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Abstract. Deep learning has been widely used for various kinds of data mining tasks but not much for seismic stratigraphic

interpretation due to the lack of labeled training datasets. We present a workflow to automatically generate numerous syn-

thetic training datasets and take the seismic clinoform delineation as an example to demonstrate the effectiveness of using

the synthetic datasets for training. In this workflow, we first perform stochastic stratigraphic forward modeling to generate

numerous stratigraphic models of clinoform layers and corresponding porosity properties by randomly but properly choosing5

initial topographies, sea level curves, and thermal subsidence curves. We then convert the simulated stratigraphic models into

impedance models by using the velocity-porosity relationship. We further simulate synthetic seismic data by convolving reflec-

tivity models (converted from impedance models) with Ricker wavelets (with various peak frequencies) and adding real noise

extracted from field seismic data. In this way, we automatically generate a total of 3000 diverse synthetic seismic data and the

corresponding stratigraphic labels such as relative geologic time models and facies of clinoforms, which are all made publicly10

available. We use these synthetic datasets to train a modified encoder-decoder deep neural network for clinoform delineation

in seismic data. Within the network, we apply a preconditioning process of structure-oriented smoothing to the feature maps

of the decoder neural layers, which is helpful to avoid generating holes or outliers in the final output of clinoform delineation.

Multiple 2D and 3D synthetic and field examples demonstrate that the network, trained with only synthetic datasets, works

well to delineate clinoforms in seismic data with high accuracy and efficiency. Our workflow can be easily extended for other15

seismic stratigraphic interpretation tasks such as sequence boundary identification, synchronous horizon extraction, shoreline

trajectory identification and so on.

1 Introduction

Seismic stratigraphic interpretation is a crucial step for understanding the evolutionary history information of the sedimentary20

basin based on seismic data, and is particularly applicable to the sedimentary basin where well data are lacking or unavailable

(Nanda, 2021). With the development of seismic data from 2D to 3D and the dramatic increase in the amount of data, the

automatic realization of seismic stratigraphic interpretation is the trend. Currently, deep learning has been successfully applied

in geophysical interpretation tasks such as fault detection (Huang et al., 2017; Di et al., 2018; Zhao and Mukhopadhyay, 2018;
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Figure 1. Workflow of generating the synthetic clinoform seismic data and corresponding label. We first use a randomly generated (a)

initial topography, (b) sea-level curve, and (c) thermal subsidence curve to obtain (d) a porosity model and (e) relative geologic time by

stratigraphic forward modeling. Then we use an interpolation method and velocity-porosity relationship to obtain the corresponding (f) P-

wave impedance model (g) and slope model. Finally, we obtain the (h) synthetic seismic data and (i) the corresponding segmentation label

by depth-time conversion, convolving with (j) a Ricker wavelet with a random peak frequency and adding real noise.

Wu et al., 2019), horizon interpretation (Lowell and Paton, 2018; Wu and Zhang, 2018), salt body delineation (Shi et al., 2019)25

and so on. However, deep-learning-based automatic seismic stratigraphic interpretation is not discussed much due to the lack

of the corresponding training labels. In this work, we take the seismic clinoform delineation task as an example to discuss how

to solve the problem of lacking training datasets by stratigraphic forward modeling and further train a deep neural network for

efficient and accurate seismic stratigraphic interpretation.

The clinoform and clinothem are widely studied as important sedimentary archives and underpin sequence stratigraphy (Pa-30

truno and Helland-Hansen, 2018; Pellegrini et al., 2020). Rich (1951) first introduces the concepts of clinoform and clinothem

and proposes the partitioning of deposited surfaces into undaform, clinoform, and fondoform. Steel et al. (2002) redefine clino-

form as a deposition surface containing undaform and fondoform, and divide the clinoform into topset, foreset, and bottomset.

In this work, we use the term clinoform to describe a surface with a sigmoidal shape, inclined and dipping toward the basin

over a wide range of spatial and temporal scales (Rich, 1951; Bates, 1953; Asquith, 1970; Pirmez et al., 1998; Adams and35

Schlager, 2000; Steel et al., 2002; Patruno and Helland-Hansen, 2018; Ramon-Duenas et al., 2018), and the term clinothem

to describe the clinoform-bounded sedimentary body that records the incremental filling of a sedimentary basin (Patruno and

Helland-Hansen, 2018; Ramon-Duenas et al., 2018). In addition, in the field of oil and gas exploration, clinoforms attract the
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attention of oil and gas companies in recent years because most of them are low-permeability mudstones or cement, making

them potential reservoir units for hydrocarbon resources.(Cummings and Arnott, 2005; Sydow et al., 2013; Holgate et al.,40

2013, 2014; Patruno et al., 2018).

The geometry of the clinoform can provide information about paleo-depth, shoreline changes, and the changes in sediment

supply and accommodation (Pellegrini et al., 2020). Clinoform can be divided into three components according to geometry.

The topset is characterized by low gradient strata (typically < 0.1◦) at the top and is dominated by muddy siltstone and fine

to medium-grained sandstone. The foreset is characterized by the steepest slope in the middle and is dominated by muddy45

siltstone and fine sandstone. The bottomset is characterized by a low gradient toward the basin and is dominated by turbidite

sandstone (Patruno and Helland-Hansen, 2018; Ramon-Duenas et al., 2018; Pellegrini et al., 2020).

Currently, the delineation of the three components of the clinoform (topset, foreset, and bottomset) in seismic data is still

mainly based on human interpretation by experienced geologists, and therefore remains a labor-intensive task, especially in 3D

seismic volumes. With the recent development of artificial intelligence, deep learning methods have been successfully applied50

to automate data interpretation tasks in various fields. The convolutional neural network (CNN) method has been proven to be

the most powerful method in semantic segmentation (Ronneberger et al., 2015; He et al., 2016; Badrinarayanan et al., 2017;

Chen et al., 2018). Recently, the mainstream networks for semantic segmentation are U-net proposed by Ronneberger et al.

(2015) and DeepLabV3+ proposed by Chen et al. (2018). However, it is challenging to apply the CNN method in solving

geoscience problems including the seismic stratigraphic interpretation because of the lack of a large amount of training data55

sets and the related labels (Karpatne et al., 2018; Bergen et al., 2019; Di et al., 2020).

To solve this problem, using synthetic labelled datasets for training a CNN model is considered an effective methodology

(Araya-Polo et al., 2018; Wu et al., 2020; Guo et al., 2021; Puzyrev et al., 2022; Jessell et al., 2022). In this work, we consider

performing numerical stratigraphic forward modeling (SFM) to generate numerous synthetic datasets with labels. SFM has

been widely used in the study of sequence stratigraphy over the last decades (Martin et al., 2009; Burgess et al., 2012; Sylvester60

et al., 2015; Harris et al., 2016). Many mathematical and physical models have been proposed to simulate the evolution of

sedimentary basins by using various numerical algorithms to obtain synthetic stratigraphic states in full consideration of thermal

subsidence, uplift, changes in sediment supply, various sediment transport and deposition processes (Warrlich et al., 2008;

Shafie and Madon, 2008; Burgess et al., 2012; Hawie et al., 2015; Salles et al., 2018). While most of the previous work

performs SFM to fit the stratigraphic model of a specific basin by carefully choosing a set of modeling parameters, we perform65

stochastic SFM to generate numerous models by randomly choosing various sets of parameters.

