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Abstract.

Nitrogen (N) plays a central role in marine biogeochemistry by limiting biological productivity in the surface ocean, in-

fluencing the cycles of other nutrients, carbon, and oxygen, and controlling oceanic emissions of nitrous oxide (N2O) to the

atmosphere. Multiple chemical forms of N are linked together in a dynamic N cycle that is especially active in oxygen mini-

mum zones (OMZs), where high organic matter remineralization and low oxygen concentrations fuel aerobic and anaerobic N5

transformations. Biogeochemical models used to understand the oceanic N cycle and project its change often employ simple

parameterizations of the network of N transformations and omit key intermediary tracers such as nitrite (NO−
2 ) and N2O. Here

we present a new model of the oceanic N cycle (Nitrogen cycling in Oxygen Minimum Zones, or NitrOMZ) that resolves

N transformation occurring within OMZs, and their sensitivity to environmental drivers. The model is designed to be easily

coupled to current ocean biogeochemical models by representing the major forms of N as prognostic tracers, and parameter-10

izing their transformations as a function of seawater chemistry and organic matter remineralization, with minimal interference

with other elemental cycles. We describe the model rationale, formulation, and numerical implementation in a one-dimensional

representation of the water column that reproduces typical OMZ conditions. We further detail the optimization of uncertain

model parameters against observations from the Eastern Tropical South Pacific OMZ, and evaluate the model ability to repro-

duce observed profiles of N tracers and transformation rates in this region. We conclude by describing the model sensitivity to15

parameter choices and environmental factors, and discussing the model suitability for ocean biogeochemical studies.
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1 Introduction

Nitrogen (N) limits phytoplankton production over large swathes of the ocean (Moore et al., 2013). Most of the N in the ocean

is present as dissolved dinitrogen gas (N2); however, only fixed N, e.g., ammonium (NH+
4 ) and nitrate (NO−

3 ), can be readily

utilized by planktonic microorganisms, with the exception of N-fixing diazotrophs (Capone et al., 2008). The inventory and20

chemical form of N in the ocean are controlled by an active nitrogen cycle, whereby different chemical forms of the element

are utilized as substrates for growth by a variety of microorganisms, either to supply building blocks for organic molecules, or

to fuel metabolism via redox reactions (Capone et al., 2008; Kuypers et al., 2018). As a result, the residence time of fixed N in

the ocean is on the order of 3,000 years or less, about one order of magnitude shorter than for the macronutrient phosphorous

(Gruber and Galloway, 2008; Wang et al., 2019).25
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Figure 1. Schematic of the main N cycle tracers and reactions represented by NitrOMZ. Tracers are shown in bold, ordered by the oxidation

state of N, and consist of organic nitrogen (OrgN), ammonium (NH+
4 ), nitrate (NO−

3 ), nitrite (NO−
2 ), nitrous oxide (N2O), and dinitrogen

(N2). N transformation reactions are shown as arrows connecting reactants and products. Green arrows represent nutrient uptake and nitrogen

fixation rates (not explicitly represented in the model, which focuses on subsurface reactions). The black arrow corresponds to (1, Rrem)

release of NH+
4 by organic matter remineralization (i.e., ammonification). Blue arrows denote aerobic transformations: (2a, Rno2

ao ) NH+
4

oxidation to NO−
2 , (2b, Rn2o

ao ) NH+
4 oxidation to N2O, and (3, Rno) NO−

2 oxidation to NO−
3 . Red arrows represent anaerobic processes:

(4, Rden1) NO−
3 reduction to NO−

2 , (5, Rden2) NO−
2 reduction to N2O, (6, Rden3) N2O reduction to N2, and (7, Rax) anaerobic NH+

4

oxidation (anammox) with NO−
2 to N2.

The ocean’s inventory of fixed N is dominated by NO−
3 , and the main N cycle reactions consist of uptake and assimilatory

reduction of NO−
3 to NH+

4 , and the oxidation of NH+
4 back to NO−

3 following the decomposition of organic matter and

nitrification (Fig. 1). Only when the concentration of dissolved oxygen (O2) drops to suboxic or anoxic levels (typically below

5 mmol m−3, additional metabolic pathways involving N become relevant, as observed in the ocean’s oxygen minimum
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zones (OMZs) and low-O2 sediments (Lam and Kuypers, 2011). These reactions include the three main steps of heterotrophic30

denitrification, i.e., the oxidation of organic carbon (OrgC) with NO−
3 , nitrite (NO−

2 ), and nitrous oxide (N2O), and anammox,

the chemolithotrophic oxidation of NH+
4 with NO−

2 . Both denitrification and anammox lead to the production of N2, and thus

remove fixed N from the ocean (Bianchi et al., 2012; DeVries et al., 2013, 2012). Ammonium oxidation is another source

of N2O — a powerful greenhouse gas and a leading agent of ozone destruction in the stratosphere. The number of N2O

molecules produced per NH+
4 oxidized, i.e. the yield of this reaction, increases as O2 declines (Goreau et al., 1980; Nevison35

et al., 2003). Because of denitrification and enhanced ammonium oxidation sources, OMZs are important sources of N2O to

the atmosphere (Naqvi et al., 2010; Yang et al., 2020), with the largest emissions observed right above shallow anoxic waters

(Arévalo-Martínez et al., 2015).

The emerging picture for the ocean’s N cycle is that of a web of inter-dependent transformations that is particularly active in

OMZs, where overlapping aerobic and anaerobic reactions exchange nitrogen metabolites and substrates (Lam and Kuypers,40

2011; Kuypers et al., 2018), ultimately controlling fixed nitrogen removal and N2O production. While there is evidence that

organic matter and O2 regulate the rates and relative importance of N transformations (Babbin et al., 2014; Dalsgaard et al.,

2014), our mechanistic understanding of these environmental controls against the backdrop of oceanic variability remains

limited. Ocean biogeochemical models can shed light on the expression of the N cycle reactions in a dynamic environment.

These models have included N as a macronutrient since the beginning, representing NO−
3 and NH+

4 assimilation by phyto-45

plankton and subsequent nitrification (Fasham et al., 1990; Sarmiento et al., 1993; Moore et al., 2004b). With the advent of

more complex Earth System Models, biogeochemical representations have progressively expanded to include more detailed

representations of the N cycle, including N fixation, denitrification and N2O production (Aumont et al., 2015; Séférian et al.,

2020; Stock et al., 2020; Long et al., 2021).

The ultimate goals of these models are multifold, and include improving predictability of oceanic N2O emissions (Sunthar-50

alingam et al., 2012; Martinez-Rey et al., 2015; Battaglia, 2017; Buitenhuis et al., 2018; Ji et al., 2018); providing a more

realistic representation of the redox state of seawater (Louca et al., 2016); or resolving aspects of microbial dynamics underly-

ing the oceanic N cycle (Penn et al., 2016; Zakem et al., 2018; Penn et al., 2019).

The representation of N transformations in models often relies on crude assumptions that simplify the network of N reactions

and their controls to simple empirical parameterizations. For example, models that include N2O cycling often rely on param-55

eterizations that link N2O production to nitrification or aerobic respiration (Suntharalingam and Sarmiento, 2000; Nevison

et al., 2003; Manizza et al., 2012; Jin and Gruber, 2003), overlooking N2O surces and sinks by denitrification. These models

also conflate anammox and denitrification into a single N2 production term. Explicit cycling of NO−
2 under low O2, with the

observed co-occurrence of NO−
2 production from NO−

3 dissimilatory reactions, reduction to N2O and N2 by denitrification

and anammox, and reoxidation to NO−
3 are missing (Lam and Kuypers, 2011; Kalvelage et al., 2013; Babbin et al., 2014, 2015;60

Buchwald et al., 2015; Babbin et al., 2017).

The goal of this paper is to present a new model of the oceanic N cycle designed to be incorporated in current ocean biogeo-

chemical models, with a particular focus on processes occurring within OMZs. We refer to this model as NitrOMZ (Nitrogen

cycling in Oxygen Minimum Zones). The model explicitly represents the major forms of N found in seawater as prognos-
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tic tracers, and parameterizes the transformations that connect them as a function of seawater chemistry. This formulation is65

informed by recent observations that describe the response of N cycle reactions to environmental controls, in particular the

availability of substrates and dissolved O2. We detail the implementation of the model in an idealized one-dimensional (1D)

representation of the water column that allows comparison to in situ observations, formal optimization, and studies of the

model sensitivity to parameter choices and environmental conditions.

