
Formulation, optimization and sensitivity of NitrOMZv1.0, a
biogeochemical model of the nitrogen cycle in oceanic oxygen
minimum zones
Daniele Bianchi1, Daniel McCoy1, and Simon Yang1

1University of California Los Angeles, CA

Correspondence: Daniele Bianchi (dbianchi@atmos.ucla.edu)

Abstract.

Nitrogen (N) plays a central role in marine biogeochemistry by limiting biological productivity in the surface ocean, in-

fluencing the cycles of other nutrients, carbon, and oxygen, and controlling oceanic emissions of nitrous oxide (N2O) to the

atmosphere. Multiple chemical forms of N are linked together in a dynamic N cycle that is especially active in oxygen mini-

mum zones (OMZs), where high organic matter remineralization and low oxygen concentrations fuel aerobic and anaerobic N5

transformations. Biogeochemical models used to understand the oceanic N cycle and project its change often employ simple

parameterizations of the network of N transformations and omit key intermediary tracers such as nitrite (NO−
2 ) and N2O. Here

we present a new model of the oceanic N cycle (Nitrogen cycling in Oxygen Minimum Zones, or NitrOMZ) that resolves

N transformation occurring within OMZs, and their sensitivity to environmental drivers. The model is designed to be easily

coupled to current ocean biogeochemical models by representing the major forms of N as prognostic tracers, and parameter-10

izing their transformations as a function of seawater chemistry and organic matter remineralization, with minimal interference

with other elemental cycles. We describe the model rationale, formulation, and numerical implementation in a one-dimensional

representation of the water column that reproduces typical OMZ conditions. We further detail the optimization of uncertain

model parameters against observations from the Eastern Tropical South Pacific OMZ, and evaluate the model ability to repro-

duce observed profiles of N tracers and transformation rates in this region. We conclude by describing the model sensitivity to15

parameter choices and environmental factors, and discussing the model suitability for ocean biogeochemical studies.
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1 Introduction

Nitrogen (N) limits phytoplankton production over large swathes of the ocean (Moore et al., 2013). Most of the N in the ocean

is present as dissolved dinitrogen gas (N2); however, only fixed N, e.g., ammonium (NH+
4 ) and nitrate (NO−

3 ), can be readily

utilized by planktonic microorganisms, with the exception of N-fixing diazotrophs (Capone et al., 2008). The inventory and20

chemical form of N in the ocean are controlled by an active nitrogen cycle, whereby different chemical forms of the element

are utilized as substrates for growth by a variety of microorganisms, either to supply building blocks for organic molecules, or

to fuel metabolism via redox reactions (Capone et al., 2008; Kuypers et al., 2018). As a result, the residence time of fixed N in

the ocean is on the order of 3,000 years or less, about one order of magnitude shorter than for the macronutrient phosphorous

(Gruber and Galloway, 2008; Wang et al., 2019).25
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Figure 1. Schematic of the main N cycle tracers and reactions represented by NitrOMZ. Tracers are shown in bold, ordered by the oxidation

state of N, and consist of organic nitrogen (OrgN), ammonium (NH+
4 ), nitrate (NO−

3 ), nitrite (NO−
2 ), nitrous oxide (N2O), and dinitrogen

(N2). N transformation reactions are shown as arrows connecting reactants and products. Green arrows represent nutrient uptake and nitrogen

fixation rates (not explicitly represented in the model, which focuses on subsurface reactions). The black arrow corresponds to (1, Rrem)

release of NH+
4 by organic matter remineralization (i.e., ammonification). Blue arrows denote aerobic transformations: (2a, Rno2

ao ) NH+
4

oxidation to NO−
2 , (2b, Rn2o

ao ) NH+
4 oxidation to N2O, and (3, Rno) NO−

2 oxidation to NO−
3 . Red arrows represent anaerobic processes:

(4, Rden1) NO−
3 reduction to NO−

2 , (5, Rden2) NO−
2 reduction to N2O, (6, Rden3) N2O reduction to N2, and (7, Rax) anaerobic NH+

4

oxidation (anammox) with NO−
2 to N2.

The ocean’s inventory of fixed N is dominated by NO−
3 , and the main N cycle reactions consist of uptake and assimila-

tory reduction of NO−
3 to NH+

4 (here used interchangeably with ammonia, NH3), and the oxidation of NH+
4 back to NO−

3

following the decomposition of organic matter and nitrification (Fig. 1). Only when the concentration of dissolved oxygen

(O2) drops to suboxic or anoxic levels (typically below 5 mmol m−3), additional metabolic pathways involving N become
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relevant, as observed in the ocean’s oxygen minimum zones (OMZs) and low-O2 sediments (Lam and Kuypers, 2011). These30

reactions include the three main steps of heterotrophic denitrification, i.e., the oxidation of organic carbon (OrgC) with NO−
3 ,

nitrite (NO−
2 ), and nitrous oxide (N2O), and anammox, the chemolithotrophic oxidation of NH+

4 with NO−
2 . Both denitrifi-

cation and anammox lead to the production of N2, and thus remove fixed N from the ocean (Bianchi et al., 2012; DeVries

et al., 2012, 2013). Ammonia oxidation is another source of N2O — a powerful greenhouse gas and a leading agent of ozone

destruction in the stratosphere. The number of N2O molecules produced per NH3 oxidized, i.e. the yield of this reaction, in-35

creases as O2 declines (Goreau et al., 1980; Nevison et al., 2003) likely caused by a shift from N2O production as a byproduct

of hydroxylamine oxidation to nitrifier-denitrification (Hooper and Terry, 1979; Wrage et al., 2001; Stein and Yung, 2003).

Because of denitrification and enhanced production by ammonia oxidation, OMZs are important sources of N2O to the atmo-

sphere (Naqvi et al., 2010; Yang et al., 2020), with the largest emissions observed right above shallow oxygen deficient waters

(Arévalo-Martínez et al., 2015).40

The emerging picture for the ocean’s N cycle is that of a web of inter-dependent transformations that is particularly active in

OMZs, where overlapping aerobic and anaerobic reactions exchange nitrogen metabolites and substrates (Lam and Kuypers,

2011; Kuypers et al., 2018), ultimately controlling fixed nitrogen removal and N2O production. While there is evidence that

organic matter and O2 regulate the rates and relative importance of N transformations (Babbin et al., 2014; Dalsgaard et al.,

2014), our mechanistic understanding of these environmental controls against the backdrop of oceanic variability remains45

limited. Ocean biogeochemical models can shed light on the expression of the N cycle reactions in a dynamic environment.

These models have included N as a macronutrient since the beginning, representing NO−
3 and NH+

4 assimilation by phyto-

plankton and subsequent nitrification (Fasham et al., 1990; Sarmiento et al., 1993; Moore et al., 2004b). With the advent of

more complex Earth System Models, biogeochemical representations have progressively expanded to include more detailed

representations of the N cycle, including N fixation, denitrification and N2O production (Aumont et al., 2015; Séférian et al.,50

2020; Stock et al., 2020; Long et al., 2021b).

The ultimate goals of these models are multifold, and include improving predictability of oceanic N2O emissions (Sunthar-

alingam et al., 2012; Martinez-Rey et al., 2015; Battaglia and Joos, 2018; Buitenhuis et al., 2018; Ji et al., 2018a); providing

a more realistic representation of the redox state of seawater (Louca et al., 2016); or resolving aspects of microbial dynamics

underlying the oceanic N cycle (Penn et al., 2016; Zakem et al., 2018; Penn et al., 2019).55

The representation of N transformations in models often relies on crude assumptions that simplify the network of N reactions

and their controls to simple empirical parameterizations. For example, models that include N2O cycling often rely on param-

eterizations that link N2O production to nitrification or aerobic respiration (Suntharalingam and Sarmiento, 2000; Nevison

et al., 2003; Manizza et al., 2012; Jin and Gruber, 2003), overlooking N2O sources and sinks by denitrification. These models

also conflate anammox and denitrification into a single N2 production term. Explicit cycling of NO−
2 under low O2, with the60

observed co-occurrence of NO−
2 production from NO−

3 dissimilatory reactions, reduction to N2O and N2 by denitrification

and anammox, and reoxidation to NO−
3 are missing (Lam and Kuypers, 2011; Kalvelage et al., 2013; Babbin et al., 2014, 2015;

Buchwald et al., 2015; Babbin et al., 2017).

3



The goal of this paper is to present a new model of the oceanic N cycle designed to be incorporated in current ocean biogeo-

chemical models, with a particular focus on processes occurring within OMZs. We refer to this model as NitrOMZ (Nitrogen65

cycling in Oxygen Minimum Zones). The model explicitly represents the major forms of N found in seawater as prognos-

tic tracers, and parameterizes the transformations that connect them as a function of seawater chemistry. This formulation is

informed by recent observations that describe the response of N cycle reactions to environmental controls, in particular the

availability of substrates and dissolved O2. We detail the implementation of the model in an idealized one-dimensional (1D)

representation of the water column that allows comparison to in situ observations, formal optimization, and studies of the70

model sensitivity to parameter choices and environmental conditions.

The rest of the paper is organized as follow: Sect. 2 discusses the rationale and formulation of the model; Sect. 3 the

implementation of the model; Sect. 4 the model optimization against tracer and rate observations; Sect. 5 the performance of

the model and its sensitivity to environmental parameters; and Sect. 6 discusses the implications and conclusions of the work.
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2 Nitrogen cycle model formulation75

2.1 Model rationale

The NitrOMZ model is based on the current understanding of the N cycle in OMZs (Lam and Kuypers, 2011; Kuypers et al.,

2018) as mediated by 6 major species: N2, NO−
3 , NO−

2 , N2O, NH+
4 and organic nitrogen (OrgN) in either dissolved or

particulate form. We only explicitly model NH+
4 (the dominant dissolved form) and do not distinguish it from NH3. We

also assume that organic nitrogen is linked to organic carbon by fixed stoichiometry (Anderson and Sarmiento, 1994). A80

schematic of the model’s tracers and transformation is shown in Fig. 1. Our approach represents a natural progression for

current biogeochemical ocean models, and takes a “system view” of the N cycle by focusing on the biogeochemistry of N

transformation reactions (Lam and Kuypers, 2011), rather than microbial ecology (Penn et al., 2016; Louca et al., 2016;

Zakem et al., 2018; Penn et al., 2019). That is, the model explicitly resolves N chemical tracers and their transformations, but

not the populations of microbes that are responsible for these reactions.85

The underlying assumption is that the occurrence and rates of N transformations are controlled by, and can be predicted

from, the physical and chemical conditions of the oceanic environment. Implicitly, the model assumes that diverse populations

of microbes are always present in the water column, and that their activity (i.e., metabolic rate) is controlled by the abundance

of substrates, in analogy to chemical reactions, and dissolved O2, which inhibits anaerobic reactions (Kalvelage et al., 2011;

Babbin et al., 2014; Dalsgaard et al., 2014; Ji et al., 2018a; Sun et al., 2021b). The focus on dissolved N forms and reaction90

rates bypasses poorly-known aspects of microbial population dynamics, which are topics of ongoing research (Louca et al.,

2016; Zakem et al., 2018; Penn et al., 2019).

We assume that each reaction is implicitly mediated by specialized microorganism groups, each relying on a distinct

metabolism (Lam and Kuypers, 2011; Kuypers et al., 2018). Thus, the model represents a “modular” N cycle, with individual

reaction steps (i.e., individual redox reactions) represented separately, and connected by exchange of dissolved substrates (Graf95

et al., 2014; Kuypers et al., 2018). This premise is grounded on observations of high specialization and streamlined genomes

for marine prokaryotes (Giovannoni et al., 2014), including microorganisms carrying genes for N-based metabolic reactions

(Ganesh et al., 2015; Kuypers et al., 2018).

These assumptions are sufficient to provide a broad representation of microbial N transformations and their environmental

expressions in the ocean, while limiting model complexity and the proliferation of poorly-constrained parameters. They are100

also grounding steps towards models that explicitly represent microbial populations, including their diversity and dynamics in

OMZs (Louca et al., 2016; Penn et al., 2016; Zakem et al., 2018; Penn et al., 2019).

2.2 Model tracers and processes

The model focuses on microbial processes that take place below the euphotic zone, as driven by the flux of organic matter

produced near the surface and exported into the ocean interior by the biological pump (Boyd et al., 2019). We include het-105

erotrophic and chemolithotrophic pathways that are commonly observed in the open ocean and require N species as substrates
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(Kuypers et al., 2018) (Fig. 1). Additional pathways, for example involving sulfur or iron, could also be represented following

a similar approach.

Heterotrophic reactions resolved by the model (Fig. 1) consist of aerobic organic matter respiration (Rrem, pathway 1),

which relies on O2 as the oxidant, and the three main steps of denitrification: dissimilatory NO−
3 reduction to NO−

2 (Rden1,110

pathway 4), NO−
2 reduction to N2O (Rden2, pathway 5), and N2O reduction to N2 (Rden3, pathway 6). Chemolithotrophic

processes consist of aerobic oxidation of NH+
4 to both NO−

2 (Rno2
ao , pathway 2a) and N2O (Rn2o

ao , pathway 2b via both hy-

droxylamine oxidation and nitrifier-denitrification), aerobic oxidation of NO−
2 to NO−

3 (Rno, pathway 3), and anammox, the

anaerobic oxidation of NH+
4 with NO−

2 to produce N2 gas (Rax, pathway 7). Reactions are parameterized as functions of

substrates (i.e., model tracer concentrations) and environmental parameters such as dissolved O2 and organic matter. Tracers115

are expressed as concentrations, with units of mmol m−3.

We do not include an explicit representation of nitric oxide, NO, because of the poor understanding of its cycle in the marine

environment (Ward and Zafiriou, 1988). NO is thought to be an obligate intermediate or a byproduct of N cycle reactions,

including nitrification and denitrification (Schreiber et al., 2012). However, it is a very reactive chemical with extremely low

concentrations (on the order of pmol m−3) and rapid turnover in seawater (Ward and Zafiriou, 1988). As a consequence, in situ120

NO observations are limited (Lutterbeck et al., 2018), and rate measurements targeting NO reactions are missing. Impicitly,

we assume that NO cycles so rapidly that accumulation and transport by the oceanic circulation are negligible, and that its

dynamics can be folded into the cycle of other N tracers.

There are also several notable processes that are not represented in the current model formulation, but could be introduced

in future releases. Some of these processes (e.g., dissimilatory NO−
2 reduction to NH+

4 , DNRA) are not thought to be quan-125

titatively relevant in oceanic oxygen minimum zones. Others, while relevant, require further measurements to constrain their

significance and response to environmental variability.