In this paper, we develop a workflow (Fig. 1) to automatically generate synthetic seismic data and corresponding labels and

use the synthetic datasets to train a CNN for seismic clinoform delineation. We first use a numerical SFM method, modified

from pyBadlands (Salles et al., 2018) to generate a synthetic porosity model (Fig. 1d) and relative geologic time model (Fig.

1e) of clinoform layers with inputs of a randomly but properly chosen initial topography surface (Fig. 1a), sea-level changes70

(Fig.1b), and thermal subsidence curve (Fig. 1c). Then we use an interpolation method and a velocity-porosity relationship

proposed by Krief et al. (1990) to build an impedance model (Fig. 1f) and at the same time calculate a slope volume (Fig.

1g) from the corresponding depth model of clinoform layers. Finally, we perform depth-to-time conversion to the impedance
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model, convolve it with a Ricker wavelet with a random peak frequency (Fig.1j) and add real noise to generate a synthetic seis-

mic image (Fig. 1h). At the same time as generating the synthetic seismic data, we also automatically obtain the corresponding75

stratigraphic labels of relative geologic time and clinoform delineation (Fig. 1i). After generating various clinoform seismic

data and corresponding labels, we use them to train a CNN modified from DeepLabv3+ for automatic clinoform delineation in

seismic data. We demonstrate the performance of the trained network on both synthetic and field seismic data.

2 Training data generation80

In this section, we implement a workflow of geological and geophysical forward modeling process (Fig. 2) to automatically

generate diverse synthetic clinoform seismic data and corresponding labels to train a CNN for seismic stratigraphic interpreta-

tion. The black boxes in Fig. 2 contain the SFM process based on the pyBadlands (Salles et al., 2018), and the blue boxes in Fig.

2 contain the geophysical forward modeling processes of generating synthetic seismic data and corresponding segmentation

labels. In this workflow, we first randomly generate diverse SFM inputs, such as initial topography, sea level curve, rainfall pat-85

terns, uplift, subsidence, etc. We then simulate numerous stratigraphic models of clinoform layers using stratigraphic forward

modeling with these diverse model inputs. After obtaining these stratigraphic models of clinoform layers, we perform an inter-

polation method and a velocity-porosity relationship to build the velocity and impedance models. We further use the velocity

model generated in the previous step to convert the stratigraphic models from the depth domain to the time domain. Finally, we

convolve the reflectivity model (converted from the impedance model) with a Ricker wavelet to generate the synthetic seismic90

data and add real noise to improve the realism of the synthetic seismic data.

2.1 Stratigraphic forward modeling

Many SFM methods have been proposed to simulate the evolution of sedimentary basins by using various numerical algorithms

to obtain synthetic clinoform layers in full consideration of thermal subsidence, uplift, changes in sediment supply, various95

sediment transport and deposition processes (Warrlich et al., 2008; Shafie and Madon, 2008; Burgess et al., 2012; Hawie et al.,

2015; Salles et al., 2018). In this study, we use the SFM method implemented in the pyBadlands (Salles et al., 2018) to simulate

numerous stratigraphic models of clinoform layers. PyBadlands is a long-term surface evolution model that simulates sediment

transport and deposition from source to sink (Salles and Hardiman, 2016; Salles et al., 2018; Ding et al., 2019).

At each time step of the simulation, the sedimentary structure of the clinoform layers is mainly controlled by the rate of100

accommodation change (δA) and the rate of sediment-supply change (δS). The rate of accommodation change (δA) reflects

the size of the available space accommodated sediments and is mainly related to thermal subsidence and sea level fluctuations,

etc. The rate of sediment-supply change (δS) is mainly related to the erosion of source domain determined by rainfall patterns,

topography, rock erodibility, etc (Schlager, 1993; Muto and Steel, 1997; Hawie et al., 2015; Neal et al., 2016). When δS ≥ δA,
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Figure 2. Workflow of generating diverse synthetic clinoform seismic data and corresponding segmentation labels. The black boxes contain

the steps of the stratigraphic simulation process in pyBadlands (Salles et al., 2018). X and Y represent the length of inline and crossline

directions, respectively. N represents the number of clinoform layers generated in the simulation. The blue boxes contain the process of

generating synthetic clinoform seismic data and corresponding segmentation labels. Z represents the vertical magnitude of the interpolated

formation attributes in the depth domain, and T represents the vertical magnitude of the interpolated formation attributes in the time domain.
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T=20 Myr T=20 Myr

Mountain range
(erosion region)

average slope: 1°- 1.3°
Sedimentary basins

(sedimentary region)
average slope:

1.2°- 1.5° ≈ 0.03°
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Figure 3. Some examples of (a) initial topography, (b) eustatic sea level curves, and (c) thermal subsidence curves. Initial topography consists

of a 55 km (x direction) by 40 km (y direction) mountain range (erosion region) and a 45 km (x direction) by 40 km (y direction) sedimentary

basins (sedimentary region). The average slope of the mountain range varies from 1.0◦ to 1.3◦. Sedimentary basins contain a slope with an

average slope of 1.2◦ to 1.5◦ and a basin with an average slope of about 0.03◦. The sea level curve consists of multiple sets of sinusoids

whose periods are randomly set and depths vary randomly between 50 m and -200 m. The thermal subsidence curve of the sedimentary basin

is determined by a distance-dependent stretching factor (McKenzie, 1978; Salles et al., 2018; Ding et al., 2019), which is randomly set to

vary from 1.20 to 1.58.
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Table 1. Summary of initial parameter ranges for stratigraphic forward modeling

Initial topography

Mountain range
Height 1000m - 1200m

average slope 1.0◦ to 1.3◦

Sedimentary basin
Depth 200m - 300m

average slope 1.2◦ to 1.5◦ and 0.03◦

Sea level curve
Period 4Myr - 20Myr

Amplitude −200m - 50m

Subsidence 2.48m ·Myr−1 - 15.0m ·Myr−1

Rainfall patterns 0.5m · yr−1 - 4m · yr−1

clinothem typically accumulates and moves toward the sedimentary basin, and when δS ≤ δA, clinothem typically moves and105

retrogrades toward the continental shelf (Patruno and Helland-Hansen, 2018; Pellegrini et al., 2020).