The rest of the paper is organized as follow: Sect. 2 discusses the rationale and formulation of the model; Sect. 3 the70

implementation of the model; Sect. 4 the model optimization against tracer and rate observations; Sect. 5 the performance of

the model and its sensitivity to environmental parameters; and Sect. 6 discusses the implications and conclusions of the work.
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2 Nitrogen cycle model formulation

2.1 Model Rationale

The NitrOMZ model is based on the current understanding of the N cycle in OMZs (Lam and Kuypers, 2011; Kuypers et al.,75

2018) as mediated by 6 major species: N2, NO−
3 , NO−

2 , N2O, NH+
4 and organic nitrogen (OrgN) in either dissolved or

particulate form. For simplicty, we assume that OrgN is linked to OrgC by fixed stoichiometry (Anderson and Sarmiento,

1994). A schematic of the model’s tracers and transformation is shown in Fig. 1. Our approach represents a natural progression

for current biogeochemical ocean models, and takes a “system view” of the N cycle by focusing on the biogeochemistry of N

transformation reactions (Lam and Kuypers, 2011), rather than microbial ecology (Penn et al., 2016; Louca et al., 2016; Zakem80

et al., 2018; Penn et al., 2019). That is, the model explicitly resolves N chemical tracers and their transformations, but not the

populations of microbes that are responsible for these reactions.

The underlying assumption is that the occurrence and rates of N transformations are controlled by, and can be predicted

from, the physical and chemical conditions of the oceanic environment. Implicitly, the model assumes that diverse populations

of microbes are always present in the water column, and that their activity (i.e., metabolic rate) is controlled by the abundance85

of substrates, in analogy to chemical reactions, and dissolved O2, which inhibits anaerobic reactions (Kalvelage et al., 2011;

Babbin et al., 2014; Dalsgaard et al., 2014; Ji et al., 2018; Sun et al., 2021b). The focus on dissolved N forms and reaction rates

bypasses poorly-known aspects of microbial population dynamics, which are topics of ongoing research (Louca et al., 2016;

Zakem et al., 2018; Penn et al., 2019).

We assume that each reaction is implicitly mediated by specialized microorganism groups, each relying on a distinct90

metabolism (Lam and Kuypers, 2011; Kuypers et al., 2018). Thus, the model represents a “modular” N cycle, with individual

reaction steps (i.e., individual redox reactions) represented separately, and connected by exchange of dissolved substrates (Graf

et al., 2014; Kuypers et al., 2018). This premise is grounded on observations of high specialization and streamlined genomes

for marine prokaryotes (Giovannoni et al., 2014), including microorganisms carrying genes for N-based metabolic reactions

(Ganesh et al., 2015; Kuypers et al., 2018).95

These assumptions are sufficient to provide a broad representation of microbial N transformations and their environmental

expressions in the ocean, while limiting model complexity and the proliferation of poorly-constrained parameters. They are

also grounding steps towards models that explicitly represent microbial populations, their diversity and dynamics in OMZs

(Louca et al., 2016; Penn et al., 2016; Zakem et al., 2018; Penn et al., 2019).

2.2 Model tracers100

The model focuses on microbial processes that take place below the euphotic zone, as driven by the flux of organic matter

produced near the surface and exported into the ocean interior by the biological pump (Boyd et al., 2019). We include het-

erotrophic and chemolithotrophic pathways that are commonly observed in the open ocean and require N species as substrates

(Kuypers et al., 2018) (Fig. 1). Additional pathways, for example involving sulfur or iron, could also be represented following

a similar approach.105
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Heterotrophic reactions resolved by the model (Fig. 1) consist of aerobic organic matter respiration (Rrem, pathway 1),

which relies on O2 as the oxidant, and the three main steps of denitrification: dissimilatory NO−
3 reduction to NO−

2 (Rden1,

pathway 4), NO−
2 reduction to N2O (Rden2, pathway 5), and N2O reduction to N2 (Rden3, pathway 6). Chemolithotrophic

processes consist of aerobic oxidation of NH+
4 to both NO−

2 (Rno2
ao , pathway 2a) and N2O (Rn2o

ao , pathway 2b), aerobic

oxidation of NO−
2 to NO−

3 (Rno, pathway 3), and anammox, the anaerobic oxidation of NH+
4 with NO−

2 to produce N2 gas110

(Rax, pathway 7). Reactions are parameterized as functions of substrates (i.e., model tracer concentrations) and environmental

parameters such as dissolved O2 and organic matter. Tracers are expressed as concentrations, with units of mmol m−3.

We do not include an explicit representation of nitric oxide, NO, because of the poor understanding of its cycle in the marine

environment (Ward and Zafiriou, 1988). NO is thought to be an obligate intermediate or a byproduct of N cycle reactions,

including nitrification and denitrification (Schreiber et al., 2012). However, it is a very reactive chemical with extremely low115

concentrations (on the order of pmol m−3) and rapid turnover in seawater (Ward and Zafiriou, 1988). As a consequence, in situ

NO observations are limited (Lutterbeck et al., 2018), and rate measurements targeting NO reactions are missing. Impicitly,

we assume that NO cycles so rapidly that accumulation and transport by the oceanic circulation are negligible, and that its

dynamics can be folded into the cycle of other N tracers.

2.3 Model equations120

Heterotrophic reactions (i.e., organic matter remineralization) are parameterized as a function of the respective oxidants and

organic matter concentration, and expressed in carbon units per unit volume and time. Heterotropic reaction rates are assumed

to be first order in the concentration of organic matter, and limited by the oxidant following a Michaelis-Menten formulation

(Johnson and Goody, 2011). Anaerobic reactions are inhibited by the presence of O2, based on an exponential limitation term

(Dalsgaard et al., 2014). The resulting equation for a general heterotropic reaction is:125

RH = kH ·
[X]

[X] +KX
H

· e−
O2

Ko2
H ·POC (1)

Here, H indicates the heterotrophic process considered (e.g., dissimilatory reduction of NO−
3 to NO−

2 ), RH the heterotrophic

reaction rate (mmol C m−3 s−1); kH the specific reaction rate (s−1); [X] the concentration of the oxidant (i.e., O2, NO−
3 , NO−

2

or N2O); KX
H the half saturation constant for oxidant uptake (mmol m−3); Ko2

H the scale for inhibition of the reaction by O2

(mmol m−3); and POC the concentration of particulate organic matter in units of mmol C m−3. No O2 inhibition is applied130

to aerobic respiration (i.e., Ko2
H can be thought of as arbitrarily large).

Chemolithotropic reactions are proportional to the respective substrates. A maximum reaction rate is modulated by the

concentration of oxidants and reductants, following Michelis-Menten dynamics. For anaerobic reactions (here, anammox), an

O2-dependent inhibition term limits the reactions when O2 is present. The resulting equation for a general chemolithotrophic

reaction is:135

RA = kA ·
[X]

[X] +KX
A

· [Y]
[Y] +KY

A

· e
− O2

K
o2
A · (2)
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Here, A indicates the chemolithotropic process considered (e.g. anammox), RA the reaction rate (mmol N m−3 s−1); kA the

maximum reaction rate when the process is not limited (mmol N m−3 s−1); [X] and [Y] the concentrations of the oxidant and

reductant respectively (e.g., NO−
2 and NH+

4 for anammox);KX
A andKY

A the half saturation constants for oxidant and reductant

uptake respectively (mmol m−3); and Ko2
A the scale for inhibition of the reaction by O2 (mmol m−3). For aerobic reactions,140

Ko2
A is set to infinite, removing O2 inhibition.

Equations for each of the heterotrophic and chemolithotrophic reactions are presented in Appendix A1 and A2, respectively;

parameter names, units, and suggested values from the literature are presented in Table 1.

2.4 Model assumptions and parameterizations

In the model, we assume that heterotropic reactions proceed at a rate proportional to the concentration of organic matter, thus145

all organic matter can be utilized by microorganisms without saturation at high concentrations. Because of the low abundance

of organic matter in seawater, and extensive colonization of particles by heterotrophic bacteria, this is a reasonable first order

assumption. However, see Nguyen et al. (2022) for a discussion of microbial-particle interactions in ocean biogeochemical

models, and more complex aspect of their dynamics. For simplicity, we represent organic carbon by a single component. This

assumption is easily relaxed to include multiple carbon species, for example separate particulate or dissolved forms.150

We do not explicitly model conversion of dissolved CO2 to organic matter by chemolithotrophy, because of the small

rates compared to the remineralization of organic matter in the upper ocean. This assumption can also be relaxed in future

implementations of the model, allowing a more complete integration between chemolithotrophy and the carbon cycle.

