quantify model uncertainties and have been

proven to enhance VATD model skills (Bonadonna et al., 2012; Madankan et al., 2014; Stefanescu et al., 2014). For example,

several VATD models have been used to conduct ensemble simulations, including ASH3D (Denlinger et al., 2012), COSMO-40

ART (Vogel et al., 2014), HYSPLIT (Dare et al., 2016; Zidikheri et al., 2018), NAME (Dacre and Harvey, 2018; Beckett et al.,

2020), and FALL3D (Sandri et al., 2016; Folch et al., 2022; Martinez et al., 2022). Furthermore, different inversion modelling

techniques based on ensemble approaches have shown to produce improved volcanic ash forecasts consistent with observations

by constraining ash emission estimates and model parameters (Pelley et al., 2015; Zidikheri et al., 2017; Harvey et al., 2020).

The incorporation of ensemble capabilities in VATD models set the foundations for developing and implementing ensemble-45

based data assimilation and inversion techniques (see Folch and Mingari, 2022, for a recent detailed review). Two main ap-

proaches have been explored in the literature to assimilate volcanic aerosol observations from satellites: ensemble Kalman

filters (Fu et al., 2016, 2017; Osores et al., 2020; Pardini et al., 2020; Mingari et al., 2022) and ensemble particle filter methods

(Zidikheri and Lucas, 2021a, b). Specifically, ensemble Kalman filter (EnKF) methods, used for sequential data assimilation,

are based on the Kalman filter (Kalman, 1960) and approximate the probability distributions by an ensemble of system states50

and assume that the prior model errors and the observation noise are Gaussian. However, lower-bounded variables such as

water-vapour mixing ratio (Kliewer et al., 2016), rainfall (Husak et al., 2007) and aerosol concentrations (O’Neill et al., 2000)

frequently have skewed and near-zero distributions and are not well described by Gaussian distributions. As a result, traditional

EnKF methods in VATD models often yield suboptimal state estimates (Folch and Mingari, 2022).

This study explores two new ensemble-based data assimilation techniques for positive-definite variables and its implemen-55

tation in VATD models, the Gaussian with Nonnegative Constraints (GNC) method and the Gamma, Inverse-Gamma, and

Gaussian Ensemble Kalman Filter (GIGG-EnKF), a sequential method proposed by Bishop (2016) for highly skewed non-

negative distributions. Posselt and Bishop (2018) applied this approach for the nonlinear data assimilation of precipitation rate
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observations and compared the results with the analysis produced by a classical EnKF algorithm. It was concluded that the

analysis ensemble of precipitation rates produced by the GIGG-EnKF bears a closer resemblance with the Bayesian posterior60

when the distribution is skewed.

This paper aims to reconstruct the tephra fall deposit of the 2015 Calbuco eruption from a scattered set of observations.

The rich existing dataset available for this eruption, consisting of deposit samples collected up to 500 km downwind from

the volcano, provides an excellent test case to evaluate the proposed methodology. The Gaussian with nonnegative constraints

(GNC) method and the Gamma Inverse-Gamma (GIG) method, based on the GIG equation set proposed by Bishop (2016), are65

used to assimilate deposit thickness data. Both methods are used here to reconstruct a complete map of the tephra-fall deposit

from a dataset of uncertain observations and an ensemble of model realisations based on numerical simulations performed

with the FALL3D dispersal model. In addition, a technique for emission source inversion based on the GNC method is also

presented and discussed. As an initial step, this manuscript is focused on the assimilation of tephra deposits, which is crucial

for long-term tephra hazard assessment, leaving to future studies the assimilation of volcanic clouds and the potential use of70

these two methods in operational ash forecast contexts.

The manuscript is organised as follows. The ensemble-based data assimilation methods are introduced in Sect. 2. A brief

description of the 2015 Calbuco eruption is outlined in Sect. 3 where details about the observational datasets are given. Sub-

sequently, Sect. 3 describes the numerical experiments and shows the results obtained by both methods. In Sect. 4, the GNC

method is used to invert the Calbuco source term. Section 5 dwells on potential implications of the proposed methodology and75

possible future applications and limitations are further discussed. Finally, conclusions are drawn in Sect. 6.

2 Methodology

Data assimilation (DA) techniques have been widely used to study and forecast geophysical systems and have been applied in

a variety of research and operational settings (Carrassi et al., 2018). Commonly, DA methods aim at obtaining an optimal state

of a dynamical system by combining model forecasts with observations. Specifically, ensemble-based methods comprise two80

consecutive steps. In the forecast step, a prior ensemble is estimated by running an ensemble of m forward models until the

observation time. In the analysis step, observational information is included to obtain a posterior estimate.

Assume that the state of the physical system is represented by a model state vector x ∈ Rn, where n is the system dimension,

and that the observations are given by a vector yo ∈ Rp, where p is the number of observations (see Table 1 for the list of

symbols). Suppose that exists a linear observation operator H ∈ Rp×n which translates the model state x into the observation85

space:

y = Hx (1)

where y represent a p-dimensional vector. In our particular case, the model state vector x is constructed from the two-

dimensional tephra deposit load (in kg m−2) and the components of x represent the mass load at the n grid points of the

computational domain. On the other hand, the observations vector yo represents a list of scattered deposit thickness observa-90

tions (in cm). The deposit mass load and the deposit thickness are related by a proportionality factor, i.e. the bulk density of
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the tephra deposit, assumed, for the sake of simplicity for our application, to be constant and equal to 800 kg m−3. In addition,

the translation of x into the observations space requires horizontal bi-linear interpolations for each measurement site.

In a probabilistic framework, the Probability Density Function (PDF) of the state y conditioned to the observation yo is

relevant to the assimilation techniques, and can be computed via the Bayes’s theorem (Jazwinski, 1970):95

P (y|yo) =
P (yo|y)P (y)

P (yo)
(2)

where P (y|yo) is the a posterior PDF, P (y) and P (yo) are the prior PDFs, and P (yo|y) (also known as the observation

likelihood or observational PDF) is the probability of observing yo given a true y.