The whole workflow of simulating numerous stratigraphic models of clinoform layers is summarized in the black boxes in

Fig. 2. In this simulation process, we generate 200 clinoform layers for each model and set the grid size and time step as 100

m × 100 m and 0.1 Myr, respectively. Besides, in order to obtain diverse geometric clinoform layers, the initial topography,

sea level curve, thermal subsidence, and rainfall patterns are randomly chosen from some predefined ranges in Table. 1.110

As shown in Fig. 3a, the initial topography for simulation has a spatial scale of 100 km (x direction) by 40 km (y direction)

and with a grid size of 100 m by 100 m. The mountain range (erosion region) is 55 km (x direction) by 40 km (y direction)

while the sedimentary basin (sedimentary region) is 45 km (x direction) by 40 km (y direction). We randomly set the highest

altitude of the mountain range within 1000 to 1200 m and set the average slope in the range between 1.0 and 1.3 degrees.

The sedimentary basin is divided into two parts: an inclined basin margin region and a relatively flat basin center region. The115

average slope of the inclined basin margin area and the flat basin center area is set to 1.2 - 1.5 degrees and 0.03 degrees,

respectively. In this paper, we perform 3D stratigraphic forward modeling to build 3D stratigraphic models from which we

extract 2D profiles in the middle of y dimension to build a large training dataset. Therefore, we set a relatively narrow width in

the y direction to save computational time and memory in the stochastic simulation of many models.

However, the width of the initial topography should not be too narrow compared to its significantly long extension (100 km)120

in the x direction. Otherwise, a large amount of sediment, produced in the mountain range (erosion region), will spill out of
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the simulation zone during long-distance transportation to the sedimentary basin, which may result in an unstable simulation

and yield unreasonable depositional hiatus in the sedimentary basin. With these considerations, we set the width of the initial

topography to 40 km (y direction) to speed up the simulation process and save computational costs while ensuring the stability

of the deposition simulation. By randomly choosing the parameters of the mountain range and sedimentary basin as discussed125

above, we generate 200 unique initial topographies and we display one of them in Fig. 3a.

The change of sea level is a major control on the accommodation of the sedimentary basin. We randomly generate 1000

different eustatic sea level curves with a period of 20 Myr starting from 0 m, each curve consists of multiple sets of sinusoids.

The periods and amplitudes of their sinusoids are randomly set from 4 Myr to 20 Myr, -200 m to 50 m, respectively. These

randomly generated sea-level curves (Fig. 3b) help simulate diverse stratigraphic models with various sedimentary geometries.130

Thermal subsidence can also affect the accommodation of the sedimentary basin. We use a simple subsidence model and

set its corresponding parameters after McKenzie (1978) to simulate the thermal subsidence of sedimentary basins. We also

assume that the stretching factor in the model is distance-dependent (Ding et al., 2019), and randomly set the slope of the linear

relationship between the stretching factor and distance. Finally, the thermal deposition rate in the sedimentary basin is set to be

about 2.48 m ·Myr−1 to 15.0 m ·Myr−1 (Fig. 3c).135

Rainfall patterns can affect sediment supply changes (δS) by changing the power of river streams on eroding and transport

sediments to sedimentary basins. We first randomly divide the entire simulated cycle into several parts, and then randomly set

spatially uniform precipitation rate (about 0.5 m · yr−1 to 4 m · yr−1) for each part. Besides, in order to guarantee a stable

sediment supply within the mountain range during the long-period erosion, we keep uplifting the mountain range while the

simulation processes. We also predefined an initial surface porosity and then calculated the porosity distribution for each strati-140

graphic layer during the simulation according to the porosity-depth relationship suggested by Athy (1930). The porosity-depth

relationship takes into account the mechanical compaction of the sediment, i.e., porosity gradually decreases with increasing

overburden.

By using various combinations of the 200 initial topographies, 1000 eustatic sea level curves, 30 thermal subsidence curves,

different rainfall patterns, etc, we simulate 1000 diverse stratigraphic models, each with multiple clinoform attribute layers145

such as depth, relative geologic time, porosity, paleo-depth (related to the depositional environment) and so on. Fig. 4 shows

2D slices that are extracted from three of the simulated 3D models. By using the SFM discussed above, we actually simulate

only the stratigraphic layers denoted by the black curves in Fig. 4 and corresponding attributes. We further use the attributes

of relative geologic time, paleo-depth, and porosity in conjunction with the depth curves to interpolate the corresponding full

models as shown in color in each column of Fig. 4. In the following section, we discuss in detail how to build such property150

models and perform geophysical forward modeling to construct training datasets of seismic images and the corresponding

stratigraphic labels. With the geological forward modeling process discussed above, we obtain 1000 numerous stratigraphic

models of clinoform layers.

8



(a) Relative geologic time model

(b) Paleo-depth model

(c) Porosity model

Figure 4. Three 2D examples of stratigraphic models with clinoform attribute layers from stratigraphic forward modeling. (a) The relative

geologic time model. (b) Paleo-depth model. (c) Porosity model. The dimensions of the outputs are (X, Y, Z, N), where X and Y denote the

length and width of the initial topography with a resolution of 100m, Z represents the vertical magnitude of the stratigraphic layers in the

depth direction, and N indicates the number of stratigraphic layers generated during the simulation. The black curves in the figure represent

the positions of each clinoform attribute layer displayed at 4 Myr intervals. The colors filled in the figures represent the simulation time,

paleo depth, and porosity, respectively.

2.2 Building impedance model155

Before generating numerous synthetic seismic data and corresponding segmentation labels, we need to compute impedance

and slope models from the porosity and depth models of clinoform layers, respectively. In this study, we use the velocity-

porosity relationship model proposed by Krief et al. (1990) to build impedance models, which assumes that the velocities of P

and S waves in porous fluid-saturated rocks obey Gassmann equations with the Biot compliance coefficient (Krief et al., 1990;

Gassmann, 1951; Biot, 1941; Goldberg and Gurevich, 2008). To obtain an impedance model, we first calculate the formation160

density ρfm, shear modulus µfm and bulk modulus Kfm, by using the following equations suggested by Krief et al. (1990),

Lee (2005) and Gassmann (1951):

ρfm = (1−φ)ρma+φρfl, (1)

µfm = µma(1−β), (2)

Kfm =Kma(1−β)+β2M. (3)165

In the formation density equation (Eq. 1), φ is porosity values, ρma = 2.65 kg ·m−3 is the density of matrix material and

ρfl = 1.04 kg ·m−3 is the density of fluid. In the formation shear modulus equation (Eq. 2), µma = 13.48 Gpa is matrix

material shear modulus and β is Biot coefficient, and it is assumed that the presence of fluid has no or little influence on the

shear modulus of the formation (Krief et al., 1990; Lee, 2005). The Biot coefficient β is related to the porosity and can be
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(a) RGT (b) Slope

