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Abstract. Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the 

variation in plant functional diversity, which requires moving away from broadly-defined functional types. Different 

approaches have been adopted in the last years to incorporate a trait-based perspective into modeling exercises. A common 

parametrization strategy involves using trait data to represent functional variation between individuals while discarding 

taxonomic identity. However, this strategy ignores the phylogenetic signal of trait variation and cannot be employed when 

predictions for specific taxa are needed, such as in applications to inform forest management planning. An alternative 

strategy involves adapting the taxonomic resolution of model entities to that of the data source employed for large-scale 

initialization and estimating functional parameters from available plant trait databases, adopting diverse solutions for missing

data and non-observable parameters. Here we report the advantages and limitations of this second strategy according to our 

experience in the development of MEDFATE (v. 2.9.3), a novel cohort-based and trait-enabled model of forest dynamics, for

its application over a region in the Western Mediterranean Basin. First, 217 taxonomic entities were defined according to 

woody species codes of the Spanish National Forest Inventory. While forest inventory records were used to obtain some 

empirical parameter estimates, a large proportion of physiological, morphological, and anatomical parameters were matched 

to measured plant traits, with estimates extracted from multiple databases and averaged at the required taxonomic level. 

Estimates for non-observable key parameters were obtained using meta-modeling and calibration exercises. Missing values 

were addressed using imputation procedures based on trait covariation, taxonomic averages or both. The model properly 

simulated observed historical changes in basal area, with a performance similar to an empirical model trained for the same 

region. While strong efforts are still required to parameterize trait-enabled models for multiple taxa, and to incorporate intra-

specific trait variability, estimation procedures such as those presented here can be progressively refined, transferred to other

regions or models and iterated following data source changes by employing automated workflows. We advocate for the 

adoption of trait-enabled and population-structured models for regional-level projections of forest function and dynamics.  
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1. Introduction

Dynamic vegetation models are essential tools to anticipate future function and dynamics of terrestrial ecosystems. However,

forest responses to changes in climate and disturbance regimes are complex and non-linear, as they involve multiple 

processes operating at various scales, which makes forecasting a challenging task (Adams et al., 2013). Global-scale 

assessments of the effects of climatic changes on terrestrial ecosystems and their feed-backs require physically-based 

mechanistic approaches, given the need to evaluate energy, water and carbon exchanges between the biosphere and the 

atmosphere (Prentice and Cowling, 2013). At the regional-scale, however, the assessment of climate change impacts  on 

forest function and dynamics often do not include feed-backs to the atmosphere system. Thus, at this scale a much broader 

range of modeling approaches can be used, differing in the way vegetation structure is represented and including different 

degrees of mechanistic detail of process representation (Bugmann and Seidl, 2022; Maréchaux et al., 2021; Blanco et al., 

2020; Mahnken et al. 2022). Some models are very detailed in terms of biophysical, biogeochemical and physiological 

processes, but they have a missing or limited representation of vegetation structure and demographic processes (Running and

Coughlan, 1988; Dufrêne et al., 2005; Gracia et al., 2004). These models are better suited for predicting vegetation function 

than structural and/or compositional forest dynamics. At the opposite end, growth and yield models calibrated using 

empirical individual data allow simulating forest structural and compositional dynamics arising from the birth, growth and 

death of tree individuals (Dixon, 2013; Stadelmann et al., 2019; Trasobares et al., 2022), but they are unable to project 

vegetation function properly and are often not suited to simulate unprecedented environmental conditions, such as increased 

atmospheric [CO2]. Forest gap models combine an individual- or cohort-based representation of vegetation with an 

intermediate level of mechanistic detail. In such models, demographic processes depend on competition for light, water, and 

nutrients, but the impact of these factors on demographic processes is modeled with a low degree of mechanistic detail 

(Bugmann, 2001; Morin et al., 2021; Thrippleton et al., 2020; García-Valdés et al., 2020). Finally, hybrid models exist that 

combine a detailed mechanistic approach to energy, water and carbon balances with the ability to represent vegetation 

structure and simulate demographic processes (Fisher et al., 2018; Maréchaux and Chave, 2017; Liu et al., 2021). These kind

of models have the advantage of allowing a good representation of the interaction between vegetation function and 

dynamics, often at the cost of increased parametrization complexity and computational requirements. 