Production of N2O via NH+
4 oxidation in NitrOMZ is represented as a single O2-dependent function designed to model the

transition in bacterial metabolisms from predominantly hydroxylamine oxidation to nitrifier-denitrification at low O2 (Hooper

and Terry, 1979; Wrage et al., 2001; Stein and Yung, 2003; Nevison et al., 2003). However, growing evidence suggests that130

ammonia oxidizing archaea (AOA, which greatly outnumber their bacterial counterparts) can also produce N2O via a hybrid

mechanism (Santoro et al., 2011; Löscher et al., 2012). Production of N2O via AOA appears to be similarly enhanced at low

O2 (Trimmer et al., 2016; Santoro et al., 2021), although evidence from Stieglmeier et al. (2014) argues otherwise.

DNRA, which can be dominant in anoxic sediment, has been sporadically observed in the water column of oxygen deficient

zones, where it may provide an additional source of NH+
4 to anammox bacteria (Lam et al., 2009; Lam and Kuypers, 2011;135

Kraft et al., 2011; Jensen et al., 2011). However, DNRA is commonly undetectable in OMZ waters (Kalvelage et al., 2013;

De Brabandere et al., 2014) , and its importance to the N cycle of OMZ is still debated (Long et al., 2021a).

Recent tracer incubation studies show substantial and often dominant formation of N2O from NO−
3 rather than NO−

2 (Ji

et al., 2018b; Frey et al., 2020). This suggests that denitrifying bacteria capable of direct production of N2O from NO−
3

reduction (as NO−
2 reduction proceeds entirely within the cell) could be a major source of N2O. This idea, which contrasts140

with the model assumption of a fully “modular”’ N cycle, is further supported by isotopic evidence (Casciotti et al., 2018).
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Observations needed to constrain the proportion of N2O from NO−
3 and NO−

2 and its environmental sensitivity remain however

limited (Ji et al., 2018b; Frey et al., 2020).

Finally, the model could easily accommodate missing processes that couple the N cycle with other elemental cycles, in

particular carbon and sulfur. These include formation of organic matter by chemolithotrophy, changes in inorganic carbon145

chemistry (e.g., pH) by anaerobic reactions (Cinay et al., 2022) , and additional metabolic pathways such as anaerobic oxidation

of sulfide with NO−
3 (Callbeck et al., 2021), and anaerobic oxidation of methane with NO−

2 (Thamdrup et al., 2019), both

chemolithotrophic denitrification reactions.

2.3 Model equations

Heterotrophic reactions (i.e., organic matter remineralization) are parameterized as a function of the respective oxidants and150

organic matter concentration, and expressed in carbon units per unit volume and time. Heterotropic reaction rates are assumed

to be first-order in the concentration of organic matter, and limited by the oxidant following a Michaelis-Menten formulation

(Johnson and Goody, 2011). Anaerobic reactions are inhibited by the presence of O2, based on an exponential limitation term

(Dalsgaard et al., 2014). The resulting equation for a general heterotropic reaction is:

RH = kH ·
[X]

[X] +KX
H

· e
− O2

Ko2
H ·POC (1)155

Here, H indicates the heterotrophic process considered (e.g., dissimilatory reduction of NO−
3 to NO−

2 ), RH the heterotrophic

reaction rate (mmol C m−3 s−1); kH the specific first-order reaction rate (s−1); [X] the concentration of the oxidant (i.e.,

O2, NO−
3 , NO−

2 or N2O); KX
H the half saturation constant for oxidant uptake (mmol m−3); Ko2

H the scale for inhibition of

the reaction by O2 (mmol m−3); and POC the concentration of particulate organic matter in units of mmol C m−3. No O2

inhibition is applied to aerobic respiration (i.e., Ko2
H can be thought of as arbitrarily large).160

Chemolithotropic reactions are proportional to the respective substrates. A maximum reaction rate is modulated by the

concentration of oxidants and reductants, following Michelis-Menten dynamics. For anaerobic reactions (here, anammox), an

O2-dependent inhibition term limits the reactions when O2 is present. The resulting equation for a general chemolithotrophic

reaction is:

RA = kA ·
[X]

[X] +KX
A

· [Y]

[Y] +KY
A

· e
− O2

K
o2
A · (2)165

Here, A indicates the chemolithotropic process considered (e.g. anammox), RA the reaction rate (mmol N m−3 s−1); kA the

maximum reaction rate when the process is not limited (mmol N m−3 s−1); [X] and [Y] the concentrations of the oxidant and

reductant respectively (e.g., NO−
2 and NH+

4 for anammox);KX
A andKY

A the half saturation constants for oxidant and reductant

uptake respectively (mmol m−3); and Ko2
A the scale for inhibition of the reaction by O2 (mmol m−3). For aerobic reactions,

Ko2
A is set to infinite, removing O2 inhibition.170

Equations for each of the heterotrophic and chemolithotrophic reactions are presented in Appendix A1 and A2, respectively;

parameter names, units, and suggested values from the literature are presented in Table 1.
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2.4 Model assumptions and parameterizations

In the model, we assume that heterotropic reactions are first-order to the concentration of organic matter, thus all organic

matter can be utilized by microorganisms without saturation at high concentrations. Because of the low abundance of organic175

matter in seawater, and extensive colonization of particles by heterotrophic bacteria, this is a reasonable first-order assumption.

However, see Nguyen et al. (2022) for a discussion of microbial-particle interactions in ocean biogeochemical models, and

more complex aspect of their dynamics. For simplicity, we represent organic carbon by a single component. This assumption

is easily relaxed to include multiple carbon species, for example separate particulate or dissolved forms.

We do not explicitly model conversion of dissolved CO2 to organic matter by chemolithotrophy, because of the small180

rates compared to the remineralization of organic matter in the upper ocean. This assumption can also be relaxed in future

implementations of the model, allowing a more complete integration between chemolithotrophy and the carbon cycle.

The use of an exponential inhibition term for anaerobic reactions by O2 is based on the observation that they are limited

at O2 concentrations of few mmol m−3 or smaller (Dalsgaard et al., 2014; Babbin et al., 2015; Frey et al., 2020). However,

coexistence of anaerobic and aerobic reactions at O2 concentrations of 10–20 mmol m−3 or higher is also observed (Kalvelage185

et al., 2011), perhaps related to the presence of redox microenvironments within organic particles (Bianchi et al., 2018; Smriga

et al., 2021), which are not explictly considered here. The exponential inhibition formulation has the advantage of being

controlled by a single parameter, allows anaerobic reactions at finite O2 concentrations, and approximates empirical rates from

incubation experiments reasonably well (Dalsgaard et al., 2014).

Parameter values for maximum reaction rates, half saturation constants, and O2 inhibition terms (Eq. (1) and (2)), are190

informed by analysis of previous work, and further optimized against in situ observations of tracers and rates (Sect. 4). Table

1 presents a list of the model parameters and measured values based on a review of the literature. Note that these studies are

based on shipboard and laboratory incubations that differ in the setup, conditions, and microbial populations tested. Despite

these caveats, experimental results provide valuable starting points to further constrain parameter values in the model.
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Table 1. Summary of the main NitrOMZ parameters, with any reported values from the literature (not available or ’N/A’ otherwise).

Parameter Description Units Value(s) Source(s)

krem Maximum aerobic remineralization rate d−1 0.08 Babbin et al. (2015)

kao Maximum NH+
4 oxidation rate µmol N m−3 d−1 45.56 ± 4.8 Bristow et al. (2016)

37.10 ± 1.2 Peng et al. (2016)

20 - 100 Ward (2008)

kno Maximum NO−
2 oxidation rate µmol N m−3 d−1 255.5 ± 17.3 Bristow et al. (2016)

63.3 ± 13.8 Sun et al. (2017)

55.7 ± 5.4 Sun et al. (2017)

kden1 Maximum NO−
3 reduction rate µmol N m−3 d−1 197 ± 26 Bristow et al. (2016)

kden2 Maximum NO−
2 reduction rate µmol N m−3 d−1 N/A N/A

kden3 Maximum N2O reduction rate µmol N m−3 d−1 N/A N/A

kax Maximum anammox rate µmol N m−3 d−1 N/A N/A

Ko2
rem O2 half saturation constant for oxic remineralization mmol O2 m−3 4 Babbin et al. (2015)

Knh4
ao NH+

4 half saturation constant for NH+
4 oxidation mmol N m−3 0.134 ± 0.005 Martens-Habbena et al. (2009)

Ko2
ao O2 half saturation constant for NH+

4 oxidation mmol O2 m−3 0.33 ± 0.13 Bristow et al. (2016)

3.6 ± 0.6 Peng et al. (2016)

Kno2
no NO−

2 half saturation constant for NO−
2 oxidation mmol N m−3 0.254 ± 0.161 Sun et al. (2017)

Ko2
no O2 half saturation constant for NO−

2 oxidation mmol O2 m−3 0.778 ± 0.168 Bristow et al. (2016)

Kno3
den1 NO−

3 half saturation constant for NO−
3 reduction mmol N m−3 N/A N/A

Kno2
den2 NO−

2 half saturation constant for NO−
2 reduction mmol N m−3 N/A N/A

Kn2o
den3 N2O half saturation constant for N2O reduction mmol N m−3 N/A N/A

Knh4
ax NH+

4 half saturation constant for anammox mmol N m−3 N/A N/A

Kno2
ax NO−

2 half saturation constant for anammox mmol N m−3 N/A N/A

Ko2
den1 O2 exponential inhibition for NO−

3 reduction mmol O2 m−3 1.05 ± 0.72 Bristow et al. (2016)

Ko2
den2 O2 exponential inhibition for NO−

2 reduction mmol O2 m−3 0.429 ± 0.2 Dalsgaard et al. (2014)

2.16 ± 1.3 Ji et al. (2018a)

Ko2
den3 O2 exponential inhibition for N2O reduction mmol O2 m−3 0.27 ± 0.05 Dalsgaard et al. (2014)

Ko2
ax O2 exponential inhibition for anammox mmol O2 m−3 1.28 ± 0.6 Dalsgaard et al. (2014)

Jia Nevison et al. (2003) ’a’ parameter % 0.11 ± 0.05 Santoro et al. (2021)

0.2 ± 0.13 Ji et al. (2018a)

Jib Nevison et al. (2003) ’b’ parameter % 0.077 ± 0.07 Santoro et al. (2021)

0.08 ± 0.04 Ji et al. (2018a)
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3 Model implementation195

3.1 One-dimensional model setup

We implement the model for a 1D water column that includes physical transport by vertical advection and turbulent diffusion

(Wyrtki, 1962), and, if required, parameterized lateral transport by horizontal currents and eddies (Gnanadesikan et al., 2013;

Bettencourt et al., 2015). The model is configured to represent the typical weak upwelling conditions that characterize open-

ocean oxygen minimum zones, following previous work (Babbin et al., 2015).200

In the 1D framework, the conservation equation for the concentration [C] of a generic dissolved tracer can be written as:

∂[C]

∂t
=−∂ (wu · [C])

∂z
+

∂

∂z
Kv

(∂[C])

∂z
+

NH∑
i=1

(
riC,H ·Ri

H

)
+

NA∑
i=1

(
riC,A ·Ri

A

)
+LT (3)

Here, wu is the vertical upwelling velocity (m s−1) and Kv is the vertical turbulent diffusion coefficient (m2 s−1, distinct from

molecular diffusion which is much smaller), both of which can be a function of depth. The first and second summation are

respectively over theNH heterotrophic andNA chemolithotrophic processes that involve the tracer (Eq. (1) and (2)), with riC,H205

and riC,A the corresponding stoichiometric ratios (Appendix A4). LT represents any parameterized lateral transport process.

The explicit equations for each of the model tracers are detailed in Appendix A5.

The lateral transport terms LT can be included to parameterize horizontal circulation by advection and diffusion in the 1D

framework. Typically, these terms are simplified by a linear restoring to far-field tracer concentration profiles (Babbin et al.,

2015), [C]far, with a relaxation timescale τC (s):210

LT =− 1

τC
·
(
[C]− [C]far

)
(4)

For typical open ocean conditions, τC can be estimated as the minimum of an advective timescale L
U and a diffusive timescale,

L2

KH
, where L, U , KH are respectively the horizontal spatial scale, the horizontal velocity scale, and the horizontal eddy

diffusion. Assuming L on the order of 1000 km, U on the order of 0.01 m s−1, and KH on the order of 1000 m2 s−1 results

in a timescale τC = 108 s, i.e., on the order of 3 years and in agreement with recent estimates of the residence time of water215

within the Eastern Tropical South Pacific (ETSP) (Ji et al., 2015b; Johnston et al., 2014).

3.2 Organic matter remineralization

In the 1D model implementation, we represent organic matter (OrgC and OrgN) as a single particulate organic carbon (POC)

class that sinks through the water column. We assume that this sinking is rapid compared to advection and diffusion, leading

to a steady-state distribution of POC that is only controlled by sinking and remineralization (Kriest and Oschlies, 2008). Since220

remineralization rates are proportional to the concentration of organic matter, the resulting steady-state 1D equation for POC

is:

∂ (ws ·POC)

∂z
=−

NH∑
i=1

Ri
H =

NH∑
i=1

(
keff,iH

)
·POC (5)
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Here, ws is the depth-dependent sinking speed of POC in the water column, and keff,iH (s−1) are the effective rate constants for

each heterotrophic process, i.e., the maximum rate constants multiplied by the respective substrate limitation and O2 inhibition225

terms (Eq. (1)).

Considering the flux of sinking POC, ΦPOC (mmolCm−2 s−1):

ΦPOC = ws ·POC, (6)

equation 5 can be written as:

∂ΦPOC

∂z
=−

NH∑
i=1

Ri
H =−

NH∑
i=1

(
keff,iH

)
·POC, (7)230

or, equivalently,

∂ΦPOC

∂z
=−

∑NH

i=1

(
keff,iH

)
ws

·ΦPOC (8)

Equation 7 can be recast to relate the concentration of POC in the water column to the remineralization of the POC flux with

depth:

POC =− 1∑NH

i=1

(
keff,iH

) · ∂ΦPOC

∂z
(9)235

The advantage of Equation 9 is that it allows to diagnose sinking POC concentrations when the POC flux and remineral-

ization rate constants are known. In the 1D implementation of the model, we parameterize the POC flux following a typical

depth-dependent power-law function, or Martin curve (Martin et al., 1987; Berelson, 2001; Primeau, 2006):

ΦPOC = ΦPOC (z0) ·
(
z

z0

)−b

, (10)

where z0 is the upper boundary of the model, and b the power-law or Martin coefficient. A plot of the model POC is shown240

in Fig. C1. Another advantage of this formulation is that it allows coupling NitrOMZ to more complex parameterizations

for the remineralization of organic matter in ocean biogeochemical models, some of which rely on explicit representation of

sinking organic particles, and some of which only represent sinking organic particle fluxes in the water column (Moore et al.,

2004a; Dunne et al., 2010; Aumont et al., 2015; Stock et al., 2020; Long et al., 2021b). Because NitrOMZ’s equation can be

cast as a function of prescribed vertical organic matter flux or remineralization profiles, the model can be coupled to existing245

biogeochemical models with minimal interference with their formulation of organic matter cycles.