The use of an exponential inhibition term for anaerobic reactions by O2 is based on the observation that they are limited

at O2 concentrations of few mmol m−3 or smaller (Dalsgaard et al., 2014; Babbin et al., 2015). However, coexistence of155

anaerobic and aerobic reactions at O2 concentrations of 10–20 mmol m−3 or higher is also observed (Kalvelage et al., 2011),

perhaps related to the presence of redox microenvironments within organic particles (Bianchi et al., 2018; Smriga et al., 2021),

which are not explictly considered here. The exponential inhibition formulation has the advantage of being controlled by a

single parameter, allows anaerobic reactions at finite O2 concentrations, and approximates empirical rates from incubation

experiments reasonably well (Dalsgaard et al., 2014).160

Parameter values for maximum reaction rates, half saturation constants, and O2 inhibition terms (Eq. (1) and (2)), are

informed by analysis of previous work, and further optimized against in situ observations of tracers and rates (Sect. 4). Table

1 presents a list of the model parameters and measured values based on a review of the literature. Note that these studies are

based on shipboard and laboratory incubations that differ in the setup, conditions, and microbial populations tested. Despite

these caveats, experimental results provide valuable starting points to further constrain parameter values in the model.165
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Table 1. Summary of the main NitrOMZ parameters, with typical values from the literature.

Parameter Description Units Value(s) Source(s)

krem Maximum aerobic remineralization rate d−1 0.08 Babbin et al. (2015)

kao Maximum NH+
4 oxidation rate µmol N m−3 d−1 45.56 ± 4.8 Bristow et al. (2016)

37.10 ± 1.2 Peng et al. (2016)

20 - 100 Ward (2008)

kno Maximum NO−
2 oxidation rate µmol N m−3 d−1 255.5 ± 17.3 Bristow et al. (2016)

63.3 ± 13.8 Sun et al. (2017)

55.7 ± 5.4 Sun et al. (2017)

kden1 Maximum NO−
3 reduction rate µmol N m−3 d−1 197 ± 26 Bristow et al. (2016)

kden2 Maximum NO−
2 reduction rate µmol N m−3 d−1 N/A N/A

kden3 Maximum N2O reduction rate µmol N m−3 d−1 N/A N/A

kax Maximum anammox rate µmol N m−3 d−1 N/A N/A

Ko2
rem O2 half saturation constant for oxic remineralization mmol O2 m−3 4 Babbin et al. (2015)

Knh4
ao NH+

4 half saturation constant for NH+
4 oxidation mmol N m−3 0.134 ± 0.005 Martens-Habbena et al. (2009)

Ko2
ao O2 half saturation constant for NH+

4 oxidation mmol N m−3 0.33 ± 0.13 Bristow et al. (2016)

3.6 ± 0.6 Peng et al. (2016)

Kno2
no NO−

2 half saturation constant for NO−
2 oxidation mmol N m−3 0.254 ± 0.161 Sun et al. (2017)

Ko2
no O2 half saturation constant for NO−

2 oxidation mmol N m−3 0.778 ± 0.168 Sun et al. (2017)

Kno3
den1 NO−

3 half saturation constant for NO−
3 reduction mmol N m−3 N/A N/A

Kno2
den2 NO−

2 half saturation constant for NO−
2 reduction mmol N m−3 N/A N/A

Kn2o
den3 N2O half saturation constant for N2O reduction mmol N m−3 N/A N/A

Knh4
ax NH+

4 half saturation constant for anammox mmol N m−3 N/A N/A

Kno2
ax NO−

2 half saturation constant for anammox mmol N m−3 N/A N/A

Ko2
den1 O2 exponential inhibition for NO−

3 reduction mmol O2 m−3 1.05 ± 0.72 Bristow et al. (2016)

Ko2
den2 O2 exponential inhibition for NO−

2 reduction mmol O2 m−3 0.429 ± 0.2 Dalsgaard et al. (2014)

2.16 ± 1.3 Ji et al. (2018)

Ko2
den3 O2 exponential inhibition for N2O reduction mmol O2 m−3 0.27 ± 0.05 Dalsgaard et al. (2014)

Ko2
ax O2 exponential inhibition for anammox mmol O2 m−3 1.28 ± 0.6 Dalsgaard et al. (2014)

Jia Nevison et al. (2003) ’a’ parameter % 0.11 ± 0.05 Santoro et al. (2021)

0.2 ± 0.13 Ji et al. (2018)

Jib Nevison et al. (2003) ’b’ parameter % 0.077 ± 0.07 Santoro et al. (2021)

0.08 ± 0.04 Ji et al. (2018)
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3 Model implementation

3.1 One-dimensional model setup

We implement the model for a 1D water column that includes physical transport by vertical advection and turbulent diffusion

(Wyrtki, 1962), and, if required, parameterized lateral transport by horizontal currents and eddies (Gnanadesikan et al., 2013;

Bettencourt et al., 2015). The model is configured to represent the typical weak upwelling conditions that characterize open-170

ocean oxygen minimum zones, following previous work (Babbin et al., 2015).

In the 1D framework, the conservation equation for the concentration [C] of a generic dissolved tracer can be written as:

∂[C]
∂t

=−∂ (wu · [C])
∂z

+
∂

∂z
Kv

(∂[C])
∂z

+
NH∑

i=1

(
ri
C,H ·Ri

H

)
+

NA∑

i=1

(
ri
C,A ·Ri

A

)
+LT (3)

Here, wu is the vertical upwelling velocity (m s−1) and Kv is the vertical turbulent diffusion coefficient (m2 s−1), both

of which can be a function of depth. The first and second summation are respectively over the NH heterotrophic and NA175

chemolithotrophic processes that involve the tracer (Eq. (1) and (2)), with ri
C,H and ri

C,A the corresponding stoichiometric

ratios. LT represents any parameterized lateral transport process. The explicit equations for each of the model tracers are

detailed in Appendix A5.

The lateral transport terms LT can be included to parameterize horizontal circulation by advection and diffusion in the 1D

framework. Typically, these terms are simplified by a linear restoring to far-field tracer concentration profiles (Babbin et al.,180

2015), [C]far, with a relaxation timescale τC (s):

LT =− 1
τC
·
(
[C]− [C]far

)
(4)

For typical open ocean conditions, τC can be estimated as the minimum of an advective timescale L
U and a diffusive timescale,

L2

KH
, where L, U , KH are respectively the horizontal spatial scale, the horizontal velocity scale, and the horizontal eddy

diffusion. Assuming L on the order of 1000 km, U on the order of 0.01 m s−1, and KH on the order of 1000 m2 s−1 results in185

a timescale τC = 108 s, i.e., on the order of 3 years.

3.2 Organic matter remineralization

In the 1D model implementation, we represent organic matter (OrgC and OrgN) as a single particulate organic carbon (POC)

class that sinks through the water column. We assume that this sinking is rapid compared to advection and diffusion, leading

to a steady-state distribution of POC that is only controlled by sinking and remineralization (Kriest and Oschlies, 2008). Since190

remineralization rates are proportional to the concentration of organic matter, the resulting steady-state 1D equation for POC

is:

∂ (ws ·POC)
∂z

=−
NH∑

i=1

Ri
H =

NH∑

i=1

(
keff,i

H

)
·POC (5)

9
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Here, ws is the depth-dependent sinking speed of POC in the water column, and keff,i
H (s−1) are the effective rate constants for

each heterotrophic process, i.e., the maximum rate constants multiplied by the respective substrate limitation and O2 inhibition195

terms (Eq. (1)).

Considering the flux of sinking POC, ΦPOC (mmolCm−2 s−1):

ΦPOC = ws ·POC, (6)

Equation 5 can be written as:

∂ΦPOC

∂z
=−

NH∑

i=1

Ri
H =−

NH∑

i=1

(
keff,i

H

)
·POC, (7)200

or, equivalently,

∂ΦPOC

∂z
=−

∑NH

i=1

(
keff,i

H

)

ws
·ΦPOC (8)

Equation 7 can be recast to relate the concentration of POC in the water column to the remineralization of the POC flux with

depth:

POC =− 1
∑NH

i=1

(
keff,i

H

) · ∂ΦPOC

∂z
(9)205

The advantage of Equation 9 is that it allows to diagnose sinking POC concentrations when the POC flux and remineral-

ization rate constants are known. In the 1D implementation of the model, we parameterize the POC flux following a typical

depth-dependent power-law function, or Martin curve (Martin et al., 1987; Berelson, 2001; Primeau, 2006):

ΦPOC = ΦPOC (z0) ·
(
z

z0

)−b

, (10)

where z0 is the upper boundary of the model, and b the power-law or Martin coefficient. A plot of the model POC is shown210

in Fig. C1. Another advantage of this formulation is that it allows coupling NitrOMZ to more complex parameterizations

for the remineralization of organic matter in ocean biogeochemical models, some of which rely on explicit representation of

sinking organic particles, and some of which only represent sinking organic particle fluxes in the water column (Moore et al.,

2004a; Dunne et al., 2010; Aumont et al., 2015; Stock et al., 2020; Long et al., 2021). Because NitrOMZ’s equation can be

cast as a function of prescribed vertical organic matter flux or remineralization profiles, the model can be coupled to existing215

biogeochemical models with minimal interference with their formulation of organic matter cycles.