Regardless of model type, one of the common challenges when modeling forest function and dynamics at large scales is to 

appropriately represent plant functional diversity (Maréchaux and Chave, 2017), as functional traits display a wide spectrum 

of variation at multiple spatial scales (Funk et al., 2017). First, not all vegetation models are ‘trait-enabled’, in the sense that 

their parameters can be conceptually and quantitatively matched to measurable plant traits. Second, it is common in many 

models to reduce functional diversity into a manageable set of dominant tree species or a lumped set of plant functional types

(Vanderwel et al., 2013; Morin et al., 2021; Prentice and Cowling, 2013; Dufrêne et al., 2005), with the corresponding 

decrease in ecological realism. However, including functional trait variation has been proven to substantially impact 
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simulation outcomes (Verheijen et al., 2015) and comprehensive global trait databases represent a key source of information 

to boost parameter estimation (Kattge et al., 2020). Different strategies have been adopted to incorporate plant functional 

diversity into vegetation modeling exercises (Zakharova et al., 2019; Berzaghi et al., 2020). One possibility is to sample 

individual-level trait values from the distribution observed in a given forest area (Fyllas et al., 2014). This stochastic 

sampling of trait combinations can preserve trait covariation and relies on competition processes implemented in the model 

to filter trait distributions in each simulated patch (Sakschewski et al., 2015; Thonicke et al., 2020; Pavlick et al., 2013). 

Another approach consists of combining a trait-based description of individuals with genetic and demographic processes 

included in the model to simulate trait inheritance and, hence, eco-evolutionary processes (Scheiter et al., 2013; Scheiter and 

Higgins, 2009). For simulations over large spatial extents, yet another possibility is to use climate-trait relationships, 

calibrated using global trait databases, to prescribe the variation across space of parameter values (Verheijen et al., 2013, 

2015). All these approaches focus on representing the continuum of traits at the individual level, either ignoring plant 

taxonomy for parametrization, or using broadly-defined functional types. Even though models implementing these 

approaches are valuable tools, disregarding the information provided by species taxonomic identity entails some trade-offs. 

Importantly, many plant traits exhibit a phylogenetic signal (Sanchez‐Martinez et al., 2020; Anderegg et al., 2022) and trait 

covariation frequently differs within and among species (Rosas et al., 2019; Anderegg et al., 2018). Hence, it is unclear how 

a model without explicit taxonomic entities can deal with functional diversity in a realistic way, which explains why recent 

approaches sample parameter combinations within species-defined boundaries (Buotte et al., 2021). In addition, there are 

many applications at local to regional scales that require species identity. An example would be the evaluation of future 

climatic and socioeconomic scenarios for forest management planning or biodiversity conservation purposes (Morán-

Ordóñez et al., 2020; Augustynczik et al. 2020). 

Accounting for taxonomy in trait-enabled model simulations requires using as many trait data sources as possible to obtain 

taxon-specific estimates of model parameters (Maréchaux and Chave, 2017; Schmitt et al., 2020; Morin et al., 2021; Ruffault

et al., 2022). While not solving the issue of intra-specific trait variability, a taxon-based parameter estimation strategy can be 

employed for large-scale simulation exercises in combination with systematic forest inventory data, the latter defining the 

maximum resolution of taxonomic entities  (Vanderwel et al., 2013; Caspersen et al., 2011; Dijak et al., 2017; Morin et al., 

2021). To date, however, there are few examples of trait-enabled models of vegetation dynamics including parameterization 

for a large number of taxa based on plant trait databases (Christoffersen et al., 2016). Hence, it is important to appropriately 

examine the different challenges to address if this approach is adopted because, even with the current wealth of plant trait 

data sources, information is still insufficient for less common species that have not received much attention; and for key 

model parameters that are difficult to measure or cannot be matched to any observable trait. 