In consequence, the determination of the posterior PDF requires the specification of both the prior and the observational

PDFs. This paper proposes two ensemble-based assimilation strategies which rely on (2) and differ on the assumptions made100

about these PDFs. The GNC method (Sect. 2.1) uses an all-at-once assimilation approach looking for the model state that

maximises the vectorial form of (2) and observations are assimilated all at once. In contrast, the GIG method (Sect. 2.2) uses a

serial assimilation approach in which the univariate version of (2) is explicitly written for each single observation and the full

dataset of p observations is assimilated in a sequential way.

2.1 The GNC method105

The Gaussian with Nonnegative Constraints (GNC) method assumes a multi-dimensional Gaussian probability distribution for

y, defined in (1), given as:

P (y)∝ exp
{
−1

2
(y−y)⊺P−1(y−y)

}
(3)

where P ∈ Rp×p is the error covariance matrix and y ∈ Rp is the average model state vector in the observation space. Similarly,

for the sake of simplicity, measurements are assumed to be normally distributed with observation error covariance matrix110

R ∈ Rp×p, i.e.

P (yo|y)∝ exp
{
−1

2
(yo−y)⊺R−1(yo−y)

}
(4)

The most likely state is the one that maximises the posterior PDF, Eq. (2), or equivalently the one that minimises the GNC cost

function J :

J(y)∝ (y−y)⊺P−1(y−y) + (yo−y)⊺R−1(yo−y) (5)115

Note that the expression above is actually very similar to the cost function used in classical variational methods (e.g. 3DVAR,

Carrassi et al., 2018) with the difference that y plays the role of the model background state in the VAR methods, and the first

term in (5) is computed in the observations space rather than in the model space as usual. This is justified because expressing

the functional J in the observations space is advantageous in those cases where observations are localised and/or nearly

zero, i.e. circumscribed to portion of the computational domain (this is what typically occurs for volcanic clouds and fallout120
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Table 1. List of symbols using the following convention: matrices in upper case bold, vectors in lower case bold, scalars in italics.

Symbol Description

General definitions

m ensemble size

n dimension of model state vector

p number of observations

x ∈ Rn Model state vector

yo ∈ Rp Observations vector

y ∈ Rp Model state vector in the observation space

H ∈ Rp×n Observation operator

GNC method

P ∈ Rp×p Model covariance matrix

R ∈ Rp×p Observation error covariance matrix

w ∈ Rm Vector of weight factors

y ∈ Rp Average model state vector (obs. space)

Y ∈ Rp×m Ensemble model state matrix (obs. space)

Y′ ∈ Rp×m Ensemble perturbations matrix (obs. space)

GIG method

yj j-th component of y

yo
j j-th component of yo

yf
j Mean of prior distribution of yj

ya
j Mean of analysis distribution of yj (14a)

P r
j Type 1 relative error variance of prior

P r
j := var(yf

j )/(yf
j )2

Πr
j Type 1 relative error variance of analysis (14b)

Πr
j := var(ya

j )/(ya
j )2

Rr
j Type 1 relative error variance of observation†

Rr
j := var(yo

j )/(yt
j)

2

P̃ r
j Type 2 relative error variance of prior

(P̃ r
j )−1 = (P r

j )−1 +1

R̃r
j Type 2 relative error variance of observation

(R̃r
j )
−1 = (Rr

j )
−1 +1

† where yt
j is the true value of the j-th observation.
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deposits). Moreover, the functional in (5) yields to a much reduced system when compared to classical VAR methods because

the observation space normally has a much lower dimension (p << n).

In the context of an ensemble modelling formulation, the forecast step provides an ensemble of m independent prior states

vectors xi representing m model realisations at the analysis time. The GNC method looks for the best linear estimate of the

system state in the subspace spanned by the ensemble of vectors xi:125

x = w1x1 + · · ·+ wmxm (6)

where wi ≥ 0 (i = 1 . . .m) is a set of nonnegative weight factors for each ensemble member. The important point here is that the

nonnegative constraints on wi relax the Gaussian hypotheses and avoid the occurrence of non-physical solutions. The linearity

of the observation operator H allows the analysis to be expressed in the observation space as:

y = w1y1 + · · ·+ wmym = Yw (7)130

where yi = Hxi and the matrix Y ∈ Rp×m is defined by [y1, . . . ,ym]. The ensemble mean is used to approximate the average

model state vector y ∈ Rp, i.e.:

y ≈ 1
m

m∑

i=1

yi (8)

whereas the ensemble-based error covariance matrix is used to approximate P according to:

P≈ 1
m− 1

Y′Y′⊺ (9)135

where the matrix of ensemble perturbations Y′ ∈ Rp×m is given by [y1−y, . . . ,ym−y]. Replacing (7), (8) and (9) in (5), the

GNC cost function J can be expressed as the equivalent quadratic form:

J(w) =
1
2
w⊺Qw + b⊺w + . . . (10)

with

Q = Y⊺(P−1 +R−1)Y (11a)140

b =−Y⊺(P−1y +R−1yo) (11b)

In order to find the optimal vector of weight factors w, the optimisation problem minw≥0 J(w) must be solved. Then, the

analysis vector state xa can be computed by replacing the optimal w in (6). The minimisation of the quadratic form (10)

subject to the constraints wi ≥ 0 ∀ i is a nonnegative quadratic programming problem and there is no analytical solution for

the global minimum due to the nonnegativity constraint. However, it can be solved using the iterative approach proposed by145

Sha et al. (2007):

wi← wi

[
−bi +

√
b2
i + aici

ai

]
(12)
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Figure 1. Iterative approach to minimise the GNC cost function J subject to the non-negativity constraints. Under the multiplicative updates

in (12) the cost function decreases monotonically. In this particular example, the convergence required more than 104 iterative steps.

as long as the matrix Q is symmetric and semipositive definite, as can be easily verified from (11a). Under the multiplicative

updates (12), the cost function decreases monotonically to the value of its global minimum as shown by Sha et al. (2007).