3.3 Numerical implementation of the 1D model

For the purpose of testing and illustration, we implement NitrOMZ in a 1D representation of the water column, following

previous work (Babbin et al., 2015). Model tracers are discretize on a 1D vertical grid, with equal spacing ∆z = 10m, where z

is depth. Boundary conditions are set at the top (z0) and bottom grid (zbot) cells, as Dirichlet (or fixed concentration) boundary220
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conditions, with values taken from observations. The conservation equation for each tracer (following Eq. (3), see Sect. A5

for full equations) is then solved using a forward in time, centered in space numerical scheme, with a constant vertical grid

spacing, and the option for a variable or constant timestep. In the baseline simulations (Fig. 2), we adopt a timestep of 5 days

for the initial 650 year spinup, and decrease it to 3 hours for the final two years of the simulation (years 698 and 699) to increase

accuracy.225

The model is forced at the uppermost boundary by a flux of sinking POC, ΦPOC (z0) = ws (z0)·POC(z0), where POC(z0)

provides the boundary condition for POC. The flux ΦPOC remineralizes in the water column based on a Martin curve profile

(Eq. (10)). At each depth, the steady-state conservation equation for POC (Eq. (8)) is solved with a forward-in-space method,

using a depth-dependent sinking speed ws chosen to produce, together with the maximum aerobic remineralization rate con-

stant, krem, a POC flux profile matching a Martin curve with exponent b appropriate for the oxygenated ocean (Primeau, 2006;230

Weber and Bianchi, 2020). To this end, the sinking speed is calculated at each depth as:

ws =
kRem · z

b
(11)

The concentration of POC in the water column is then diagnosed using Equation 9, and used to calculate the heterotrophic

remineralization rates RH in Equation 1 (see Sect. A1).

Under constant forcings and boundary conditions, the model tracers evolve towards steady-state (∂[C]
∂t ≈ 0, Fig. 2) with a235

timescale τSS that can be estimated from the advection velocity wu, the turbulent vertical diffusion Kv , and the vertical scale

H , as the minimum between H
wu

and H2

Kv
. For wu on the order of 10 m y−1, Kv on the order of 10−5 m2 s−1, and a vertical

scale of 1000 m, the timescale to approach steady-state is τSS = 3·1010 s, or about 100 years.

Fig. 2 shows an example of model spinup to steady state in NitrOMZ, with parameters taken from an optimal solution

discussed in Sect. 5.2, and uniform initial tracer concentrations in the water column. At the start of the simulation, high water240

column O2 leads the aerobic remineralization (Rrem) to dominate total POC consumption. As the simulation proceeds, an O2

minimum develops in subsurface waters, reaching suboxic (< 10 mmol O2) concentrations around year 100. NO−
3 reduction

rates (Rden1) are relieved of O2 inhibition and begin to take up a larger fraction of total POC remineralization, as revealed by

the depletion of N∗, signaling NO−
3 consumption in the water column. Reduction of NO−

3 also leads to a subsurface peak in

NO−
2 within the O2-minimum (Fig. 2). With newly available NO−

2 substrate and low O2 conditions, NO−
2 reduction (Rden2)245

begins, resulting first in a subsurface spike in N2O. With further decrease in O2 concentrations, N2O is reduced to N2, leading

to a layer of low N2O concentrations within the OMZ that persists to the end of the simulation. Anammox (Rax) is similarly

relieved of O2 inhibition as the O2-minimum is established, reaching maximum values near the upper oxycline, reflecting

relatively high supply of both NO−
2 and NH+

4 .
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Figure 2. Example of spinup of the model. (top) Temporal evolution of O2, N2O, NO−
2 , N∗, and NH+

4 from initial ETSP boundary

conditions at year 0 to the final model solution at year 700 using the selected parameter set (Optsel) discussed in Sect. 5.2. Dashed black

curves highlight the 1 and 10 mmol O2 m−3 contours. (bottom) Same as (top), but for the heterotrophic rates of aerobic respiration (Rrem),

NO−
3 reduction (Rden1), NO−

2 reduction (Rden2), and N2O reduction (Rden3). The chemolithotrophic anammox rate (Rax) is also shown

in the far right panel.
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4 Model optimization strategy250

The model contains 23 major parameters that control the N cycle, some of which are relatively well constrained by observations

whereas others are poorly known and can plausibly span a broad range of values (Table 1). In the model, these parameters

approximate complex or poorly known aspects of microbial physiology, metabolism and ecology, and thus are intrinsecally

uncertain. In order to select a set of parameters that produces a realistic representation of the N cycle in OMZ, we adopt

a “metaheuristic” approach based on application of an optimization algorithm, following an established strategy in ocean255

biogeochemistry (Schartau and Oschlies, 2003; Ward et al., 2010; Kriest et al., 2017).

To conduct this optimization, we compile available tracer and biogeochemical rate observations for the Eastern Tropical

South Pacific (ETSP) OMZ from a July 2013 cruise aboard the R/V Nathaniel B. Palmer, for which abundant trace and rate

measurements are available (Fig. 5) (Ji et al., 2015b; Peng et al., 2016; Babbin et al., 2017, 2020), as well as from other

cruises in the region (Kalvelage et al., 2013). The observations are then used to define a cost function based on normalized260

squared deviations between model profiles and observations. The cost function is minimized by applying a Covariance Matrix

Adaptation Evolutionary Strategy algorithm (CMA-ES, discussed in Section 4.1), which finds a local optimal solution in the

model’s multi-dimensional parameter landscape.

The optimization is characterized by large dimensionality, strong non-linearity, a significant computational cost (requiring

several 10,000s model runs to converge), and inherent flexibility in the formulation of the cost function (Schartau and Oschlies,265

2003; Kriest et al., 2017). Thus, instead of seeking a single global optimal solution, we generate an ensemble of optimal

solutions that provide equally acceptable representations of OMZ processes based on the cost function. To this end, we apply

the optimization multiple times, varying the formulation of the cost function slightly, and assigning a random error to the

observations for each optimization. As a result, we produce a set of equally plausible optimal solutions that we further evaluate

to select a final parameter set based on additional comparisons with observations, which we use for further analysis.270

4.1 Optimization algorithm

The CMA-ES is a stochastic, population-based algorithm that seeks to minimize an objective cost function (Hansen et al.,

2009). The CMA-ES falls within the broader class of evolutionary optimization algorithms, where search for an optimal

solution proceeds by an iterative improvement of a population of parameters, with each iteration including a stochastic "evo-

lutionary" element, in loose analogy with biological processes of mutation, recombination and selection (illustrated in Fig.275

3). In contrast with typical evolutionary computation algorithms such as Genetic Algorithms, in the CMA-ES the mutation

and recombination operations are substituted by sampling from a multivariate normal distribution in which parameters (the

covariance matrix) are deterministically updated based on previous iteration steps (Hansen, 2006).

The CMA-ES has been shown to be more efficient (i.e., requiring fewer objective function evaluations), accurate (i.e., able

to approximate the global optimum), and robust (i.e., not overly sensitive to the initial choice of parameters), compared to other280

optimization algorithms, when applied to multi-dimensional, non-linear optimization problems (Hansen et al., 2009; Hansen,

2016). These properties make it suitable for optimization of ocean biogeochemical models (Kriest et al., 2017). A detailed
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description of the algorithm procedure can be found in Hansen (2016); an overview of the main steps of the algorithm, and its

application to ocean biogeochmsitry are presented in Kriest et al. (2017).

Figure 3. Flowchart of the CMA-ES optimization algorithm used to constrain uncertain model parameters.

4.2 Optimization implementation285

As an illustration of NitrOMZ, we perform a series of optimizations against ETSP OMZ observations. For this configuration,

we set a constant upwelling velocity but impose a variable vertical diffusion (Kv) profile, with lower diffusion in upper stratified

layers, and a transition to higher diffusion in deeper layers (Fischer et al., 2013) (Fig. C1, left panel). Since this simulation

targets the core of the OMZ, we turn off far-field tracer restoring. This simplifies analysis of model balances between transport

and reaction rates, while resulting in realistic tracer distributions. Top and bottom boundary conditions are listed in Table B3290

and are extracted from observations.

As a first step, we select parameters that control aerobic remineralization processes (Rrem) and lead to a realistic vertical O2

profile relative to ETSP observations, including the vertical position and thickness of anoxic waters (O2 < 5 mmol m−3) (Fig.

5). These consist of the vertical diffusion (Kv) and upwelling (wup) magnitude, the Martin curve coefficient (b), and the upper

ocean POC flux (Φtop
poc), based on values consistent with observations (Table B2 and Fig. C1). For simplicity, we also set the295

maximum aerobic remineralization rate (krem) and the NH+
4 and NO−

2 half saturation constants for NH+
4 and NO−

2 oxidation

(Knh4
ao and Kno2

no , respectively) to reported values in the literature (see Table 1). We then employ the CMA-ES algoritm in

NitrOMZ to optimize the remaining 20 parameters that control heterotrophic and chemolithotrophic reactions in Fig. 1, using

the range of parameter values listed in Table B1.

