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Abstract. Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the 

variation in plant functional diversity, which requires moving away from broadly-defined functional types. Different 

approaches have been adopted in the last years to incorporate a trait-based perspective into modeling exercises. A common 

parametrization strategy involves using trait data to represent functional variation between individuals while discard 

taxonomic identity, but this strategy ignores the phylogenetic signal of trait variation and cannot be employed when 

predictions for specific taxa are needed, as in applications to inform forest management planning. An alternative strategy 

involves adapting the taxonomic resolution of model entities to that of the data source employed for large-scale initialization 

and estimating functional parameters from available plant trait databases while adopting alternative solutions for missing 

data and non-observable parameters. Here we report the advantages and limitations of this second strategy according to our 

experience in the development of MEDFATE (v. 2.8.1), a novel cohort-based and trait-enabled model of forest dynamics, for

its application over a region in the Western Mediterranean Basin. First, 217 taxonomic entities were defined according to 

woody species codes of the Spanish National Forest Inventory. While forest inventory data were used to obtain some 

empirical parameter estimates, a large proportion of physiological, morphological, and anatomical parameters were mapped 

to measured plant traits, with estimates extracted from multiple databases and averaged at the required taxonomic level. 

Estimates for non-observable key parameters were obtained using meta-modeling and calibration exercises. Missing values 

were filled using imputation procedures based on trait coordination, taxonomic averages or both. The model properly 

simulated observed historical basal area changes, with a performance similar to an empirical model trained for the same 

region. While strong efforts are still required to parameterize trait-enabled models for multiple taxa, estimation procedures 

can be progressively refined, transferred to other regions or models and iterated following data source changes by employing

automated workflows. We advocate for the adoption of trait-enabled population-structured models for regional-level 

projections of forest function and dynamics.  
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1. Introduction

Dynamic vegetation models are essential tools to anticipate future function and dynamics of terrestrial ecosystems. However,

forest responses to changes in climate and disturbance regimes are complex and non-linear, as they involve multiple 

processes operating at various scales, which makes forecasting a challenging task (Adams et al., 2013). Global-scale 

assessments of the effects of climatic changes on terrestrial ecosystems and their feed-backs require physically-based 

mechanistic approaches, given the need to evaluate energy, water and carbon exchanges between the biosphere and the 

atmosphere (Prentice and Cowling, 2013). At the regional-scale, however, climate change impact assessments on forest 

function and dynamics often do not include feed-backs to the atmosphere system and can be conducted using a much broader

range of modeling approaches, with differences in the way vegetation structure is represented and different degrees of 

mechanistic detail of process representation (Bugmann and Seidl, n.d.; Maréchaux et al., 2021; Blanco et al., 2020). Some 

models are very detailed in terms of biophysical, biogeochemical and physiological processes, but have a missing or limited 

representation of vegetation structure and demographic processes (Running and Coughlan, 1988; Dufrêne et al., 2005; 

Gracia et al., 2004). These models are better suited for predicting vegetation function than structural and/or compositional 

forest dynamics. At the opposite end, growth and yield models calibrated using empirical individual data allow simulating 

forest structural and compositional dynamics arising from the birth, growth and death of tree individuals (Dixon, 2013; 

Stadelmann et al., 2019; Trasobares et al., 2022), but are unable to predict vegetation function and often lack sufficient 

responsiveness to changing climatic conditions. Forest gap models combine an individual- or cohort-based representation of 

vegetation with an intermediate level of mechanistic detail, where demographic processes depend on competition for light, 

water, and nutrients, but the impact these factors on demographic processes is modeled with a low degree of mechanistic 

detail (Bugmann, 2001; Morin et al., 2021; Thrippleton et al., 2020; García-Valdés et al., 2020). Finally, hybrid models exist 

combining a detailed mechanistic approach to energy, water and carbon balances with a sufficient treatment of vegetation 

structure and demographic processes (Fisher et al., 2018; Maréchaux and Chave, 2017; Liu et al., 2021). These kind of 

models have the advantage of allowing a better representation of the interaction between vegetation function and dynamics, 

often at the cost of increased computational requirements. 

Regardless of the model type, one of the common challenges when modeling forest function and dynamics at large scales is 

to appropriately represent plant functional diversity into model parameters (Maréchaux and Chave, 2017), while it is known 

that functional traits display a wide spectrum of variation at multiple spatial scales (Funk et al., 2017). First, not all 

vegetation models are ‘trait-enabled’, in the sense that their design and formulation has not been conducted taking into 

account that model parameters should preferably be matched with observable plant traits, which hinders parameter 

estimation of complex models. Second, it is common in many models to reduce functional diversity into a manageable set of 

dominant tree species or a lumped set of plant functional types (Vanderwel et al., 2013; Morin et al., 2021; Prentice and 

Cowling, 2013; Dufrêne et al., 2005), with the corresponding decrease in ecological realism. Nowadays, comprehensive 
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global trait databases represent a key source of information to boost parameter estimation (Kattge et al., 2020) and including 

functional trait variation has been proven to substantially impact simulation outcomes (Verheijen et al., 2015). Different 

strategies have been adopted to incorporate plant functional diversity into vegetation modeling exercises (Zakharova et al., 

2019; Berzaghi et al., 2020). One possibility is to sample individual-level trait values from the distribution observed in a 

given forest area (Fyllas et al., 2014). This stochastic sampling of trait combinations can preserve trait coordination and 

relies on competition processes implemented in the model to filter trait distributions in each simulated patch (Sakschewski et

al., 2015; Thonicke et al., 2020; Pavlick et al., 2013). Another approach consists in combining a trait-based description of 

individuals with genetic and demographic processes included in the model to simulate trait inheritance and, hence, eco-

evolutionary processes (Scheiter et al., 2013; Scheiter and Higgins, 2009). For simulations over large extents, yet another 

possibility is to use climate-trait relationships, calibrated using global trait databases, to prescribe the variation across space 

of parameter values (Verheijen et al., 2013, 2015). All these approaches ignore taxonomic information, or continue to use 

broadly-defined functional types, and focus on representing the continuum of traits at the individual level. Even though 

models implementing these approaches are valuable tools, disregarding taxonomic information entails some limitations. 

Importantly, many plant traits exhibit a phylogenetic signal (Sanchez‐Martinez et al., 2020; Anderegg et al., 2022) and trait 

coordination frequently differs within- and among-species (Rosas et al., 2019; Anderegg et al., 2018). Hence, it is unclear 

how a model without explicitly treating taxonomic entities can deal with functional diversity in a realistic way, which 

explains why recent approaches sample parameter combinations within species-defined boundaries (Buotte et al., 2021). In 

addition, there are many applications at local to regional scales that require species identity. An example would be the 

evaluation of future climatic and socioeconomic scenarios for forest management and planning purposes (Morán-Ordóñez et 

al., 2020). Accounting for taxonomy in trait-enabled model simulations requires using as many trait data sources as possible 

to obtain taxon-specific estimates of model parameters (Maréchaux and Chave, 2017; Schmitt et al., 2020; Morin et al., 

2021; Ruffault et al., 2022). This taxon-based parameter estimation strategy can be employed in large-scale simulation 

exercises if combined with systematic forest inventory data, which defines the maximum resolution of taxonomic entities 

and provides empirical data to estimate parameters modulating forest dynamics (Vanderwel et al., 2013; Caspersen et al., 

2011; Dijak et al., 2017; Morin et al., 2021). To date, however, there are few examples of trait-enabled models of vegetation 

dynamics being extensively parameterized for a large number of taxa using plant trait databases (Christoffersen et al., 2016). 

Hence, it is important to appropriately address the different challenges to overcome if this approach is adopted because, even

with the current wealth of plant trait data sources, information is still insufficient for less common species that have not 

received much attention; and for key model parameters that are difficult to measure or cannot be matched to any observable 

trait. 

The main objectives of this manuscript are: (1) to present MEDFATE (ver. 2.8.1), a cohort-based and trait-enabled model of 

forest function and dynamics designed for regional applications; and (2) to illustrate the challenges encountered in the 

process of estimating parameter values for multiple-taxa in trait-enabled models. We begin by describing the design and 
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formulation of MEDFATE, focusing on new processes that have been added to two preceding models (De Cáceres et al., 

2015, 2021) that are now considered as alternative sub-models. We then detail the different procedures we employed to 

estimate taxon parameter values for the application of MEDFATE over a target region in the Mediterranean Basin, including

the imputation procedures used to address missing values. Once fully parameterized, we evaluate the model in terms of 

predicted forest dynamics at the regional level and compare its performance with that of an alternative empirical model 

(García-Callejas et al., 2017) calibrated for the main species in the target region. We then illustrate the potential of 

MEDFATE to assess the impact of expected climate changes on forest function and dynamics of the target region. We finish 

by discussing the challenges that we encountered, the transferability of the adopted parameter estimation procedures and the 

overall value of trait-enabled forest models for regional applications.

2.  Model description

MEDFATE simulates energy, water and carbon balances and ultimately forest dynamics for a set of woody plants (i.e. trees 

or shrubs) in a given forest stand using daily weather data as input. The above- and below-ground vertical structure of the 

stand is explicitly represented, but the horizontal location of plants within the stand is not considered. Importantly, the model

is cohort-based, meaning that plants considered similar (e.g., in size and taxonomic identity) are represented using a single 

entity with average characteristics (e.g., tree height and diameter, or shrub height), and a density variable is used to upscale 

quantities from the individual to the cohort level. Fig. 1 summarizes the main processes in the model. Most of the processes 

involved in water and energy balances are implemented at the stand level, whereas transpiration, photosynthesis, mortality 

and recruitment are implemented at the cohort level; and labile carbon balance, structural growth and senescence are 

implemented at the individual level. Hydrological processes (rainfall interception, soil infiltration, percolation and 

evaporation from bare soil) are simulated at daily time steps and were already described in De Cáceres et al. (2015). 

MEDFATE can be run using two different levels of complexity, depending on the sub-model employed to estimate plant 

transpiration and photosynthesis (De Cáceres et al., 2015, 2021), hereafter referred to as the “basic” and “advanced” sub-

models (Fig. 1). Although the basic sub-model is limited in its assumptions and includes key parameters that cannot be 

matched to plant traits, the finer time step and detail in process representation of the advanced sub-model easily leads to 

computational limitations when processing thousands of stands. Hence, the two sub-models have their context of application.

Sub-sections 2.1 and 2.2 briefly describe the design of the two sub-models. We then present the design and formulation of 

the carbon balance, growth, mortality and recruitment processes with some more detail, because they are new to MEDFATE.