The main objectives of this manuscript are: (1) to present MEDFATE (ver. 2.9.3), a cohort-based and trait-enabled model of 

forest function and dynamics designed for regional-scale applications; and (2) to illustrate the challenges encountered in the 
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process of estimating parameter values for multiple-taxa in trait-enabled models and provide suggestions to address them. 

We begin by describing the design and formulation of MEDFATE, which evolved from two preceding models (De Cáceres 

et al., 2015, 2021) that now constitute alternative sub-models for transpiration and photosynthesis processes. We then detail 

the different procedures we adopted to estimate taxon parameter values for the application of MEDFATE over a target 

region in the Mediterranean Basin, including the imputation procedures used to address missing values. Once fully 

parameterized, we evaluate the model in terms of predicted forest dynamics at the regional level and compare its 

performance with that of an empirical model (García-Callejas et al., 2017), recently calibrated for the main species in the 

same target region. We then illustrate the potential of MEDFATE to assess the impact of expected climate changes on forest 

function and dynamics in the target region. Finally, we discuss the challenges that we encountered, the transferability of the 

adopted parameter estimation procedures and the overall value of trait-enabled forest models for regional-scale applications.

2.  Model description

MEDFATE simulates energy, water and carbon balances and ultimately forest dynamics for a set of woody plants (i.e. trees 

or shrubs) in a given forest stand using daily weather data as input. The above- and below-ground vertical structure of the 

stand is explicitly represented, but the spatial location of plants within the stand is not considered. Importantly, the model is 

cohort-based, meaning that plants considered similar (e.g., in size and taxonomic identity) are represented using a single 

entity with average characteristics (e.g., tree height and diameter, or shrub height), and a cohort density variable (i.e. 

individuals per hectare) is used to upscale quantities from the individual to the cohort level. Fig. 1 summarizes the main 

processes in the model. Most of the processes involved in water and energy balances are implemented at the stand level, 

whereas transpiration, photosynthesis, mortality and recruitment are implemented at the cohort level. Labile carbon balance, 

structural growth and senescence are implemented at the individual level. Hydrological processes (i.e., rainfall interception, 

soil infiltration, percolation and evaporation from bare soil) were already described in De Cáceres et al. (2015). MEDFATE 

can be run using two different levels of complexity, depending on the sub-model employed to estimate plant transpiration 

and photosynthesis (De Cáceres et al., 2015, 2021), hereafter referred to as the “basic” and “advanced” sub-models (Fig. 1). 

Although the basic sub-model is limited in its assumptions and includes key parameters that cannot be matched to plant 

traits, the finer detail in process representation of the advanced sub-model easily leads to computational limitations when 

processing thousands of stands. Sub-sections 2.1 and 2.2 briefly describe the design of the two sub-models. Design and 

formulation of the carbon balance, growth, mortality and recruitment processes are described with more detail (sub-sections 

2.3 to 2.5), because they are newly introduced in the model version presented here. Table 1 includes a description of all 

symbols mentioned in the text. MEDFATE has been coded in C++ and linked to a R user interface. The model is 

implemented in a modular way, so that different R functions can be used to execute different sub-models (Fig. 1). An 

extended model description, including process formulation, can be found at https://  emf-creaf  .  github.io  /medfatebook/  .  