The vectors a = A+w and c = A−w must be updated in each iterative step, where A+ = |Q|+Q and A− = |Q| −Q. For150

illustrative purposes, Fig. 1 shows the decrease of the normalised cost function, defined as
√

J/p, under the multiplicative

updates in (12) for the case study presented later in Sect. 3. More than 104 iterative steps were required to get low enough

residuals to satisfy the convergence criteria.

2.2 The GIG method

Bishop (2016) introduced a variation of the Ensemble Kalman Filter (EnKF) that solves the univariate Bayes’ theorem for155

non-negative variables with skewed (asymmetrical) probability distributions. The so-called GIGG-EnKF (with GIGG stand-

ing for Gamma, Inverse-Gamma and Gaussian) allows non-negative variables typically involving near-zero values (i.e. with

right-skewed probability distributions), such as aerosol, water vapour, cloud, and precipitation concentrations, to be directly

assimilated, thus avoiding the use of Gaussian anamorphosis nonlinear transformations (e.g. Amezcua and Leeuwen, 2014).

The GIGG-EnKF algorithm is based on the generalised two-stage multivariate ensemble filter described by Anderson (2003).160

The first stage involves the univariate GIGG-EnKF in which an ensemble-based estimate of the posterior distribution of the

observed variable is generated from a single observation and a prior ensemble of state estimates. In the second stage, the

univariate method is extended by propagating this information to the complete model state vector using a linear regression

approximation.

According to the strategy proposed by Bishop (2016), in the first step, the Bayes’ theorem is solved in the univariate form165

of (2) assuming a distribution pair for the prior probability and the likelihood PDF of the error-prone observations given truth,

respectively. A single observation is assimilated using an appropriate equation set depending on three different cases: GIG,

7
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IGG and G. This paper will only consider the GIG equation set, aimed at situations in which the prior can be described by a

Gamma distribution and the observation likelihood can be represented by an Inverse-Gamma distribution. In addition, Bishop

(2016) introduced the IGG equation set (Inverse-Gamma prior and Gamma observation likelihood) and the G equation set170

(Gaussian distributions).

In the GIG case, the posterior probability is given by a gamma PDF:

P (yj |yo
j )∝ y

(Πr
j )−1−1

j exp

{
− yj

Πr
j ya

j

}
(13)

where yj and yo
j are the j-th components of the vectors y and yo respectively. The posterior univariate gamma PDF is

characterised by two parameters, namely, the analysis mean ya
j and the type 1 relative error variance of the analysis Πr

j :=175

var(ya
j )/(ya

j )2, that in the GIG method are given by:

1
ya

j

=
1

yf
j

+
P̃ r

j

R̃r
j + P̃ r

j

{
1
yo

j

− (R̃r
j + 1)

1

yf
j

}
(14a)

(Πr
j)
−1 = (R̃r

j )
−1 + (P̃ r

j )−1 (14b)

where P̃ r
j and R̃r

j are the type 2 relative error variance of the prior and observations respectively (see Table 1 for details).

Bishop (2016) provides a stochastic equation to generate individual members of the analysis ensemble (i.e. ya
ji) with the low-180

order moments of the posterior distribution being consistent with (14). See Appendix A and Eq. (A1) for further details. In

addition, the ensemble generated in this way is ensured to converge to the true posterior PDF for large ensembles.

In the second step, the univariate case is extended according to the second-stage linear regression step proposed by Anderson

(2003) in order to find the analysis ensemble for the complete model state vector. The update of the k-th model state vector

variable of the i-th ensemble member due to the j-th observation is computed according to:185

xa
ki = xf

ki + δkj

cov(xf
k ,yf

j )

var(yf
j )

(ya
ji− yf

ji) (15)

where δkj is a localisation weight satisfying 0≤ δkj ≤ 1. In the original formulation, Bishop (2016) assumed δkj = 1. However,

we found that (15) can introduce artificial results when a poor correlation exist between the xk and yj variables, including non-

physical values (e.g. negative mass load). By introducing the localisation weight δkj in this work, the effect of poorly correlated

observations is intended to be limited. Instead of the traditional distance-dependent localisation, we use here the correlation-190

cutoff method to localise the analysis (Yoshida and Kalnay, 2018). This method localises the observation impacts based on

their background error correlations and only cross covariances between variables that have strong background error correlation

are considered in (15). In this work, a quadratic function has been chosen for defining the cutoff function (see Chang and

Kalnay, 2022, for a similar approach). Specifically, the localisation weight assigned for the j-th observation at the k-th analysis

grid cell was defined as:195

δkj =





1 if |ρkj | ≥ ρo

(ρkj/ρo)
2 if |ρkj |< ρo

(16)
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where ρkj = corr(xf
k ,yf

j ) is the prior ensemble correlation and ρo is a tunable parameter controlling the intensity of the

localisation. Localisation is enabled when 0 < ρo < 1 and ρo = 0 implies no localisation at all, as in the original formulation.

The inverse-gamma PDFs assign non-zero probability densities only for positive observations and, as a result, zero observa-

tions cannot be properly assimilated using the GIG equation set (e.g. see 14a). This problem is addressed here by redefining200

zero observation data according to:

yo
j ← r ∗ ϵmin (17)

where r ∈ (0,1] is a random number and ϵmin is the minimum error expected for the deposit thickness observations (assumed

to be ϵmin = 1 mm in this work where we deal only with visible tephra deposits).