Table 1 includes a description of all symbols mentioned in the text. MEDFATE is implemented in a modular way, so that 

different R functions can be used to execute different sub-models (Fig. 1). A full model description, including process 

formulation, can be found at https://  emf-creaf  .  github.io  /medfatebook/  .  

Symbol Description Units/range Sub-model

LAI Leaf area index of the stand m2·m-2
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BA Total basal area of the stand m2·ha-1

H Height of an “average” individual m

SA Sapwood area of an “average” individual cm2

DBH Diameter at breast height for an “average” individual cm

FBRs Fine root biomass in soil layer s g dry

PET Potential evapo-transpiration according to Penman (1948) mm

T Air temperature ºC

Ts Temperature of soil layer s ºC

FPARi Fraction of photosynthetically active radiation (PAR) for cohort i [0-1]

[CO2] Air carbon dioxide concentration ppm

VPD Vapor pressure deficit kPa

Emax,stand Maximum daily stand transpiration l·m-2 basic

Emax,stand(i) Maximum daily stand transpiration according to species of cohort i l·m-2·d-1 basic

aTmax, bTmax Species-specific parameters relating LAI with the ratio Emax,stand(i)/PET basic

Emax,i Maximum daily transpiration for plant cohort i l·m-2·d-1 basic

Ei Actual daily transpiration for plant cohort i l·m-2·d-1

Ag,i Daily gross photosynthesis of plant cohort i g C·m-2·d-1

NPP Annual net primary production g C·m-2·yr-1

Ψextract Plant water potential corresponding to 50% of transpiration MPa basic

Ψcritic Plant water potential corresponding to 50% of cavitation MPa basic

Ψplant Plant water potential MPa basic

Ψleaf Leaf water potential MPa advanced

Ψstem Stem water potential MPa advanced

Ψs Water potential in soil layer s MPa

PLC Proportion of stem xylem conductance lost due to cavitation [0-1]

WUEmax Water use efficiency assuming no light, water or CO2 limitations g C·l-1 basic

WUEPAR, WUECO2,
WUEVPD

Coefficients regulating the dependency of WUE on light availability, CO2 
concentration and VPD

basic

rcell (Ψ, T) Relative cell expansion rate, depending on water potential (Ψ) and temperature (T)

rcellmax Maximum relative cell expansion rate (at T = 30ºC and Ψ = 0)

RERsapwood Sapwood (parenchima) maintenance cost per dry mass unit g gluc·g dry-1·d-1

RGRleafmax Maximum daily leaf area growth rate per unit sapwood area m2·cm-2·d-1

RGRcambiummax Maximum daily (tree) sapwood area growth rate per unit cambium length cm2·cm-1·d-1

RGRsapwoodmax Maximum daily (shrub) sapwood area growth rate per unit sapwood area cm2·cm-2·d-1

RGRfinerootmax Maximum daily fine root biomass relative growth rate g dry·g dry-1·d-1
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SRsapwood Daily relative rate of sapwood area senescence at 25ºC cm2·cm-2·d-1

SRfineroot Daily relative rate of fine root biomass senescence at 25ºC g dry·g dry-1·d-1

ΔLAgrowth Daily leaf area increase due to growth m2·d-1

ΔSAgrowth Daily sapwood area increase due to growth cm2·d-1

ΔSAsenescence Daily sapwood area decrease due to senescence cm2·d-1

ΔFRBgrowth,s Daily increase in fine root biomass in soil layer s due to growth g dry·d-1

ΔFRBsenescence,s Daily decrease in fine root biomass in soil layer s due to senescence g dry·d-1

RSSG Minimum relative storage for sapwood growth [0-1]

Table 1: Description and units of input variables, state variables and model parameters mentioned in the text and in 
Appendix C. Column ‘sub-model’ indicates when a given state variable or parameter is specific to one of the two sub-
models. A complete list of model parameter definitions and units is given in Table B1.

Fig. 1: MEDFATE (ver. 2.8.1) model processes, with their temporal resolution, and user-level R simulation functions.

2.1. Transpiration, photosynthesis and drought impacts in the basic sub-model
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The basic sub-model was first described in (De Cáceres et al., 2015), but has recently undergone modifications that are 

detailed in Appendix C.1. All processes are represented at daily time steps. Extinction of short-wave radiation and 

photosynthetically-active radiation through the canopy follows Beer-Lambert’s equation. The model first derives a separate 

estimate of whole-stand maximum transpiration – i.e. before accounting for soil water deficit – for each taxon present, which

accounts for atmospheric evaporative demand and requires two taxon-specific parameters (see eq. (C.2)). Actual cohort 

transpiration depends on stand’s maximum transpiration calculated for the corresponding taxon and the fraction of short-

wave radiation absorbed by the plant cohort (Korol et al., 1995). It also depends on the vertical distribution of its fine roots, 

soil moisture and Ψextract, a taxon-specific parameter indicating the soil water potential corresponding to 50% of maximum 

transpiration (De Cáceres et al., 2015). The sub-model also simulates hydraulic redistribution of water among soil layers via 

circulation through plant roots (Neumann and Cardon, 2012). The sub-model assumes a linear relationship between plant 

transpiration and gross photosynthesis, but accounts for the dependency of water use efficiency on the fraction of 

photosynthetically-active radiation, air CO2 concentration and vapor pressure deficit. Overall, the estimation of gross 

photosynthesis requires four taxon-specific coefficients (see eq. (C.3)). Plant water status is represented by a plant water 

potential, Ψplant, calculated as an “average” of soil water potential in the rhizosphere. The sub-model keeps track of drought 

legacies using PLC, the proportion of conductance lost due to stem cavitation. Increases in PLC occur whenever Ψplant 

decreases, following a whole-plant vulnerability curve described by a single taxon-specific parameter, Ψcritic. PLC limits 

actual transpiration rates and does not decrease following increases in Ψplant. Cavitation effects can only be reversed (i.e. PLC

decreased) via new sapwood formation (Choat et al., 2018). 

2.2. Transpiration, photosynthesis and drought impacts under the advanced sub-model

The advanced sub-model simulates radiation balance, canopy, soil and leaf energy balances, plant hydraulics, stomatal 

regulation and photosynthesis at hourly time steps. We provide a brief description here, but a more complete description can 

be found in De Cáceres et al. (2021). Radiation balance and sunlit/shade leaf energy balance are estimated assuming a multi-

layer canopy (Anten and Bastiaans, 2016), but canopy energy balance equations are evaluated assuming a single layer that 

exchanges energy with the atmosphere and the soil (Best et al., 2011). The ‘supply function’ approach of (Sperry and Love, 

2015) is used to model the relationship between steady-state instantaneous water flow and water status along the soil-plant-

atmosphere hydraulic network, which includes rhizosphere, root, stem and leaf segments (Sperry et al., 1998). The advanced 

sub-model, thus, requires parameters describing maximum hydraulic conductance and hydraulic vulnerability curves for 

these three plant segments. Gross photosynthesis is approximated following the sunlit/shade model of De Pury and Farquhar 

(1997), which requires estimates for the usual photosynthetic parameters, namely, the maximum Rubisco carboxylation rate 

and the maximum electron transport rate, which are considered taxon-specific. Stomatal regulation follows the “profit 

maximization” approach of Sperry et al. (2017), where an optimum stomatal conductance is determined by comparing the 

risks associated to hydraulic damage against photosynthetic gains, subject to the limits imposed by minimum and maximum 
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stomatal conductance. Hydraulic redistribution of soil water is an emergent outcome in the advanced sub-model, derived 

from its formulation of plant hydraulics. Like the basic sub-model, the advanced sub-model keeps track of drought legacy 

effects through their cumulative effects on stem PLC, which feed-backs on stem vulnerability curves and, as before, its 

effects are only reversed via sapwood area growth. 

2.3. C pools and labile C balance

Three different carbon compartments are represented in MEDFATE: leaves, sapwood – which includes stem, branches and 

coarse roots – and fine roots. We differentiate two main forms of C pools, structural and labile. Structural C corresponds to 

membranes, walls, and the cytosolic organelles of living cells, whereas labile C occurs in leaves and sapwood compartments 

only, and it is divided between metabolic and storage (Richardson et al., 2013; Dietze et al., 2014). Metabolic C is assumed 

to correspond to dissolved sugars (e.g., glucose or fructose) that are used to directly sustain cell functioning, whereas storage

C is assumed to correspond to starch. We chose this design because structural growth and photosynthesis are frequently 

uncoupled (Dietze et al., 2014; Fatichi et al., 2014; Cabon et al., 2022), which points to the need to include storage 

compartments when modeling tree growth at daily to seasonal resolution (Richardson et al., 2013; Jones et al., 2020). 

Initial values of leaf structural C are obtained dividing leaf area by specific leaf area, whereas sapwood structural C depends 

on sapwood area, plant height, coarse root length and wood density.  Finally, fine root structural C is estimated assuming a 

constant relationship between leaf area and fine root area. Leaf/sapwood C storage capacity is determined by tissue volume 

and density, assuming that a maximum of 50% of cell volume is available for starch accumulation. Sapwood storage 

conforms the largest C pool, depending on sapwood volume and the fraction of sapwood corresponding to xylem 

parenchyma. 

The balance of leaf labile C includes gross photosynthesis, leaf maintenance respiration, sugar-starch conversion and phloem

transport processes. Sapwood labile C balance includes phloem transport, sugar-starch conversion, maintenance respiration 

of sapwood and fine roots, growth costs, senescence and root exudation. Sapwood maintenance applies to the xylem 

parenchyma only, because dead xylem conduits are assumed to be inexpensive. Maintenance respiration rates per dry mass 

unit are estimated from nitrogen content in the case of leaves and fine roots (Reich et al., 2008), but not for sapwood because

of the lower knowledge in the factors affecting wood respiration, which results in a species-specific parameter (RERsapwood) to

be calibrated. Maintenance respiration is temperature-dependent and is subtracted from metabolic C pools, whereas C used 

for growth is withdrawn from sapwood storage C pool. Storage accumulation is considered a passive consequence of sugar-

starch dynamics and reduced C use by other sinks (Palacio et al., 2014; Le Roux et al., 2001). Sugar-starch dynamics are 

modeled with the aim to maintain a constant metabolic C concentration in leaves and sapwood tissues, whereas phloem 

transport decreases leaf-vs-sapwood differences in sugar concentration. Root exudation is not modeled as an active process 

competing for metabolic C, but a consequence of plant C storage capacity being surpassed (Prescott et al., 2020) (but see 

Williams and de Vries, 2020), which can happen when temperature or plant water status limit growth more than 

9

180

185

190

195

200

205

210

https://doi.org/10.5194/gmd-2022-243
Preprint. Discussion started: 4 November 2022
c© Author(s) 2022. CC BY 4.0 License.



photosynthesis. During leaf senescence, labile C pools are recycled and relocated to sapwood storage. Analogously, when 

sapwood is converted into heartwood, labile C in the protoplasm of parenchyma cells is assumed to be re-absorbed by 

neighboring living cells as storage.