(c) Porosity (d) Density

(e) Velocity of P wave (f) Velocity of S wave

(g) Impedance of P wave (h) Impedance of S wave

Figure 5. Examples of 2D clinoform attribute models obtained by an interpolation method and velocity-porosity relationship. (a) Relative

geologic time (RGT). (b) Slope. (c) Porosity. (d) Density. (e) P-wave velocity. (f) S-wave velocity. (g) P-wave impedance. (h) S-wave

impedance. The dimension of the outputs is (X, Z), where X is the length of the 2D clinoform attribute model with a resolution of 25m, and

Z is the depth of the 2D clinoform attribute model with a resolution of 1m.

calculated by the following empirical relationship equations suggested by Krief et al. (1990):170

(1−β) = (1−φ)m(φ), (4)

m(φ) =
3

(1−φ)
. (5)

In the empirical relationship equations (Eq. 4 and Eq. 5), m(φ) is a function of the porosity. In the formation bulk modulus

equation (Eq. 3), Kma = 15.45 GPa is matrix material bulk modulus, Kfl = 2.25 GPa is fluid bulk modulus and M is a

modulus which is dependent on the Biot coefficient and can be calculated by the following equation suggested by Gassmann175

(1951):

1

M
=

(β−φ)
Kma

+
φ

Kfl
. (6)
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In these equations (Eq. 1 to Eq. 6), some predefined parameters are taken from Carcione et al. (2002). After calculating the

Kfm, ρfm, µfm, we can calculate the velocity of P and S waves, the impedance models of P and S waves by the following

equations:180

VP =

√√√√Kfm+
4

3
µfm

ρfm
, (7)

VS =

√
µfm
ρfm

, (8)

ZP = ρfm ·VP , (9)

ZS = ρfm ·VS , (10)

where VP is the P-wave velocity, VS is the S-wave velocity, ZP is the P-wave impedance, ZS is the S-wave impedance. At the185

same time, we further use the depth model of clinoform layers to calculate the slope model used to generate the segmentation

label.

After calculating these stratigraphic and seismic attribute models of clinoform layers, we also need to perform the interpo-

lation method to build corresponding 2D attribute models. Because the dimensions of these stratigraphic and seismic attribute

models of clinoform layers are not length (x-direction) and depth (z-direction) but length (x-direction) and the number of190

stratigraphic clinoform lines (n). Besides, the resolution of the inline (x-direction) direction is generally 25 m in field seismic

data, but the resolution of each stratigraphic clinoform line in the inline direction (x-direction) is 100 m. We first interpolate

these stratigraphic and seismic attribute models of clinoform layers in inline directions (x-direction) to match the resolution of

field seismic data. Then we convert then (X, N) into corresponding 2D attribute models of dimension (X, Z) by interpolation

in the depth direction (z-direction) (see Fig. 5).195

2.3 Building synthetic seismic data and corresponding segmentation labels

In practice, the field seismic data are usually in the time domain. In this case, to be consistent with the field seismic data, we

need to convert these 2D clinoform attribute models from the depth domain to the time domain by the depth-to-time relationship

as follows:200

t[i] = t[i− 1]+ 2 · dz
vp[i]

, (11)

where t[i] and t[i− 1] represent two-way travel time, dz is the vertical sampling rate in the depth domain (i.e. the distance

between the (i−1)-th and i-th samples), vp[i] is the velocity of P wave at the i-th sample. By performing the iterative operation

on each column of the two-dimensional velocity model and resampling according to a predefined time sampling rate, we can

obtain the mapping relationship from the depth domain to the time domain. Then we generate the stratigraphic and seismic205

attribute models of dimensions (X, T) by applying this calculated mapping relationship.
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Synthetic seismic image with real noise

(a) (b)

(c)

Synthetic seismic image without noise

Clinoform segmentation label

topset

foreset

bottomset

(d)

Relative geologic time label

Figure 6. Example of (a) synthetic seismic image without noise, (b) synthetic seismic image with noise extracted from field seismic data, (c)

corresponding clinoform segmentation label, and (d) relative geologic time label. The foreset part of the clinoform is filled in red, whereas

the topset and bottomset parts of the clinoform are filled in blue. The dimension of the profiles is (X, T), where X is the length of the 2D

profiles with a resolution of 25 m, and T is the two-way travel time of the 2D profiles with a resolution of 2 ms.

To generate the synthetic seismic data, we convolve the reflectivity model (converted from the impedance model) with a

Ricker wavelet with a random peak frequency shown in Fig. 1j. The peak frequency of the Ricker wavelet is randomly chosen

from a predefined range (40 Hz − 60 Hz) with reference to the peak frequency extracted in the field seismic data (Tetyukhina

et al., 2010). Fig. 6a shows a synthetic clinoform seismic profile simulated in this way.210

To further improve the realism of the synthetic seismic data, we first extract the real noise from the filtered seismic data of the

F3 block in the North Sea, Australia Poseidon, and Alaska North Slope data. Then we perform data augmentation on different

noise data by flipping and synthesizing all the enhanced real noise data into a 3D noise volume. Finally, we add 2D real noise

(with randomly chosen a slice from 3D noise volume) to the 2D seismic data according to a randomly selected signal-to-noise

ratio and we display the synthetic seismic data with real noise in Fig. 6b.215

Finally, we generate the corresponding segmentation label using the slope model in the time domain. We set the region with a

slope greater than 0.0175 (slope angle > 1◦) as the foreset areas of the clinoform, and other regions as the topset and bottomset

areas of the clinoform. The threshold value of the slope refers to Pellegrini et al. (2020). The corresponding clinoform label

and relative geologic time label are shown in Fig. 6c and Fig. 6d, respectively.

In addition, we can automatically generate numerous and diverse synthetic seismic data and the corresponding clinoform220

attribute models (e.g. slope model, sea level curve, relative geologic time model, paleo-depth model, etc.) based on these geo-

logical and geophysical forward modeling processes. This indicates that our workflow can be easily extended for other seismic

stratigraphic interpretation tasks such as clinoform delineation, sequence boundary identification, synchronous horizon extrac-

tion, shoreline trajectory identification, sedimentary facies analysis and so on. In this work, we take the seismic clinoform

delineation task as an example to demonstrate the effectiveness of using the synthetic dataset for training.225
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3 Deep learning for clinoform delineation

We consider clinoform delineation as an image segmentation problem with the goal to label ones on the foreset part of the cli-

noform, whereas zeros on the topset and bottomset parts of the clinoform in 2D seismic data. In this study, we use a modified

encoder-decoder deep neural network to implement the clinoform delineation. We first train the network with synthetic seismic230

data and corresponding segmentation labels and then use the trained network to delineate clinoform in both synthetic and field

seismic data.

3.1 Network architecture

As shown in Fig. 7, the architecture of our encoder-decoder deep neural network used in this work is modified from DeepLabv3+,235

which was proposed by Chen et al. (2018). It has achieved state-of-the-art performance in the natural image semantic segmenta-

tion field (PASCAL VOC 2012 and Cityscapes datasets). The backbone of the DeepLabv3+ is an encoder-decoder architecture,

which downscales the inputs images and extracts low-level semantic features and high-level semantic features in the encoder

module and gradually recovers sharp boundaries in the decoder module (Ronneberger et al., 2015; Badrinarayanan et al., 2017;

Chen et al., 2018). However, compared to the original DeepLabv3+, we remove the skip connections between the encoder and240

decoder layers, because we found that the low-level features from the encoder layers lead to some artifacts in the predicted

results.