3.3 Numerical implementation of the 1D model

For the purpose of testing and illustration, we implement NitrOMZ in a 1D representation of the water column below the

mixed layer, following previous work (Babbin et al., 2015). Model tracers are discretized on a 1D vertical grid, with equal

spacing ∆z = 10m, where z is depth. Boundary conditions are set at the top (z0) and bottom grid (zbot) cells, as Dirichlet (or250
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fixed concentration) boundary conditions, with values taken from observations (Tables B2 - B3). The conservation equation

for each tracer (following Eq. (3), see Appendix A5 for full equations) is then solved using a forward in time, centered in space

numerical scheme, with a constant vertical grid spacing, and the option for a variable or constant timestep. In the baseline

simulations (Fig. 2), we adopt a timestep of 5 days for the initial 650 year spinup, and decrease it to 3 hours for the final two

years of the simulation (years 698 and 699) to increase accuracy.255

As in Babbin et al. (2015), NitrOMZ does not represent primary production in the surface layer, and is instead forced at

the uppermost boundary by a flux of sinking POC, ΦPOC (z0) = ws (z0) ·POC(z0), where POC(z0) provides the boundary

condition for POC. The flux ΦPOC remineralizes in the water column based on a Martin curve profile (Eq. (10)). At each depth,

the steady-state conservation equation for POC (Eq. (8)) is solved with a forward-in-space method, using a depth-dependent

sinking speed ws chosen to produce, together with the maximum aerobic remineralization rate constant, krem, a POC flux260

profile matching a Martin curve with exponent b appropriate for the oxygenated ocean (Primeau, 2006; Weber and Bianchi,

2020). To this end, the sinking speed is calculated at each depth as:

ws =
kRem · z

b
(11)

The concentration of POC in the water column is then diagnosed using Equation 9, and used to calculate the heterotrophic

remineralization rates RH in Equation 1 (see Appendix A1).265

Under constant forcings and boundary conditions, the model tracers evolve towards steady-state (∂[C]
∂t ≈ 0, Fig. 2) with a

timescale τSS that can be estimated from the advection velocity wu, the turbulent vertical diffusion Kv , and the vertical scale

H , as the minimum between H
wu

and H2

Kv
. For wu on the order of 10 m y−1, Kv on the order of 10−5 m2 s−1, and a vertical

scale of 1000 m, the timescale to approach steady-state is τSS = 3·1010 s, or about 100 years.

Fig. 2 shows an example of model spinup to steady state in NitrOMZ, with parameters taken from an optimal solution270

discussed in Sect. 5.2, and uniform initial tracer concentrations in the water column. At the start of the simulation, high water

column O2 leads the aerobic remineralization (Rrem) to dominate total POC consumption. As the simulation proceeds, an O2

minimum develops in subsurface waters, reaching suboxic (< 10 mmol O2) concentrations around year 100. NO−
3 reduction

rates (Rden1) are relieved of O2 inhibition and begin to take up a larger fraction of total POC remineralization, as revealed by

the depletion of N∗, signaling NO−
3 consumption in the water column. Reduction of NO−

3 also leads to a subsurface peak in275

NO−
2 within the O2-minimum (Fig. 2). With newly available NO−

2 substrate and low O2 conditions, NO−
2 reduction (Rden2)

begins, resulting first in a subsurface spike in N2O. With further decrease in O2 concentrations, N2O is reduced to N2, leading

to a layer of low N2O concentrations within the OMZ that persists to the end of the simulation. Anammox (Rax) is similarly

relieved of O2 inhibition as the O2-minimum is established, reaching maximum values near the upper oxycline, reflecting

relatively high supply of both NO−
2 and NH+

4 .280
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Figure 2. Example of spinup of the model. (top) Temporal evolution of O2, N2O, NO−
2 , N∗, and NH+

4 from initial ETSP boundary

conditions at year 0 to the final model solution at year 700 using the selected parameter set (Optsel) discussed in Sect. 5.2. Dashed black

curves highlight the 1 and 10 mmol O2 m−3 contours. (bottom) Same as (top), but for the heterotrophic rates of aerobic respiration (Rrem),

NO−
3 reduction (Rden1), NO−

2 reduction (Rden2), and N2O reduction (Rden3). The chemolithotrophic anammox rate (Rax) is also shown

in the far right panel.
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4 Model optimization strategy

The model contains 23 major parameters that control the N cycle, some of which are relatively well constrained by observations,

whereas others are poorly known and can plausibly span a broad range of values (Table 1). In the model, these parameters

approximate complex or poorly known aspects of microbial physiology, metabolism and ecology, and thus are intrinsecally

uncertain. In order to select a set of parameters that produces a realistic representation of the N cycle in OMZ, we adopt285

a “metaheuristic” approach based on application of an optimization algorithm, following an established strategy in ocean

biogeochemistry (Schartau and Oschlies, 2003; Ward et al., 2010; Kriest et al., 2017).

To conduct this optimization, we compile available tracer and biogeochemical rate observations for the ETSP OMZ from

a July 2013 cruise aboard the R/V Nathaniel B. Palmer, for which abundant trace and rate measurements are available (Fig.

5) (Ji et al., 2015b; Peng et al., 2016; Babbin et al., 2017, 2020), as well as from other cruises in the region (Kalvelage290

et al., 2013). The observations are then used to define a cost function based on normalized squared deviations between model

profiles and observations. The cost function is minimized by applying a Covariance Matrix Adaptation Evolutionary Strategy

algorithm (CMA-ES, discussed in Section 4.1), which finds a local optimal solution in the model’s multi-dimensional parameter

landscape.

The optimization is characterized by large dimensionality, strong non-linearity, a significant computational cost (requiring295

several 10,000s model runs to converge), and inherent flexibility in the formulation of the cost function (Schartau and Oschlies,

2003; Kriest et al., 2017). Thus, instead of seeking a single global optimal solution, we generate an ensemble of optimal

solutions that provide equally acceptable representations of OMZ processes based on the cost function. To this end, we apply

the optimization multiple times, varying the formulation of the cost function slightly, and assigning a random error to the

observations for each optimization (Table B4). As a result, we produce a set of equally plausible optimal solutions that we300

further evaluate to select a final parameter set based on additional comparisons with observations, which we use for further

analysis.

4.1 Optimization algorithm

The CMA-ES is a stochastic, population-based algorithm that seeks to minimize an objective cost function (Hansen et al.,

2009). The CMA-ES falls within the broader class of evolutionary optimization algorithms, where search for an optimal305

solution proceeds by an iterative improvement of a population of parameters, with each iteration including a stochastic "evo-

lutionary" element, in loose analogy with biological processes of mutation, recombination, and selection (illustrated in Fig.

3). In contrast with typical evolutionary computation algorithms such as Genetic Algorithms, in the CMA-ES the mutation

and recombination operations are substituted by sampling from a multivariate normal distribution in which parameters (the

covariance matrix) are deterministically updated based on previous iteration steps (Hansen, 2006).310

The CMA-ES has been shown to be more efficient (i.e., requiring fewer objective function evaluations), accurate (i.e., able

to approximate the global optimum when it is known to exist), and robust (i.e., not overly sensitive to the initial choice of

parameters), compared to other optimization algorithms, when applied to multi-dimensional, non-linear optimization problems
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(Hansen et al., 2009; Hansen, 2023). These properties make it suitable for optimization of ocean biogeochemical models (Kriest

et al., 2017). A detailed description of the algorithm procedure can be found in Hansen (2023); an overview of the main steps315

of the algorithm, and its application to ocean biogeochmsitry are presented in Kriest et al. (2017).

Figure 3. Flowchart of the CMA-ES optimization algorithm used to constrain uncertain model parameters.

4.2 Optimization implementation

As an illustration of NitrOMZ, we perform a series of optimizations against ETSP OMZ observations. For this configuration,

we set a constant upwelling velocity (wup) but impose a variable vertical diffusion (Kv) profile, with lower diffusion in upper

stratified layers, and a transition to higher diffusion in deeper layers (Fischer et al., 2013) (Fig. C1, left panel). This is a320

simplifying assumption that allows us to control the vertical scale for advective-diffusive transport (given by the ratio between

vertical diffusivity and upwelling velocity, Kv

wup
), without requiring vertical divergence terms in the conservation equation for

tracers associated with variable vertical velocities. Since this simulation targets the core of the OMZ, generally characterized

by sluggish horizontal circulation (Karstensen et al., 2008), we turn off far-field tracer restoring. This simplifies analysis of

model balances between transport and reaction rates, while resulting in realistic tracer distributions. Top and bottom boundary325

conditions are listed in Table B3 and are extracted from observations.

As a first step, we select parameters that control aerobic remineralization processes (Rrem) and lead to a realistic vertical O2

profile relative to ETSP observations, including the vertical position and thickness of oxygen deficient waters (O2 < 5 mmol

m−3) (Fig. 5). These consist of the vertical diffusion and upwelling magnitude, the Martin curve coefficient (b), and the upper

ocean POC flux (Φtop
poc), based on values consistent with observations (Table B2 and Fig. C1). For simplicity, we also set the330

maximum aerobic remineralization rate (krem) and the O2 half saturation constants for NH+
4 and NO−

2 oxidation (Ko2
ao and

Ko2
no, respectively) to reported values in the literature (see Table 1). We then employ the CMA-ES algorithm in NitrOMZ to

optimize the remaining 20 parameters that control heterotrophic and chemolithotrophic reactions in Fig. 1, using the range of

parameter values listed in Table B1.

To optimize more uncertain parameters that control the anaerobic N cycle, we then conduct 4 sets of optimizations, with335

cost functions devised to match desired characteristics of tracer and rate profiles in the ETSP OMZ. Briefly, the cost function

is calculated as the mean square of the difference between observations and model output profiles for a series of variables that

include tracers and N transformation rates (listed in Table B4). Before each optimization, a random error of 20% is assigned
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to each observation to increase the variability of observational constraints and improve the robustness of the optimization

ensemble by preventing from always converging in the neighborhood of a specific local minimum controlled by non-relevant340

features of the observations. Three additional constraints are imposed to improve the fit to observations for N cycle processes

occurring within the core of the OMZ. First, all rates are weighted equally, whereas different weights are assigned to each

tracer, giving higher weight to N2O and NO−
2 , which are central to the anaerobic N cycle. Because of possible influence from

horizontal advection in observations, discrepencies exist between modelled and observed NO−
3 and PO3−

4 . To compensate for

this, we also assign lower weights to NO−
3 and PO3−

4 , and higher weight to N∗. Second, a depth-dependent weighting scheme345

is included to emphasize the match to observations in the OMZ interior. This vertical weight is shaped as a Gaussian curve

centered at the core of the observed OMZ, where the bulk of anaerobic transformations targeted by our model occurs, so that

values within the core of the OMZ are weighted up to twice as much as values outside the OMZ. Finally, N cycle transformation

rates are shifted vertically to match their depth relative to the oxycline (here defined as O2=1 mmol m−3) in both model and

observations, and rescaled by a factor proportional to observed vs. modeled POC flux in the upper ocean. The only difference350

between the 4 sets of optimization are the relative weights assigned to each tracer, listed in Table B4. In total, we obtain 382

optimized parameter sets for further analysis.
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5 Results and sensitivity

5.1 Optimization results

The distributions of the parameter values from the 382 sets of optimizations (see Sect. 4.2 and Table B4) are shown in Fig. C2.355

Rather than converging always to the same set of parameters, the optimization shows some variability for specific parameters.

This reflects the stochastic nature of the CMA-ES algorithm, the inclusion of random variations in the observations, and the

highly non-linear nature of the optimization problem, which may allow for non-unique optimal solutions. Optimized maximum

rates (such as kao, kno, kden1, and kden3) and exponential O2 inhibition parameters for step-wise denitrification (Ko2
den2 and

Ko2
den3) reveal more variability than half-saturation concentration coefficients (K terms), which often settle to the minimum or360

maximum allowed value (Table B1).

Pairwise correlations in Fig. 4 reveal several parameters pairs which exhibit strong relationships, reflecting the fact that, in a

significantly non-linear optimization, similar results can be obtained by trade-offs between different parameters and processes.

Notably, the exponential O2 inhibition constants for NO−
2 and N2O reduction (Ko2

den2 and Ko2
den3, respectively) are strongly

correlated with each other (R = 0.73) and with other parameters controlling the denitrification steps. These include positive365

correlations with the maximum rate parameters for NO−
3 and NO−

2 reduction (kden1 and kden2, respectively) and negative

correlations with the half-saturation constants for NO−
2 and N2O reduction (Kno2

den2 and Kn2o
den3, respectively). These correla-

tions suggests tight couplings between modelled denitrification steps, wherein high/low maximum denitrification rates can be

compensated by lower/higher half-saturation coefficients, respectively.

Figure 4. Pairwise correlations between model parameters for model solutions optimized for the ETSP OMZ. See Table B1 for a list and a

description of the model parameters. Correlation is shown as the Pearson correlation coefficient, with dots representing p-values < 0.01.
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Considering the variability in the optimal parameter sets, and the complexity of the cost function, which depends on observa-370

tions for multiple variables at different depths, the resulting N-cycle profiles show similar features across all optimal solutions

(Fig. 5, top panels; see also Fig. C3 for macronutrient profiles). When compared to observations, the majority of parameter sets

are able to skillfully model (1) the vertical distribution of O2, including the oxygen deficient layer between roughly 100 to 400

m, (2) the subsurface maximum in NO−
2 , (3) the rapid attenuation of NH+

4 with depth, and (4) the subsurface minimum in N∗.