2.4. Growth and senescence

In many mechanistic dynamic vegetation models growth is proportional to the amount of C fixed by photosynthesis or is 

determined from the difference of photosynthesis and respiration (Körner, 2015; Fatichi et al., 2019). Following the C sink 

limitation hypothesis, which posits that for trees growing under environmental constraints direct restrictions on tissue 

formation can occur before any C shortage comes into play (Körner, 2003), formation of new plant tissues in MEDFATE 

also considers biophysical constraints on plant tissue expansion (Schiestl-Aalto et al., 2015; Lempereur et al., 2015; Hayat et 

al., 2017; Potkay et al., 2021; Eckes‐Shephard et al., 2021). Specifically, temperature and turgor limitations on cell 

expansion are implemented following Cabon et al. (2020a, b) Although these authors developed their approach for tracheid 

production and enlargement and we apply it to model growth in all kinds of tissues. 

A leaf phenology sub-model controls the duration of phenophases corresponding to budburst, leaf development and 

senescence (Chuine et al., 2013; Delpierre et al., 2009). During bud formation periods, the model updates the maximum leaf 

area that can be achieved, as the product of current sapwood area and a target leaf area to sapwood area ratio, following the 

pipe model (Shinozaki et al., 1964). Assuming no allocation or C limitations, daily leaf area increase due to growth is 

estimated using:

Δ LAgrowth=SA·RGRleafmax ·
rcell (Ψ leaf , T )

rcellmax

(1)

where RGRleafmax is the maximum daily leaf area growth rate per unit sapwood area, rcell is the relative cell expansion rate, 

depending on leaf water potential (Ψleaf) and temperature (T) (Cabon et al., 2020a), and rcellmax is a reference cell expansion 

rate at T = 30ºC and Ψleaf = 0. Leaf senescence occurs due to leaf aging in evergreen species, programmed leaf senescence in 

deciduous species or as defoliation triggered by cavitation (i.e. following increases in PLC).  

The maximum fine root biomass that a given individual can have depends on its leaf area target, the root area to leaf area 

ratio and specific root surface area. Thus, fine root biomass is constrained by allocation parameters in a similar way as leaf 

area. Assuming no allocation or C limitations, daily fine root biomass increment in a given soil layer s (ΔFRBgrowth,s) is 

modeled analogously to eq. (1):

Δ FRBgrowth , s=FRBs · RGR finerootmax ·
r cell (Ψ s ,T s )

r cellmax
(2)
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where FRBs  is the current fine root biomass in layer s,  RGRfinerootmax is the maximum daily relative growth rate for fine roots, 

and rcell depends here on the water potential (Ψs) and temperature (Ts) in soil layer s. Fine root senescence is estimated 

assuming a linear temperature dependence:

Δ FRBsenescence , s=FRBs · SRfineroot ·
max (T s −5 ,0 )

20
(3)

where SRfineroot  is the daily relative rate of fine root senescence at 25 ºC. 

Unlike leaves and fine roots, formation of new sapwood area is not constrained by allocation parameters. On the contrary, 

sapwood growth and senescence are the processes that constrain the target biomass of the other organs. This lack of an 

explicit allocation rule does not imply continuous sapwood growth, because it is regulated by sink limitations and two 

additional constraints: First, formation of sapwood area can only occur if unfolded leaves are present, assuming that 

hormonal signals controlling cambium division and sapwood development are mainly synthesized within leaves. Second, 

sapwood formation does not occur if C storage levels are below a given threshold, so that the maintenance of metabolic 

functioning and replacement of leaves/fine roots are prioritized over plant growth whenever C storage levels are low 

(Martínez-Vilalta et al., 2016), helping to maintain a safety margin against the risk of carbon starvation (Huang et al., 2019). 

This threshold is specified in relative terms via species parameter RSSG, the minimum relative starch for sapwood growth. 

Assuming the former two constraints do not operate, daily sapwood area increases (ΔSAgrowth) are modeled analogously to the

other tissues:

Δ SAgrowth=π ·DBH·RGR cambiummax ·
rcell (Ψ stem , T )

rcellmax

 for tree cohorts, and (4a)

Δ SAgrowth=SA·RGR sapwoodmax ·
rcell (Ψ stem , T )

r cellmax

for shrub cohorts, (4b)

where DBH is the current diameter at breast height (for a tree cohort), SA is the current sapwood area (for a shrub cohort), 

rcell now depends on stem water potential (Ψstem) and temperature (T), RGRcambiummax is the maximum daily growth rate relative 

to the current cambium perimeter and RGRsapwoodmax is the maximum daily growth rate relative to the current area of sapwood 

(note that diameter is not available in multi-stemmed shrubs). Unlike other models where height-to-diameter variations arise 

from an explicit regulation of the activity of apical and lateral (i.e. cambium) meristems (e.g., Hayat et al., 2017), in 

MEDFATE tree height increases are estimated as function of diameter increases and a variable height-to-diameter ratio 

depending on FPAR (Rasche et al., 2012).

Sapwood area senescence (i.e., conversion to heartwood) is assumed to occur with aging, although evidence points towards a

plant-controlled developmental process (Spicer, 2005). Most process-based forest models assume a fixed rate of sapwood 
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turnover (Collalti et al., 2020). Like in eq. (3), we assume the rate of conversion to heartwood is faster under warmer 

conditions and, similarly to 3-PG (Landsberg and Waring, 1997), we assume that the relative turnover rate of sapwood is 

smallest for young plants, and it progressively increases with size:

Δ SA senescence=SA·
SR sapwood

1+15· e− H · max (T − 5 ,0 )
20

(5)

where SRsapwood  is the daily rate of sapwood conversion to heartwood at 25 ºC and H is plant height (m). 

When using the advanced sub-model, leaf, stem and soil water balances provide the water status for eqs. (1)-(5); while the 

soil and canopy energy balances provide temperature values. Leaf and sapwood area changes feedback on maximum stem 

hydraulic conductance and fine root biomass changes feedback on rhizosphere conductance. Moreover, recovery from stem 

embolism is assumed to be the result of new xylem formation (Choat et al., 2018; Rehschuh et al., 2020). Specifically, 

formation of new sapwood reduces the proportion of conductance loss (PLC) between time steps t and t+1:

PLC t+1=min [PLC t−
ΔSAgrowth

SA
, 0] (6)

When using the basic sub-model, it is assumed that Ts = T  and Ψs = Ψstem = Ψleaf = Ψplant. In this case, changes in sapwood 

area affect maximum transpiration rates per unit of leaf area via reduction of PLC only.

2.5. Mortality and recruitment

Dynamic vegetation models implement mortality in very different ways, from purely-empirical to mechanistic approaches 

(Hawkes, 2000; Keane et al., 2001; Bugmann et al., 2019). In MEDFATE, woody plants are assumed to die at a constant 

basal rate due to processes not explicitly included in the model (e.g. biotic attacks or windstorms), but mortality rates 

increase whenever physiological stress thresholds presumed to lead to plant mortality are surpassed (McDowell et al., 2022). 

The model allows plants to die explicitly from either starvation (if metabolic carbon is exhausted) or desiccation (extreme 

tissue dehydration) (McDowell et al., 2008, 2011). Starvation is assumed to occur whenever the size of the sapwood 

metabolic C pool decreases below 30% of its maximum value (Martínez-Vilalta et al., 2016). Plant desiccation occurs when 

stem symplastic relative water content decreases below 30% (Mantova et al., 2021; Kursar et al., 2009). Although the two 

thresholds are applied independently, the associated processes are strongly coupled, because water potential decreases cause 

stomatal closure and cavitation-induced defoliation, both reducing carbon assimilation and, conversely, reduced carbon 

storage impacts the capacity of plants to produce new tissues and, hence, recover hydraulic conductance and normal gas 

exchange rates (McDowell et al., 2022).  
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Although recruitment is known to be the result of a number of processes (flowering and pollination, fruit/seed production, 

dispersal, storage, seed predation, germination, seedling establishment and survival until the sapling stage), but they are 

challenging to include in models (Price et al., 2001; König et al., 2022). Recruitment in MEDFATE is hence modeled using 

a single aggregated process that estimates the appearance of young plants, as done in other models (Hanbury-Brown et al., 

2022). Dispersal is not considered and local seed production is considered as a binary process, where plants are considered 

fertile and able to produce viable seeds if they reach a given taxon-specific height (different for shrubs and trees). 

Recruitment of species with available seeds is further constrained by three species-specific thresholds (minimum 

temperature, maximum aridity and minimum FPAR) that are used to determine whether recruitment (actually, ingrowth into 

an initial plant size) is possible, similarly to FORCLIM (Bugmann, 1996). A constant probability of recruitment determines 

actual recruitment within these bioclimatic limits.

3. Study area, forest, soil and historic weather data

Our target region for parameter estimation, model evaluation and application was Catalonia (32,108 km2, NE Spain). Most of

the region has a Mediterranean climate, with hot and dry summers, but it includes a strong climatic variation due to its 

complex relief. Mean annual temperature ranges between 3 ºC and +17 ºC (average +12.3 ºC) and annual rainfall ranges 

between 344 and 1587 mm (average 684 mm). Abandonment of rural areas during the second half of the 20th century led to a

remarkable increase in the area covered by forests. Nowadays, forests cover around 47% of Catalonia and keep increasing in 

density and wood volume stock. Among forested areas, 52% are dominated by conifers, 36% by broadleaves, and 13% are 

considered mixed forests (Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, 2017). 

Three different surveys of Spanish National Forest Inventory (SNFI) are available for the region (SNFI2, 1989-1991; SNFI3,

2000-2001; and SNFI4, 2013-2016). These were conducted using a systematic sampling scheme, with 11,314 plots in SNFI3

(average density of 1 plot/km2) and 5,500 plots in SNFI4 (0.5 plot/km2). Plot sampling involves a variable radius with 

circular nested subplots, where trees of different diameter classes are identified to the species level and their DBH and height

is measured. Shrub sampling consists in determining mean height and percent cover by species. Since field soil data is absent

in forest inventory plots, soil physical properties (texture, bulk density, organic matter content) corresponding to plot 

locations were drawn from the global database SoilGrids (Hengl et al., 2017), complemented by rock fragment content 

estimates derived from surface stoniness measurements during SNFI surveys. Soil water retention and conductivity curves 

followed the van Genuchten (1980) model, with parameters estimated following Tóth et al. (2015). Historical daily weather 

data used for parameter estimation and model evaluation exercises was obtained via interpolation of weather records from 

Catalan and Spanish surface station networks on forest plot locations using the R package ‘meteoland’ (De Cáceres et al., 

2018).