Symbol Description Units/range Sub-model
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LAI Leaf area index of the stand m2·m-2

BA Total basal area of the stand m2·ha-1

H Height of an “average” individual m

SA Sapwood area of an “average” individual cm2

DBH Diameter at breast height for an “average” individual cm

FBRs Fine root biomass in soil layer s g dry

PET Potential evapo-transpiration according to Penman (1948) mm

T Air temperature ºC

Ts Temperature of soil layer s ºC

FPARi Fraction of photosynthetically active radiation (PAR) for cohort i [0-1]

[CO2] Air carbon dioxide concentration ppm

VPD Vapor pressure deficit kPa

Emax,stand Maximum daily stand transpiration l·m-2 basic

Emax,stand(i) Maximum daily stand transpiration according to species of cohort i l·m-2·d-1 basic

aTmax, bTmax Species-specific parameters relating LAI with the ratio Emax,stand(i)/PET basic

Emax,i Maximum daily transpiration for plant cohort i l·m-2·d-1 basic

Ei Actual daily transpiration for plant cohort i l·m-2·d-1

Ag,i Daily gross photosynthesis of plant cohort i g C·m-2·d-1

NPP Annual net primary production g C·m-2·yr-1

Ψextract Soil water potential corresponding to 50% of maximum plant transpiration MPa basic

cextract Parameter of the Weibull function regulating the decrease of transpiration basic

Ψplant Plant water potential MPa basic

Ψleaf Leaf water potential MPa advanced

Ψstem Stem water potential MPa advanced

Ψs Water potential in soil layer s MPa

PLC Proportion of stem xylem conductance lost due to cavitation [0-1]

WUEmax Water use efficiency assuming no light, water or CO2 limitations g C·l-1 basic

WUEPAR, WUECO2,
WUEVPD

Coefficients regulating the dependency of WUE on light availability, CO2 
concentration and VPD

basic

rcell (Ψ, T) Relative cell expansion rate, depending on water potential (Ψ) and temperature (T)

rcellmax Maximum relative cell expansion rate (at T = 30ºC and Ψ = 0)

RERsapwood Sapwood (parenchima) maintenance cost per dry mass unit g gluc·g dry-1·d-1

RGRleafmax Maximum daily leaf area growth rate per unit sapwood area m2·cm-2·d-1

RGRcambiummax Maximum daily (tree) sapwood area growth rate per unit cambium length cm2·cm-1·d-1

RGRsapwoodmax Maximum daily (shrub) sapwood area growth rate per unit sapwood area cm2·cm-2·d-1
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RGRfinerootmax Maximum daily fine root biomass relative growth rate g dry·g dry-1·d-1

SRsapwood Daily relative rate of sapwood area senescence at 25ºC cm2·cm-2·d-1

SRfineroot Daily relative rate of fine root biomass senescence at 25ºC g dry·g dry-1·d-1

ΔLAgrowth Daily leaf area increase due to growth m2·d-1

ΔSAgrowth Daily sapwood area increase due to growth cm2·d-1

ΔSAsenescence Daily sapwood area decrease due to senescence cm2·d-1

ΔFRBgrowth,s Daily increase in fine root biomass in soil layer s due to growth g dry·d-1

ΔFRBsenescence,s Daily decrease in fine root biomass in soil layer s due to senescence g dry·d-1

RSSG Minimum relative storage for sapwood growth [0-1]

Table 1: Description and units of input variables, state variables and model parameters mentioned in the text and Appendix 
C. Column ‘sub-model’ indicates when a given state variable or parameter is specific to one of the two 
transpiration/photosynthesis sub-models. A complete list of model parameter definitions and units is given in Table B1.
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Fig. 1: MEDFATE (ver. 2.9.3) model processes (left), with their temporal resolution, and user-level R simulation functions 
(right), with the extension of the corresponding bars indicating the set of processes included.

2.1. Transpiration, photosynthesis and drought impacts in the basic sub-model

The basic sub-model of MEDFATE was first described in (De Cáceres et al., 2015), but has recently undergone 

modifications that are detailed in Appendix C.1. All sub-model processes are represented at daily time steps. Extinction of 

short-wave radiation and photosynthetically-active radiation through the canopy follows Beer-Lambert’s equation. The 

model first derives a separate estimate of whole-stand maximum transpiration – i.e. before accounting for soil water deficit –

for each taxon, which accounts for atmospheric evaporative demand and requires two taxon-specific parameters (see eq. 