The GIG method is a sequential procedure: a single observation is assimilated in order to update the prior ensemble forecast205

using the GIG equation set; subsequently, this procedure is repeated until all observations have been sequentially assimilated. In

contrast, the GNC method described in Sec. 2.1 represents an all-at-once assimilation technique. To summarise, a pseudocode

of the sequential procedure used to implement the GIG method is detailed in the Algorithm 1.

Algorithm 1 Pseudocode of the GIG method based on the Bishop (2016) algorithm for the case in which the prior is a gamma

distribution and the observation likelihood is an inverse-gamma distribution.

Require: List of observations {yo
j } with their relative errors

Ensure: Analysis ensemble xa
ki

1: get xf
ki ▷ Generate the prior ensemble

2: procedure GIG METHOD

3: randomly shuffle observation list

4: for all yo
j do ▷ Iterate over observations

5: if yo
j = 0 then

6: r← random number ∈ (0,1]

7: yo
j ← r ∗ ϵmin ▷ Redefine zero observations

8: end if

9: ya
j ← Eq. (14a)

10: ya
ji← Eq. (A1)

11: xa
ki← Eq. (15) ▷ Generate the analysis ensemble

12: xf
ki← xa

ki ▷ Update the prior ensemble

13: end for

14: end procedure

9
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Table 2. Calbuco deposit datasets considered in this study.

Reference Data type Purpose

Van Eaton et al. (2016) Thickness at Data assimilation

163 locations

Reckziegel (unpublished) Thickness at Data validation

45 locations

Romero et al. (2016) Isopachs map Data validation

3 Reconstruction of the 2015 Calbuco deposit

In this section, the procedures described in Sect. 2 are applied to the 2015 Calbuco eruption in order to obtain the analysed210

deposit thickness. With this in mind, the field measurements reported by Van Eaton et al. (2016) will be considered for assimi-

lation purposes.

3.1 Fallout deposit and datasets

The 2015 eruption of the Calbuco stratovolcano (41.33◦S, 72.61◦W) in Southern Chile involved two major eruptive pulses on

22–23 April along with a third minor pulse on 30 April (Romero et al., 2016). During the most energetic phase on 23 April,215

stratospheric eruption columns higher than 15 km above the vent level (∼17 km above sea level) were developed. Regions over

Southern Chile and the Argentinian Patagonia were severely affected by tephra fall. According to different estimations based

on field studies, deposit volume ranges between 0.27 and 0.58 km3 (Romero et al., 2016; Van Eaton et al., 2016).

The availability of independent and comprehensive datasets of field observations makes the Calbuco tephra deposit an

excellent case study. Van Eaton et al. (2016) reported the thickness and stratigraphy of the fall deposits at 163 sampling sites220

within a 500-km radius from the volcano summit. This dataset is considered in this work for assimilation purposes. Figure 2

shows the location of sampling sites and the isopachs of fall deposit thickness (in centimetres) reported by Van Eaton et al.

(2016). It is interesting to note the presence of a secondary thickness maximum ∼200 km downwind from the vent, located

around two major cities of the Argentinian Patagonia: Junín de los Andes (39.95◦S, 71.07◦W) and San Martín de los Andes

(40.16◦S, 71.35◦W), likely due to ash aggregation processes (e.g. Costa et al., 2010).225

A complementary dataset composed of 45 independent measurements of deposit thickness (F. Reckziegel, pers. comm.)

is also considered for validation purposes using the evaluation metrics described in the following section. Figure 2 shows

the location of the corresponding sampling sites (square symbols). Finally, a hand-drawn isopachs map built from a third

independent dataset (Romero et al., 2016) is also used to evaluate the tephra deposit distribution considering the isopachs

for 0.1, 0.5, 1.0 and 2.0 mm. The three datasets are summarised in Table 2. The assimilation methods require a dataset of230

measurements along with the corresponding absolute or relative errors. Specifically, the GNC method requires the absolute
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Figure 2. Isopachs of fall deposit thickness in centimetres and location of the 161 sampling sites (two ambiguous measurements were

discarded) of the assimilation dataset reported by Van Eaton et al. (2016) (red stars). The map also shows the locations of an independent

dataset composed by 45 measurements (blue squares) used for validation purposes.

error ϵj associated with the j-th measurement yo
j (the observation error covariance matrix R is assumed diagonal with elements

ϵ2j ). On the other hand, the GIG method requires the relative error ϵr
j = ϵj/yt

j , where yt
j is the true value of the j-th observation.

Observation error standard deviations are assumed to be dependent on the measured value. The procedure for determining

observation errors is as follows: the full dataset of observations is classified in 7 groups using a spectral clustering algorithm235

(Pedregosa et al., 2011), as shown in Fig. 3. Three feature were used for clustering: latitude, longitude and deposit thickness

of every measurement. The error for the j-th measurement yo
j is approximated by standard deviation associated with the

corresponding cluster; the true value yt
j , required to estimate relative errors, is approximated by the cluster mean value.

3.2 Validation metrics

As validation metrics, we consider the Mean Bias Error (MBE) and the Root-Mean-Square Error (RMSE), defined as usual:240

MBE =
1
p

p∑

j=1

yo
j − yj (18a)

RMSE =

√√√√1
p

p∑

j=1

(yo
j − yj)2 (18b)

The MBE (in cm) quantifies the tendency to overestimate or underestimate observations for the overall dataset whereas the

RMSE (in cm) measures the average magnitude of the errors. These two metrics are suitable when a uniform distribution of

the errors is expected. However, the datasets in this work contain measurements spanning four orders of magnitude and the245
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Figure 3. Observational data are classified in 7 groups using a spectral clustering algorithm taking into account three features: latitude,

longitude, and deposit thickness of each measurement. The observation absolute error is assumed to be the standard deviation for the corre-

sponding cluster and the relative error is approximated by the ratio of standard deviation to the cluster mean.

assumption of a constant absolute error seems to be inappropriate in this case because only proximal data (i.e. the largest

measurements of deposit thickness) contributes significantly to MBE and RMSE. The weighted MBE and RMSE represent

alternative evaluation metrics that are more meaningful in our case. These dimensionless metrics are defined according to:

wMBE =
1
p

p∑

j=1

yo
j − yj

ϵj
(19a)

wRMSE =

√√√√1
p

p∑

j=1

(yo
j − yj)2

ϵ2j
(19b)250

where the deviations from observation (yo
j − yj) are weighted by the observation uncertainties (ϵj). The impact of the assim-

ilation can be better characterised by means of these metrics. Ideally, the wMBE should be close to zero and wRMSE should

approach one.