In the modified network, the encoder module (see left gray dashed box in Fig. 7) consists of a deep convolutional neural

network (DCNN) and an atrous spatial pyramid pooling module (ASPP). The DCNN module consists of a ResNet-101 (He

et al., 2016) and is used to progressively reduce the resolution of feature maps and capture high-level semantic features. ResNet-245

101 consists of a 7× 7 convolutional layer with a stride of 2, a 3× 3 max-pooling with a stride of 2, and four ResBlocks. These

four ResBlocks are composed of bottleneck blocks with the number of 3, 4, 23, 4, and strides of 1, 2, 1, and 1, respectively.

The bottleneck block consists of a 1 × 1 convolutional layer, a 3 × 3 convolutional layer, a 1 × 1 convolutional layer, and a

skip connection (see blue box in Fig. 7). The ASPP module can capture the contextual information at multiple scales, which

are composed of a 1 × 1 convolutional layer, three 3 × 3 atrous convolutional layers with sampling strides of 6, 12, and 18,250

and an average pooling module (see the orange box in Fig. 7).

The decoder module in the modified networks (see right gray dashed box in Fig. 7) first uses a bilinear upsampling layer to

upsample the high-level semantic features by a factor of 4, and then the upsampled features are fed to two 3 × 3 convolutional

layers and a 1 × 1 convolutional layer which obtains the probabilities of each class and reduces the channels of features to the

number of classes. Finally, the same bilinear upsampling layer is applied to obtain the final feature maps of the same size as the255

input image. These final feature maps are fed to a softmax layer and an argmax layer to obtain the final clinoform segmentation

result.
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Figure 7. The architecture of the network for clinoform delineation. The left gray dashed box is the encoder module which consists of

a ResNet-101 and an ASPP module. The blue box in the middle is the module of ResBlocks in the encoder, which contains a 1 × 1

convolutional layer, a 3 × 3 convolutional layer, a 1 × 1 convolutional layer, and a skip connection. The orange box in the middle is the

module of ASPP in the encoder, which contains a 1 × 1 convolutional layer, three 3 × 3 atrous convolutional layers with sampling strides 6,

12, and 18, and an average pooling module. The right gray dashed box is the encoder module which consists of an upsampling layer, two 3

× 3 convolutional layers, a 1 × 1 convolutional layer, and an upsampling layer.

3.2 Training and validation

After automatically generating 1000 pairs of synthetic seismic data (Fig. 6b) and corresponding clinoform labels (Fig. 6c), we260

train and validate our CNN model by using 800 and 200 pairs of them, respectively. Considering the amplitude values of field

seismic data can vary widely, we perform a normalization process to each seismic data before feeding it into the CNN model

by subtracting its mean value and then dividing by its standard deviation.
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(a) (b)

Figure 8. (a) The loss curves of training (blue) and validation (orange), (b) and the learning rate is adaptively adjusted in the training process.

The curves for both training (blue curve) and validation (orange curve) losses converge to 0.02 and 0.06, whereas the learning rate decrease

to 0.00001 after 200 epochs.

(a) Sea level curves (b) RGT models (c) Seismic data (d) Segmentation labels (e) Predicted results

Figure 9. Examples of (a) classic sea level curves with 1, 1.5, and 2 cycles, (b) relative geologic time model (RGT), (c) synthetic seismic

image with real noise, (d) corresponding segmentation labels, and (e) predicted results using the trained network. The foreset part of the

clinoform is filled in red, whereas the topset and bottomset parts of the clinoform are filled in blue. From the predicted results, we can find

that (e) the predicted results are consistent with (d) the labels, which means the network has successfully learned to extract the structural

features for clinoform segmentation in the seismic images.

Considering clinoform delineation in the 2D seismic image is a binary segmentation problem, we use the following binary

cross entropy loss function L to train our network:265

L=−
N∑
i=1

yilog(xi)−
N∑
i=1

(1− yi)log(1−xi), (12)
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where N denotes the number of pixels in the input 2D seismic data. xi and yi represent the prediction and label at the i−th

pixel , respectively.

In the training of the network, the size of each synthetic seismic data and corresponding segmentation label is 1600 × 256

pixels. Considering the computation time and memory, we feed the normalized synthetic seismic images and corresponding270

segmentation labels to the CNN in batches and set the batch size to 16. We use the Adam optimizer (Kingma and Ba, 2014)

to optimize the network parameters. In the training process, we start the learning rate at 0.01 and adaptively reduce it based on

the validation loss. Specifically, we automatically reduce the learning rate by half when the validation metric stagnates within 2

epochs. In total, we use 800 and 200 pairs of synthetic training datasets to train and validate our CNN model. As shown in Fig.

8, the curves for both training (blue curve) and validation (orange curve) losses converge to 0.02 and 0.08, while the learning275

rate decreases to 0.00001 after 200 epochs.

To demonstrate the performance of the trained network, we first apply it to six synthetic seismic images with classic cli-

noforms (Fig. 9c) that are generated by six classic sea-level curves with 1, 1.5, and 2 sinusoidal periods as shown in Fig. 9a.

Note that real noise extracted from field seismic data has been added to the synthetic seismic data (Fig. 9c). By feeding the

synthetic seismic data to our trained network, we obtain the clinoform segmentation results shown in Fig. 9e. We observe280

that the segmentation results are consistent with the ground truth labels shown in Fig. 9d. It is not surprising that the trained

network works well in these synthetic seismic data simulated by using the same workflow of generating the training dataset.

We therefore further validate our network in multiple field seismic data in the following sections.

3.3 Eliminating outliers by smoothing feature maps285

We further verify the performance of our trained network on a field seismic data with more complex features as shown in Fig.

10a. Fig. 10b shows the predicted result, where red and blue represent the foreset part and topset or bottomset parts of the

clinoform, respectively. We observe that most of the foreset areas are correctly predicted, but the areas indicated by the cyan

arrows are incorrectly predicted as topset or bottomset of the clinoform, and the area indicated by the green arrow is incorrectly

predicted as the foreset part of the clinoform.290

To better understand the feature extraction and prediction process of the network in segmenting a clinoform, we display

the feature maps of each layer in the network in Fig. 11. The encoder module in the networks (see the left part in Fig. 11)

focuses on extracting features of the foreset part of the clinoform, topset or bottomset parts of the clinoform, and boundaries.

The decoder module in the network (see the right part in Fig. 11) focuses on gradually recovering the specific areas of the

foreset part of the clinoform and topset or bottomset parts of the clinoform according to the features extracted by the encoder295

module. We expect that the foreset part of the clinoform should be a complete and continuous block, however, the predicted

result shown in Fig. 10b obviously does not conform to such a priori geological understanding.