N cycle transformation rates also show similar consistency in their vertical profiles, albeit with more notable discrepancies375

with observations, possibly reflecting the higher variability and more complex nature of these measurements. Lower rates than

observed may also reflect the fact that incubation experiments provide potential rates, rather than in situ rates. In general,

the yield of N2O from NH+
4 oxidation (Rn2o

ao ) is O(100) times less than for NO−
2 (Rno2

ao ) following Equations A8 and A9,

consistent with observations (Ji et al., 2015a, 2018a; Santoro et al., 2021). The step-wise denitrification rates (Rden1,Rden2, and

Rden3) show remarkably similar vertical profiles, with higher NO−
3 reduction rates (Rden1) and nearly identical magnitudes380

between Rden2 and Rden3. Anammox (Rax) shows a similar profile as denitrification, albeit with enhanced local maxima near

the upper and lower oxycline depths surrounding the OMZ core, consistent with observations (Kalvelage et al., 2013).

Figure 5. Results from the optimized ensemble of model solutions. (top) Tracer (O2, N2O, NO−
2 , NH+

4 , N∗, and N2) profiles from all 382

optimized ETSP parameter sets. The bold red curves show the selected parameter set (Optsel) discussed in Sect. 5.2. Observations used to

define the optimization cost function are shown as circles in each panel. Macronutrient profiles (NO−
3 and PO3−

4 ) are shown in Fig. C3.

(bottom) Same as in (top), but for reaction rate profiles of N2O and NO−
2 production from NH+

4 oxidation (Rn2o
ao and Rno2

ao , respectively),

NO−
3 NO−

2 , and N2O reduction (Rden1, Rden2, and Rden3, respectively) and anammox (Rax).

Several robust features emerge from the optimized parameter solutions, suggesting underlying mechanisms that need to

be captured for a faithful representation of the OMZ N cycle. In particular, the differences in the exponential O2 inhibition

parameters for denitrification, shown in Fig. 6 (left panel), reveal the existence of progressively lower O2 tolerance for step-385

wise denitrification (Ko2
den3 <Ko2

den2 <Ko2
den1) from all optimized parameter sets. As a result, denitrification can stop at either

N2O or NO−
2 as O2 increases above anoxic levels, leading to “incomplete” denitrification (Babbin et al., 2015).
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Within the anoxic core of the OMZ (∼100 to 350 m depth), O2 is low enough in all optimizations to allow each of the

steps to proceed unimpeeded (Fig. 5). The large differences between NO−
3 and NO−

2 reduction (Rden1 - Rden2, middle panel

of Fig. 6) allows accumulation of a characteristic subsurface peak in NO−
2 near the OMZ core. Conversely, N2O produced390

via NO−
2 reduction (Rden2) is quickly consumed via N2O reduction (Rden3) leading to a pronounced N2O deficit near the

OMZ core. The progressive O2 inhibition of the three steps of denitrification results in a decoupling between these reactions

that is particularly evident in the oxycline layers above and below the OMZ, where N2O accumulation dominates as N2O

reduction (i.e., consumption) is more strongly inhibited by O2 than NO−
2 reduction (i.e., N2O production, right panel of Fig.

6). Thus, the O2 range defined by Ko2
den2 and Ko2

den3 can be thought of as a N2O-production “window” that allows net N2O395

accumulation in the water column (Babbin et al., 2015). This O2-driven decoupling of anaerobic reactions is consistent with

the observed sequential inhibition of N2O and N2 production in incubation experiments (Dalsgaard et al., 2014), although we

find O2 inhibition thresholds that are somewhat higher than suggested by those experimental studies. Conversely, other studies

have suggested much higher O2 inhibition thresholds for anaerobic processes, on the order of several mmol m−3 (Kalvelage

et al., 2011; Ji et al., 2018a).400
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Figure 6. Progressive O2 inhibition of denitrification steps. (left) Histogram showing the distribution for all optimized solutions of the

difference in the O2 inhibition constant for NO−
3 and NO−

2 reduction (Ko2
den1 and Ko2

den2, in dark gray), and NO−
2 and N2O reduction

(Ko2
den2 and Ko2

den3, in light gray). The small red markers denote the values from Optsel. (middle) Rate differences between NO−
3 and NO−

2

reduction (Rden1 and Rden2). Shading represents the 10/90 and 25/75 percentile at each vertical level from the 382 analyed parameter sets.

The bold red curves denote Optsel results. (right) Same as (middle), but for the difference in NO−
2 and N2O reduction rates (Rden2 and

Rden3).

The vertical profile of the step-wise denitrification rates (Rden1, Rden2, and Rden3) shows remarkable agreement across

solutions, with only a small subset of parameter sets that behave as outliers (Fig. 5). As a consequence, the fraction of POC

remineralized by each heterotrophic reaction remains consistent across optimizations (Fig. 7, top panels). Near the base of the

euphotic zone, around 30 m depth, aerobic remineralization (Rrem) far exceeds denitrification, reflecting O2 inhibition of the

latter. However, as O2 decreases to suboxic levels around 100 m depth, NO−
3 reduction becomes the dominant remineralization405

pathway (up to 60% of total remineralization). As O2 drops further within the OMZ core (∼100 to 350 m depth), NO−
2 and

N2O reduction rapidly take up the remaining fraction (∼25% and 15%, respectively), albeit with more variability than near
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the euphotic zone. Below the OMZ, as the water column reverts to oxic conditions, aerobic remineralization dominates, and

by 500 m depth, all solutions show essentially no denitrification.

The processes responsible for fixed N loss (anammox, NO−
2 reduction, and N2O production from NH+

4 oxidation) are410

also consistent across optimizations (Fig. 7, bottom panels). Within oxygenated waters, N2O production from NH+
4 oxidation

(Rn2o
ao ) is by far the dominant fixed N loss term, as all other sources are inhibited by O2. Anammox (Rax) becomes the dominant

term within the upper and lower oxycline due to increased availability of both NO−
2 (from denitrification and nitrification) and

NH+
4 (from the decomposition of sinking POC), consistent with observations (Babbin et al., 2020). In the anoxic OMZ core,

relief from O2 inhibition allows NO−
2 reduction to outcompete anammox for NO−

2 and contribute up to 60% of the total415

N loss, with anammox making up the remaining 40% (also see Fig. 5). This is somewhat higher than expected from purely

stoichiometric constraints (Koeve and Kähler, 2010; Bianchi et al., 2014), likely reflecting vertical transport of NO−
2 and NH+

4 ,

co-occurrence of aerobic and anaerobic processes, and the higher O2 threshold for anammox inhibition in oxygenated waters.

The resulting profile of total N loss thus reveals a subsurface maxima predominantly driven by anammox, with denitrification

leading total OMZ losses.420

10 50 75 9025
Percentile (%)

10 50 75 9025
Percentile (%)

Figure 7. Contribution of different reactions to organic matter remineralization and fixed N loss. (top) Fraction of total POC remineralized

by each heterotrophic rate (Rrem, Rden1, Rden2, and Rden3). Shading represents the 10/90 and 25/75 percentile at each vertical level from

the 382 analyed parameter sets. The bold red curves denote the selected parameter set (Optsel) discussed in Sect. 5.2. (bottom) Same as

(top), but for the fraction of total fixed N loss (via production of N2 and N2O) from anammox (Rax), NO−
2 reduction (Rden2), and N2O

production from NH+
4 oxidation (Rn2o

ao ). The total fixed N loss is also shown. Note the different vertical axis for the bottom panels.
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5.2 Selected solution for the Eastern Tropical South Pacific

Among tracers, N2O profiles show significant variability between optimizations. While all optimizations generate two peaks in

N2O surrounding the oxygen deficient core, only a subset is able to reproduce the observed magnitude of the secondary peak

at the lower oxycline (roughly 500 m depth, see Fig. 5). This subset forms a “cluster”’ of optimizations that share common

features that facilitate the formation of a realistic deep N2O peak, including higher O2 inhibition thresholds (between 1.0 and425

2.0 mmol m−3 for NO−
2 reduction, and between 0.5 and 1.0 mmol m−3 for N2O reduction), and a wider O2 window where

net N2O production is favored (between 0.5 and 1.0 mmol m−3 width). Additionally, while most optimizations are able to

reproduce the OMZ peak in NO−
2 , significant variability in its magnitude exists. Given the central roles of N2O and NO−

2 in

both nitrification and denitrification pathways (Fig. 1), and the importance of oceanic N2O emissions to the atmosphere, we

assign high priority to optimizations that reproduce realistic features in the distribution of these tracers, in particular a higher430

magnitude for the secondary N2O maximum. To this end, we select a parameter set (hereafter Optsel) which results in N2O

and NO−
2 profiles closer to observations (bold red curves in Fig. 5, with parameter values reported in Table B1). We use this

Optsel parameter set for further analysis of the model sensitivity.

Compared to the other parameter sets, Optsel is characterized by weaker maximum NH+
4 and NO−

2 oxidation rates (kao

and kno, respectively) and smaller half saturation constants for reductant uptake (Knh4
ao and Kno2

no , respectively) (Fig. C2). In435

surface oxygenated waters, this results in relatively higher NH+
4 and NO−

2 (Fig. 5). In contrast, maximum denitrification rates

(kden1, kden2, and kden3) are close to the median values from all optimizations. Rates of NO−
2 and N2O reduction (Rden2 and

Rden3, respectively) are generally larger than other solutions, in particular near the lower oxycline (Fig. 5). This increases POC

consumption within this depth range via denitrification compared to other solutions (Fig. 7). As a consequence, the residual

between the NO−
3 and NO−

2 reduction (Rden1 -Rden2, see Fig. 6) leads to higher NO−
2 accumulation at these depths, providing440

the necessary NO−
2 substrate to fuel either NO−

2 reduction (i.e. N2O production) or anammox. Since the parameterization

scheme in Optsel also results in reduced NO−
2 oxidation (Rno) and anammox (Rax) rates (see Fig. 5), likely because of

higher anammox half saturation constants for substrate uptake (Knh4
ax and Kno2

ax ), more NO−
2 is available for reduction by

denitrification, leading to a surplus in production (Rden2) relative to consumption (Rden3), and high concentrations of N2O at

the lower oxycline.445

5.3 Sensitivities to model parameters

As shown in Sect. 5.1 and Fig. 4, strong correlations exist between parameter pairs in the optimization ensemble. Since Optsel

demonstrates good comparisons with ETSP tracer and rate observations, we perform a series of sensitivity tests around param-

eters (P ) most responsible for controlling specific features (F ) of the tracer distributions. These include concentrations of NH+
4

and NO−
2 at 50 m depth, the peak NO−

2 concentration in the OMZ, the N2O concentrations at the primary and secondary N2O450

maxima, and the minimum in the OMZ NO−
3 deficit (i.e., N∗). Additionally, we evaluate which parameters govern total N loss,

including the fractional contribution of anammox, the partitioning of POC consumption via NO−
3 , NO−

2 , and N2O reduction,

and total N2O production and air-sea flux (here, approximated by the vertical transport at the upper model boundary). To this
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end, we calculated the sensitivity coefficient (φij) for each P and F pairing by evaluating the impact of varying each Optsel P

value by ± 5% of its range in Table B1, and recording the resulting relative change in the F :455

φij =
Pi

Fj
· ∂Fj

∂Pi
(12)

Figure 8. Sensitivity coefficient (φij = Pi
Fj

· ∂Fj

∂Pi
) for Optsel parameters (Pi) and features (Fj) of the model solution. Here, each parameter is

varied by ± 5% of their respective CMA-ES allowed ranges in Table B1 to evaluate the relative impact to each feature of the model solution.

Concentrations of NH+
4 and NO−

2 at 50 m depth (-50 m) are used as proxies of near-surface values.

The results demonstrate high sensitivity to changes in the maximum rates for all reactions (Fig. 8). Specifically, higher

maximum rates correlate negatively with the concentrations of their substrates, and positively with the concentrations of their

products. For example, increasing kden1 results in an increase in OMZ NO−
2 , and a decrease in OMZ N∗. Similarly, increasing

kden2 decreases OMZ NO−
2 and increases N2O concentrations in the upper and lower oxycline, and its flux to the atmosphere.460

These impacts are further modulated by the half saturation and O2 inhibition constants.

Fig. 9 and 10 further summarize the sensitivities to the maximum denitrification rates and their inhibition by O2, detailing

the resulting changes to O2, N2O, NO−
2 , and N∗ profiles. As expected, changes in maximum rates affect reaction substrates

and products in opposite ways. For example, a positive perturbation of kden1 (top panels) stimulates NO−
3 reduction, causing

an increase in OMZ NO−
2 and a decrease in N∗ as expected. Similarly, a positive perturbation of kden2 increases N2O and465

decreases NO−
2 nearly everywhere. However, these sensitivities have also specific depth-dependent signatures. While changes
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in NO−
2 are more pronounced within the OMZ core, in particular the upper section, changes in N2O are stronger at the upper

and lower oxyclines, i.e., within the N2O production window defined by Ko2
den2 and Ko2

den3 (see Sect. 5.1).
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Figure 9. Model sensitivity to parameter values. Panels show O2, N2O, NO−
2 , and N∗ for the Optsel parameter set after varying the

maximum NO−
3 , NO−

2 , and N2O reduction rate parameters (kden1, kden2, and kden3 by ± 5% of their Optsel value in Table B1.

Notably, by increasing kden1 (top panels in Fig. 9) or kden2 (middle panels) from Optsel values, the vertical extent of oxygen

deficient waters is reduced as a result of increased POC consumption via denitrification (not shown). This enhances aerobic470

remineralization and nitrification below the OMZ, providing an enhanced source of NO−
3 that partly offsets the OMZ losses

seen via kden1 enhancement. This may indicate a potential negative feedback: if denitrification is locally enhanced (i.e. via

increased competition for POC by denitrifying heterotrophs), a resulting reduction in the vertical extent of the OMZ would

inhibit further N loss.
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Fig. 8 and 10 highlight significant sensitivities to the O2 inhibition constants, which control O2-dependent modulation of475

the maximum reaction rates. These effects are particularly evident at the boundaries of the OMZ. For example, an increase

in Ko2
den2 allows for more NO−

2 reduction at higher O2, leading to a slight depletion in OMZ NO−
2 and, as a consequence,

an increase to suboxic N2O concentrations (Fig. 10, middle panels), consistent with observations of these processes in the

Peruvian oxygen deficient zone (Frey et al., 2020). In a similar manner, an increase in Ko2
den3 leads to more N2O reduction,

reducing the magnitude of both the primary and secondary N2O peaks, while leaving other OMZ tracers (NO−
2 , N∗) relatively480

unaffected.

mmol m-3 mmol m-3 mmol m-3 

mmol m-3 mmol m-3 mmol m-3 

mmol m-3 mmol m-3 mmol m-3 

Figure 10. Model sensitivity to parameter values. Panels show changes to N2O, NO−
2 , and N∗ for the Optsel parameter set after varying

the O2 inhibition constants for NO−
3 , NO−

2 , and N2O reduction (Ko2
den1, Ko2

den2, and Ko2
den3) by ± 5% of their Optsel value in Table B1.