4. Parameter estimation
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We reduced the tree and shrub species classification codes included in the SNFI to 217 taxon entities. 144 taxa were at the 

species level, whereas 73 were aggregated at the genus level based on their frequency and the availability of species-specific 

data. Upper taxonomic levels (genus, family, order) were filled using R package ‘taxize’ (Chamberlain and Szocs, 2013). 

MEDFATE (ver. 2.8.1) requires taxon-specific estimates for 117 different parameters (including qualitative variables and 

allometric coefficients) to be run. The different procedures employed for parameter estimation are summarized in Table 2.a 

and are detailed in the following subsections. Table B1 includes the strategy used to estimate taxon values for each 

parameter. The final taxon parameter estimates are given in Table B3. 

a) Estimation procedures Num. Params. %

Forest Inventory Data (section 4.1) 12 10.3%

Plant trait databases (section 4.2) 49 41.9%

Allometry databases (section 4.2) 19 16.2%

Meta-modelling exercise (section 4.3) 6 5.1%

Calibration exercise (section 4.4) 3 2.6%

None (always requiring imputation) 28 23.9%

b) Imputation procedures (section 4.5) Num. Params. %

Quantitative trait relationship 17 14.5%

Qualitative trait relationship 31 26.5%

Family means / Qualitative trait relationship 4 3.4%

Family means / Default value 11 9.4%

Default value 44 37.6%

None (completely specified from databases) 10 8.5%

Table 2: Summary of procedures used for taxon parameter estimation (a) and imputation of missing values (b). The number 
of parameters are indicated as well as the percentage with respect to the 117 parameters in MEDFATE.

4.1 Parameter estimates obtained from forest inventory data

We used SNFI data from the whole Spanish territory to find suitable values for twelve parameters. A number of quantitative 

traits, such as maximum and median plant heights and tree diameter-height relationships under shade/sunlit conditions, were 

directly calculated from SNFI shrub/tree records (Morin et al., 2021). We also used permanent forest inventory plot data 

(SNFI2-3 and SNFI3-4) to estimate tree mortality and recruitment parameters. Initial values for basal mortality rates were 

estimated using observed tree mortality rates in permanent inventory plots, excluding those where management effects (i.e. 

stumps) were detected. Since the model incorporates mortality due to carbon starvation and desiccation explicitly, using 

observed mortality rates as basal rates leads to overestimation of mortality. Following preliminary tests, we defined tree 

basal mortality rates for all species as one third of observed mortality rates. We then manually modified basal mortality rates 

for the main tree species to obtain an acceptable bias in basal area mortality predictions when evaluating the model at the 

regional level (see section 5.1). To obtain suitable recruitment parameter estimates we first calculated three bioclimatic 
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variables (minimum monthly temperature, moisture index and ground FPAR) for each forest plot. For tree taxa, we fitted a 

non-linear model by maximum likelihood for the probability of ingrowth into the 7.5 < DBH < 12.5 cm class between 

inventory surveys based on plots where the species was present in the initial survey. For shrub taxa, bioclimatic limits were 

determined using 1% percentiles of the same bioclimatic variables among those plots where the species was found and we 

assumed a constant 5% probability of annual recruitment within these limits. 

4.2 Parameter estimates obtained from allometric and plant trait databases

We used available allometric relationships for shrub/tree leaf biomass and crown base height assembled from multiple 

sources (Hasenauer, 1997; Burriel et al. 2004; De Cáceres et al., 2019) to populate 19 (16%) of model parameters. In turn, 49

(42%) model parameters were mapped to plant trait definitions from existing plant trait databases (see Table B1). Among 

those, 23 (47%) model parameters were matched to plant traits drawn from TRY public data sets (ver 5.0; https://www.try-

db.org/) (Kattge et al., 2020). TRY data sets were complemented with additional data bases, global analysis papers and 

personal compilations for phenology, anatomy and morphology (Tavşanoǧlu and Pausas, 2018; Zanne et al., 2009; Morris et 

al., 2016), plant hydraulics (Mencuccini et al., 2019; Sanchez‐Martinez et al., 2020; Martin-StPaul et al., 2017; Choat et al., 

2012), tissue water content (Bartlett et al., 2012) and stomatal or cuticular conductance (Hoshika et al., 2018; Duursma et al.,

2018) (see Table B.2). Transipiration and photosynthesis functions of the advanced sub-model were readily parameterizable 

with measured traits, although hydraulic parameters were often missing for leaf and root segments. In the case of the basic 

sub-model, Ψextract was estimated from the water potential at turgor loss point and Ψcritic was estimated from the water 

potential corresponding to 50% stem PLC, but six other parameters regulating transpiration and photosynthesis (eqs. (C.2) 

and (C.3))  could not be matched to plant traits. 

Most plant traits were mapped directly, sometimes requiring homogenizing measurement units, whereas others required the 

use of transforming functions. For example, RGGS was estimated by monotonically re-scaling an ordinal (0-5) shade 

tolerance index (Niinemets and Valladares, 2006) to a proportion [0-1], assuming that a higher degree of shade tolerance 

implied a stronger prioritization of leave/fine root maintenance over stem growth. Parameters for plant taxa were estimated 

using species-level averages or genus-level averages (for genus taxa or when the target species was not found in the data 

base). 

4.3 Estimation of transpiration and photosynthesis parameters of the basic sub-model

As indicated above, six key parameters regulating transpiration and photosynthesis in the basic sub-model (eqs. (C.2) and 

(C.3)) could not be estimated from plant trait databases. With the aim make transpiration, gross photosynthesis and growth 

predictions obtained by the basic sub-model as similar as possible to those produced by the advanced sub-model, we 

conducted a meta-modelling exercise in which the results of simulations with the advanced sub-model were used to provide 

estimates for the six parameters of the basic sub-model. The meta-modelling exercise was conducted separately for each of 
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twelve prioritized species on the basis of their importance in the study area. These were Pinus halepensis Mill. (Aleppo 

pine), Pinus nigra spp. salzmannii J. F. Arnold (black pine), Pinus sylvestris L. (Scots pine), Pinus pinea L. (stone pine), 

Pinus uncinata Ramond ex A. DC. (mountain pine), Fagus sylvatica L. (European beech), Abies alba (white fir), Quercus 

ilex L. (holm oak), Quercus faginea Lam. (Portuguese oak), Quercus pubescens Mill. (downy oak) and Quercus suber (cork 

oak), which altogether represent 87% of the total number of stems (Ministerio de Agricultura y Pesca, Alimentación y Medio

Ambiente, 2017). Details of the procedure and results are provided in Appendix C.2. The same exercise could in principle be

conducted on the remaining target taxa, provided confidence exists on the estimates of transpiration and photosynthesis 

parameters of the advanced sub-model for those taxa.

4.4 Calibration of sapwood respiration, growth and senescence parameters

We conducted calibration exercises to obtain suitable estimates for three key parameters regulating sapwood respiration, 

growth and senescence. Given the large amount sapwood biomass in trees, the daily maintenance respiration rate of sapwood

parenchyma (RERsapwood) is an important parameter determining C availability for growth. Maximum daily sapwood growth 

rates relative to cambium perimeter (RGRcambiummax) represents optimum growth rates and, since leaf and fine root allocation 

targets depend on sapwood area, it determines whole-tree growth rates. Finally, daily sapwood senescence rate (SRsapwood) 

defines the rate of sapwood-to-heartwood conversion and contributes to modulate sapwood biomass and its maintenance 

costs. Parameters regulating the maximum growth rates leaves and fine roots were deemed less important, given the 

allocation constraints to the formation of these organs. Tree ring data has been previously used for the calibration of growth 

parameters in other models (Fyllas et al., 2017), so we adopted the same approach. The tree ring data set used for the 

calibration exercise was sampled in 75 SNFI plots, located in pure stands whose dominant species are F. sylvatica, P. 

halepensis, P. nigra, P. sylvestris or Q. pubescens, and selected to encompass a range of climatic aridity (Rosas et al., 2019). 

We took annual basal area increments of each tree as the observations to be matched by model predictions of sapwood 

growth. Simulations of the calibration exercise were performed using the basic sub-model only, for computational reasons. 

Further details of the calibration procedure and results are given in Appendix C.3. We did not found any significant 

relationship between calibrated estimates and species identity for RGRcambiummax, SRsapwood  and RERsapwood. In contrast, plots 

where the target species grew faster resulted in larger calibrated values of RGRcambiummax and SRsapwood, indicating faster 

sapwood area dynamics (Table C4). This result allowed us to devise a strategy to obtain estimates of these two parameters 

for all tree species. Assuming that the RGRcambiummax and SRsapwood should scale proportionally to observed growth rates, we 

fitted a regression through the origin for the observed relationship between observed mean annual relative growth rates and 

each of these parameters (Fig. 2a-b). We then estimated mean annual growth rates relative to cambium perimeter for all tree 

species using re-measured tree records in SNFI permanent plots (by solving for the annual rate leading to the observed 

diameter increment between consecutive surveys). We obtained estimates of RGRcambiummax and SRsapwood for all tree taxa by 
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using the calculated mean annual relative growth rates as input in the fitted linear models, whereas we took the average of 

calibrated RERsapwood values as default for all taxa.

Fig. 2. Linear relationships, fitted using regression through the origin, between observed mean annual relative growth rates 
in calibration plots and calibrated RGRcambiummax values (a) or calibrated SRsapwood values (b). Symbols represent individual 
forest plots. Note that adjusted R2 values of regressions through the origin cannot be compared to those of ordinary linear 
regression models.

4.5 Inbuilt parameter estimation procedures

Altogether, the previous estimation procedures provided suitable values for 89 parameters, still leaving 28 (24%) model 

parameters to be populated (Table 2). Moreover, only for 10 (8.5%) parameters estimates were obtained for all 217 taxa. 