(C.2)). Actual cohort transpiration depends on stand’s maximum transpiration calculated for the corresponding taxon and the

fraction of short-wave radiation absorbed by the plant cohort (Korol et al., 1995). It also depends on the vertical distribution 

of fine roots, soil moisture profile and two taxon-specific parameters, Ψextract and cextract, namely the soil water potential 

corresponding to 50% of maximum transpiration and the slope of a Weibull function regulating the steepness of transpiration

decrease, respectively (De Cáceres et al., 2015) (see eq. (C.3)). The sub-model also simulates hydraulic redistribution of 

water among soil layers via circulation through plant roots (Neumann and Cardon, 2012). The basic sub-model assumes a 

linear relationship between plant transpiration and gross photosynthesis, but accounts for the dependency of water use 

efficiency on the fraction of photosynthetically-active radiation, air CO2 concentration and vapor pressure deficit. Overall, 

the estimation of gross photosynthesis requires four taxon-specific parameters (see eq. (C.4)). Plant water status is 

represented by a plant water potential, Ψplant, defined as an “average” of soil water potential in the rhizosphere. The sub-

model keeps track of drought legacies using the proportion of hydraulic conductance lost due to stem cavitation, PLC. 

Increases in PLC occur whenever Ψplant decreases, following a xylem vulnerability curve. PLC limits actual transpiration 

rates and does not decrease following increases in Ψplant. Cavitation effects can only be reversed (i.e. PLC decreased) via new

sapwood formation (Choat et al., 2018). 

2.2. Transpiration, photosynthesis and drought impacts in the advanced sub-model

The advanced sub-model simulates radiation balance, canopy, soil and leaf energy balances, plant hydraulics, stomatal 

regulation and photosynthesis at hourly time steps. We provide a brief description here, but a more detailed description can 

be found in De Cáceres et al. (2021). Radiation balance and sunlit/shade leaf energy balance are estimated assuming a multi-

layer canopy (Anten and Bastiaans, 2016), but canopy energy balance equations are evaluated assuming a single layer that 

exchanges energy with the atmosphere and the soil (Best et al., 2011). The ‘supply function’ approach of (Sperry and Love, 

2015) is used to model the relationship between steady-state instantaneous water flow and water status along the soil-plant-

atmosphere hydraulic network, which includes rhizosphere, root, stem and leaf segments (Sperry et al., 1998). The advanced 

sub-model, thus, requires parameters describing maximum hydraulic conductance and hydraulic vulnerability curves for 
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these three plant segments. Gross photosynthesis is approximated following the sunlit/shade model of De Pury and Farquhar 

(1997), which requires estimates for the usual photosynthetic parameters, namely, the maximum Rubisco carboxylation rate 

and the maximum electron transport rate, which are considered taxon-specific are dependent on leaf temperature. Stomatal 

regulation follows the “profit maximization” approach of Sperry et al. (2017), where an optimum stomatal conductance is 

determined by comparing the risks associated with hydraulic damage against photosynthetic gains, subject to the limits 

imposed by minimum and maximum stomatal conductance. Hydraulic redistribution of soil water is an emergent outcome in 

the advanced sub-model, derived from its formulation of plant hydraulics. Like the basic sub-model, the advanced sub-model

keeps track of drought legacy effects through their cumulative effects on stem PLC, which feed-backs on stem vulnerability 

curves and, hence, transpiration rates. As in the basic sub-model, its effects are only reversed via new sapwood area growth. 