To optimized more uncertain parameters that control the anaerobic N cycle, we then conduct 4 sets of optimizations, with300

cost functions devised to match desired characteristics of tracer and rate profiles in the ETSP OMZ. Briefly, the cost function

is calculated as the mean square of the difference between observations and model output profiles for a series of variables that

include tracers and N transformation rates (listed in Table B2). Before each optimization, a random error of 20% is assigned

to each observation to increase the variability of observational constraints and improve the robustness of the optimization

ensemble by preventing it to always converge in the neighborhood of a specific local minimum controlled by non-relevant305

features of the observations. Three additional constraints are imposed to improve the fit to observations for N cycle processes

occurring within the core of the OMZ. First, different weights are assigned to each tracer, giving higher weight to N2O and
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NO2, which are central to the anaerobic N cycle. Because of possible influence from horizontal advection in observations,

discrepencies exist between modelled and observed NO−
3 and PO3−

4 . To compensate for this, we also assign lower weights to

NO−
3 and PO3−

4 , and higher weight to N∗. Second, a depth-dependent weighting scheme is included to emphasize the match310

to observations in the OMZ interior. This vertical weight is shaped as a Gaussian curve centered at the core of the observed

OMZ, so that values within the core of the OMZ are weighted up to twice as much as values outside the OMZ. Finally, N cycle

transformation rates are shifted vertically to match their depth relative to the oxycline (here defined as O2=1 mmol m−3) in

both model and observations, and rescaled by a factor proportional to observed vs. modeled POC flux in the upper ocean. The

only difference between the 4 sets of optimization are the relative weights assigned to each tracer, listed in Table B2. In total,315

we obtain 382 optimized parameter sets for further analysis.

15

https://doi.org/10.5194/gmd-2022-244
Preprint. Discussion started: 21 November 2022
c© Author(s) 2022. CC BY 4.0 License.



5 Results and sensitivity

5.1 Optimization results

The distributions of the parameter values from the 382 sets of optimizations (see Sect. 4.2 and Table B4) are shown in Fig. C2.

Rather than converging always to the same set of parameters, the optimization shows some variability for specific parameters.320

This reflects the stochastic nature of the CMA-ES algorithm, the inclusion of random variations in the observations, and the

highly non-linear nature of the optimization problem, which may allow for non-unique optimal solutions. Optimized maximum

rates (such as kao, kno, kden1, and kden3) and exponential O2 inhibition parameters for step-wise denitrification (Ko2
den2 and

Ko2
den3) reveal more variability than half-saturation concentration coefficients (K terms), which often settle to the minimum or

maximum allowed value (Table B1).325

Pairwise correlations in Fig. 4 reveal several parameters pairs which exhibit strong relationships, reflecting the fact that, in a

significantly non-linear optimization, similar results can be obtained by trade-offs between different parameters and processes.

Notably, the exponential O2 inhibition constants for NO−
2 and N2O reduction (Ko2

den2 and Ko2
den3, respectively) are strongly

correlated with each other (R = 0.73) and with other parameters controlling the denitrification steps. These include positive

correlations with the maximum rate parameters for NO−
3 and NO−

2 reduction (kden1 and kden2, respectively) and negative330

correlations with the half-saturation constants for NO−
2 and N2O reduction (Kno2

den2 and Kn2o
den3, respectively). These correla-

tions suggests tight couplings between modelled denitrification steps, wherein high/low maximum denitrification rates can be

compensated by lower/higher half-saturation coefficients, respectively.

Figure 4. Pairwise correlations between model parameters for model solutions optimized for the ETSP OMZ. See Table B1 for a list and a

description of the model parameters. Correlation is shown as the Pearson correlation coefficient, with dots representing p-values < 0.01.
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Considering the overall variability in the optimal parameter sets, N-cycle tracers show similar profiles across all optimal

solutions (Fig. 5, top panels). When compared to observations, the majority of parameter sets are able to skillfully model (1)335

the vertical distribution of O2, including the anoxic layer between roughly 100 to 400 m, (2) the subsurface maximum in NO−
2 ,

(3) the rapid attenuation of NH+
4 with depth, and (4) the subsurface minimum in N∗.

N cycle transformation rates also show similar consistency in their vertical profiles, albeit with more notable discrepancies

with observations, possibly reflecting the higher variability and more complex and indirect nature of these measurements. In

general, rates of NO−
2 production from NH+

4 oxidation (Rno2
ao ) areO(100) times larger than N2O production (Rn2o

ao ) and, along340

with NO−
2 oxidation rates (Rno), attenuate rapidly with depth, consitent with observations (Ji et al., 2015a, 2018; Santoro et al.,

2021). The step-wise denitrification rates (Rden1, Rden2, and Rden3) show remarkably similar vertical profiles, with higher

NO−
3 reduction rates (Rden1) and nearly identical magnitudes between Rden2 and Rden3. Anammox (Rax) shows a similar

profile as denitrification, albeit with enhanced local maxima near the upper and lower oxycline depths surrounding the OMZ

core, consistent with observations (Kalvelage et al., 2013).345

Figure 5. Results from the optimized ensemble of model solutions. (top) Tracer (O2, N2O, NO−
2 , NH+

4 , N∗, and N2) profiles from all 382

optimized ETSP parameter sets. The bold red curves show the selected parameter set (Optsel) discussed in Sect. 5.2. Observations used to

define the optimization cost function are shown as circles in each panel. (bottom) Same as in (top), but for reaction rate profiles of N2O

and NO−
2 production from NH+

4 oxidation (Rn2o
ao and Rno2

ao , respectively), NO−
3 NO−

2 , and N2O reduction (Rden1, Rden2, and Rden3,

respectively) and anammox (Rax).

Several robust features emerge from the optimized parameter solutions, suggesting underlying mechanisms that need to

be captured for a faithful representation of the OMZ N cycle. In particular, the differences in the exponential O2 inhibition

parameters for denitrification, shown in Fig. 6 (left panel), reveal the existence of progressively lower O2 tolerance for step-

wise denitrification (Ko2
den3 <Ko2

den2 <Ko2
den1) from all optimized parameter sets. As a result, denitrification can stop at either

N2O or NO−
2 as O2 increases above anoxic levels, leading to “incomplete” denitrification (Babbin et al., 2015).350

Within the anoxic core of the OMZ (∼100 to 350 m depth), O2 is low enough in all optimizations to allow each of the steps

to proceed unimpeeded (Fig. 5). The large differences between NO−
3 and NO−

2 reduction (Rden1 - Rden2, middle panel of
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Fig. 6) allows accumulation of a characteristic subsurface peak in NO−
2 near the OMZ core. Conversely, N2O produced via

NO−
2 reduction (Rden2) is quickly consumed via N2O reduction (Rden3) leading to a pronounced N2O deficit near the OMZ

core. The progressive O2 inhibition of the three steps of denitrification results in a decoupling between these reactions that is355

particularly evident in the oxycline layers above and below the OMZ, where N2O accumulation dominates as N2O reduction

(i.e., consumption) is more strongly inhibited by O2 than NO−
2 reduction (i.e., N2O production, right panel of Fig. 6). Thus,

the O2 range defined byKo2
den2 andKo2

den3 can be thought of as a N2O-production “window” that allows net N2O accumulation

in the water column (Babbin et al., 2015).
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Figure 6. Progressive O2 inhibition of denitrification steps. (left) Histogram showing the distribution for all optimized solutions of the

difference in the O2 inhibition constant for NO−
3 and NO−

2 reduction (Ko2
den1 and Ko2

den2, in dark gray), and NO−
2 and N2O reduction

(Ko2
den2 and Ko2

den3, in light gray). The small red markers denote the values from Optsel. (middle) Rate differences between NO−
3 and NO−

2

reduction (Rden1 and Rden2). Shading represents the 10/90 and 25/75 percentile at each vertical level from the 382 analyed parameter sets.

The bold red curves denote Optsel results. (right) Same as (middle), but for the difference in NO−
2 and N2O reduction rates (Rden2 and

Rden3).

The vertical profile of the step-wise denitrification rates (Rden1, Rden2, and Rden3) shows remarkable agreement across360

solutions, with only a small subset of parameter sets that behave as outliers (Fig. 5). As a consequence, the fraction of POC

remineralized by each heterotrophic reaction remains consistent across optimizations (Fig. 7, top panels). Near the base of the

euphotic zone, around 30 m depth, aerobic remineralization (Rrem) far exceeds denitrification, reflecting O2 inhibition of the

latter. However, as O2 decreases to suboxic levels around 100 m depth, NO−
3 reduction becomes the dominant remineralization

pathway (up to 60% of total remineralization). As O2 drops further within the OMZ core (∼100 to 350 m depth), NO−
2 and365

N2O reduction rapidly take up the remaining fraction (∼25% and 15%, respectively), albeit with more variability than near

the euphotic zone. Below the OMZ, as the water column reverts to oxic conditions, aerobic remineralization dominates, and

by 500 m depth, all solutions show essentially no denitrification.