3.3 Ensemble modelling

Numerical simulations were carried out using the latest version release of FALL3D (v8.2), an open-source offline Eulerian255

model for atmospheric passive transport and deposition of aerosols and particles, including tephra species. FALL3D solves the

so-called Advection-Diffusion-Sedimentation (ADS) equation (Folch et al., 2020; Prata et al., 2021). The new FALL3D version

has been designed to support increasingly larger scientific workloads and prepare the code for the transition to extreme-scale

computing systems. Specifically, the code version v8.x has been released with several improvements over previous versions,

including improvements in the model physics, numerical algorithmic methods, and computational efficiency. In addition, from260
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Table 3. FALL3D model configuration parameters for the 2015 Calbuco runs.

Parameter Value

Ensemble size 256

Resolution 0.05◦× 0.05◦

Number of grid points 180×160×45

Species 40 tephra bins

Grain Size Distribution bi-Gaussian

Run time 100 h

Emission source Suzuki source (Pfeiffer et al., 2005)

Mass emission rate Estimated from column height

(Degruyter and Bonadonna, 2012)

version v8.1 onwards, the FALL3D model enables ensemble simulations to be performed very efficiently by means of a single

parallel task (Folch et al., 2022). Ensemble modelling allows one to characterise and quantify model uncertainties due to poorly

constrained input parameters and errors in the model physics parameterisations or the underlying model-driving meteorological

data. In addition, the ability to generate ensemble runs makes it possible to improve forecasts by incorporating observations

using different ensemble-based data assimilation techniques.265

The configuration of the FALL3D model used in this work is summarised in Table 3. A three-dimensional computational

domain with a horizontal resolution of ∼4 km (0.05◦) and 180× 160× 45 grid points was defined. The Total Grain-Size

Distribution (TGSD) of tephra injected into the atmosphere consists of the sum of two log-normal distributions (i.e. bi-Gaussian

in Φ-units) including 40 tephra bins. The modes and standard deviations of the bimodal distribution were computed using the

parameterisation proposed by Costa et al. (2016), which estimates them from the eruption intensity and magma viscosity. The270

mode of the coarser population was located at -1.2Φ with a standard deviation of 1.71Φ, while the mode of the finer population

was 3.49Φ with a standard deviation of 1.46Φ. The weight of each subpopulation was set to pc = 0.15 and pf = 0.85 for the

coarse and fine population, respectively. The vertical mass distribution of the source term depends on the eruptive column top

height (H) according to the following parameterisation (Pfeiffer et al., 2005):

dm

dz
∝

{(
1− z

H

)
exp

[
As

( z

H
− 1

)]}λs

(20)275

where As and λs are the so-called Suzuki parameters (Suzuki, 1983; Pfeiffer et al., 2005). Finally, the mass emission rate was

computed from the eruptive column top height using the expression proposed by Degruyter and Bonadonna (2012).

An ensemble size of 256 members is considered in this paper. The prior ensemble was generated by perturbing the Eruption

Source Parameters (ESP) and the horizontal wind components around a reference value using either uniform or truncated

normal distributions with the range of parameter uncertainties. The Latin Hypercube Sampling (LHS, McKay et al., 1979)280

was used to efficiently sample the parameter space. Table 4 lists the perturbed model parameters along with the corresponding

reference values and sampling uncertainty ranges. The central member of the ensemble was defined considering two eruptive
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Table 4. Ensemble configuration. The perturbed model parameters are: eruption column height (H), eruption phase start time (Ti), phase

duration (∆T ), parameters As and λs of the Suzuki vertical mass distribution, the fine mode of the bi-Gaussian TGSD, the density of

aggregates, and the wind components.

Parameter Reference value Distribution Sampling range

H 15 & 15 km avl† Uniform ±25%

Ti 21 & 28 h‡ Uniform 15 min

∆T 1.5 & 6 h Uniform 15 min

As 6 Uniform 3

λs 3 Uniform 2

Fine mode 3.49 Φ Uniform 2 Φ

Density agg. 450 kg m−3 Uniform 100 kg m−3

U wind ERA5§ Gaussian ±20%

V wind ERA5§ Gaussian ±20%

† Two eruptive phases are considered. Heights are given in km above the vent level;
‡ In hours since 22 April 2015 at 00:00 UTC;
§ ECMWF atmospheric reanalysis in model levels.

phases with column top heights at H = 15 km avl (above vent level) for each phase. The ensemble was generated by perturbing

H for each phase independently and assuming a sampling range of ±25%. The source start time for the central member was

defined at 21:00 UTC on 22 April 2015 (1st phase) and at 04:00 UTC on 23 April 2015 (2nd phase) assuming a duration of285

1.6 h and 6 h for each phase. Source start times and phase duration were also perturbed.