Background gray shadings show O2 concentrations, with horizontal lines higlighting O2=1 mmol m−3 (dotted lines) and O2=10 mmol

m−3 (dashed lines).
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5.4 Sensitivities to environmental variables

The main features of the OMZ simulated by the model are strongly dependent on environmental parameters such as upwelling

and mixing, organic matter fluxes, and the model boundary conditions, including mixed layer depth and O2 concentrations.

Critically, these parameters are likely to vary over time under the effects of natural climate variability (e.g., Deutsch et al.485

(2011)), and anthropogenic climate change (Bopp et al., 2013). While each of these parameters control OMZ tracer profiles

and N cycle reactions in complex ways, the main responses can be ascribed to changes in the position, thickness, and strength

of the anoxic OMZ layer. Perturbations that replenish O2 above the thresholds for anoxic processes — such as those predicted

under climate warming scenarios (Busecke et al., 2022) — have thus cascading impacts on anaerobic N cycle intermediates

such as NO−
2 and N2O, and on the fixed N removal and NO−

3 deficit of the oxygen deficient zone.490

Fig. 11 shows the sensitivity of the optimal solution Optsel to the magnitudes of vertical upwelling (wup) and turbulent

diffusion (Kv). Increasing wup results in higher O2 supply from below the OMZ, leading to increasing O2 concentrations, and

an upward shift and thinning of the anoxic layers. At high upwelling, the anoxic layer is effectively wiped out and is replaced

by a suboxic layer. Similar results are obtained with higherKv values, with an increase of diffusive O2 supply from both above

and below the OMZ, resulting in a progressive shrinking of the anoxic layer. As this layer vanishes, anaerobic processes cease,495

drastically reducing the concentration of NO−
2 and the N deficit in the OMZ core. Notably, as the OMZ reaches the brink of

anoxia, i.e., as the minimum O2 concentration falls within the N2O production window, the upper and lower N2O maxima

merge into a single N2O spike with particularly high N2O concentrations, reflecting the largest imbalance between production

and consumption.

Opposite changes are observed for a reduction in bothwup andKv , which result in an expansion of the OMZ layer, increased500

NO−
3 , NO−

2 , and N2O reduction, a larger OMZ NO−
2 peak, and a broader separation of the upper and lower N2O maxima. The

interplay between the position of the oxygen deficient layer, sinking particle fluxes, and transport processes further modulates

the response of tracer profiles. For example, as anoxic waters expand upwards following a reduction in Kv , they intercept a

higher concentration of sinking organic matter, which in turn fuels higher remineralization rates. Together with reduction in

diffusive fluxes, this likely favors the strengthening of the upper N2O maximum at low Kv observed in Fig. 11.505

Because the supply of POC to the OMZ controls the overall magnitude of remineralization reactions, including O2 con-

sumption and denitrification, the model is particularly sensitive to the sinking POC flux at the upper model boundary (Φtop
poc,

Table B3; Fig. 12, top panel). Increasing Φtop
poc causes a greater remineralization rate, which reduces available O2, and drives

a progressive thickening of the OMZ, with a series of cascading impacts on tracers similar to the ones discussed above. In

contrast, decreasing Φtop
poc reduces the Rrem rates and increases O2 to the point that anoxic conditions and their signature510

disappear.

Similar changes can also be driven by variations in the bottom boundary O2 concentration, which directly controls upward

O2 supply by upwelling (Fig. 12, bottom panel). Increasing bottom O2 progressively decreases the thickness of the OMZ,

shifting it upwards, and eventually eroding the anoxic layer. Conversely, decreasing bottom O2 leads to a downward expansion

of the OMZ and an intensification of anoxic conditions and the resulting anaerobic reactions.515
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Figure 11. Model sensitivity to physical drivers. (top) Sensitivity of the Optsel optimized solution to the constant vertical upwelling velocity

(wup). (bottom) Sensitivity to the vertical turbulent diffusion coefficient (Kv). The bold black curves indicate original Optsel values, which

are also indicated on their respective colorbars.
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Figure 12. Model sensitivity to biogeochemical drivers. Same as in Fig. 11, but for surface POC flux (Φtop
poc) and O2 concentration at the

lower model boundary. In the top panels, more negative values of Φtop
poc correspond to an increasing sinking POC flux.
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6 Discussion and conclusions

We developed a model of the N cycle in low O2 waters, and optimized it to reproduce observations from the ETSP OMZ. The

model is able to simulate the distribution of multiple N cycle tracers, including NO−
2 and N2O, and their transformation rates,

capturing the underlying dynamics and environmental sensitivity of the underlying reactions (Fig. 5). In general, the model

reproduces observed tracer concentration profiles more accuratetely than transformation rates. Mismatches with transforma-520

tion rates may point to processes that need improvement in the model, but also underscore limitations in rate measurements,

which rely on shipboard incubation experiments that are usually more uncertain and limited than tracer measurements, and

may not perfecly reflect in situ conditions. However, by matching observed reaction rates to a reasonable degree, the model

approximates the complex dynamics of the system in a way that allows it to reproduce tracer distributions. Co-located tracer

and rate measurements for multiple processes are thus an effective way to constrain the model representation of the N cycle in525

and around O2-deficient environments.

The optimization indicates that multiple parameter sets can produce equally good fits to tracer and rate profiles (Fig. 5). This

is expected given the non-linear nature of the model, and limitations in the observations. Even when rate measurements are

used to constrain the model, as done here, an ensemble of equally good solutions is thus possible. This optimized ensemble

shows that significant variability and trade-offs can exist between specific parameters (Fig. 4), suggesting that compensation530

between different procesess can lead to similar profiles of tracers and transformation rates. Refinements to the criteria used

to optimize the model, i.e., additional constraints in the definition of the cost function, could allow to further narrow down

plausible sets of parameters. For example, to evaluate the model sensitivity (Fig. 8-10), we select a parameter set from our

optimization ensemble that better captures the magnitude of the secondary N2O maximum, while reproducing other observed

features equally well. While we adopt a relatively simple cost function definition, additional constraints such as this one could535

be explicitly built into its formulation and weighted more heavily to revise model parameters.

A better characterization of environmental sensitivities to substrate concentrations (e.g., half saturation constant for substrate

uptake) and O2 sensitivities would also help parameter selection, for example by narrowing down the prior and posterior range

of values for these and other variables (e.g., maximum reaction rates). To this end, rate measurements under a range of O2 and

substrate concentrations are especially helpful. Similarly, simultaneous optimization of the model to reproduce observations540

across multiple regions of an OMZ characterized by different conditions, e.g., the core and the boundaries, or across different

OMZ and oceanographic regimes, would likely result in more robust optimizations.

Despite the variability in parameter values, analysis of the optimal ensemble reveals emerging features that appear robust

across multiple optimizations and that compare well with observations. For example, the sensitivity of denitrification processes

to O2 shows systematic variations, with weaker O2 inhibition for NO−
3 reduction, and stronger for N2O reduction (Fig. 6).545

Accordingly, NO−
3 reduction to NO−

2 tends to occur at higher O2 concentrations than NO−
2 reduction to N2O, which in turns

occurs at higher O2 concentrations than N2O reduction to N2. This result is consistent with tracer incubation experiments

(Dalsgaard et al., 2014). However, we note that the specific value of these O2 sensitivities is far from well-established, with

some experiments showing smaller thresholds than found in our optimization (Dalsgaard et al., 2014), and others finding
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similar or larger thresholds (Ji et al., 2018a). In the model, the sequential sensitivity of denitrification steps to O2 supports550

an O2-dependent window for N2O production, which allows accumulation of N2O at the margins of the OMZ core. This,

and other systematic relationships between parameters and features of the solutions, as revealed by a sensitivity analysis (Fig.

8-10), shed light on specific balances in the N cycle, and can be exploited as a powerful tool to fine-tune the model, both in the

1D setup used here, and in more complex and resource-intensive 3D implementations where a formal optimization would be

unfeasible (McCoy et al., 2022).555

Because the model is based on a mechanistic representation of N transformations, it is suitable to investigate the response

of the N cycle to environmental variability and other perturbations (Fig. 11-12). For example, the model could be used to

investigate the effects of eddy variability near the boundaries of OMZs, or the effects of OMZ expansion and change under

global warming. With these goals in mind, the model is designed to be coupled to the biogeochemical component of the current

generation of Earth System Models, enabling accurate simulation of NO−
2 and N2O dynamics, with minimal interference with560

the representation of the cycles of oxygen, nutrients, carbon, and organic matter.

Because the model reflects an evolving understanding of the N cycle, its assumptions should be re-evaluated as new N trans-

formation processes and aspects of microbial dynamics are uncovered. The model is built around two major simplifications:

the “modularity”’ of the N cycle, and the representation of microbial metabolisms as “bulk”’ chemical reactions that avoid

explicitly tracking diverse microbial populations. Both are approximate views of the N cycle. For example, recent evidence565

suggests that microorganisms with the ability to carry out intracellular reduction of NO−
3 to NO−

2 and NO−
2 to N2O may

dominate production of N2O in oxygen deficient waters (Ji et al., 2018a; Frey et al., 2020), although the sensitivity of this

process to environmental factors is still being uncovered.

Our “bulk”’ approach assumes that metabolic reaction rates are proportional to substrates following a Michaelis-Menten

dependency. However, in reality, reaction rates also depend on the abundance of microorganisms present in the water column.570

If microorganism biomass is assumed to be proportional to substrates, then a higher-order dependency of reaction rates may be

more appropriate, as adopted by some biogeochemical models (e.g., Paulot et al. (2020)). A different dependence on substrates,

in turn, may affect the variability of reaction rates with depth, and the model sensitivity to parameters such as maximum reaction

rates.

Indeed, previous modeling studies have pointed out the value of explicitly resolving the biomass of microbial populations575

(Penn et al., 2016; Zakem et al., 2020). This, in turn, enables a more direct comparison of model results with molecular

observations (Louca et al., 2016), and would favor the emergence of complex feedbacks between microbes and their substrates

driven by resource competition and oceanic circulation (Penn et al., 2019). However, explicitly simulating microbial biomass

requires a number of additional parameters that remain poorly constrained and adds computational burden that may not always

improve the realism of biogeochemical simulations (Galbraith et al., 2015). Our model provides a valuable framework to580

continue exploring these ideas in both idealized and realistic settings (McCoy et al., 2022).

Based on its modular design, the model can be naturally expanded to represent new processes that, while thought to be rele-

vant in OMZ, are still uncertain. These include: (1) Additional known N cycle pathways, and their sensitivity to environmental

variability, such as DNRA (Lam et al., 2009), hybrid N2O production from AOA (Stieglmeier et al., 2014), and direct NO−
3
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reduction to N2O (Ji et al., 2018a; Frey et al., 2020); (2) Alternative oxidation pathways, for example NO−
2 oxidation with585

iodate, or NO−
2 disproportionation reactions (Babbin et al., 2020; Sun et al., 2021a); (3) Coupling of N tracers with the cycles

of other elements, e.g. carbon, sulfur and iron, such as chemolithotrophic denitrification coupled to hydrogen sulfide (H2S)

oxidation, or anaerobic NO−
2 -based methane (CH4) oxidation (Azhar et al., 2014; Scholz et al., 2016; Thamdrup et al., 2019;

Callbeck et al., 2021); (4) Explict representation of chemolithrotrophy and its effects on organic matter fixation (Swan et al.,

2011); (5) Explicit coupling to the inorganic carbon cycle, by inclusion of CO2 and alkalinity changes associated with N cycle590

reactions (Cinay et al., 2022); (6) The cycling of nitric oxide (NO) (Ward and Zafiriou, 1988; Lutterbeck et al., 2018); (7) A

more detailed representation of the microbial ecology underlying the N cycle (Louca et al., 2016; Zakem et al., 2018; Penn

et al., 2019).
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Appendix A: NitrOMZ Equations605

A1 Heterotrophic rate equations

Rrem = krem ·
O2

Ko2
rem + O2

·POC (A1)

Rden1 = kden1 ·
NO−

3

Kno3
den1 + NO−

3

· e
−O2

K
o2
den1 ·POC (A2)

Rden2 = kden2 ·
NO−

2

Kno2
den2 + NO−

2

· e
−O2

K
o2
den2 ·POC (A3)

Rden3 = kden3 ·
N2O

Kn2o
den3 + N2O

· e
−O2

K
o2
den3 ·POC (A4)

A2 Chemolithotrophic rate equations

Rao = kao ·
O2

Ko2
ao + O2

· NH+
4

Knh4
ao + NH+

4

(A5)

Rno = kno ·
O2

Ko2
no + O2

· NO−
2

Kno2
no + NO−

2

(A6)

Rax = kax ·
NH+

4

Knh4
ax + NH+

4

· NO−
2

Kno2
ax + NO−

2

· e
−O2

K
o2
ax (A7)

A3 Aerobic N2O production

Production of N2O via the nitrification pathway in NitrOMZ (pathway 2b in Fig. 1) is modelled as a by-product of Rao with

enhanced yields at lower O2 concentrations. The partitioning between N2O and NO−
2 production from Rao is calculated using610

the function proposed by Nevison et al. (2003), which was derived by fitting measured N2O and NO−
2 yields (Y n2o

ao and Y no2
ao ,

respectively) to oxygen concentrations (Goreau et al., 1980), and re-fit by multiple observations in the Eastern Tropical North

and South Pacific OMZ (Ji et al., 2015a, 2018a; Santoro et al., 2021):

Y n2o
ao

Y no2
ao

=

(
Jia
[O2]

+ Jib

)
· 0.01 (A8)

Nitrification-derived NO−
2 and N2O production rates (Rno2

ao and Rn2o
ao respectively, pathways 2a and 2b in Fig. 1) are therefore

represented as:615

Rn2o
ao =Rao ·Y n2o

ao , (A9)

Rno2
ao =Rao ·Y no2

ao . (A10)

A4 Stoichiometry

The stoichiometry of heterotrophic redox reactions is based on an electron balance and follows the procedure outlined in

Paulmier et al. (2009), under the assumption that the composition of organic matter (POC) follows the average oceanic ratios
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from Anderson and Sarmiento (1994): C106H175O42N16P. This chemical composition can be arbitrarily adjusted in NitrOMZ.