The processes responsible for fixed nitrogen loss (anammox, NO−
2 reduction, and N2O production from NH+

4 oxidation) are

also consistent across optimizations (Fig. 7, bottom panels). Within oxygenated waters, N2O production from NH+
4 oxidation370

(Rn2o
ao ) is by far the dominant fixed N loss term. Anammox (Rax) becomes the dominant term within the upper and lower

oxycline, consistent with observations (Babbin et al., 2020). In the anoxic OMZ core, NO−
2 reduction contributes up to 60%,
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with anammox making up the remainder 40% (Fig. 5). This is somewhat higher than expected from purely stoichiometric

constraints (Koeve and Kähler, 2010; Bianchi et al., 2014), likely reflecting vertical transport of NO−
2 and NH+

4 , co-occurrence

of aerobic and anaerobic processes, and the higher O2 threshold for anammox inhibition in oxygenated waters.375

10 9025 7550
Percentile (%)

10 9025 7550
Percentile (%)

Figure 7. Contribution of different reactions to organic matter remineralization and fixed N loss. (top) Fraction of total POC remineralized

by each heterotrophic rate (Rrem, Rden1, Rden2, and Rden3). Shading represents the 10/90 and 25/75 percentile at each vertical level from

the 382 analyed parameter sets. The bold red curves denote the selected parameter set (Optsel) discussed in Sect. 5.2. (bottom) Same as (top),

but for the fraction of total fixed nitrogen loss (via production of N2 and N2O) from anammox (Rax), NO−
2 reduction (Rden2), and N2O

production from NH+
4 oxidation (Rn2o

ao ).

5.2 Selected solution for the Eastern Tropical South Pacific

Among tracers, N2O profiles show significant variability between optimizations, with only a subset able to reproduce the

observed magnitude of the secondary N2O peak at the lower oxycline (roughly 500 m depth, see Fig. 5). Additionally, while

most optimizations are able to reproduce the OMZ peak in NO−
2 , significant variability in its magnitude exists. Given the

central roles of N2O and NO−
2 in both nitrification and denitrification pathways (Fig. 1), and the importance of oceanic N2O380

emissions to the atmosphere, we assign high priority to optimizations that reproduce realistic features in the distribution of these

tracers, in particular a higher magnitude for the secondary N2O maximum. To this end, we select a parameter set (hereafter
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Optsel) which results in N2O and NO−
2 profiles closer to observations (bold red curves in Fig. 5, with parameter values reported

in Table B1). We use this Optsel parameter set for further analysis of the model sensitivity.

Compared to the other parameter sets, Optsel is characterized by weaker maximum NH+
4 and NO−

2 oxidation rates (kao385

and kno, respectively) and lower half saturation constants for reductant uptake (Knh4
ao and Kno2

no , respectively) (Fig. C2). In

surface oxygenated waters, this results in relatively higher NH+
4 and NO−

2 (Fig. 5). In contrast, maximum denitrification

rates (kden1, kden2, and kden3) are close to the median values from all optimizations. Rates of NO−
2 and N2O reduction

(Rden2 and Rden3, respectively) are generally larger than other solutions, in particular near the lower oxycline (Fig. 5). This

increases POC consumption within this depth range via denitrification compared to other solutions (Fig. 7). As a consequence,390

the residual between the NO−
3 and NO−

2 reduction (Rden1 - Rden2, see Fig. 6) leads to higher NO−
2 accumulation at these

depths, providing the necessary NO−
2 substrate to fuel either NO−

2 reduction (i.e. N2O production) or anammox. Since the

parameterization scheme in Optsel also results in reduced NO−
2 oxidation (Rno) and anammox (Rax) rates (see Fig. 5), likely

because of higher half saturation constants for substrate uptake (Knh4
ax and Kno2

ax ), more NO−
2 is available for reduction by

denitrification, leading to a surplus in production (Rden2) relative to consumption (Rden3), and high concentrations of N2O at395

the lower oxycline.

5.3 Sensitivities to model parameters

As shown in Sect. 5.1 and Fig. 4, strong correlations exist between parameter pairs in the optimization ensemble. Since Optsel

demonstrates good comparisons with ETSP tracer and rate observations, we perform a series of sensitivity tests around param-

eters (P ) most responsible for controlling specific features (F ) of the tracer distributions. These include surface concentrations400

of NH+
4 and NO−

2 , the peak NO−
2 concentration in the OMZ, the N2O concentrations at the primary and secondary N2O

maxima, and the minimum in the OMZ NO−
3 deficit (i.e., N∗). Additionally, we evaluate which parameters govern total N loss,

including the fractional contribution of anammox, the partitioning of POC consumption via NO−
3 , NO−

2 , and N2O reduction,

and total N2O production and air-sea flux (here, approximated by the vertical transport at the upper model boundary). To this

end, we calculated the sensitivity coefficient (φij) for each P and F pairing by evaluating the impact of varying each Optsel P405

value by ± 5% of its range in Table B1, and recording the resulting relative change in the F :

φij =
Pi

Fj
· ∂Fj

∂Pi
(12)

The results demonstrate high sensitivity to changes in the maximum rates for all reactions (Fig. 8). Specifically, higher

maximum rates correlate negatively with the concentrations of their substrates, and positively with the concentrations of their

products. For example, increasing kden1 results in an increase in OMZ NO−
2 , and a decrease in OMZ N∗. Similarly, increasing410

kden2 decreases OMZ NO−
2 and increases N2O concentrations in the upper and lower oxycline, and its flux to the atmosphere.

These impacts are further modulated by the half saturation and O2 inhibition constants.

Fig. 9 and 10 further summarize the sensitivities to the maximum denitrification rates and their inhibition by O2, detailing

the resulting changes to N2O, NO−
2 , and N∗ profiles. As expected, changes in maximum rates affect reaction substrates

and products in opposite ways. For example, a positive perturbation of kden2 increases N2O (and N∗), and decreases NO−
2415
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Figure 8. Sensitivity coefficient (φij = Pi
Fj
· ∂Fj

∂Pi
) for Optsel parameters (Pi) and features (Fj) of the model solution. Here, each parameter is

varied by ± 5% of their respective CMA-ES allowed ranges in Table B1 to evaluate the relative impact to each feature of the model solution.

nearly everywhere. However, these sensitivities have also specific depth-dependent signatures. While changes in NO−
2 are

more pronounced within the OMZ core, in particular the upper section, changes in N2O are stronger at the upper and lower

oxyclines, i.e., within the N2O production window defined by Ko2
den2 and Ko2

den3 (see Sect. 5.1).

Fig. 8 and 10 highlight significant sensitivities to the O2 inhibition constants, which control O2-dependent modulation of

the maximum reaction rates. These effects are particularly evident at the boundaries of the OMZ. For example, an increase in420

Ko2
den2 allows for more NO−

2 reduction at higher O2, leading to a slight depletion in OMZ NO−
2 and, as a consequence, an

increase to suboxic N2O concentrations (Fig. 10, middle panels). In a similar manner, an increase in Ko2
den3 leads to more N2O

reduction, reducing the magnitude of both the primary and secondary N2O peaks, while leaving other OMZ tracers (NO−
2 , N∗)

relatively unaffected.

5.4 Sensitivities to environmental variables425

The main features of the OMZ simulated by the model are strongly dependent on environmental parameters such as upwelling

and mixing, organic matter fluxes, and the model boundary conditions. While each of these parameters control OMZ tracer

profiles and N cycle reactions in complex ways, the main responses can be ascribed to changes in the position, thickness,

and strength of the anoxic OMZ layer. Perturbations that replenish O2 above the thresholds for anoxic processes have thus

cascading impacts on anaerobic N cycle intermediates such as NO−
2 and N2O, and on the fixed N removal and NO−

3 deficit.430
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Figure 9. Model sensitivity to parameter values. Panels show changes to N2O, NO−
2 , and N∗ for the Optsel parameter set after varying the

maximum NO−
3 , NO−

2 , and N2O reduction rate parameters (kden1, kden2, and kden3 by ± 5% of their Optsel value B1. Background gray

shadings show O2 concentrations, with horizontal lines higlighting O2=1 mmol m−3 (dotted lines) and O2=10 mmol m−3 (dashed lines)

Fig. 11 shows the sensitivity of the optimal solution Optsel to the magnitudes of vertical upwelling (wup) and turbulent

diffusion (Kv). Increasing wup results in higher O2 supply from below the OMZ, leading to increasing O2 concentrations, and

an upward shift and thinning of the anoxic layers. At high upwelling, the anoxic layer is effectively wiped out and is replaced

by a suboxic layer. Similar results are obtained with higherKv values, with an increase of diffusive O2 supply from both above

and below the OMZ, resulting in a progressive shrinking of the anoxic layer. As the anoxic layer vanishes, anaerobic processes435

cease, drastically reducing the concentration of NO−
2 and the N deficit in the OMZ core. Notably, as the OMZ reaches the

brink of anoxia, i.e., as the minimum O2 concentration falls within the N2O production window, the upper and lower N2O

maxima merge into a single N2O spike with particularly high N2O concentrations, reflecting the largest imbalance between

production and consumption. Opposite changes are observed for a reduction in both wup and Kv , which result in an expansion

of the OMZ layer, increased NO−
3 , NO−

3 , and N2O reduction, a larger OMZ NO−
2 peak, and a broader separation of the upper440

and lower N2O maxima.
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Figure 10. Same as in Fig. 9, but for ± 5% variations in the O2 inhibition constants for NO−
3 , NO−

2 , and N2O reduction (Ko2
den1, Ko2

den2,

and Ko2
den3).