3.4 Prior ensemble distribution

Before showing how the assimilation methods perform, it is worth to consider the prior (i.e. forecast) ensemble distribution and

to check weather the PDF P (y) fulfils the assumption of the GIG method (i.e. a gamma prior distribution). To this purpose,

the skewness µ̃3 (i.e. the third standardised moment, µ3/σ3) of the prior distribution was computed from the random samples290

yf
ji, i.e. the forecasted deposit thickness according to the i-th ensemble member (i = 1 . . .m = 256) at the sampling site of the

j-th observation (j = 1 . . .p = 161). Figure 4 shows the results for each observation point by plotting µ̃3 as a function of the

standard deviation-to-mean ratio, i.e.
√

P r
j . For illustrative purposes, the skewness of three different theoretical distributions

(Gaussian, log-normal and gamma) is shown. As expected, the symmetric Gaussian distribution, characterised by µ̃3 = 0, does

not reproduce the positively skewed prior distribution. The log-normal family of probability distributions represent an example295

of distributions for positive-definite variables with a lower bound. However, as shown in Fig. 4, the log-normal distribution

cannot properly represent the prior distribution because the theoretical skewness is extremely large in this case. In contrast, the

skewness computed from the prior distributions (blue dots) is well approximated by the relationship µ̃3 = 2
√

P r
j , which is the

theoretical expression corresponding to the gamma distribution (solid black line).
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Figure 4. Skewness as a function of the standard deviation-to-mean ratio for the prior distribution at the sampling locations (blue circles).

Results for some theoretical distributions (Gaussian, log-normal and gamma) are also shown for comparison.

In order to dig further into the similarities between the gamma and prior distributions, Fig. 5 explicitly shows histograms300

of sampled prior distributions along with the corresponding theoretical gamma distribution for some observation sites. The

theoretical gamma distributions were constructed using the sampled first and second moments. As observed, a good agreement

is found between both distributions in almost all cases. Note that when the type 1 relative error variance is greater than 1

(P r
j > 1) the gamma probability density decreases monotonically (Fig. 5a–b) and the mode becomes zero. In contrast, when

P r
j < 1 or, equivalently, when y2

j > var(yj), the mode becomes positive (Fig. 5c–p). The results obtained is this section justify305

the suitability of the GIG method to deal with the assimilation volcanic deposit data.

3.5 Analyses

The GNC method gives a set of weight factors for each ensemble member (wi, i = 1, . . . ,m) and the best estimate of the system

state is obtained by replacing the optimal weight factors in (6). On the other hand, the GIG method produces an ensemble of

analysis states. In this section, the analysis ensemble mean corresponding to the GIG method is used for comparison purposes.310

Figure 6 compares the analysis results at each sampling site with observations (from the same assimilated dataset) according

to the GNC (Fig. 6a) and the GIG (Fig. 6b) methods. Given that the GIG method also provides the mean and standard deviation

of the analysis, this information is used in Fig. 6b to represent the analysis error through error bars. Unfortunately, an estimate of

the analysis error is not provided by the GNC method and, consequently, error bars cannot be shown in Fig. 6a. Note that most

of the data lies in the 1:10 ratio band, with only 4 (2) data points laying outside this band for the GNC (GIG) method despite315

the challenging fact that measurements span a range of four orders of magnitude between 10−2 and 102 cm, approximately.
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Figure 5. Histograms of sampled prior distributions along with the corresponding theoretical gamma distribution at some selected observation

sites.

Table 5 reports the different evaluation metrics in order to quantify deviations from observations in the prior ensemble mean

(forecast) and the analyses for both GNC and GIG methods. The bias computed using the assimilation dataset for the prior mean

was negative (MBE=-4.31 cm), meaning that measurements were overestimated systematically by the first guess. In contrast,

the analysis underestimates observations according to GNC method (MBE=1.32 cm) and slightly overestimates according320

to GIG methos (MBE=-0.30 cm). In both cases, the magnitude of the forecast bias was clearly reduced. The prior RMSE

(RMSE=8.53 cm) was also reduced by the GNC (RMSE=4.23 cm) and the GIG (RMSE=2.02 cm) methods. The impact of

the assimilation is better characterised by the relative or weighted metrics. The assimilation methods lead to a strong reduction

of both wMBE and wRMSE, as reported in Table 5. For example, the weighted RMSE was reduced from wRMSE=3.96 to

wRMSE=1.15 (GNC method) and wRMSE=1.31 (GIG method). Note that the analysis are close to the ideal value wRMSE=1.325
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Figure 6. Comparison between analysis and observations from the assimilation dataset (161 points, see Table 2).

For the validation dataset, the metrics for the prior mean yield values similar to those of the assimilation dataset, i.e. wMBE=-

3.77 and wRMSE=6.47. In terms of the weighted metrics, the GNC method showed the best performance (wMBE=-0.04 and

wRMSE=1.81). Regarding the GIG method, the metrics were computed for different values of the parameter ρo, required by

(16), i.e. ρo = 0.0 (no localisation), ρo = 0.01, ρo = 0.05, ρo = 0.1 and ρo = 0.5. Since the GIG method is stochastic, five

realisations were performed for each ρo. Table 5 reports the metrics corresponding to the best realisation (i.e. the one with the330

least wRMSE) and the average over the realisations. Taking into account both weighted bias and RMSE, the best performance

was obtained for ρo = 0.0, i.e. wMBE=-0.55 and wRMSE=1.83, suggesting that the localisation procedure did not have a

significant impact. This is also confirmed by looking at the average wRMSE: the best result is obtained when localisation is

disabled (wRMSE=2.32 for ρo = 0).
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Table 5. Metrics computed for each method considering the assimilation and validations datasets. The parameter ρo used for the GIG method

is specified in parentheses (see Eq. 16).