In order to make the segmentation results of the trained network on the field seismic data more clean and complete, we

incorporate a preconditioning layer (Wu et al., 2023) of structure-oriented smoothing into the network. This smoothing layer

enhances the structural features along the seismic structural orientations, thus filling holes and eliminating outliers in the final300
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(a) (b) (c)

Figure 10. We input (a) a field seismic profile to input into the trained network and get (b) the corresponding predicted result, where red

represents the foreset part of the clinoform and blue represents the topset and bottomset parts of the clinoform. The clinoform segmentation

result is mostly correct but we also observe some holes and outliers as indicated by cyan and green arrows in (b), respectively. To further fill

the holes and eliminate the outliers, we introduce structural smoothing layers into the network to enhance the feature maps of the network

and therefore obtain a cleaner and more complete result in (c).

Input seismic data
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80×238[×64] 80×238[×256]
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Output layer (Softmax+Argmax)
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Figure 11. The feature maps of the encoder-decoder networks. The red arrow denotes an input layer containing a 7 × 7 convolutional layer

with ReLU and a max-pooling layer. The navy blue arrow denotes four different ResBlocks modules consisting of bottleneck blocks with

numbers of 3, 4, 23, 4, and strides of 1, 2, 1, and 1, respectively. The yellow arrow denotes the ASPP modules. The light blue arrow denotes

a 1 × 1convolution layer with ReLU and dropout. The pink arrow denotes structural smoothing layers at 1/4 or 1/16 scale. The green arrow

denotes a bilinear upsampling layer. The light purple arrow denotes a 3 × 3 convolution layer with ReLU and dropout. The navy purple

denotes an output layer consisting of a softmax layer and an argmax layer. The upper right green dashed box and lower right red dashed box

refer to the feature maps and predicted results before and after the introduction of the structural smoothing layer, respectively.

segmentation results. We first estimate the structural orientation at each pixel of the input seismic image by using the method of

structure tensor (Van Vliet and Verbeek, 1995; Fehmers and Höcker, 2003; Hale, 2009). Then we construct the corresponding

smooth convolution kernels along the seismic structures based on the estimated orientations. Finally, we apply these structure-

oriented smoothing kernels to the feature maps at the scales of 1/4 and 1/16 in the network, as denoted by pink arrows in Fig.

11.305
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After introducing the structural smoothing layer into the network, the predicted results shown in Fig. 10c are more complete

and continuous. To visually demonstrate the function of the introduced structural smoothing layers, we display the feature maps

of the decoder module after introducing the structure-oriented smoothing layers in the dashed red box in Fig. 11. Compared

to the original decoder module in the dashed green box, the feature maps with the smoothing layers become cleaner and more

continuous for the features of topset, foreset, and bottomset of the clinoform, and the predicted result based on these feature310

maps is therefore cleaner and more complete.

4 Field data applications

In addition to the synthetic seismic data, we also use three different field seismic data to verify the performance of the network

trained with only synthetic seismic data. In our simulated synthetic training datasets, the seismic images (like the one in Fig.315

6b) contain only the simulated processes of the clinoform deposition with dramatic changes in sea level but do not contain the

non-clinoform part with horizontal deposition. However, the field seismic images typically contain a large number of horizontal

deposits, and the clinoform deposits are only a small part of them. In order to be consistent with the training data sets, we first

use an automatic horizon picking method proposed by Wu and Fomel (2018) to extract the top and bottom layers of the part

of clinoform deposition in the field seismic data. Then we cut out the sub-volume with the clinoform deposits from the whole320

seismic volume by using the computed two boundary layers. To avoid the uncertainty of the seismic amplitude variation range

of the field survey seismic data, each of them is first subtracted by its mean and then divided by its standard deviation to obtain

a normalized seismic data.

4.1 Case study one: Netherlands offshore F3 Block325

The first field example is the Netherlands offshore F3 Block (Dutch sector) seismic data acquired in the northeastern part of the

North Sea. In this survey, a large fluvio-delta-ic system dominated the basin resulting in a massive clinoform deposition during

the Cenozoic era (Tetyukhina et al., 2010). The survey area of this seismic volume is 24 km in the inline direction, 16 km in

the crossline direction, and 1848 ms in the two-way travel time direction. In this work, we select a 3D subset (951 [inline] ×
460 [crossline] × 320 [time] samples) of F3 Block seismic data as the study seismic volume (Fig. 12a).330

We first use the method proposed by Wu and Fomel (2018) to extract the top and bottom surfaces of the part of clinoform

deposition in this seismic volume and then cut the sub-volume (Fig. 12a) between the two surfaces. We then apply the trained

network to delineate the clinoform in the 3D sub-volume slice by slice in the crossline direction. Each 2D slice (951 [inline]

× 320 [time] samples) is normalized by its mean and standard deviation before fed into the network. In these seismic images,

some complex geological structures, such as faults with large fault throws and uplifts of salt bodies, bring challenges for the335

clinoform delineation. We further introduce the structural smoothing layer at 1/4 scale on the decoder module to enhance the
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Figure 12. Case study one: Netherlands offshore F3 Block seismic data. (a) The 3D subset of the F3 Block seismic data, (b) 3D body of the

foreset area of the predicted clinoform, (c) four 2D seismic profiles extracted from the 3D seismic volume, (d) the predicted results using

the network trained with only synthetic clinoform seismic data, (e) and the results overlaid with the seismic profiles. The foreset areas of the

clinoform in 2D profiles are filled with red, whereas the topset and bottomset areas of the clinoform are filled with blue. From the predicted

results, the topset, foreset, and bottomset parts of the clinoform can maintain clean and complete and the boundaries between the topset and

foreset and between foreset and bottomset can maintain continuity.

structural features along the seismic structural orientations, thus filling holes and eliminating outliers in the final segmentation

results.

Fig. 12c shows some 2D seismic slices that are extracted from the 3D seismic volume and Fig. 12d displays the corresponding

clinoform segmentation results. The red regions represent the foreset areas of the clinoform predicted by the trained network,340

whereas the blue regions represent the topset or bottomset areas of the clinoform. In order to intuitively evaluate the predicted

results, we also display the results by overlaying the predicted results with the seismic images shown in Fig. 12e. To visualize

the predicted results for the entire 3D volume, we also use the classic marching cubes algorithm proposed by Lorensen and

Cline (1987) to extract a 3D foreset equivalence surface as shown in Fig. 12b, where the foreset areas of the clinoform are

displayed as a 3D geobody with cyan color.345
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Figure 13. Case study two: Australia Poseidon 3D seismic data. (a) The flattened 3D subset of Australia Poseidon seismic data, (b) the 3D

body of the foreset area of the predicted clinoform, (c) four randomly selected 2D seismic images, (d) the predicted results using the trained

network, (e) and the results overlaid with the seismic images. The foreset areas of the clinoform in 2D profiles are filled with red, whereas

the topset and bottomset areas of the clinoform in 2D profiles are filled with blue.