Because the supply of POC to the OMZ controls the overall magnitude of remineralization reactions, including O2 con-

sumption and denitrification, the model is particularly sensitive to the sinking POC flux at the upper model boundary (Φtop
poc,

Table B3; Fig. 12, top panel). Increasing Φtop
poc causes a greater remineralization rate, which reduces available O2, and drives

a progressive thickening of the OMZ, with a series of cascading impacts on tracers similar to the ones discussed above. In445

contrast, decreasing Φtop
poc reduces the Rrem rates and increases O2 to the point that anoxic conditions and their signature

disappear.

Similar changes can also be driven by variations in the bottom boundary O2 concentration, which directly controls upward

O2 supply by upwelling (Fig. 12, bottom panel). Increasing bottom O2 progressively decreases the thickness of the OMZ,

shifting it upwards, and eventually eroding the anoxic layer. Conversely, decreasing bottom O2 leads to a downward expansion450

of the OMZ and an intensification of anoxic conditions and the resulting anaerobic reactions.
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Figure 11. Model sensitivity to physical drivers. (top) Sensitivity of the Optsel optimized solution to the constant vertical upwelling velocity

(wup). (bottom) Sensitivity to the vertical turbulent diffusion coefficient (Kv). The bold black curves indicate original Optsel values, which

are also indicated on their respective colorbars.
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Figure 12. Model sensitivity to biogeochemical drivers. Same as in Fig. 11, but for surface POC flux (Φtop
poc) and O2 concentration at the

lower model boundary.
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6 Discussion and conclusions

We developed a model of the N cycle in low O2 waters, and optimized it to reproduce observations from the ETSP OMZ. The

model is able to simulate the distribution of multiple N cycle tracers, including NO−
2 and N2O, and their transformation rates,

capturing the underlying dynamics and environmental sensitivity of the underlying reactions (Fig. 5). In general, the model455

reproduces observed tracer concentration profiles more accuratetely than transformation rates. Mismatches with transformation

rates may point to processes that need improvement in the model, but also underscore limitations in rate measurements, which

rely on shipboard incubation experiments that are usually more uncertain and limited in number than tracer measurements, and

may not perfecly reflect in situ conditions. However, by matching observed reaction rates to a reasonable degree, the model

reproduces tracer distributions by capturing the correct underlying dynamics. Co-located tracer and rate measurements for460

multiple processes are thus an effective way to constrain the model representation of the anaerobic N cycle.

The optimization indicates that multiple parameter sets can produce equally good fits to tracer and rate profiles (Fig. 5). This

is expected given the non-linear nature of the model, and limitations in the observations. Even when rate measurements are

used to constrain the model, an ensemble of equally good solutions is thus possible. This optimized ensemble shows that signif-

icant variability and trade-offs can exist between specific parameters (Fig. 4), suggesting that compensation between different465

procesess can lead to similar profiles of tracers and transformation rates. Further refinements to the criteria used to optimize

the model, i.e., additional constraints in the definition of the cost function, could allow to further narrow down plausible sets

of parameters. For example, to evaluate the model sensitivity (Fig. 8-10), we select a parameter set from our optimization

ensemble that better captures the magnitude of the secondary N2O maximum, while reproducing other observational features

equally well. While we adopt a relatively simple definition for the optimization cost function, additional constraints such as470

this one could be explicitly built into its formulation and weighted more heavily to further refine parameter selection.

A better characterization of environmental sensitivities to substrate concentrations (e.g., half saturation constant for substrate

uptake) and O2 sensitivities would also help parameter selection, for example by narrowing down their prior (and posterior)

range of values. To this end, rate measurements under a range of O2 and substrate concentrations are especially helpful.

Similarly, simultaneous optimization of the model to reproduce observations across multiple regions of an OMZ characterized475

by different conditions, e.g., the core and the bundaries, or across different OMZ and oceanographic regimes, would likely

result in more robust optimizations.

Despite the variability in parameter values, analysis of the optimal ensemble suggests emerging features that appear robust

across multiple optimizations. For example, the sensitivity of denitrification processes to O2 shows systematic variations, with

weaker O2 inhibition for NO−
3 reduction, and stronger for N2O reduction (Fig. 6). Accordingly, NO−

3 reduction to NO−
2 tends480

to occur at higher O2 concentrations than NO−
2 reduction to N2O, which in turns occurs at higher O2 concentrations than N2O

reduction to N2. In the model, this O2 sensitivity offset supports an O2-dependent production window for N2O, which allows

net accumulation of N2O at the margins of the OMZ core, i.e., along the upper and lower oxyclines. This, and other systematic

relationships between parameters and features of the solutions, as revealed by a sensitivity analysis (Fig. 8-10), shed light on
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specific balances in the N cycle, and can be exploited as a powerful tool to fine-tuning the model, both in the 1D setup used485

here, and in more complex and resource-intensive 3D implementations where a formal optimization would be unfeasible.

Because the model is based on a mechanistic representation of N transformations, it is suitable to investigate the response of

the N cycle to environmental variability and other perturbations (Fig. 11,12). For example, the model could be used to investi-

gate the effects of eddy variability near the boundaries of OMZs, or the effects of OMZ expansion under global change. With

these goals in mind, the model is designed to be coupled to the biogeochemical component of the current generation of Earth490

System Models, enabling accurate simulation of NO−
2 and N2O dynamics, with minimal interference with the representation

of the cycles of oxygen, nutrients, carbon, and organic matter.

While the model reflects our current understanding of the N cycle, its assumptions can be re-evaluated as new N transfor-

mation processes and aspects of microbial dynamics are uncovered. Because of its modular design, the model can be naturally

expanded to represent additional processes that, while thought to be relevant in OMZ, are still uncertain. These include: (1)495

Alternative oxidation pathways, for example NO−
2 oxidation with iodate, or NO−

2 disproportionation reactions (Babbin et al.,

2020; Sun et al., 2021a); (2) Coupling of N tracers with the cycles of other elements, e.g. carbon, sulfur and iron, such as

chemolithotrophic denitrification coupled to hydrogen sulfide (H2S) oxidation, or anaerobic NO−
2 -based methane (CH4) ox-

idation (Azhar et al., 2014; Scholz et al., 2016; Thamdrup et al., 2019; Callbeck et al., 2021); (3) Explict representation of

chemolithrotrophy and its effects on organic matter fixation (Swan et al., 2011); (4) Explicit coupling to the inorganic carbon500

cycle, by inclusion of CO2 and alkalinity changes associated with N cycle reactions; (5) The cycling of nitric oxide (NO), a

very reactive intemediate in N transformations that is generally not considered in models (Ward and Zafiriou, 1988; Lutterbeck

et al., 2018); (6) A more detailed representation of the microbial dynamics of underlying the N cycle, with inclusion of explicit

populations and processes such as growth, competition, mortality, and metabolite exchanges (Louca et al., 2016; Zakem et al.,

2018; Penn et al., 2019).505

Code and data availability. The current version of NitrOMZv1.0 is available from the project website: https://doi.org/10.5281/zenodo.7106213.