Accordingly, the NH+
4 to C and PO3−

4 to C ratios during aerobic respiration are:620

QN :C
rem =

16

106
, (A11)

QP :C
rem =

1

106
. (A12)

As a result of the POC composition, a total of 472 electrons are required to oxidize POC to CO2. With 4 electrons required to

reduce O2 to H2O, the oxygen to carbon remineralization ratio for aerobic remineralization to NH+
4 is represented as:

QO:C
rem =

472

106 · 4
, (A13)

This yields a respiration quotient of r−O2:C of 1.11, which is within range of direct chemical measurements of r−O2:C from

Moreno et al. (2020, 2022). For nitrification, the oxygen to nitrogen ratios for NH+
4 and NO−

2 oxidation (Rao and Rno,

respectively) are based on the stoichiometry of the relevant redox reactions:625

QO:N
ao =

3

2
, (A14)

QO:N
no =

1

2
. (A15)

For denitrification, 2 electrons are required for each respective reduction step (NO−
3 to NO−

2 , NO−
2 to N2O, and N2O to N2),

thus the corresponding ratios are:

QN :C
den =

472

106 · 2
(A16)

Finally, for anammox, NH+
4 and NO−

2 are combined in 1:1 ratios to produce N2. The above ratios are then applied to the tracer

equations in Appendix A5.630
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A5 Tracer sources-minus-sinks equations

d[POC]

dt
=−(Rrem +Rden1 +Rden2 +Rden3) (A17)

d[O2]

dt
= (QO:C

rem ·Rrem)− (QO:N
ao ·Rao)− (QO:N

no ·Rno) (A18)

d[NO−
3 ]

dt
=Rno− (QN :C

den ·Rden1) (A19)

d[PO3−
4 ]

dt
=QP :C

rem · (Rrem +Rden1 +Rden2 +Rden3) (A20)

d[NH+
4 ]

dt
=QN :C

rem · (Rrem +Rden1 +Rden2 +Rden3)− (Rao +Rax) (A21)

d[NO−
2 ]

dt
=Rno2

ao +QN :C
den · (Rden1−Rden2)− (Rno +Rax) (A22)

d[N2O]

dt
= 0.5 · (Rn2o

ao +QN :C
den ·Rden2)− (Qden

N :C ·Rden3) (A23)

d[N2]

dt
= (QN :C

den ·Rden3) +Rax (A24)

(A25)
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Appendix B: NitrOMZ Parameters and Configurations

Table B1. NitrOMZ nitrogen cycle parameters and CMA-ES optimization ranges.

Parameter Description Units CMA-ES

Min Value

CMA-ES

Max Value

Optsel

ETSP

Jia Nevison et al. (2003) ’a’ parameter N/A 0.0500 0.4000 0.4000

Jib Nevison et al. (2003) ’b’ parameter N/A 0.0500 0.2000 0.2000

krem Maximum aerobic respiration rate d−1 N/A N/A 0.0800

kden1 Maximum NO−
3 reduction rate d−1 0.0080 0.0800 0.0205

kden2 Maximum NO−
2 reduction rate d−1 0.0080 0.0800 0.0080

kden3 Maximum N2O reduction rate d−1 0.0080 0.0800 0.0496

kao Maximum NH+
4 oxidation rate µmol N m−3 d−1 0.0100 0.5000 0.0167

kno Maximum NO−
2 oxidation rate µmol N m−3 d−1 0.0100 0.5000 0.0118

kax Maximum anammox rate µmol N m−3 d−1 0.0100 0.5000 0.4411

Ko2
rem O2 half saturation constant for aerobic respiration mmol O2 m−3 0.0100 1.0000 1.0000

Knh4
ao NH+

4 half saturation constant for NH+
4 oxidation mmol N m−3 0.0100 1.0000 0.5091

Ko2
ao O2 half saturation constant for NH+

4 oxidation mmol O2 m−3 N/A N/A 0.3300

Kno2
no NO−

2 half saturation constant for NO−
2 oxidation mmol N m−3 0.0100 1.0000 0.3053

Ko2
no O2 half saturation constant for NO−

2 oxidation mmol O2 m−3 N/A N/A 0.7780

Kno3
den1 NO−

3 half saturation constant for NO−
3 reduction mmol N m−3 0.0100 1.0000 1.0000

Kno2
den2 NO−

2 half saturation constant for NO−
2 reduction mmol N m−3 0.0100 1.0000 0.0100

Kn2o
den3 N2O half saturation constant for N2O reduction mmol N m−3 0.0100 0.2000 0.1587

Knh4
ax NH+

4 half saturation constant for anammox mmol N m−3 0.1000 1.0000 1.0000

Kno2
ax NO−

2 half saturation constant for anammox mmol N m−3 0.1000 1.0000 1.0000

Ko2
den1 O2 exponential inhibition for NO−

3 reduction mmol O2 m−3 0.0100 6.0000 6.0000

Ko2
den2 O2 exponential inhibition for NO−

2 reduction mmol O2 m−3 0.0100 3.0000 1.2993

Ko2
den3 O2 exponential inhibition for N2O reduction mmol O2 m−3 0.0100 3.0000 0.5060

Ko2
ax O2 exponential inhibition for anammox mmol O2 m−3 0.5000 6.0000 6.0000
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Table B2. ETSP configuration for optimization routines.

Name Description Unit Value

ztop Minumum model depth m -30

zbot Maximum model depth m -1330

wup Upwelling velocity (constant) m y−1 10.0562

Ktop
v Upper boundary vertical diffusion coefficient m2 y−1 750.9983

Kbot
v Lower boundary vertical diffusion coefficient m2 y−1 1072.8547

Kflex
v Variable (sigmoidal) vertical diffusion parameter m -250

Kwidth
v Variable (sigmoidal) vertical diffusion parameter m 300

Φtop Initial POC flux @ -30m mmol C m−2 d−1 -11.1

krem Maximum aerobic remineralization rate d−1 0.0800

b Martin coefficient N/A -0.7049

Table B3. ETSP boundary conditions.

Tracer Units Top Bottom

O2 mmol m−3 225.00 77.00

NO−
3 mmol m−3 2.81 42.50

PO3−
4 mmol m−3 0.82 3.06

N2O µmol m−3 13.00 35.00

NO−
2 mmol m−3 0.15 0.00

NH+
4 mmol m−3 0.40 0.00

N2 mmol m−3 2.00 6.00

Table B4. Optimized ETSP parameter sets.

Name Parameter

Sets

# of

Iterations

Perturbations Tracer Weights

(O2, NO−
3 , PO3−

4 , N2O, NH+
4 , NO−

2 , N∗)

Rate Weights

(Rn2o
ao , Rden1, Rden2, Rax)

optVKv-v6 45 40k 20% 2, 1, 1, 6, 2, 4, 4 1, 1, 1, 1

optVKv-v7 69 40k 20% 2, 1, 1, 8, 0, 4, 4 1, 1, 1, 1

optVKv-v8 110 40k 20% 2, 1, 1, 12, 2, 4, 4 1, 1, 1, 1

optVKv-v9 158 40k 20% 2, 1, 1, 12, 2, 8, 4 1, 1, 1, 1
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Appendix C: Supplemental Figures
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Figure C1. (left) Optsel vertical diffusion (Kv) and (right) POC profiles.
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Figure C2. Parameter distributions from the 382 CMA-ES optimized ETSP solutions. Red markers denote Optsel values.
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Figure C3. Same as in Figure 5, but for O2, NO−
3 , PO3−

4 , and N∗.

38



References

Anderson, L. A. and Sarmiento, J. L.: Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochemical635

Cycles, 8, 65–80, https://doi.org/10.1029/93GB03318, 1994.

Arévalo-Martínez, D. L., Kock, A., Löscher, C. R., Schmitz, R. A., Stramma, L., and Bange, H. W.: Influence of mesoscale eddies on the

distribution of nitrous oxide in the eastern tropical South Pacific, Biogeosciences Discussions, 12, 9243–9273, https://doi.org/10.5194/bgd-

12-9243-2015, 2015.

Aumont, O., Éthé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem640

studies, Geoscientific Model Development, 8, 2465–2513, 2015.

Azhar, M. A., Canfield, D. E., Fennel, K., Thamdrup, B., and Bjerrum, C. J.: A model-based insight into the coupling of nitrogen and sulfur

cycles in a coastal upwelling system, Journal of Geophysical Research: Biogeosciences, 119, 264–285, 2014.

Babbin, A. R., Keil, R. G., Devol, A. H., and Ward, B. B.: Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean,

Science, 344, 406–408, https://doi.org/10.1126/science.1248364, 2014.645

Babbin, A. R., Bianchi, D., Jayakumar, A., and Ward, B. B.: Rapid nitrous oxide cycling in the suboxic ocean, Science, 348, 1127–1129,

https://doi.org/10.1126/science.aaa8380, 2015.

Babbin, A. R., Peters, B. D., Mordy, C. W., Widner, B., Casciotti, K. L., and Ward, B. B.: Multiple metabolisms constrain the anaerobic nitrite

budget in the Eastern Tropical South Pacific, Global Biogeochemical Cycles, 31, 258–271, https://doi.org/10.1002/2016GB005407, 2017.

Babbin, A. R., Buchwald, C., Morel, F. M., Wankel, S. D., and Ward, B. B.: Nitrite oxidation exceeds reduction and fixed nitrogen loss in650

anoxic Pacific waters, Marine Chemistry, 224, https://doi.org/10.1016/j.marchem.2020.103814, 2020.

Battaglia, G. and Joos, F.: Marine N2O Emissions From Nitrification and Denitrification Constrained by Modern Observations and Projected

in Multimillennial Global Warming Simulations, Global Biogeochemical Cycles, 32, 92–121, https://doi.org/10.1002/2017GB005671,

2018.

Berelson, W.: The Flux of Particulate Organic Carbon Into the Ocean Interior: A Comparison of Four U.S. JGOFS Regional Studies,655

Oceanography, 14, 59–67, https://doi.org/10.5670/oceanog.2001.07, 2001.

Bettencourt, J. H., Lopez, C., Hernandez-Garcia, E., Montes, I., Sudre, J., Dewitte, B., Paulmier, A., and Garçon, V.: Boundaries of the Peru-

vian oxygen minimum zone shaped by coherent mesoscale dynamics, Nature Geoscience, 8, 937–940, https://doi.org/10.1038/ngeo2570,

2015.

Bianchi, D., Dunne, J. P., Sarmiento, J. L., and Galbraith, E. D.: Data-based estimates of suboxia, denitrification, and N2O production in the660

ocean and their sensitivities to dissolved O2, Global Biogeochemical Cycles, 26, https://doi.org/10.1029/2011GB004209, 2012.

Bianchi, D., Babbin, A. R., and Galbraith, E. D.: Enhancement of anammox by the excretion of diel vertical migrators, Proceedings of the

National Academy of Sciences, 111, 15 653–15 658, 2014.

Bianchi, D., Weber, T. S., Kiko, R., and Deutsch, C.: Global niche of marine anaerobic metabolisms expanded by particle microenvironments,

Nature Geoscience, 11, 263–268, https://doi.org/10.1038/s41561-018-0081-0, 2018.665

Bianchi, D., Yang, S., and McCoy, D.: NitrOMZv1.0 Model Code, https://doi.org/10.5281/ZENODO.7106213, 2022.

Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Seferian, R., et al.: Multiple

stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, 2013.

Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.: Multi-faceted particle pumps drive carbon sequestration in the ocean,

Nature, 568, 327–335, 2019.670

39

https://doi.org/10.1029/93GB03318
https://doi.org/10.5194/bgd-12-9243-2015
https://doi.org/10.5194/bgd-12-9243-2015
https://doi.org/10.5194/bgd-12-9243-2015
https://doi.org/10.1126/science.1248364
https://doi.org/10.1126/science.aaa8380
https://doi.org/10.1002/2016GB005407
https://doi.org/10.1016/j.marchem.2020.103814
https://doi.org/10.1002/2017GB005671
https://doi.org/10.5670/oceanog.2001.07
https://doi.org/10.1038/ngeo2570
https://doi.org/10.1029/2011GB004209
https://doi.org/10.1038/s41561-018-0081-0
https://doi.org/10.5281/ZENODO.7106213


Bristow, L. A., Dalsgaard, T., Tiano, L., Mills, D. B., Bertagnolli, A. D., Wright, J. J., Hallam, S. J., Ulloa, O., Canfield, D. E., Revsbech, N. P.,

and Thamdrup, B.: Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters, Proceedings

of the National Academy of Sciences of the United States of America, 113, 10 601–10 606, https://doi.org/10.1073/pnas.1600359113,

2016.

Buchwald, C., Santoro, A. E., Stanley, R. H., and Casciotti, K. L.: Nitrogen cycling in the secondary nitrite maximum of the eastern tropical675

North Pacific off Costa Rica, Global Biogeochemical Cycles, 29, 2061–2081, 2015.

Buitenhuis, E. T., Suntharalingam, P., and Le Quéré, C.: Constraints on global oceanic emissions of N 2 O from observations and models,

Biogeosciences, 15, 2161–2175, 2018.

Busecke, J. J. M., Resplandy, L., Ditkovsky, S. J., and John, J. G.: Diverging Fates of the Pacific Ocean Oxygen Minimum Zone and Its Core

in a Warming World, AGU Advances, 3, https://doi.org/10.1029/2021AV000470, 2022.680

Callbeck, C. M., Canfield, D. E., Kuypers, M. M. M., Yilmaz, P., Lavik, G., Thamdrup, B., Schubert, C. J., and Bristow, L. A.: Sulfur cycling

in oceanic oxygen minimum zones, Limnology and Oceanography, 66, 2360–2392, https://doi.org/10.1002/lno.11759, 2021.

Capone, D., Bronk, D., Mulholland, M. R., and Carpenter, E.: Nitrogen in the Marine Environment, Elsevier, https://doi.org/10.1016/B978-

0-12-372522-6.X0001-1, 2008.

Casciotti, K., Forbes, M., Vedamati, J., Peters, B., Martin, T., and Mordy, C.: Nitrous oxide cycling in the Eastern Tropical South Pa-685

cific as inferred from isotopic and isotopomeric data, Deep Sea Research Part II: Topical Studies in Oceanography, 156, 155–167,

https://doi.org/10.1016/j.dsr2.2018.07.014, 2018.

Cinay, T., Dumit, D., Woosley, R. J., Boles, E. L., Kwiecinski, J. V., Mullen, S., Tamasi, T. J., Wolf, M. J., Kelly, C. L., Travis, N. M., et al.:

Coincident biogenic nitrite and pH maxima arise in the upper anoxic layer in the Eastern Tropical North Pacific, Global Biogeochemical

Cycles, p. e2022GB007470, 2022.690

Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Canfield, D. E., and Delong, E. F.: Oxygen at

nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone

off Northern Chile, mBio, 5, 1–14, https://doi.org/10.1128/mBio.01966-14, 2014.