As is shown in Fig. 12b, d, e, the prediction segmentation results can maintain high integrity and continuity and separate

the foreset, topset, and bottomset of the clinoform in seismic profiles, which demonstrates the reliable generalization of the

trained network in this field data example. From the seismic images (Fig. 12c), they are complicated by some special struc-

tural features, such as faults with large fault throws, uplifts of salt bodies, and fold deformation, which are not included in the

training data sets. However, our prediction results are generally not affected by these special features. This indicates that the350

trained network has successfully learned to analyze the geological structure information of the topset, foreset, and bottomset

parts of the clinoform from a global perspective, not just from the local characteristics of seismic data. Besides, it shows that

the trained network has certain anti-noise ability and generalization for some complex structures.
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4.2 Case study two: Australia Poseidon seismic data355

The second field example is the Poseidon 3D seismic volume acquired in the Browse Basin’s shelf margin, North West Australia

(Liu, 2018; Dixit and Mandal, 2020). The survey area of this seismic volume is 64 km in the inline direction, 63 km in the

crossline direction, and 6000 ms in the two-way travel time direction. The grid size of this 3D seismic volume are 18.75 m

(inline)× 12.5 m (crossline)× 4 ms (time). We first resample this 3D seismic volume and then select a 3D subset (618 [inline]

× 288 [crossline] × 192 [time] samples) of the Australia Poseidon 3D seismic volume as the study seismic volume.360

We first extract the top and bottom surfaces of the part of clinoform deposition in the 3D seismic volume. Then we flatten

the 3D seismic volume with the top surface as a horizontal datum to eliminate the tectonic influence of the overlying strata.

After flattening the 3D seismic volume, we cut the flattened seismic volume (Fig. 13a) between the two surfaces to preserve

the clinoform deposits and remove the non-clinoform deposits. After these processes, we fed the 3D sub-volume slice by slice

in the y-direction into the trained network to delineate the clinoform. To be consistent with the synthetic seismic data, each365

2D slice (618 [inline] × 192 [time] samples) is normalized before fed into the network. Similar to study case one, we also

introduce the structural smoothing layer in the decoder module of the network to enhance the features maps along the seismic

structural orientations.

We randomly select four 2D seismic slices (Fig. 13c) from the 3D seismic sub-volume and display the corresponding cli-

noform segmentation results in Fig. 13d. The red and blue regions represent the foreset areas of the clinoform and topset or370

bottomset areas of the clinoform predicted by the trained network, respectively. We also overlay the predicted results with

seismic images shown in Fig. 13e and display a 3D view of the segmented clinoform body in Fig. 13b. As shown in Fig.

13b,d,e, the predicted results are clean and complete, where the topset, foreset, and bottomset areas of the clinoform are mostly

reasonably segmented.

375

4.3 Case study three: Alaska North Slope

The third field seismic data is acquired at the Alaska North Slope which is a well-known Lower Cretaceous clinoform de-

positional sequence. It is also a large depositional scale (600 - 1000 m depositional thickness in the north and 1700 - 2000

m depositional thickness in the south), constructional, siliciclastic clinoform (Bird and Molenaar, 1992; Houseknecht et al.,

2009; Ramon-Duenas et al., 2018). This study includes three publicly available, 1974 - 1981 vintage, 2D seismic profiles from380

the United States Geological Survey (USGS), which are 58-75 trackline, 28-81 trackline, and 39-81 trackline, respectively.

We select 110 km [inline] × 1800 ms [time], 55 km [inline] × 800 ms [time], 50 km [inline] × 800 ms [time] 2D seismic

sub-profiles, respectively.

We extract the top and bottom layers of the part of clinoform deposition and another top layer of the part of a horizontal

deposition in each seismic profile. Then we cut out each sub-profile between the exacted top and bottom layers and flatten it385

based on another top layer. We further perform gain and filtering operations on the flattened seismic images to enhance the

seismic features and the processed images are shown in the left column of Fig. 14. In segmenting clinoform in these seismic
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(a) Alaska 58-75 trackline profile  

(b) Alaska 28-81 trackline profile  

(c) Alaska 39-81 trackline profile  

Figure 14. Case study three: Alaska North Slope 2D seismic data. (a) The 58-75 trackline sub-profile and predicted result. (b) The 28-81

trackline sub-profile and predicted result. (c) The 39-81 trackline sub-profile and predicted result. The survey area of these three seismic

profiles are 110 km, 55 km, and 50 km in the inline direction and 1000 ms, 800 ms, and 800 ms in the two-way travel time direction,

respectively. The seismic profiles shown in the left column are processed by flattening, gain, filtering, and normalization operations, and the

segmentation results are displayed in the right column, where the foreset areas of clinoform are filled with red and the topset and bottomset

areas of clinoform are filled with blue. We also display two synchronous horizons extracted in each seismic profile with orange lines.

profiles, the low signal-to-noise ratio of the data and the existence of complex geological structures such as faults with large

fault throws and fold deformation, bring great challenges to the network trained with only synthetic data. To reduce the impact

of these complex structures on clinoform delineation, we introduce the structural smoothing layer to enhance the structural390

features along the seismic structural orientations.

As shown in the right column of Fig. 14, the segmentation results predicted by our modified network are clean and complete.

Comparing the predicted result (Fig. 14a) with the human interpretation result (Ramon-Duenas et al., 2018), we find that the

predicted result is roughly close to the human interpretation result, particularly in the boundary between the topset and foreset.

To further validate the segmentation results, we extract two synchronous horizons in each seismic profile and display them395

with orange lines in the right column of Fig. 14. Combining synchronous horizon distribution and segmentation results, our

network can successfully segment regions with sharp slope angles on the synchronous horizons. It is indicated that our network

can learn to analyze the structural features of the clinoform and can automatically segment regions with sharp slope angles
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(foreset regions). Besides, the introduction of the smoothing structural layer enables the network to enhance the features and

reduce the generation of holes or outliers caused by the complex structures and low signal-to-noise ratio of the data.400

5 Discussion

Applications on the synthetic data and three different field seismic data indicate that our training datasets generated by geologi-

cal and geophysical forward modeling are geologically reasonable to train our network for accurate clinoform delineation. The

introduction of the structural smoothing layer at different scales enables the trained network to enhance the structural features405

along the seismic structural orientations in complex field seismic data applications, thus filling holes and eliminating outliers

in the final segmentation results. From the segmentation results of field seismic data, the topset, foreset, and bottomset areas of

the clinoform are accurately segmented into different classes and each class maintains high integrity and continuity.