The exact version of the model used to produce the results used in this paper is archived on Zenodo (Daniele Bianchi, Simon Yang, and Daniel

McCoy. (2022). NitrOMZv1.0 Model Code (1.0). Zenodo. https://doi.org/10.5281/zenodo.7106213), as are input data and scripts to run the

model and produce the plots for all the simulations presented in this paper (Bianchi et al., 2022).
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Appendix A: NitrOMZ Equations

A1 Heterotrophic rate equations

Rrem = krem ·
O2

Ko2
rem + O2

·POC (A1)

Rden1 = kden1 ·
NO−

3

Kno3
den1 + NO−

3

· e
−O2

K
o2
den1 ·POC (A2)

Rden2 = kden2 ·
NO−

2

Kno2
den2 + NO−

2

· e
−O2

K
o2
den2 ·POC (A3)

Rden3 = kden3 ·
N2O

Kn2o
den3 + N2O

· e
−O2

K
o2
den3 ·POC (A4)

A2 Chemolithotrophic rate equations

Rao = kao ·
O2

Ko2
ao + O2

· NH+
4

Knh4
ao + NH+

4

(A5)

Rno = kno ·
O2

Ko2
no + O2

· NO−
2

Kno2
no + NO−

2

(A6)

Rax = kax ·
NH+

4

Knh4
ax + NH+

4

· NO−
2

Kno2
ax + NO−

2

· e
−O2
K

o2
ax (A7)

A3 Aerobic N2O production520

Production of N2O via the nitrification pathway in NitrOMZ (pathway 2b in Fig. 1) is modelled as a by-product of Rao with

enhanced yields at lower O2 concentrations. The partitioning between N2O and NO−
2 production from Rao is calculated using

the function proposed by Nevison et al. (2003), which was derived by fitting measured N2O and NO−
2 yields (Y n2o

ao and Y no2
ao ,

respectively) to oxygen concentrations (Goreau et al., 1980), and re-fit by multiple observations in the Eastern Tropical North

and South Pacific OMZ (Ji et al., 2015a, 2018; Santoro et al., 2021):525

Y n2o
ao

Y no2
ao

=
(
Jia
[O2]

+ Jib

)
· 0.01 (A8)

Nitrification-derived NO−
2 and N2O production rates (Rno2

ao and Rn2o
ao respectively, pathways 2a and 2b in Fig. 1) are therefore

represented as:

Rn2o
ao =Rao ·Y n2o

ao , (A9)

Rno2
ao =Rao ·Y no2

ao . (A10)

A4 Stoichiometry

The stoichiometry of heterotrophic redox reactions assumes that organic matter (POC) follows the average oceanic ratios from

Anderson and Sarmiento (1994): C106H175O42N16P. This chemical composition can be adjusted in NitrOMZ. The NH+
4 to C530
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and PO3−
4 to C ratios during aerobic respiration are therefore represented as:

QN :C
rem =

16
106

, (A11)

QP :C
rem =

1
106

. (A12)

As a result of the POC composition, a total of 472 electrons are required to oxidize POC to CO2. With 4 electrons required to

reduce O2 to H2O, the oxygen to carbon remineralization ratio for aerobic respiration is represented as:

QO:C
rem =

472
106 · 4 , (A13)

For denitrification, 2 electrons are required for each respective reduction step (NO−
3 to NO−

2 , NO−
2 to N2O, and N2O to N2),

thus the corresponding ratios can be represented as:535

QN :C
den =

472
106 · 2 (A14)

The above ratios are then applied to the tracer equations in Sect. A5.

A5 Tracer sources-minus-sinks equations

d[POC]
dt

=−(Rrem +Rden1 +Rden2 +Rden3) (A15)

d[O2]
dt

= (QO:C
rem ·Rrem)− (1.5 ·Rao)− (0.5 ·Rno) (A16)

d[NO−
3 ]

dt
=Rno− (QN :C

den ·Rden1) (A17)

d[PO3−
4 ]

dt
=QP :C

rem · (Rrem +Rden1 +Rden2 +Rden3) (A18)

d[NH+
4 ]

dt
=QN :C

rem · (Rrem +Rden1 +Rden2 +Rden3)− (Rao +Rax) (A19)

d[NO−
2 ]

dt
=Rno2

ao +QN :C
den · (Rden1−Rden2)− (Rno +Rax) (A20)

d[N2O]
dt

= 0.5 · (Rn2o
ao +QN :C

den ·Rden2)− (Qden
N :C ·Rden3) (A21)

d[N2]
dt

= (QN :C
den ·Rden3) +Rax (A22)

(A23)
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Appendix B: NitrOMZ Parameters and Configurations

Table B1. NitrOMZ nitrogen cycle parameters and CMA-ES optimization ranges.

Parameter Description Units CMA-ES

Min Value

CMA-ES

Max Value

Optsel

ETSP

Jia Nevison et al. (2003) ’a’ parameter N/A 0.0500 0.4000 0.4000

Jib Nevison et al. (2003) ’b’ parameter N/A 0.0500 0.2000 0.2000

krem Maximum aerobic respiration rate d−1 N/A N/A 0.0800

kden1 Maximum NO−
3 reduction rate d−1 0.0080 0.0800 0.0205

kden2 Maximum NO−
2 reduction rate d−1 0.0080 0.0800 0.0080

kden3 Maximum N2O reduction rate d−1 0.0080 0.0800 0.0496

kao Maximum NH+
4 oxidation rate µmol N m−3 d−1 0.0100 0.5000 0.0167

kno Maximum NO−
2 oxidation rate µmol N m−3 d−1 0.0100 0.5000 0.0118

kax Maximum anammox rate µmol N m−3 d−1 0.0100 0.5000 0.4411

Ko2
rem O2 half saturation constant for aerobic respiration mmol O2 m−3 0.0100 1.0000 1.0000

Knh4
ao NH+

4 half saturation constant for NH+
4 oxidation mmol N m−3 0.0100 1.0000 0.5091

Ko2
ao O2 half saturation constant for NH+

4 oxidation mmol O2 m−3 N/A N/A 0.3300

Kno2
no NO−

2 half saturation constant for NO−
2 oxidation mmol N m−3 0.0100 1.0000 0.3053

Ko2
no O2 half saturation constant for NO−

2 oxidation mmol O2 m−3 N/A N/A 0.7780

Kno3
den1 NO−

3 half saturation constant for NO−
3 reduction mmol N m−3 0.0100 1.0000 1.0000

Kno2
den2 NO−

2 half saturation constant for NO−
2 reduction mmol N m−3 0.0100 1.0000 0.0100

Kn2o
den3 N2O half saturation constant for N2O reduction mmol N m−3 0.0100 0.2000 0.1587

Knh4
ax NH+

4 half saturation constant for anammox mmol N m−3 0.1000 1.0000 1.0000

Kno2
ax NO−

2 half saturation constant for anammox mmol N m−3 0.1000 1.0000 1.0000

Ko2
den1 O2 exponential inhibition for NO−

3 reduction mmol O2 m−3 0.0100 6.0000 6.0000

Ko2
den2 O2 exponential inhibition for NO−

2 reduction mmol O2 m−3 0.0100 3.0000 1.2993

Ko2
den3 O2 exponential inhibition for N2O reduction mmol O2 m−3 0.0100 3.0000 0.5060

Ko2
ax O2 exponential inhibition for anammox mmol O2 m−3 0.5000 6.0000 6.0000
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Table B2. ETSP configuration for optimization routines.

Name Description Unit Value

ztop Minumum model depth m -30

zbot Maximum model depth m -1330

wup Upwelling velocity (constant) m y−1 10.0562

Ktop
v Upper boundary vertical diffusion coefficient m2 y−1 750.9983

Kbot
v Lower boundary vertical diffusion coefficient m2 y−1 1072.8547

Kflex
v Variable (sigmoidal) vertical diffusion parameter m -250

Kwidth
v Variable (sigmoidal) vertical diffusion parameter m 300

Φtop Initial POC flux @ -30m mmol C m−2 d−1 -11.1

krem Maximum aerobic remineralization rate d−1 0.0800

b Martin coefficient N/A -0.7049

Table B3. ETSP boundary conditions.

Tracer Units Top Bottom

O2 mmol m−3 225.00 77.00

NO−
3 mmol m−3 2.81 42.50

PO3−
4 mmol m−3 0.82 3.06

N2O µmol m−3 13.00 35.00

NO−
2 mmol m−3 0.15 0.00

NH+
4 mmol m−3 0.40 0.00

N2 mmol m−3 2.00 6.00

Table B4. Optimized ETSP parameter sets.

Name Parameter

Sets

# of

Iterations

Perturbations Tracer Weights

(O2, NO−
3 , PO3−

4 , N2O, NH+
4 , NO−

2 ,

N∗)

Rate Weights

(Rn2o
ao , Rden1, Rden2, Rax)

optVKv-v6 45 40k 20% 2, 1, 1, 6, 2, 4, 4 1, 1, 1, 1

optVKv-v7 69 40k 20% 2, 1, 1, 8, 0, 4, 4 1, 1, 1, 1

optVKv-v8 110 40k 20% 2, 1, 1, 12, 2, 4, 4 1, 1, 1, 1

optVKv-v9 158 40k 20% 2, 1, 1, 12, 2, 8, 4 1, 1, 1, 1
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Appendix C: Supplemental Figures540

2.5 3 3.5

10
-5

-1200

-1000

-800

-600

-400

-200

0 1 2 3

Figure C1. (left) Optsel vertical diffusion (Kv) and (right) POC profiles.
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Figure C2. Parameter distributions from the 382 CMA-ES optimized ETSP solutions. Red markers denote Optsel values.
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