Therefore, large amounts of missing values remained after previous estimation procedures (Tables B1 and B3). Different 

imputation strategies were adopted to address this issue (Table 2.b; Table B1). Trait-trait relationships are frequently 

employed for parameter estimation, most often following functional syndromes (Maréchaux and Chave, 2017; Sakschewski 

et al., 2015). Following this strategy, we defined trait-to-trait mappings between parameters with low missing rates and 

parameters with higher missing rates (see Fig. A1). Quantitative trait-trait relationships were adopted for 17 (15%) of 

parameters, on the basis of functional spectra, mainly to estimate parameters of hydraulic conductivity curves, pressure-

volume curves, photosynthetic parameters and tissue respiration rates. Relationships with qualitative traits were adopted to 

populate 31 (26.5%) quantitative parameters, with average values for combinations of leaf shape, life size and/or life form 

being frequently used as source for the estimation of other parameters. For 15 (13%) parameters we estimated family-level 

averages, but combined this strategy with other imputation strategies whenever family-level values are missing. Finally, we 

provided single value defaults for 44 (38%) parameters where we felt that taxonomic resolution was not critical. Among 
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them, 13 parameters had not been estimated by any procedure and, therefore, can be considered as constants in the current 

model version. Instead of filling imputed values in the taxon parameter table, we implemented inbuilt parameter imputation 

procedures within MEDFATE initialization routines. 

5. Evaluation and application at the regional level

5.1 Evaluation with SNFI data

While complex models can be applied to a range of purposes, model suitability should be assessed with respect to intended 

application (Planque et al., 2022). Our aim to use MEDFATE to project forest dynamics at the regional level required 

evaluating the capacity of the model to reproduce observed changes in forest dynamics. We therefore compared simulated 

forest dynamics between the third and fourth surveys of the SNFI in Catalonia against observations from repeated SNFI 

plots. Specifically, we selected 2,949 permanent plots (between SNFI3 and SNFI4) without signs of recent management and 

avoiding large decreases in stand basal area, which could indicate the effect of disturbances. Both the basic and advanced 

sub-models were tested, taking 5h and 120h of computation on 20 parallel threads, respectively. Evaluation focused on 

predictions of: (a) changes in stand basal area due to growth of surviving trees; (b) stand basal area losses due to tree 

mortality; (c) stand basal area increases due to recruitment (ingrowth) into the first diameter class (ingrowth into large size 

classes can occur in the observed data due to the variable radius sampling, but these are not included); and (d) overall 

changes in stand basal area (this is growth + ingrowth - mortality). With the aim to compare the performance of MEDFATE 

with that of an empirical alternative, we took an Integral Projection Model (IPM) calibrated using SNFI data for the whole of

Spain and evaluated its predictive performance over the same target region. Unlike matrix-based models, the Integral 

Projection Model (IPM) methodology does not classify the population of trees into discrete stage classes. Rather, each tree 

population is described by a continuous distribution as a function of a continuous variable like size (Easterling et al., 2000). 

A brief description of the IPM implemented in this work is given in Appendix C.4. For further details, see García Callejas et 

al. (2017).

Overall changes in stand basal area had a mean bias of +0.4 m2·ha-1 (+7.5%) for the basic sub-model, and +0.9 m2·ha-1 

(+17.4%) for the advanced sub-model, whereas the empirical IPM over the same region had a mean bias of +0.7 m2·ha-1 

(+11.1%) (Table 3). RMSE was 4.9 m2·ha-1 (95%) for the basic sub-model and 5.0 m2·ha-1 (97%) for the advanced sub-

model. These average error rates were higher than the 4.8 m2·ha-1 (82%) of IPM, reflecting a slightly lower prediction 

capacity of MEDFATE at the plot level. When inspecting the error distribution of overall basal area change predictions we a 

small tendency to over-predict basal area changes for stands with large initial basal area and to under-predict them for stands 

cold areas (Figs. A.2 and A.3). Predicted stand basal area increments due to growth had a larger positive bias when using the 

advanced sub-model than when using the basic sub-model and, conversely, basal area reductions due to mortality had a more

negative bias, which explains the larger positive bias for overall basal area changes (Table 3). Despite having larger biases, 
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the advanced sub-model yielded more accurate predictions of mortality than the basic sub-model. Both sub-models produced

a ~25% overestimation of ingrowth.

Sub-model Mean
observed
(m2·ha-1)

Mean
predicted
(m2·ha-1)

Bias
(m2·ha-1)

Bias
(%)

RMSE
(m2·ha-1)

RMSE
(%)

R2

BA increment for surviving trees basic 4.896 4.972 +0.077 +1.6 3.474 70.9 0.30

advanced 4.936 5.435 +0.364 +7.37 3.942 79.9 0.28

BA corresponding to tree mortality basic 0.966 0.938 -0.028 -2.9 2.534 262.3 0.03

advanced 0.967 0.754 -0.212 -21.9 1.576 163.0 0.10

BA corresponding to ingrowth basic 1.263 1.551 +0.287 +22.7 2.455 194.4 0.008

advanced 1.260 1.592 +0.332 +26.4 2.562 203.5 0.003

Overall changes in stand BA basic 5.193 5.585 +0.391 +7.5 4.915 94.6 0.11

advanced 5.229 6.138 +0.909 +17.4 5.056 96.7 0.13

Overall changes in stand BA (IPM) 5.895 6.552 +0.656 +11.1 4.806 81.5 0.26

Table 3: Results of model evaluation at the regional level in terms of basal area (BA) changes predicted for different 
processes and overall stand changes. The last row presents the results of an evaluation over the target region of an Integral 
Projection Model (IPM) calibrated using SNFI data.  Bias % and RMSE % result from expressing mean bias and root mean 
squared error (RMSE) as percentage of the mean observed value. While overall changes in BA are the sum independent 
processes in the evaluation of MEDFATE, the evaluation of IPM predictions was conducted between the original and final 
states. This fact, and the variable-radius sampling of SNFI, explain the slightly higher mean observed BA value for IPM. 

5.2 Application

To illustrate the potential of the fully-parameterized model to project future forest functioning and dynamics at the regional 

level, we took all forest plots surveyed in Catalonia during SNFI3 (yr. ~ 2000) and projected them for the 21st century. We 

took interpolated historical records for the 2001-2020 period and climate projections for the 2021-2100 period, 

corresponding to the 5th phase of the Coupled Model Intercomparison project (CMIP5) under Representative Concentration 

Pathways (RCPs) 4.5 and 8.5. We obtained daily weather projections from the EURO-CORDEX project (Kotlarski et al., 

2014), corresponding to a single global/regional climate model couple (i.e. MPI-ESM/RCA4), which has been deemed 

appropriate to describe future climate change in Catalonia (Altava-Ortiz and Barrera-Escoda, 2020). Since the spatial 

resolution of climate model predictions was 0.1º (~ 9km), we used empirical quantile mapping to bias-correct and downscale

weather to the forest plot scale, taking interpolated historical records (1976-2005 period) as reference data (De Cáceres et al.,

2018). Annual [CO2] series under RCP 4.5 and RCP 8.5 scenarios were obtained from Meinshausen et al (2011). A climate 

scenario assuming constant climate (No CC) was also evaluated for comparison with RCP scenarios, by repeating historical 

2001-2020 weather over the century and assuming [CO2] = 386 ppm. Forest management and natural disturbances such as 

wildfires or biotic attacks were not considered for simplicity. MEDFATE runs were conducted using the basic sub-model, 
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which nevertheless required 72h of computation on 20 parallel threads to process each scenario (we estimate 1728h would be

required with the advanced model).

Climate projections for Catalonia include a steady increase in temperature (+3.5ºC under RCP8.5) and, while much more 

uncertain, a 40% reduction in annual precipitation during the second half of the 21st century under RCP 8.5 (Fig. 3a) (Altava-

Ortiz and Barrera-Escoda, 2020). Despite these trends, the most important regional-level pattern predicted the model was a 

steady increase in wood volume stock throughout the century under all three scenarios and for all the main species (Figs. 4d 

and A.4). This is largely because most forests in Catalonia are relatively young as a consequence of abandonment of 

agricultural lands and reduction of forest management during the second half of the 20th century (Vilà-Cabrera et al., 2017). 

Net primary production (NPP) was always positive (Fig. 3b), but decreased steadily along the century under a stable climate 

due to the increase in respiration costs needed to sustain an increasing forest biomass. Under two climate change scenarios, 

however, the progressive increase in temperatures and air [CO2] resulted in higher NPP and slightly larger timber 

accumulation during the central part of the 21st century, compared to predictions under stable climate. The continuation of 

ongoing forest densification caused LAI to increase asymptotically under stable climate (Fig. 3c). Nevertheless, strong 

decreases in NPP and LAI were predicted between 2070 and 2100 under RCP 8.5, as a result of years with very low rainfall 

which, together with the increased VPD, caused widespread drought-induced defoliation. Increased mortality rates were also 

predicted under RCP 8.5 for this last period, as shown by the lower rates of wood volume stock accumulation (Figs. 3d and 

A.4). 
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Fig. 3. Precipitation input (a) and model predictions regarding net primary production (b), canopy leaf area index (c) and 
wood volume stock (d) under a scenario without climate change (No CC) and two climate change scenarios (RCP4.5 and 
RCP8.5) in Catalan forests. Results for period 2000-2020 correspond to historic climate. Continuous lines correspond to 
median values and shaded areas indicate the 25%-75% quantile range, all of them estimated across all forest plots. Results of
regional levels of timber stock by species are shown in Fig. A4, and a comparison of projected wood volume between 
MEDFATE and IPM is given in Fig. A.5. 

6. Discussion

6.1 Accounting for functional diversity in regional-level forest models 

Species-specific parameter estimation in complex dynamic vegetation models is often done by focusing on one species at a 

time (e.g., Davi and Cailleret, 2017; Guillemot et al., 2017), but this becomes impractical when the number of taxonomic 

entities increases. Resorting on plant trait databases and forest inventory data facilitates dealing with functional diversity, but

our experience shows that it has its own challenges. First, this strategy becomes more useful the larger the fraction of taxon-

specific parameters that can be conceptually matched to observable traits, which needs to be accounted during model design 

and formulation. In other words, the model should be ‘trait-enabled’. The design of MEDFATE allowed us to match up to 49

parameters with functional trait definitions (50% of parameters if we exclude allometric coefficients). Even in ‘trait-enabled’
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models there will always be parameters that are not observable or are only seldom measured, even for the most common 

species, which requires adopting alternative parameter estimation procedures. For regional applications, structural (e.g. 

maximum size) and demographic parameters (e.g. recruitment and mortality rates) can often be empirically estimated using 

forest inventory data (Morin et al., 2021). Calibration of key, but non-observable, parameters using observations on 

particular stands is another alternative. For example, we used calibration and tree ring series in 75 SNFI plots to address the 

estimation of growth/senescence parameters. However, if this approach is followed there is always the possibility that taxon-

average estimates across calibration plots produce biased predictions in the application at the regional level. Moreover, it is 

unlikely to have the appropriate calibration data (e.g. tree ring series) for all woody taxa occurring in the target region. We 

circumvented these problems by fitting a relationship between calibrated growth or senescence rates (RGRcambiummax and 

SRsapwood) and observed annual growth rates relative to cambium perimeter, which can be empirically estimated using 

resampled plot data for all species included in the forest inventory. Another alternative estimation procedure that we adopted

to populate non-observable key parameters was meta-modeling. Computational limitations of the “advanced” sub-model for 

regional applications led us to conduct improvements in the “basic” sub-model, including increased sensitivity to 

environmental variables, and a meta-modeling exercise to obtain estimates for non-observable transpiration and 

photosynthesis parameters for the “basic” sub-model. This estimation procedure can be applied to any taxon, but requires 

confidence on the trait parameter estimates of the model used as reference (here, the “advanced” sub-model), which we 

partially got from stand-level evaluation exercises (De Cáceres et al., 2021). Developers should always avoid manual tuning,

due to its non-reproducibility, and it is a slow process for multiple taxa. We only resorted on this procedure for baseline 

mortality rates, forced by the mixture of mechanistic and empirical design in mortality modeling, although we acknowledge 

that calibration exercises could be used instead (e.g. Hartig et al., 2012). 