De Brabandere, L., Canfield, D. E., Dalsgaard, T., Friederich, G. E., Revsbech, N. P., Ulloa, O., and Thamdrup, B.: Vertical partitioning of

nitrogen-loss processes across the oxic-anoxic interface of an oceanic oxygen minimum zone, Environmental Microbiology, 16, 3041–695

3054, https://doi.org/10.1111/1462-2920.12255, 2014.

Deutsch, C., Brix, H., Ito, T., Frenzel, H., and Thompson, L.: Climate-forced variability of ocean hypoxia, science, 333, 336–339, 2011.

DeVries, T., Deutsch, C., Primeau, F., Chang, B., and Devol, A.: Global rates of water-column denitrification derived from nitrogen gas

measurements, Nature Geoscience, 5, 547–550, 2012.

DeVries, T., Deutsch, C., Rafter, P. A., and Primeau, F.: Marine denitrification rates determined from a global 3-D inverse model, Biogeo-700

sciences, 10, 2481–2496, https://doi.org/10.5194/bg-10-2481-2013, 2013.

Dunne, J. P., Gnanadesikan, A., Sarmiento, J. L., and Slater, R. D.: Technical description of the prototype version (v0) of tracers of phyto-

plankton with allometric zooplankton (TOPAZ) ocean biogeochemical model as used in the Princeton IFMIP model, Biogeosciences, 7,

3593, 2010.

Fasham, M. J. R., Ducklow, H. W., and McKelvie, S. M.: A nitrogen-based model of plankton dynamics in the oceanic mixed layer, Journal705

of Marine Research, 48, 591–639, https://doi.org/10.1357/002224090784984678, 1990.

Fischer, T., Banyte, D., Brandt, P., Dengler, M., Krahmann, G., Tanhua, T., and Visbeck, M.: Diapycnal oxygen supply to the tropical North

Atlantic oxygen minimum zone, Biogeosciences, 10, 5079–5093, 2013.

40

https://doi.org/10.1073/pnas.1600359113
https://doi.org/10.1029/2021AV000470
https://doi.org/10.1002/lno.11759
https://doi.org/10.1016/B978-0-12-372522-6.X0001-1
https://doi.org/10.1016/B978-0-12-372522-6.X0001-1
https://doi.org/10.1016/B978-0-12-372522-6.X0001-1
https://doi.org/10.1016/j.dsr2.2018.07.014
https://doi.org/10.1128/mBio.01966-14
https://doi.org/10.1111/1462-2920.12255
https://doi.org/10.5194/bg-10-2481-2013
https://doi.org/10.1357/002224090784984678


Frey, C., Bange, H. W., Achterberg, E. P., Jayakumar, A., Löscher, C. R., Arévalo-Martínez, D. L., León-Palmero, E., Sun, M., Sun, X., Xie,

R. C., Oleynik, S., and Ward, B. B.: Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru, Biogeosciences,710

17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, 2020.

Galbraith, E. D., Dunne, J. P., Gnanadesikan, A., Slater, R. D., Sarmiento, J. L., Dufour, C. O., De Souza, G. F., Bianchi, D., Claret, M.,

Rodgers, K. B., et al.: Complex functionality with minimal computation: Promise and pitfalls of reduced-tracer ocean biogeochemistry

models, Journal of Advances in Modeling Earth Systems, 7, 2012–2028, 2015.

Ganesh, S., Bristow, L. A., Larsen, M., Sarode, N., Thamdrup, B., and Stewart, F. J.: Size-fraction partitioning of community gene transcrip-715

tion and nitrogen metabolism in a marine oxygen minimum zone, The ISME Journal, 9, 2682–2696, https://doi.org/10.1038/ismej.2015.44,

2015.

Giovannoni, S. J., Cameron Thrash, J., and Temperton, B.: Implications of streamlining theory for microbial ecology, The ISME Journal, 8,

1553–1565, https://doi.org/10.1038/ismej.2014.60, 2014.

Gnanadesikan, A., Bianchi, D., and Pradal, M. A.: Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters,720

Geophysical Research Letters, 40, 5194–5198, https://doi.org/10.1002/GRL.50998, 2013.

Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W., and Watson, S. W.: Production of NO(2) and

N(2)O by Nitrifying Bacteria at Reduced Concentrations of Oxygen., Applied and environmental microbiology, 40, 526–32,

https://doi.org/10.1128/aem.40.3.526-532.1980, 1980.

Graf, D. R., Jones, C. M., and Hallin, S.: Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the725

importance of community structure for N2O emissions, PloS one, 9, e114 118, 2014.

Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global nitrogen cycle, Nature, 451, 293–296, 2008.

Hansen, N.: The CMA Evolution Strategy: A Comparing Review, in: Towards a New Evolutionary Computation, edited by A., L. J., Lar-

rañaga, P., Iñaki, I., and Endika, B., pp. 75–102, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/3-540-32494-1_4,

2006.730

Hansen, N.: The CMA Evolution Strategy: A Tutorial, 2023.

Hansen, N., Niederberger, A., Guzzella, L., and Koumoutsakos, P.: A Method for Handling Uncertainty in Evolutionary Optimiza-

tion With an Application to Feedback Control of Combustion, IEEE Transactions on Evolutionary Computation, 13, 180–197,

https://doi.org/10.1109/TEVC.2008.924423, 2009.

Hooper, A. B. and Terry, K.: Hydroxylamine oxidoreductase of Nitrosomonas, Biochimica et Biophysica Acta (BBA) - Enzymology, 571,735

12–20, https://doi.org/10.1016/0005-2744(79)90220-1, 1979.

Jensen, M. M., Lam, P., Revsbech, N. P., Nagel, B., Gaye, B., Jetten, M. S., and Kuypers, M. M.: Intensive nitrogen loss over

the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium, The ISME Journal, 5, 1660–1670,

https://doi.org/10.1038/ismej.2011.44, 2011.

Ji, Q., Babbin, A. R., Jayakumar, A., Oleynik, S., and Ward, B. B.: Nitrous oxide production by nitrification and denitrification in the Eastern740

Tropical South Pacific oxygen minimum zone, Geophysical Research Letters, 42, 10–755, 2015a.

Ji, Q., Babbin, A. R., Peng, X., Bowen, J. L., and Ward, B. B.: Nitrogen substrate–dependent nitrous oxide cycling in salt marsh sediments,

Journal of Marine Research, 73, 71–92, https://doi.org/10.1357/002224015815848820, 2015b.

Ji, Q., Buitenhuis, E., Suntharalingam, P., Sarmiento, J. L., and Ward, B. B.: Global Nitrous Oxide Production Determined by Oxygen

Sensitivity of Nitrification and Denitrification, Global Biogeochemical Cycles, 32, 1790–1802, https://doi.org/10.1029/2018GB005887,745

2018a.

41

https://doi.org/10.5194/bg-17-2263-2020
https://doi.org/10.1038/ismej.2015.44
https://doi.org/10.1038/ismej.2014.60
https://doi.org/10.1002/GRL.50998
https://doi.org/10.1128/aem.40.3.526-532.1980
https://doi.org/10.1007/3-540-32494-1{_}4
https://doi.org/10.1109/TEVC.2008.924423
https://doi.org/10.1016/0005-2744(79)90220-1
https://doi.org/10.1038/ismej.2011.44
https://doi.org/10.1357/002224015815848820
https://doi.org/10.1029/2018GB005887


Ji, Q., Buitenhuis, E., Suntharalingam, P., Sarmiento, J. L., and Ward, B. B.: Global Nitrous Oxide Production Determined by Oxygen

Sensitivity of Nitrification and Denitrification, Global Biogeochemical Cycles, 32, 1790–1802, https://doi.org/10.1029/2018GB005887,

2018b.

Jin, X. and Gruber, N.: Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions, Geophysical Research Letters,750

30, 1–4, https://doi.org/10.1029/2003GL018458, 2003.

Johnson, K. A. and Goody, R. S.: The Original Michaelis Constant: Translation of the 1913 Michaelis–Menten Paper, Biochemistry, 50,

8264–8269, https://doi.org/10.1021/bi201284u, 2011.

Johnston, D. T., Gill, B. C., Masterson, A., Beirne, E., Casciotti, K. L., Knapp, A. N., and Berelson, W.: Placing an upper limit on cryptic

marine sulphur cycling, Nature, 513, 530–533, https://doi.org/10.1038/nature13698, 2014.755

Kalvelage, T., Jensen, M. M., Contreras, S., Revsbech, N. P., Lam, P., Günter, M., LaRoche, J., Lavik, G., and Kuypers,

M. M.: Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones, PLoS ONE, 6,

https://doi.org/10.1371/journal.pone.0029299, 2011.

Kalvelage, T., Lavik, G., Lam, P., Contreras, S., Arteaga, L., Löscher, C. R., Oschlies, A., Paulmier, A., Stramma, L., and Kuypers,

M. M.: Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone, Nature Geoscience, 6, 228–234,760

https://doi.org/10.1038/ngeo1739, 2013.

Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans, Progress in

Oceanography, 77, 331–350, https://doi.org/10.1016/j.pocean.2007.05.009, 2008.

Koeve, W. and Kähler, P.: Heterotrophic denitrification vs. autotrophic anammox – quantifying collateral effects on the oceanic carbon cycle,

Biogeosciences, 7, 2327–2337, https://doi.org/10.5194/bg-7-2327-2010, 2010.765

Kraft, B., Strous, M., and Tegetmeyer, H. E.: Microbial nitrate respiration – Genes, enzymes and environmental distribution, Journal of

Biotechnology, 155, 104–117, https://doi.org/10.1016/j.jbiotec.2010.12.025, 2011.

Kriest, I. and Oschlies, A.: On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles,

Biogeosciences, 5, 55–72, https://doi.org/10.5194/bg-5-55-2008, 2008.

Kriest, I., Sauerland, V., Khatiwala, S., Srivastav, A., and Oschlies, A.: Calibrating a global three-dimensional biogeochemical ocean model770

(MOPS-1.0), Geoscientific Model Development, 10, 127–154, https://doi.org/10.5194/gmd-10-127-2017, 2017.

Kuypers, M. M., Marchant, H. K., and Kartal, B.: The microbial nitrogen-cycling network, Nature Reviews Microbiology, 16, 263–276,

2018.

Lam, P. and Kuypers, M. M.: Microbial Nitrogen Cycling Processes in Oxygen Minimum Zones, Annual Review of Marine Science, 3,

317–345, https://doi.org/10.1146/annurev-marine-120709-142814, 2011.775

Lam, P., Lavik, G., Jensen, M. M., van de Vossenberg, J., Schmid, M., Woebken, D., Gutiérrez, D., Amann, R., Jetten, M. S. M., and Kuypers,

M. M. M.: Revising the nitrogen cycle in the Peruvian oxygen minimum zone, Proceedings of the National Academy of Sciences, 106,

4752–4757, https://doi.org/10.1073/pnas.0812444106, 2009.

Long, A. M., Jurgensen, S. K., Petchel, A. R., Savoie, E. R., and Brum, J. R.: Microbial Ecology of Oxygen Minimum Zones Amidst Ocean

Deoxygenation, Frontiers in Microbiology, 12, https://doi.org/10.3389/fmicb.2021.748961, 2021a.780

Long, M. C., Moore, J. K., Lindsay, K., Levy, M., Doney, S. C., Luo, J. Y., Krumhardt, K. M., Letscher, R. T., Grover, M., and Sylvester, Z. T.:

Simulations with the marine biogeochemistry library (marbl), Journal of Advances in Modeling Earth Systems, 13, e2021MS002 647,

2021b.

42

https://doi.org/10.1029/2018GB005887
https://doi.org/10.1029/2003GL018458
https://doi.org/10.1021/bi201284u
https://doi.org/10.1038/nature13698
https://doi.org/10.1371/journal.pone.0029299
https://doi.org/10.1038/ngeo1739
https://doi.org/10.1016/j.pocean.2007.05.009
https://doi.org/10.5194/bg-7-2327-2010
https://doi.org/10.1016/j.jbiotec.2010.12.025
https://doi.org/10.5194/bg-5-55-2008
https://doi.org/10.5194/gmd-10-127-2017
https://doi.org/10.1146/annurev-marine-120709-142814
https://doi.org/10.1073/pnas.0812444106
https://doi.org/10.3389/fmicb.2021.748961


Löscher, C. R., Kock, A., Könneke, M., Laroche, J., Bange, H. W., and Schmitz, R. A.: Production of oceanic nitrous oxide by ammonia-

oxidizing archaea, Biogeosciences, 9, 2419–2429, https://doi.org/10.5194/bg-9-2419-2012, 2012.785

Louca, S., Hawley, A. K., Katsev, S., Torres-Beltran, M., Bhatia, M. P., Kheirandish, S., Michiels, C. C., Capelle, D., Lavik, G., Doebeli, M.,

Crowe, S. A., and Hallam, S. J.: Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone,

Proceedings of the National Academy of Sciences, 113, https://doi.org/10.1073/pnas.1602897113, 2016.

Lutterbeck, H. E., Arévalo-Martínez, D. L., Löscher, C. R., and Bange, H. W.: Nitric oxide (NO) in the oxygen minimum zone off Peru,

Deep Sea Research Part II: Topical Studies in Oceanography, 156, 148–154, https://doi.org/10.1016/j.dsr2.2017.12.023, 2018.790

Manizza, M., Keeling, R. F., and Nevison, C. D.: On the processes controlling the seasonal cycles of the air–sea fluxes of O2 and N2O: A

modelling study, Tellus B: Chemical and Physical Meteorology, 64, 18 429, 2012.

Martens-Habbena, W., Berube, P. M., Urakawa, H., De La Torre, J. R., and Stahl, D. A.: Ammonia oxidation kinetics determine niche

separation of nitrifying Archaea and Bacteria, Nature, 461, 976–979, https://doi.org/10.1038/nature08465, 2009.

Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX: carbon cycling in the northeast Pacific, Deep Sea Research Part795

A. Oceanographic Research Papers, 34, 267–285, https://doi.org/10.1016/0198-0149(87)90086-0, 1987.

Martinez-Rey, J., Bopp, L., Gehlen, M., Tagliabue, A., and Gruber, N.: Projections of oceanic N2O emissions in the 21st century using the

IPSL Earth system model, Biogeosciences, 12, 4133–4148, https://doi.org/10.5194/bg-12-4133-2015, 2015.