MBE RMSE wMBE wRMSE

(cm) (cm)

Assimilation dataset

Prior mean -4.31 8.53 -2.15 3.96

GNC Method 1.32 4.23 0.30 1.15

GIG Method† -0.30 2.02 -0.18 1.31

Validation dataset

Prior mean -2.11 5.39 -3.77 6.47

GNC Method 1.43 6.21 -0.04 1.81

GIG Method (0.00)† 0.11 2.51 -0.55 1.83

GIG Method (0.01)† 0.22 2.97 -0.64 2.05

GIG Method (0.05)† 0.23 3.28 -0.60 1.96

GIG Method (0.10)† 0.00 1.90 -0.65 1.94

GIG Method (0.50)† -0.07 2.73 -0.68 2.34

GIG Method (0.00)§ 0.17 2.85 -0.72 2.32

GIG Method (0.01)§ 0.21 2.98 -0.68 2.36

GIG Method (0.05)§ 0.25 3.23 -0.73 2.52

GIG Method (0.10)§ 0.11 2.51 -0.78 2.44

GIG Method (0.50)§ 0.05 2.83 -0.77 2.55

† Best realisation
§ Average over five realisations

Figure 7 compares the analyses with measurements from the validation dataset. While most of the points lie within the 1:10335

ratio band, an almost zero thickness was found according to the analysis at four sampling sites with positive measurements.

These points were excluded from the log-log plot in Fig. 7 in order to facilitate the visualisation, but they were included in the

calculation of the evaluation metrics reported in Table 5. The sampling sites for the excluded data are found west of the Andes

as indicated by Fig. 2 (cross symbols), suggesting that the tephra deposit distribution was not properly modelled over this area

with strong gradients of mass loading.340

Finally, the tephra fall deposit reconstruction according to GNC/GIG methods is shown in Fig. 8. For comparative purposes,

the Romero et al. (2016) deposit contours (hand-drawn isopachs for 0.1, 0.5, 1.0 and 2.0 mm) are over imposed in Fig. 8,

providing an alternative estimate of the fallout deposit from an independent dataset of thickness measurements. Note that a

remarkable feature of the GNC/GIG reconstructed deposits is the presence of a distal secondary thickness maximum ∼250 km

downwind from vent, indicating that this volcanic eruption involved a complex plume dynamics. Both reconstructions success-345
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Figure 7. Comparison between analysis and observations from the validation dataset (41 points, see Table 2 and text for explanation).

fully captured the location of this maximum due to ash aggregation processes which were described using the parameterisation

proposed (Cornell et al., 1983; Folch et al., 2010) assuming a aggregate particle class having a diameter of 200 µm and a

density sampled in a range centred around 450 kg m−3 (see Table 4).

4 Source term inversion: Application to the 2015 Calbuco eruption

A major advantage of the GNC method is that it allows estimating the Eruption Source Parameters (ESP) in a straightforward350

way, with inverse modelling coming at no extra computational cost. This is because FALL3D solves an almost linear problem

with weak non-linearity effects (e.g. due to gravity current, wet deposition, or aggregation) and, consequently, a re-scaling of

the emission source term si associated with the i-th ensemble member according to si→ wisi leads to a deposit mass loading
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re-scaled correspondingly, being wi the weight factor provided by the GNC method. In this case, the best estimation of the

total source term is given by:355

sa =
∑

i

wisi (21)

where {si} are the emission source terms of the prior ensemble members (in kg m−3 s−1). Figure 9 shows the emission rate

profiles resulting from the source inversion, expressed in terms of the linear source emission strength (in kg m−1 s−1), i.e.

sa× dA, where dA is the area of the cell grid.

As most of the 256 weight factors converge to zero, wi→ 0, the profiles in Fig. 9 reflect only those ensemble members that360

effectively contribute to the analysed deposit mass loading. According to the GNC inverse modelling results, each eruptive

phase is characterised by different vertical mass distribution and emission rates. The first phase results on higher cloud top

heights, reaching almost 20 km (a.s.l.) whereas the column heights during the second phase remain at around 16 km (a.s.l.).

Note also that the prior ensemble was defined assuming the same emission source and sampling parameters for both eruptive

phases. For instance, the ensemble configuration was defined assuming the same reference value for column heights, i.e.365

15 km above vent level for both phases (Table 4) or 17 km (a.s.l.), approximately. Therefore, the resulting asymmetry between

both pulses observed in Fig. 9 is a result of the GNC inversion procedure. In other words, the GNC method can discard

inappropriate ensemble members and pick out those that are consistent with observations. The vertical mass distribution for

the first phase results on a larger spread and most of the total erupted mass stems from the second phase. Assuming a bulk

density of ρb =800 kg m−3, it is possible to estimate the total erupted volume. The time-series for mass eruption rate and total370

erupted volume are also depicted in Fig. 9. In particular, the final total erupted volume was around 0.33 km3. According to

the inversion, the erupted volume corresponding to the first and second phases were 0.11 km3 (32.9%) and 0.22 km3 (67.1%),

respectively. These results are in good agreement with the estimations reported by Romero et al. (2016), which give a total

bulk tephra fall deposit volume of 0.27± 0.007 km3 with 62% of the total volume corresponding to the second phase.

5 Discussion375

Traditional ensemble-based DA methods such as the ensemble Kalman filter (EnKF) are based on the Gaussian hypothesis.

However, it is well known that analyses produced by these methods are suboptimal when either the model state variables or

the observation errors are not Gaussian distributed. Volcanic aerosol concentrations and tephra deposit mass loading are two

remarkable examples of non-Gaussian-distributed variables with highly-skewed distributions. This explains why the applica-

tion of EnKF-like methods in VATD models often leads to nonphysical results and oscillations (e.g. the occurrence of negative380

concentrations). The ensemble-based GNC and GIG methods introduced in this paper are promising alternatives for dealing

with assimilation of volcanic data. These methods differ in the assumptions made about the prior distribution and the likelihood

of the observation conditioned on the true state. Both methods have been applied to the assimilation of volcanic deposit data

and have shown to have a similar performance in terms of the evaluation metrics.
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The GNC method assumes a multi-dimensional Gaussian distribution and solves an optimization problem with nonnegative385

constraints to ensure plausible physical solutions. The GNC method, constrained here to assimilate deposit observations, can

be easily extended to other observables as long as the observation operator is linear. For example, VATD models could use it to

assimilate column mass observations of volcanic aerosols, but the assimilation of other satellite-retrieved variables (e.g. Aerosol