Another important limitation when estimating parameters for multiple taxa is, obviously, plant trait data availability. Even 

though plant trait databases continue to increase in size (Kattge et al., 2020), the finer the taxonomic resolution is, the less 

information is available, which leads to a trade-off between the taxonomic resolution in the model entities vs. the amount of 

missing parameter values in the final parameter table. When parsing trait databases we took both species- or genus-level 

averages as valid estimates to reduce the frequency of missing values in the parameter table, but this entails a potential loss 

of accuracy at the species level. Regardless of this decision, and no matter how much effort is put in parameter estimation 

procedures, parameter imputation will always be needed to fill information gaps in models representing multiple taxa. We 

recommend implementing imputation procedures in initialization routines, keeping them separated from taxon parameter 

tables because the large number of missing values in the table reveals information gaps to be addressed with additional data 

gathering. A range of parameter imputation procedures are possible for observable traits. Models often use quantitative-

quantitative trait relationships from functional syndromes and averages across levels of qualitative traits to obtain suitable 

species parameter estimates (Thonicke et al., 2020; Sakschewski et al., 2015). Assuming taxonomic families bear a trait 

phylogenetic signal, we complemented the information provided by functional covariation with family-level averages 
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(Anderegg et al., 2022), but more sophisticated phylogenetically-informed approaches would also be possible (Sanchez‐

Martinez et al., 2020). Note that models can also use known relationships between measured traits and demographic rates for

the imputation of the latter, as between wood density and mortality rates (Fyllas et al., 2017; Thonicke et al., 2020). In our 

opinion more research is needed around the imputation procedures to fill missing taxon parameter values. For example, 

future research could evaluate the phylogenetic signal of multiple traits; or compare the relative performance of different 

imputation alternatives, analogously to the comparison of alternative biomass allometries (Ameztegui et al., 2022); or 

evaluate the loss of accuracy of model predictions caused by imputations. In the same way that there are databases of 

biomass or volume allometric relationships, the development of databases documenting bi- or multivariate trait relationships 

and their domain of application could help modelers to implement sound imputation strategies. 

We addressed specific- and supra-specific trait variability in our study, but did not consider intra-specific variability, which 

can account to 25% of overall phenotypic variation (Funk et al., 2017; Siefert et al., 2015). Berzaghi et al. (2020) describe 

three main strategies to accounting for intra-specific trait variability in vegetation models, among-which the first two could 

be combined with our parameter estimation approach. First, prescribed (i.e. non-plastic) intra-specific trait variation may be 

approximated in models using within-species environmental-trait relationships or trait coordination (Rosas et al., 2019; 

Poyatos et al., 2007). To implement this strategy, intra-specific functional trait databases are needed, but are presently scarce

(López et al., 2021). These relationships may be implemented as inbuilt estimation rules to be applied at the time of 

initialization. Second, intra-specific can be considered in vegetation models by dynamically changing parameter values (e.g. 

photosynthesis) depending on transient environmental conditions (i.e. nitrogen content, average temperature or light 

availability) (Prentice et al., 2014; Crous et al., 2022). This strategy can also be combined with our parameter estimation 

approach, but requires implementing equations internally, while acknowledging trade-offs between traits and limits to 

phenotypic plasticity. Finally, trait inheritance and hence eco-evolutionary dynamics can be simulated (Oddou‐Muratorio 

and Davi, 2014), but we estimate this approach computationally too demanding for regional-level applications.

6.2 Reproducibility and transferability of parameter estimation strategies

Given the iterative nature of model development, taxon-specific model parameters need to be re-estimated (and model 

performance re-evaluated) in many situations, such as whenever the design or mathematical formulation of the model is 

modified; taxonomic entities are redefined; updates of existing trait data sources occur. Unlike models developed for single 

or few species, parameter re-estimation for multiple-taxa requires that procedures be reproducible and automated. All the 

procedures mentioned in the previous section, except manual tuning, are reproducible and were repeated several times during

the development of MEDFATE. The code to implement parameter estimation and evaluation procedures should be 

continuously integrated into workflows coupled to modeling development cycles, in the same way as model evaluation 

procedures for all the key outputs related to the most important applications. In our opinion, this aspect of trait-enabled 

23

545

550

555

560

565

570

https://doi.org/10.5194/gmd-2022-243
Preprint. Discussion started: 4 November 2022
c© Author(s) 2022. CC BY 4.0 License.



model development deserves more attention and should be one of the focus of collaboration efforts between modelers, with 

the long-term aim of achieving community modeling cyber-infrastructures (Fer et al., 2021).

Another practical issue is the transferability of parameter estimates and estimation procedures, initially developed for a given

trait-enabled model and region, to new target regions and/or other models. Even though intra-taxon variability is neglected, 

taxon-average estimates derived from global plant trait databases are, in principle, as valid for a given region as they are for 

other regions. Moreover, trait-enabled forest models could share databases of taxon-based parameter estimates thanks to 

parameter definitions being matched to the same measurable entities. Being derived from global data, imputation procedures 

based on among-species trait coordination or family-level averages should be equally valid in different regions. Procedures 

for extracting taxon-specific parameter estimates from (global) trait databases can also be used for new taxa or other models, 

which points to the possibility of sharing these procedures among developers, although the information available will differ 

widely depending on the target region. In contrast, empirical parameters obtained from forest inventory data are unlikely to 

be valid in different areas (Thonicke et al., 2020), and the procedures to derive them may need to be tailored to idiosyncratic 

aspects of national forest inventories (plot spatial arrangement and temporal replication, taxonomic treatment, field sampling 

protocols), unless harmonized forest inventory data is used. Calibration and meta-analyses procedures, or relationships 

between growth/senescence parameters and observed annual relative growth rates, can be applied to other target regions but 

they are specific to MEDFATE.

6.3 The value of trait-enabled models for the projection of forest dynamics at the regional level

Mechanistic models are often regarded as having a larger degree of uncertainty than empirical models – due to their larger 

number of parameters (Adams et al., 2013), but mechanistic models of vegetation dynamics can achieve good performance 

when calibrated for specific stands and parameter estimates are carefully chosen for target species (de Wergifosse et al., 

2022; Forrester et al., 2021). In the case of mechanistic trait-enabled models, one can expect substantial biases with respect 

to the prediction forest dynamics because key parameters of demographic processes are unlikely to be matched by 

observable database traits. In contrast, we achieved a small bias in overall basal area changes by introducing key empirical 

elements in the model design and parameter estimation – annual relative growth rates, mortality rates, bioclimatic limits and 

probabilities of ingrowth –, all of them from SNFI data. The relatively small bias increases our confidence on MEDFATE 

for applications like projecting regional standing timber volume, at the cost of requiring empirical inventory data for its 

application in other regions. Indeed, the projected changes in wood volume stocks are similar for simulations with the 

Integral Projection Model (IPM) and MEDFATE (see Fig. A5). The accuracy of MEDFATE was somewhat lower than that 

of the IPM over Catalonia, but similar to that reported in Trasobares et al. (2022) for an empirical forest projection system 

developed for the whole Spanish territory. A number of factors can increase model errors at the stand level. The use of a 

global soil product for soil properties, as opposed to regional data sources, and the lack for information on rock content and 

the topographic context of forest plots surely contributes to larger errors. The fact that rock fragment content estimates 
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obtained in the calibration exercise were different across species (Fig. C3.d and Table C4) is an indication of the importance 

of these factors for accurate growth (and mortality) predictions. We did not account for spatial variation in nutrient 

availability either, which is known to influence growth rates. At present, MEDFATE is fairly unbalanced in the detail 

accorded to water, carbon and growth processes, with respect to mortality and recruitment. The approach taken to model 

baseline mortality rates and ingrowth was even simpler than many forest gap models (Bugmann and Seidl, n.d.), which may 

explain the poor results regarding those processes and points to future development efforts. For example, mortality 

predictions could be improved by fitting more complex empirical models that account for tree size or recent growth (Vanoni 

et al., 2019). However, this equations are difficult to parameterize in a model that also includes explicit mortality 

mechanisms based on water and carbon levels (i.e. dessication and carbon starvation). Mechanistic modelling of drought-

induced mortality is an active field of research  (Venturas et al., 2020; Liu et al., 2021; Trugman et al., 2021; McDowell et 

al., 2022), but important developments are still required to address multiple interactions between drivers. In our opinion, 

hybrid mechanistic and empirical approaches are thus needed to produce unbiased predictions of tree mortality currently. 

Recruitment prediction could benefit from considering additional refinements, such as accounting for resprouting capacity or

mechanistically dealing with seedling and sapling mortality (König et al., 2022), at the potential cost of increasing the 

number of non-observable model parameters. 

In addition to the comparison with empirical models, it is also interesting to discuss the differences between MEDFATE 

simulations conducted using the basic vs. advanced sub-models. Mechanistic models are expected to perform under novel 

environmental conditions, due to their ability to separate the causal effect of different climatic variables. MEDFATE with the

advanced sub-model is clearly a better choice than with the basic sub-model in this respect, but the advanced sub-model is 

still computationally very demanding for large-scale application. Like other models before (e.g., Landsberg and Sands, 

2011), the modifications made to the basic, yet faster, sub-model show that it is possible to design and parameterize simpler 

approaches while fully retaining the ecophysiological responsiveness to key climate change variables such as [CO2] or VPD. 