McCoy, D., Damien, P., Clements, D. J., Yang, S., and Bianchi, D.: Pathways of Nitrous Oxide Production in the Eastern Tropical South

Pacific Oxygen Minimum Zone, Authorea Preprints, https://doi.org/10.22541/essoar.167058932.27589471/v1, 2022.800

Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model, Global

Biogeochemical Cycles, 18, n/a–n/a, https://doi.org/10.1029/2004GB002220, 2004a.

Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model, Global

Biogeochemical Cycles, 18, 2004b.

Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C., and Misumi, K.: Marine Ecosystem Dynamics and Biogeochemical Cycling in the805

Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios,

Journal of Climate, 26, 9291–9312, https://doi.org/10.1175/JCLI-D-12-00566.1, 2013.

Moreno, A. R., Garcia, C. A., Larkin, A. A., Lee, J. A., Wang, W.-L., Moore, J. K., Primeau, F. W., and Martiny, A. C.: Latitudinal gradient

in the respiration quotient and the implications for ocean oxygen availability, Proceedings of the National Academy of Sciences, 117,

22 866–22 872, https://doi.org/10.1073/pnas.2004986117, 2020.810

Moreno, A. R., Larkin, A. A., Lee, J. A., Gerace, S. D., Tarran, G. A., and Martiny, A. C.: Regulation of the Respiration Quotient Across

Ocean Basins, AGU Advances, 3, https://doi.org/10.1029/2022AV000679, 2022.

Naqvi, S., Bange, H. W., Farías, L., Monteiro, P., Scranton, M., and Zhang, J.: Marine hypoxia/anoxia as a source of CH 4 and N 2 O,

Biogeosciences, 7, 2159–2190, 2010.

Nevison, C., Butler, J. H., and Elkins, J. W.: Global distribution of N 2 O and the ∆N 2 O-AOU yield in the subsurface ocean, Global815

Biogeochemical Cycles, 17, n/a–n/a, https://doi.org/10.1029/2003GB002068, 2003.

Nguyen, T. T., Zakem, E. J., Ebrahimi, A., Schwartzman, J., Caglar, T., Amarnath, K., Alcolombri, U., Peaudecerf, F. J., Hwa, T., Stocker,

R., et al.: Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates, Nature communications, 13,

1–9, 2022.

Paulmier, A., Kriest, I., and Oschlies, A.: Stoichiometries of remineralisation and denitrification in global biogeochemical ocean models,820

Biogeosciences, 6, 923–935, https://doi.org/10.5194/bg-6-923-2009, 2009.

43

https://doi.org/10.5194/bg-9-2419-2012
https://doi.org/10.1073/pnas.1602897113
https://doi.org/10.1016/j.dsr2.2017.12.023
https://doi.org/10.1038/nature08465
https://doi.org/10.1016/0198-0149(87)90086-0
https://doi.org/10.5194/bg-12-4133-2015
https://doi.org/10.22541/essoar.167058932.27589471/v1
https://doi.org/10.1029/2004GB002220
https://doi.org/10.1175/JCLI-D-12-00566.1
https://doi.org/10.1073/pnas.2004986117
https://doi.org/10.1029/2022AV000679
https://doi.org/10.1029/2003GB002068
https://doi.org/10.5194/bg-6-923-2009


Paulot, F., Stock, C., John, J. G., Zadeh, N., and Horowitz, L. W.: Ocean ammonia outgassing: modulation by CO2 and anthropogenic

nitrogen deposition, Journal of Advances in Modeling Earth Systems, 12, e2019MS002 026, 2020.

Peng, X., Fuchsman, C. A., Jayakumar, A., Warner, M. J., Devol, A. H., and Ward, B. B.: Journal of Geophysical Research : Oceans

Revisiting nitrification in the Eastern Tropical South Pacific : A focus on controls, Journal of Geophysical Research: Oceans, 121, 1667–825

1684, https://doi.org/10.1002/2015JC011455.Received, 2016.

Penn, J., Weber, T., and Deutsch, C.: Microbial functional diversity alters the structure and sensitivity of oxygen deficient zones, Geophysical

Research Letters, 43, 9773–9780, https://doi.org/10.1002/2016GL070438, 2016.

Penn, J. L., Weber, T., Chang, B. X., and Deutsch, C.: Microbial ecosystem dynamics drive fluctuating nitrogen loss in marine anoxic zones,

Proceedings of the National Academy of Sciences, 116, 7220–7225, https://doi.org/10.1073/pnas.1818014116, 2019.830

Primeau, F.: On the variability of the exponent in the power law depth dependence of POC flux estimated from sediment traps, Deep Sea

Research Part I: Oceanographic Research Papers, 53, 1335–1343, 2006.

Santoro, A. E., Buchwald, C., McIlvin, M. R., and Casciotti, K. L.: Isotopic Signature of N <sub>2</sub> O Produced by Marine Ammonia-

Oxidizing Archaea, Science, 333, 1282–1285, https://doi.org/10.1126/science.1208239, 2011.

Santoro, A. E., Buchwald, C., Knapp, A. N., Berelson, W. M., Capone, D. G., and Casciotti, K. L.: Nitrification and Ni-835

trous Oxide Production in the Offshore Waters of the Eastern Tropical South Pacific, Global Biogeochemical Cycles, 35, 1–35,

https://doi.org/10.1029/2020GB006716, 2021.

Sarmiento, J. L., Slater, R., Fasham, M., Ducklow, H., Toggweiler, J., and Evans, G.: A seasonal three-dimensional ecosystem model of

nitrogen cycling in the North Atlantic euphotic zone, Global biogeochemical cycles, 7, 417–450, 1993.

Schartau, M. and Oschlies, A.: Simultaneous data-based optimization of a 1D-ecosystem model at three locations in the North Atlantic: Part840

I—Method and parameter estimates, Journal of Marine Research, 61, 765–793, https://doi.org/10.1357/002224003322981147, 2003.

Scholz, F., Löscher, C. R., Fiskal, A., Sommer, S., Hensen, C., Lomnitz, U., Wuttig, K., Göttlicher, J., Kossel, E., Steininger, R., and Canfield,

D. E.: Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions, Earth and Planetary Science Letters, 454, 272–281,

https://doi.org/10.1016/j.epsl.2016.09.025, 2016.

Schreiber, F., Wunderlin, P., Udert, K. M., and Wells, G. F.: Nitric oxide and nitrous oxide turnover in natural and engi-845

neered microbial communities: biological pathways, chemical reactions, and novel technologies, Frontiers in Microbiology, 3,

https://doi.org/10.3389/fmicb.2012.00372, 2012.

Séférian, R., Berthet, S., Yool, A., Palmieri, J., Bopp, L., Tagliabue, A., Kwiatkowski, L., Aumont, O., Christian, J., Dunne, J., et al.: Tracking

improvement in simulated marine biogeochemistry between CMIP5 and CMIP6, Current Climate Change Reports, 6, 95–119, 2020.

Smriga, S., Ciccarese, D., and Babbin, A. R.: Denitrifying bacteria respond to and shape microscale gradients within particulate matrices,850

Communications Biology, 4, 1–9, 2021.

Stein, L. Y. and Yung, Y. L.: Production, Isotopic Composition, and Atmospheric Fate of Biologically Produced Nitrous Oxide, Annual

Review of Earth and Planetary Sciences, 31, 329–356, https://doi.org/10.1146/annurev.earth.31.110502.080901, 2003.

Stieglmeier, M., Mooshammer, M., Kitzler, B., Wanek, W., Zechmeister-Boltenstern, S., Richter, A., and Schleper, C.: Aerobic

nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea, ISME Journal, 8, 1135–1146,855

https://doi.org/10.1038/ismej.2013.220, 2014.

Stock, C. A., Dunne, J. P., Fan, S., Ginoux, P., John, J., Krasting, J. P., Laufkötter, C., Paulot, F., and Zadeh, N.: Ocean biogeochemistry in

GFDL’s Earth System Model 4.1 and its response to increasing atmospheric CO2, Journal of Advances in Modeling Earth Systems, 12,

e2019MS002 043, 2020.

44

https://doi.org/10.1002/2015JC011455.Received
https://doi.org/10.1002/2016GL070438
https://doi.org/10.1073/pnas.1818014116
https://doi.org/10.1126/science.1208239
https://doi.org/10.1029/2020GB006716
https://doi.org/10.1357/002224003322981147
https://doi.org/10.1016/j.epsl.2016.09.025
https://doi.org/10.3389/fmicb.2012.00372
https://doi.org/10.1146/annurev.earth.31.110502.080901
https://doi.org/10.1038/ismej.2013.220


Sun, X., Ji, Q., Jayakumar, A., and Ward, B. B.: Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater, Geophysical860

Research Letters, 44, 7883–7891, https://doi.org/10.1002/2017GL074355, 2017.

Sun, X., Frey, C., Garcia-Robledo, E., Jayakumar, A., and Ward, B. B.: Microbial niche differentiation explains nitrite oxidation in marine

oxygen minimum zones, The ISME Journal, 15, 1317–1329, https://doi.org/10.1038/s41396-020-00852-3, 2021a.

Sun, X., Jayakumar, A., Tracey, J. C., Wallace, E., Kelly, C. L., Casciotti, K. L., and Ward, B. B.: Microbial N2O consumption in and above

marine N2O production hotspots, The ISME Journal, 15, 1434–1444, 2021b.865

Suntharalingam, P. and Sarmiento, J. L.: Factors governing the oceanic nitrous oxide distribution: Simulations with an ocean general circu-

lation model, Global Biogeochemical Cycles, 14, 429–454, 2000.

Suntharalingam, P., Buitenhuis, E., Le Quéré, C., Dentener, F., Nevison, C., Butler, J. H., Bange, H. W., and Forster, G.:

Quantifying the impact of anthropogenic nitrogen deposition on oceanic nitrous oxide, Geophysical Research Letters, 39,

https://doi.org/10.1029/2011GL050778, 2012.870

Swan, B. K., Martinez-Garcia, M., Preston, C. M., Sczyrba, A., Woyke, T., Lamy, D., Reinthaler, T., Poulton, N. J., Masland, E. D. P., Gomez,

M. L., Sieracki, M. E., DeLong, E. F., Herndl, G. J., and Stepanauskas, R.: Potential for Chemolithoautotrophy Among Ubiquitous Bacteria

Lineages in the Dark Ocean, Science, 333, 1296–1300, https://doi.org/10.1126/science.1203690, 2011.

Thamdrup, B., Steinsdóttir, H. G. R., Bertagnolli, A. D., Padilla, C. C., Patin, N. V., Garcia-Robledo, E., Bristow, L. A., and Stewart, F. J.:

Anaerobic methane oxidation is an important sink for methane in the ocean’s largest oxygen minimum zone, Limnology and Oceanogra-875

phy, 64, 2569–2585, https://doi.org/10.1002/lno.11235, 2019.

Trimmer, M., Chronopoulou, P.-M., Maanoja, S. T., Upstill-Goddard, R. C., Kitidis, V., and Purdy, K. J.: Nitrous oxide as a function of

oxygen and archaeal gene abundance in the North Pacific, Nature Communications, 7, 13 451, https://doi.org/10.1038/ncomms13451,

2016.

Wang, W.-L., Moore, J. K., Martiny, A. C., and Primeau, F. W.: Convergent estimates of marine nitrogen fixation, Nature, 566, 205–211,880

https://doi.org/10.1038/s41586-019-0911-2, 2019.

Ward, B. and Zafiriou, O.: Nitrification and nitric oxide in the oxygen minimum of the eastern tropical North Pacific, Deep Sea Research

Part A. Oceanographic Research Papers, 35, 1127–1142, https://doi.org/10.1016/0198-0149(88)90005-2, 1988.

Ward, B. A., Friedrichs, M. A., Anderson, T. R., and Oschlies, A.: Parameter optimisation techniques and the problem of underdetermination

in marine biogeochemical models, Journal of Marine Systems, 81, 34–43, https://doi.org/10.1016/j.jmarsys.2009.12.005, 2010.885

Ward, B. B.: Nitrification in Marine Systems, in: Nitrogen in the Marine Environment, pp. 199–261, Elsevier, https://doi.org/10.1016/B978-

0-12-372522-6.00005-0, 2008.

Weber, T. and Bianchi, D.: Efficient particle transfer to depth in oxygen minimum zones of the Pacific and Indian Oceans, Frontiers in Earth

Science, 8, 376, 2020.

Wrage, N., Velthof, G. L., Van Beusichem, M. L., and Oenema, O.: Role of nitrifier denitrification in the production of nitrous oxide, Soil890

Biology and Biochemistry, 33, 1723–1732, https://doi.org/10.1016/S0038-0717(01)00096-7, 2001.

Wyrtki, K.: The oxygen minima in relation to ocean circulation, Deep Sea Research and Oceanographic Abstracts, 9, 11–23,

https://doi.org/10.1016/0011-7471(62)90243-7, 1962.

Yang, S., Chang, B. X., Warner, M. J., Weber, T. S., Bourbonnais, A. M., Santoro, A. E., Kock, A., Sonnerup, R. E., Bullister, J. L., Wilson,

S. T., and Bianchi, D.: Global reconstruction reduces the uncertainty of oceanic nitrous oxide emissions and reveals a vigorous seasonal895

cycle, Proceedings of the National Academy of Sciences of the United States of America, 117, https://doi.org/10.1073/pnas.1921914117,

2020.

45

https://doi.org/10.1002/2017GL074355
https://doi.org/10.1038/s41396-020-00852-3
https://doi.org/10.1029/2011GL050778
https://doi.org/10.1126/science.1203690
https://doi.org/10.1002/lno.11235
https://doi.org/10.1038/ncomms13451
https://doi.org/10.1038/s41586-019-0911-2
https://doi.org/10.1016/0198-0149(88)90005-2
https://doi.org/10.1016/j.jmarsys.2009.12.005
https://doi.org/10.1016/B978-0-12-372522-6.00005-0
https://doi.org/10.1016/B978-0-12-372522-6.00005-0
https://doi.org/10.1016/B978-0-12-372522-6.00005-0
https://doi.org/10.1016/S0038-0717(01)00096-7
https://doi.org/10.1016/0011-7471(62)90243-7
https://doi.org/10.1073/pnas.1921914117


Zakem, E. J., Al-Haj, A., Church, M. J., Van Dijken, G. L., Dutkiewicz, S., Foster, S. Q., Fulweiler, R. W., Mills, M. M., and Follows, M. J.:

Ecological control of nitrite in the upper ocean, Nature Communications, 9, https://doi.org/10.1038/s41467-018-03553-w, 2018.

Zakem, E. J., Polz, M. F., and Follows, M. J.: Redox-informed models of global biogeochemical cycles, Nature communications, 11, 5680,900

2020.

46

https://doi.org/10.1038/s41467-018-03553-w