Optical Depth) would require of an alternative approach. Since the linear estimator (6) includes the prior ensemble mean

(wi = 1/m) and any specific ensemble member (w = [0, . . . ,1, . . . ,0]⊺) among the possible solutions, the solution obtained390

through the minimisation process (12) converges to an analysis state which, by construction, improves the prior ensemble

mean and any individual ensemble member. Furthermore, the GNC method ensures that the prior wRMSE is reduced by the

analysis state. This can be checked from (5) by noting that, if the iterative solving procedure is started from the uniform

vector with components wi = 1/m, the normalised cost function (defined as
√

J/p) coincides with the weighted RMSE of the

prior ensemble mean before the first iteration (as long as the matrix R is diagonal). In fact, the metrics reported in Table 5395

illustrate this property of the solution, e.g. the wRMSE is reduced from wRMSE=8.53 (prior ensemble mean) to wRMSE=1.32

(analysis). This is not the case for individual ensemble members; the weighted RMSE associated with a specific member may

be less than the analysis relative error. This is a desirable property of the solution for statistically non-significant members.

In fact, note that the first term in (5) penalises deviations from the ensemble mean (i.e. statistically non-significant members),

while the second term penalises deviations from the observations. As a result, the solution provided by the GNC method400

satisfies two properties: (i) the analysis is statistically significant and, (ii) deviations from the observations are small.

The GIG method is a sequential assimilation procedure proposed by Bishop (2016), in which single observations are sequen-

tially assimilated. The GIG method is based on the GIG equation set for the special case where the prior distribution can be

described by a gamma PDF and an inverse-gamma observation likelihood. This is a stochastic method providing an ensemble

of analyses and does not require a linear observation operator. These reasons make the GIG method a better candidate for405

implementation in VATD models as it would allow performing multiple assimilation cycles by restarting a corrected ensemble

forecast. The GIG method enables near-zero semi-positive-definite variables with highly skewed uncertainty distributions to be

assimilated, and avoids the occurrence of negative mass loading at the observation site. However, a linear regression approxi-

mation is used to propagate the observation information to the extended model-observation state vector in the assimilation step.

Consequently, negative values can be introduced by (15) when the analysis in computed at the grid points of the computational410

domain. In order to solve this potential issue, we explored a localisation technique which limits the observation impacts based

on their background error correlations using (16). Unfortunately, this localisation approach did not show a clear improvement

according to the evaluation metrics. Probably, the linear regression approximation went well in this work due to the linearity of

the observation operator. However, for more general problems involving non-linear observation operators, the regression (15)

may need to be reformulated and the localisation approach proposed here could be more relevant.415
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6 Conclusions

This paper has proposed two ensemble-based data assimilation methods for semi-positive-definite variables. The methods were

applied to reconstruct the tephra fallout deposit of the 2015 Calbuco eruption in Chile by assimilating measurements of deposit

thickness. An assessment based on an independent observational dataset yielded similar results for both methods in terms of

the evaluation metrics. We conclude that both methods are a promising alternative for assimilation of volcanic fallout data.420

In addition, the techniques presented in this work can be extended to other volcanic observations, including satellite-retrieved

data of different aerosol types, and used in operational forecast contexts.

The GNC method provides an ensemble of weight factors and can be used also for source term inversion in a straightforward

way. Unlike the majority of source term inversion methods (e.g. Folch and Mingari, 2022), which focus on determining specific

ESP associated with oversimplified parameterisations of the source term, this approach reconstructs the overall space-time425

distribution of the source and it is not constrained by any specific parameterisation of the emission source term.

The GIG method is a second-order method and provides an ensemble of analyses without the linear observation operator

assumption. Consequently, it represents an attractive alternative for assimilation of volcanic aerosol observations from satellite

retrievals. To this purpose, the analysis ensemble from the GIG method could be used to perform multiple assimilation cycles

by restarting an ensemble forecast. This approach has the potential to improve the accuracy of operational forecasts of volcanic430

clouds.

Appendix A: Generation of the analysis ensemble in the GIG method

In order to generate an ensemble ya
ji with the correct posterior density from the forecast ensemble for the case of an univariate

gamma prior and an inverse-gamma observation-likelihood, Bishop (2016) proposed the following stochastic equation:

ya
ji− ya

j

ya
j

=
yf

ji− yf
j√(

yf
j

)2

+ var(yf
ji)

+ P̃ r
j

(
P̃ r

j + R̃r
j

)−1

×

×





zji− zj√
(zj)

2− 2var(zji)
−

yf
ji− yf

j√(
yf

j

)2

+ var(yf
ji)





(A1)435

where ya
j can be computed using Eq. (14a). Equation (A1) ensures that the analysis ensemble ya

ji is consistent with the type 1

relative error variance of the posterior given by Eq. (14b) provided zji is randomly sampled from a gamma PDF with type 1

relative error variance Rz
j and mean zj given by:

(
Rz

j

)−1 =
(
R̃r

j

)−1

+ 2 (A2a)

zj =

(
R̃r

j

)−1

+ 2
(
R̃r

j

)−1 yo
j (A2b)440
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5281/zenodo.6343786 (Folch et al., 2020; Prata et al., 2021). Observational datasets, code used for the GNC/GIG methods and input model

parameter file along with the pre- and post-processing scripts have been archived on Zenodo at https://doi.org/10.5281/zenodo.7259531.
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(a)

(b)

1

Figure 8. Reconstructed tephra fall deposit according to GNC (a) and GIG (b) methods. The Romero et al. (2016) deposit contours (isopachs

for 0.1, 0.5, 1.0 and 2.0 mm) are also over imposed for comparative purposes.
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Figure 9. Profiles of emission rate and time-series of Eruption Source Parameters (ESP) for the 2015 Calbuco eruption according to the GNC

inverse modelling approach.
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