However, further work would be necessary to compare the performance of the two sub-models in terms of key stand-level E,

GPP or NPP fluxes under different conditions. In terms of forest dynamics, the advanced sub-model produced more biased 

growth estimates than the basic sub-model, but yielded more accurate mortality predictions. We attribute this different 

performance to the fact that calibration of growth parameters was conducted using the basic sub-model, and to differences in 

the predictions of soil moisture and plant water status yielded by the two sub-models. Although conducted using the basic 

sub-model, we have illustrated in our application that a trait-enabled model with hybrid model design allows the projection 

of structural variables of interest for forest management planning (such as basal area, density or volume stock per tree 

species) as well as variables directly related to ecosystem function (such as LAI, E, GPP or NPP). This advantage comes at 

the cost of large parametrization efforts, like the one conducted here. Nevertheless, both parameter estimation procedures 

and the resulting taxon-estimates estimates can be profited by developers of other models having similar parameter 
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definitions. For all these reasons, in our opinion population-structured trait-enabled models such as MEDFATE may have an 

important role to play for predictions of forest function and dynamics at regional scales. 

7. Conclusion

Here we presented the design, parameter estimation and evaluation of MEDFATE, coupled to forest inventory data, for its 

application at the regional level in Catalonia. Our model is similar to many forest gap models in terms of its representation of

population structure, but it has a higher degree of detail in the representation of water and carbon processes, an hybrid design

shared with other models (Fisher et al., 2018; Liu et al., 2021). Models that are similar to MEDFATE have been previously 

developed to simulate regional forest dynamics in the Mediterranean Basin (Fyllas et al., 2007; Mouillot et al., 2001; Fyllas 

and Troumbis, 2009). However, the detail on plant hydraulics of the advanced sub-model is similar to more specialized 

models focusing on drought-induced plant dessication (Cochard et al., 2021; Ruffault et al., 2022). MEDFATE has some 

unique features (i.e. the link between xylem cavitation and leaf defoliation, together with the need to build new sapwood 

tissue to recover water transport capacity) that make it suitable to study drought legacy effects. Overall, we think MEDFATE

can be an attractive tool to study forest function and dynamics under increasing water limitations, such as those of 

Mediterranean climate. Besides the value of the model, we illustrated the process of determining parameter estimates for a 

large number of taxa in trait-enabled models by extensively using plant trait databases. Hence, our efforts allow illustrating 

challenges that arise when adopting this approach and provide potential strategies to address them, which can be useful for 

the parametrization of other trait-enabled models.
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Appendix A: Supplementary Figures

Fig. A1. Percentage of missing values for model parameters across species and parameter relationship (arrow) from which 
imputation is performed (trait-trait quantitative relationship, averages for combinations of categorical traits or imputation 
from family means). Parameters that are given constant values when missing are not shown. Definition of parameters is 
given in Table B1.
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Fig. A2. Comparison of predicted vs observed overall basal area changes and the distribution of model errors depending on 
initial basal area, moisture index and mean annual temperature. Gray dots and black lines correspond to observations; orange
dots and red lines to predictions with the basic sub-model; and light blue dots and blue lines to predictions with the advanced
sub-model.
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Fig. A3. Spatial distribution of prediction errors in overall basal area changes for simulations using the basic sub-model (left)
or the advanced sub-model (right). 

Fig. A4. Regional-level timber accumulation (left panels) and annual mortality loss (right panels) predicted by MEDFATE 
under a scenario of constant climate (No CC) and two climate change scenarios (RCP4.5 and RCP8.5) for the ten main tree 
species in Catalonia, grouped into conifer (upper panels) and broad-leaf species (lower panels). Results for period 2000-2020
correspond to historic climate. 
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Fig. A5. Comparison of the wood volume stock predicted by the Integral Projection Model (IPM) and MEDFATE under a 
scenario of constant climate (No CC) and two climate change scenarios (RCP4.5 and RCP8.5) for the ten main tree species 
in Catalonia. Continuous lines correspond to median values and shaded areas indicate the 25%-75% quantile range, 
estimated across all forest plots. Volumes correspond to the average across forest plots where the species occurs and are 
indicated in 10 yr-steps because IPM has this temporal resolution.

30

680

685

https://doi.org/10.5194/gmd-2022-243
Preprint. Discussion started: 4 November 2022
c© Author(s) 2022. CC BY 4.0 License.



Appendix B: Supplementary Tables

Supplementary file: ‘Appendix_B_SupplementaryTables.xlsx’

31

https://doi.org/10.5194/gmd-2022-243
Preprint. Discussion started: 4 November 2022
c© Author(s) 2022. CC BY 4.0 License.



Appendix C: Details of the design of the basic sub-model and parameter estimation procedures

All mathematical symbols used here are described in Table 1 of the main text. Parameter definitions and units are given in 

Table B1.

C.1 Transpiration and photosynthesis in the basic sub-model

We describe here the modifications of transpiration and photosynthesis processes included in recent versions of the sub-

model, with respect to the description given in De Cáceres et al. (2015). Radiation extinction, transpiration and 

photosynthesis processes are represented at a daily time-scale in the basic sub-model. Extinction of short-wave radiation 

(SWR) and photosynthetically-active radiation (PAR) through the canopy follows Beer-Lambert’s equation. Maximum 

transpiration – i.e. before accounting for soil water deficit – for the whole stand (Emax, stand) is estimated using daily Penman’s 

potential evapotranspiration (PET) and an empirical relationship developed by Granier et al. (1999):

Emax, stand

PET
=0.036+0.134 · LAI −0.006 · LAI 2 (C.1)

where LAI is the leaf area index of the stand. While Granier et al. (1999) estimated the coefficients of the eq. (C.1) by 

pooling empirical data from different forest stands, species differ in the relationship between leaf area and maximum 

transpiration. Hence, we modified the estimation of Emax, stand implemented in the original sub-model (De Cáceres et al., 2015)

as follows. If one neglects the intercept (so that transpiration is zero for a bare stand) and assumes that all leaf area of a stand

corresponds to a single cohort i,  eq. (C.1) becomes: 

Emax, stand ( i)

PET
=aTmax · LAI+bTmax · LAI2 (C.2)

where aTmax and bTmax are species-specific parameters for cohort i. Assuming that reasonable species-specific estimates are 

available for aTmax and bTmax, eq. (C.2) can be used to estimate Emax,stand (i), the maximum stand transpiration if dominated by the

species of cohort i. Once Emax,stand (i) has been estimated for each species in the stand, the fraction of SWR absorbed by a given 

cohort i is used to estimate its maximum transpiration (Emax,i) from Emax,stand (i) (Korol et al., 1995). Actual cohort transpiration 

(Ei) is a function of Emax,i, the vertical distribution of its fine roots, soil layer moisture and Ψextract, a species-specific parameter

indicating the soil water potential corresponding to 50% of maximum transpiration (De Cáceres et al., 2015). In contrast with

the original formulation of the basic sub-model, actual transpiration does not decrease to zero under drought conditions, 

since water losses can still occur via leaf cuticular conductance and incomplete stomatal closure (Duursma et al., 2018). 

The basic sub-model assumes a linear relationship between plant transpiration and gross photosynthesis. However, it 

accounts for the dependency of water use efficiency on light availability, air CO2 concentration ([CO2]) and vapor pressure 

deficit (VPD):

Ag ,i=E i · WUEmax · f 1 ( FPARi ) · f 2 (CO2 ) · f 3 (VPD ), with
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f 1 ( FPAR i )=FPARi
WUE PAR , f 2 (CO2 )=1 − e− WUECO2 · [CO2] , f 3 (VPD )=VPDWUEVPD. (C.3)

where FPARi is the fraction of PAR at the mid-crown level of cohort i; and WUEPAR, WUECO2 and WUEVPD are empirical 

parameters modulating WUE depending on environmental conditions, i.e. FPAR, [CO2] and VPD, respectively. Given the 

formulation of eq. (C.3), WUEmax is interpreted as the water use efficiency of the species at VPD = 1kPa and without air 

[CO2] or light limitations to photosynthesis.

C.2  Details of the estimation of transpiration and photosynthesis parameters of the basic sub-model

The six key parameters regulating transpiration (aTmax, bTmax; eq. (C.2)) and photosynthesis (WUEmax, WUEPAR, WUECO2 and 

WUEVPD; eq. (C.3)) in the basic sub-model cannot be estimated from plant trait databases. Assuming transpiration (E) and 

gross photosynthesis (Ag) predictions of the advanced sub-model are more accurate, we adopted a meta-modelling approach 

make Ag predictions obtained by the basic sub-model as similar as possible to those produced by the advanced sub-model 

(both for present-day and projected climate). For each target species, we first revised the parameters of the advanced sub-

model that regulated plant transpiration and photosynthesis (Table C1): 
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Abies alba 0.004 0.23 6.00 1.30 6.71 -3.93 58.09 103.28

Fagus sylvatica 0.004 0.34 8.00 1.87 -1.74 0.90 7.31 -3.31 1.87 -1.05 94.50 159.90

Pinus halepensis 0.003 0.29 4.00 11.14 -2.38 0.15 12.71 -5.29 11.14 -3.07 72.20 124.17

Pinus nigra 0.003 0.24 5.00 2.24 -2.25 0.41 3.14 -3.37 2.24 -2.16 68.50 118.77

Pinus pinea 0.003 0.24 4.00 11.14 -2.38 0.25 7.11 -4.43 11.14 -3.07 72.42 124.50

Pinus sylvestris 0.003 0.24 5.00 2.45 -2.05 0.45 10.24 -3.20 2.45 -2.08 83.00 143.00

Pinus uncinata 0.003 0.24 5.00 2.45 -2.05 0.69 17.26 -4.27 2.45 -2.08 73.41 125.94

Quercus pubescens 0.004 0.28 6.00 2.18 -2.32 0.70 10.27 -4.98 2.18 -1.37 57.34 102.15

Quercus ilex 0.004 0.20 4.00 1.34 -2.58 0.40 3.56 -7.72 1.34 -2.21 68.52 118.79

Quercus faginea 0.006 0.28 6.00 2.18 -2.32 0.70 3.54 -4.13 2.18 -1.37 71.22 122.74

Quercus suber 0.006 0.29 4.00 1.34 -2.58 0.40 4.97 -5.60 1.34 -2.21 70.28 121.37

Table C1: Revised estimates of the parameters regulating photosynthesis and transpiration in the advanced sub-model, for 
the set of twelve prioritized species. Parameter definitions and units are provided in Table B1.

After that, we randomly selected up to 60 SNFI3 plots with a minimum stand basal area of 3 m2·ha-1 and where the target 

species was dominant (> 80% in basal area). Plot records corresponding to species different than the target species were 

discarded. Using daily weather corresponding to a single year (yr. 2001), we ran the two sub-models with unlimited water 

supply, so that transpiration and photosynthesis estimates were not affected by soil water deficit. The basic sub-model was 

run with default values for aTmax and bTmax, i.e., using coefficients of eq. (C.1). We found that the cohort’s annual Ebasic/Eadvanced 
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ratio was rather unaffected by FPAR, on average, but we found substantial differences across species in the this ratio (Fig. 