Although the segmentation results are visually reasonable in general, some artifacts or inaccurate predictions still appear

in some local areas of the results which indicates some limitations of our method. The main limitation remains in the work-410

flow of generating synthetic training datasets by geological and geophysical forward modeling. We use a specific modeling

engine (PyBadlands) for stratigraphic forward modeling, which offers several advantages over alternative models. Specifically,

PyBadlands is open-source, source-to-sink, comprehensive in its consideration of influencing factors, and can effectively sim-

ulate diverse datasets (Salles and Hardiman, 2016; Salles et al., 2018; Ding et al., 2019). However, it is important to note

that PyBadlands is only capable of numerical simulation and cannot fully replicate natural surface processes. For instance, the415

porosity model generated by SFM models only considers the mechanical compaction of the sediment, which may result in the

less realism of the synthetic seismic data. Besides, we have not yet included any folding and faulting structures, salt bodies,

or channels in generating the stratigraphic layers and the corresponding seismic data. These structure features, however, may

significantly affect the seismic stratigraphic interpretation tasks. In this paper, we have flattened the seismic data to remove

the folding and faulting structures before the clinoform segmentation, which makes the data structurally more consistent with420

the training seismic data and therefore reduces the segmentation challenges due to various structures. In the future, we need to

build more realistic stratigraphic models with various structural patterns and geobodies to better train a network for interpreting

more complex seismic data. Additionally, note that here we only consider the slope information when generating the clinoform

segmentation labels, which could lead to some inaccuracies in the labeling process.

In terms of network selection, we select U-net, DeeplabV3+, and DeeplabV3+ without a skip connection for the comparison425

test. We train these networks using the cross entropy (CE), mean squared error (MSE), binary cross entropy (BCE), and binary

cross entropy with log (BCEWithLogits) loss functions, respectively. These network tests show that the DeeplabV3+ network

without skip connection using cross-entropy loss function is the most stable and accurate in both synthetic and field seismic

data applications. In addition to the network architectures and loss functions, the size of the seismic data or the scale of the

clinoform is another important aspect affecting the segmentation results. For example, the training dataset with a scale size430

of 1600 × 256 pixels performed well on the large-scale Alaska North Slope data but performed poorly on the small-scale F3

23



Block and Australia Poseidon seismic data. Therefore, we also simulated small-scale clinoform training data sets with a scale

size of 900 × 256 pixels for F3 Block and Australia Poseidon seismic data and obtained stable and accurate segmentation

results by the trained network.

In practice, the quality of the field seismic data may not be as high as synthetic data because of noise, seismic migration435

artifacts, and unclearly imaged reflections. We have added noise, extracted from field seismic data, to the synthetic data to train

our network. However, the network may still generate holes and outliers in delineating clinoform in poor-quality seismic data.

Based on the prior geologic knowledge that each part (topset, foreset, and bottomset) of the clinoform segmentation should be a

complete and continuous block, we introduce the structural smoothing layer to our network. The structure-oriented convolution

kernels in the smoothing layer smooth the feature maps computed in the network along the seismic structure orientations to440

suppress noisy features while enhancing the continuity of effective features in the maps, thus filling holes and eliminating

outliers in the final segmentation results. Besides, the structural smoothing layer can be integrated into the network at different

scales. This means that the structural smoothing layer is highly scalable and can be introduced at any depth of the network.

Considering the computational cost, the synthetic training datasets used for network training are two-dimensional, and the

initial topography used for the stratigraphic forward modeling is a simple slope surface with lateral consistency. In the future,445

we can upgrade our workflow from 2D to 3D by designing more complex and extensive initial topographies to generate di-

verse 3D clinoform seismic datasets. Additionally, we can take into account some other factors in building the porosity model

to enhance its diversity and realism. For example, we can introduce the constraints of the paleo-depth model based on the

sorting effect of the ocean on sediments, and we can also introduce the constraints of the natural variability of rock properties

according to the initial variations in provenance. The introduction of these multiple constraints can improve the diversity of450

the porosity model, enhance the realism of the synthetic data, and improve the process of the stratigraphic forward modeling.

Additionally, for the generation of the slope model, we can calculate the slope model using real-time stratigraphic depth layers

instead of the final depth model, which can better reflect the actual slope when sediments are deposited. In the validation stage

of the field seismic data, we can further introduce some other geophysical data information (e.g., log data) to better validate the

segmentation results of field seismic data. Moreover, although we only use such a workflow to solve the clinoform delineation455

problem at present, we can easily extend this workflow for more geological and geophysical scenarios in the future, such as

sequence boundary identification, synchronous horizon extraction, relative geologic time estimation, sedimentary facies anal-

ysis, unconformity identification, etc.

6 Conclusions460

We propose a workflow to automatically generate synthetic seismic data of clinoform and corresponding clinoform labels.

In this workflow, we employ stratigraphic forward modeling to obtain numerous stratigraphic models with clinoform layers

by randomly but properly choosing initial topographies, sea level curves, thermal subsidences, and rainfall patterns. Then we

convert the simulated stratigraphic model into the impedance model by using a velocity-porosity relationship, while calculating
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the slope model from the corresponding depth model of clinoform layers. We further perform depth-to-time conversion to465

the impedance model, convolve it with a Ricker wavelet with a random peak frequency and add real noise to generate a

synthetic seismic image. Finally, we obtain the corresponding clinoform label according to a slope threshold. In this way, we

automatically generate 1000 large-scale and 2000 small-scale synthetic seismic data and corresponding stratigraphic labels,

and make these datasets available to the public.

We use an encoder-decoder network modified from DeepLabV3+ to perform clinoform delineation. In the modified network,470

the encoder module consists of DCNN and ASPP modules, which are mainly used to extract features at different resolutions,

and the decoder module consists of a few simple convolutional and upsampling layers, which are mainly used to refine the

segmentation results. Considering the complex geological structures of the field seismic data, we introduce the structural

smoothing layer in the decoder module to enhance the structural features along the seismic structural orientations, thus filling

holes and eliminating outliers in the final segmentation results.475

We train the modified network with only synthetic seismic datasets and then validate its performance on both synthetic and

field seismic data. The segmentation results are clean, continuous, and visually reasonable. This indicates that the proposed

workflow of using synthetic seismic data to train the network and using the trained network for automatic and fast clinoform de-

lineation is plausible. Moreover, our workflow can obtain other stratigraphic labels (in addition to clinoform labels) during the

geological and geophysical forward modeling. Therefore, our workflow can be easily extended for other seismic stratigraphic480

interpretation tasks such as sequence boundary identification, synchronous horizon extraction, shoreline trajectory identifica-

tion, sedimentary facies analysis and so on.

Code and data availability. The synthetic seismic dataset used for training and validating our network have been uploaded to Zenodo and

are free available at https://doi.org/10.5281/zenodo.7122471 (Gao et al., 2022a). The source code for the geological and geophysical forward485

modeling and the neural network have been uploaded to Zenodo and are free available at https://doi.org/10.5281/zenodo.7123934 (Gao et al.,

2022b).
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