C1.a). We used the Ebasic/Eadvanced ratio, averaged across cohorts and plots, to scale aTmax and bTmax for each species with respect 

to coefficients of eq. (C.1). With the aim to estimate parameter WUEPAR, we began by calculating annual WUEg (i.e. annual 

Ag over annual E) for each cohort under the advanced sub-model. We then calculated the ratio between WUEg of each cohort 

and the plot’s maximum WUEg value. For each species, we fitted a model of this ratio as a power function of FPAR, and took

the exponent as estimate of WUEPAR (Fig. C1.b). 
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Fig. C1. (a) Cohort Ebasic/Eadvanced values against their available FPAR; (b) Annual WUEg values (relative to the maximum 
WUEg value obtained for each plot) against available FPAR; (c) Daily WUEg values (relative to WUEg at VPD = 1kPa) 
against VPD; (d) Plot-level ratios between gross photosynthesis under increasing [CO2] values and gross photosynthesis 
under [CO2] = 386 ppm; (e-f) Comparison of annual Ag predictions (g C · m2 · yr-1) obtained by the basic sub-model using 
the default parameter values (e) and the new parameter values (f), against Ag predictions of the advanced sub-model. Lines of
panel (a) correspond to smoothed splines, whereas those of panels (b-d) indicate the models fitted for each species.

We then analyzed the relationship between daily WUEg values and VPD under the advanced sub-model. Specifically, a 

power relationship was fitted between VPD and WUEg relative to its value at VPD = 1kPa, except for 0 < VPD < 0.25 kPa 

range, where a linear relationship was assumed to avoid unrealistic values (Fig. C1.c). To estimate WUECO2 we conducted 

additional sets of simulations with the advanced model under increasing values of [CO2], from 350 to 900 ppm, and fitted 
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negative exponential models to the ratio between Ag at each given [CO2] and of Ag under [CO2] = 386 ppm (Fig. C1.d). 

Finally, WUEmax estimates were obtained by dividing annual Ag estimates over those obtained from the sum of daily E values 

multiplied by f1(FPAR), f2(VPD) and f3([CO2]) terms of eq. (C.3). 

Species aTmax bTmax WUEmax WUEPAR WUECO2 WUEVPD

Abies alba 0.072 -0.0032 7.80 0.216 0.0044 -0.413

Fagus sylvatica 0.129 -0.0056 7.95 0.320 0.0024 -0.444

Pinus halepensis 0.138 -0.0062 8.53 0.683 0.0025 -0.303

Pinus nigra 0.134 -0.0060 7.48 0.278 0.0028 -0.505

Pinus pinea 0.178 -0.0080 6.71 0.632 0.0028 -0.359

Pinus sylvestris 0.125 -0.0056 7.77 0.321 0.0030 -0.458

Pinus uncinata 0.138 -0.0062 5.56 0.253 0.0038 -0.325

Quercus faginea 0.123 -0.0055 7.91 0.330 0.0021 -0.560

Quercus ilex 0.088 -0.0039 8.60 0.257 0.0027 -0.578

Quercus pubescens 0.114 -0.0051 8.40 0.333 0.0018 -0.520

Quercus suber 0.104 -0.0046 9.98 0.384 0.0019 -0.633

Table C2: Parameter estimates obtained from the meta-modeling exercise, corresponding to equations (C.2) and (C.3), for 
the twelve prioritized species. 

When replacing default parameter values (i.e. coefficients of eq. (C.1), WUEmax= 5 and f1 = f2 = f3 = 1) by those resulting from 

the meta-modeling exercise, annual Ag estimates produced by the basic sub-model resembled more closely those produced by

the advanced sub-model (Figs. C1.e-f). Final parameter estimates resulting from the meta-modeling exercise are shown in 

Table C2.

C.3 Details of the calibration of growth and senescence parameters

The tree ring data set used for the calibration exercise was sampled in 75 SNFI plots, located in pure stands whose dominant 

species are F. sylvatica, P. halepensis, P. nigra, P. sylvestris or Q. pubescens, and selected to encompass a range of climatic 

aridity (Rosas et al., 2019). Tree ring series were available for 5 trees per plot, with samples taken in December 2015.  More 

information on tree-ring methods can be found in Serra-Maluquer et al. (2018) and González de Andrés et al (2021). We 

took annual basal area increments of each tree as the observations to be matched by model predictions of sapwood growth. 

Simulations were performed using the basic sub-model and daily weather data for each target plot for the 2001 - 2015 

period. We calibrated the three target parameters for the dominant species and rock fragment content in each plot using a 

genetic algorithm implemented in R package ‘GA’ (Scrucca, 2013). The objective function to be minimized was the average,

across cohorts with tree ring data, of the relative mean absolute error resulting from comparing observed and predicted 

annual BAI series. Population size for the genetic algorithm was set to 40 individuals, a maximum of 25 iterations were 

allowed, and the procedure stopped if the best parameter combination did not change during 5 consecutive iterations. The 
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distribution of final values of the objective function is shown in Fig. C2. We did not find significant correlations between 

pairs of calibrated parameters, except for a weak relationship between SRsapwood  and rock fragment content (Table C3). 

Estimates for RERsapwood, RGRcambiummax and SRsapwood were not statistically different across species (Table C4; Fig. C3). 

However, we found the calibrated rock fraction to differ across tree species, indicating differences in soil characteristics of 

the habitat were the species grow (Fig. C3). With the aim to obtain growth and senescence parameter estimates for all tree 

species in the region, we examined the relationship between calibrated values and the mean annual growth rates relative to 

cambium perimeter, a variable that is easy to derive using data from permanent plots. The relationship turned out to be 

strongly significant for RGRcambiummax and, to a lower extent, for  SRsapwood  (Table C4).

Fig. C2. Distribution of the minimum value of relative mean absolute error (MAE) obtained by calibration against tree ring 
data for the 15 plots of each species.
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Fig. C3. Distribution of the calibrated parameters across the 15 plots of each species.

Parameter RERsapwood RGRcambium,max SRsapwood Fraction of rocks

RERsapwood +0.132 +0.084 -0.040

RGRcambium,max 0.259 +0.165 +0.079

SRsapwood 0.473 0.158 -0.289

Fraction of rocks 0.735 0.502 0.012

Table C.3: Linear correlation between calibrated parameters across the 75 forest plots. Upper right triangle contains 
Pearson’s r statistics (in bold) and the lower left triangle contains p-values (in italics).

Mean annual RGR Species Interaction

Parameter df F P-value df F P-value df F P-value

RERsapwood 1 1.548 0.218 4 0.280 0.890 4 0.319 0.864

RGRcambium,max 1 87.20 1.26e-13 4 1.784 0.143 4 1.490 0.216

SRsapwood 1 8.260 0.005 4 1.579 0.190 4 1.579 0.190

Fraction of rocks 1 1.004 0.320 4 2.776 0.034 4 0.652 0.627

Table C.4: Results of an Analysis of Covariance (ANCOVA) for the four calibrated parameters, using the mean annual 
relative growth rate, species identity and their interaction as tested effects. Significant relationships are highlighted in bold.

C.4 Details of the Integral Projection Model (IPM)

The formulation of the IPM used in this work followed closely that of Easterling et al. (2000) with regard to adult trees, 

whereas it differed substantially for ingrowth and small trees. Below we will briefly describe the main characteristics of the 

methodology as we implemented it. For further details, see García-Callejas et al. (2017).

Models were developed for 16 main species and 5 functional types, the latter including species less abundant in the target

area. We determined, for each target species or functional type, the number of adult individual trees at a future time t+∆
from the number of adult individual trees at a previous time  t  plus tree ingrowth from saplings. In our simulations, time

interval ∆=10 years, which approximately corresponded to the mean time difference between SNFI2 and SNFI3.

In the model, the number of adult trees at any time  t+∆,  N Adult ( y , t+∆ ), was determined by two contributions: a) the

dynamics of adult trees that survived and growth from t  to t+∆,  and b) the ingrowth of saplings (i.e. DBH < 7.5cm) into

the adult tree class:

N Adult ( y , t+∆ )=∫N Adult (x , t ) ∙ S ( x , …) ∙G ( x , y ,…) ∙ dx+N Ingrowth ( y , t+∆ ) (C.4)

Contribution a) is represented by the integral term on the right-hand-side, whereas contribution b) consists of an additional

term  N Ingrowth.  In eq. (C.4),  variables  x and  y  indicate the DBH of adult  trees at  t  and  t+∆,  respectively.  Functions

38

790

795

800

805

https://doi.org/10.5194/gmd-2022-243
Preprint. Discussion started: 4 November 2022
c© Author(s) 2022. CC BY 4.0 License.



S ( x ,… ) and G ( x , y ,… ) correspond to tree survival and tree growth, respectively. They were calculated independently for

each target tree species or functional type with data from SNFI2 and SNFI3. Their dependence on variables other than DBH

(i.e. annual mean temperature, total annual precipitation, anomalies of temperature and precipitation, and basal area of the

stand) is expressed in eq.(C.4) with an ellipsis (...).

Tree ingrowth was not included within the IPM integral, unlike the formulation in Easterling et al. (2000), due to limitations

imposed by the SNFI sampling methodology. Instead, we assumed that N Ingrowth did not depend on DBH at time t  and took

it out of the integral. We then expressed it as:

N Ingrowth ( t +∆ )=I (… ) ∙ φ ( y ) (C.5)

Here, I  indicates the number of new adult trees. It depended on the number of saplings at t , the basal area of the stand and

the climatic variables described above, but not on previous size. In turn, term φ ( y ) consisted of a truncated (i.e. y ≥7.5 cm)

exponential distribution that determined the size distribution of the new cohort of adult trees. Finally, modeling of smaller

trees (DBH < 7.5 cm) was carried out by means of a zero-inflated Poisson linear regression with the same predictor variables

as I  above.

Code availability

Core model functions are coded in C++ and linked to a R user interface. MEDFATE is distributed via the R package 

‘medfate’, which is available at CRAN (https://cran.r-project.org/package=medfate) and GitHub (https://github.com/emf-

creaf/medfate). The model code to run MEDFATE (ver. 2.8.1) is available at https://doi.org/10.5281/zenodo.7129635 (De 

Cáceres et al., 2022).

Data availability

Weather simulation data of simulation model used in this study is available from the EURO-CORDEX initiative at 

https://www.euro-cordex.net/index.php.en for noncommercial research and educational purposes. Spanish forest inventory 

data is available at https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-nacionales/inventario-forestal-nacional/.
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