2.3. C pools and labile C balance

Three different carbon compartments are represented in MEDFATE: leaves, sapwood – including stem, branches and coarse 

roots – and fine roots. We differentiate two main forms of C pools, structural and labile. Structural C corresponds to 

membranes, walls, and the cytosolic organelles of living cells, whereas labile C occurs in leaves and sapwood compartments 

only, and it is divided between metabolic and storage (Richardson et al., 2013; Dietze et al., 2014). Metabolic C is assumed 

to correspond to dissolved sugars (e.g., glucose or fructose) that are used to directly sustain cell functioning, whereas storage

C is assumed to correspond to starch. We chose this design because structural growth and photosynthesis are frequently 

uncoupled (Dietze et al., 2014; Fatichi et al., 2014; Cabon et al., 2022), which points to the need of including storage 

compartments when modeling tree growth at daily to seasonal resolution (Richardson et al., 2013; Jones et al., 2020). 

Initial values of leaf structural C are obtained by dividing leaf area by specific leaf area, whereas sapwood structural C 

depends on sapwood area, plant height, coarse root length and wood density. Finally, fine root structural C is estimated 

assuming a constant relationship between leaf area and fine root area. Leaf/sapwood C storage capacity is determined by 

tissue volume and density, assuming that a maximum of 50% of cell volume is available for starch accumulation. Sapwood 

storage constitutes the largest C pool, depending on sapwood volume and the fraction of sapwood corresponding to xylem 

parenchyma. 

The balance of leaf labile C includes gross photosynthesis, leaf maintenance respiration, sugar-starch conversion and phloem

transport processes. Sapwood labile C balance includes phloem transport, sugar-starch conversion, maintenance respiration 

of sapwood and fine roots, growth costs, senescence and root exudation. Sapwood maintenance applies to the xylem 

parenchyma only, because dead xylem conduits are assumed to be inexpensive. Maintenance respiration rates per dry mass 

unit are estimated from tissue nitrogen content in the case of leaf and fine root compartments (Reich et al., 2008), but not for 

sapwood because of the lower knowledge in the factors affecting wood respiration, which results in a species-specific 

parameter (RERsapwood) to be calibrated. Maintenance respiration is temperature-dependent and is subtracted from metabolic C

pools, whereas C used for growth is withdrawn from the sapwood storage C pool. Storage accumulation is considered a 
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passive consequence of sugar-starch dynamics and reduced C use by other sinks (Palacio et al., 2014; Le Roux et al., 2001). 

Sugar-starch dynamics are modeled to maintain a constant metabolic C concentration in leaves and sapwood tissues, whereas

phloem transport decreases leaf-vs-sapwood differences in sugar concentration. Root exudation is not modeled as an active 

process competing for metabolic C, but as a consequence of plant C storage capacity being surpassed (Prescott et al., 2020; 

but see Williams and de Vries, 2020), which can happen when temperature or plant water status limit growth more than 

photosynthesis. During leaf senescence, labile C pools are recycled and relocated to sapwood storage. Analogously, when 

sapwood is converted into heartwood, labile C in the protoplasm of parenchyma cells is assumed to be re-absorbed by 

neighboring living cells as storage.

2.4. Growth and senescence

In many mechanistic dynamic vegetation models, structural growth is proportional to the amount of C fixed by 

photosynthesis or is determined by the difference between photosynthesis and respiration (Körner, 2015; Fatichi et al., 

2019). Following the C sink limitation hypothesis, which posits that for trees growing under environmental constraints direct

restrictions on tissue formation can occur before any C shortage comes into play (Körner, 2003), formation of new plant 

tissues in MEDFATE also considers biophysical constraints on plant tissue expansion (Schiestl-Aalto et al., 2015; 

Lempereur et al., 2015; Hayat et al., 2017; Potkay et al., 2021; Eckes‐Shephard et al., 2021). Specifically, temperature and 

turgor limitations on cell expansion are implemented following Cabon et al. (2020a, b), although these authors developed 

their approach for tracheid production/enlargement and we apply it to model growth of all kinds of plant tissues. 

A leaf phenology sub-model controls the duration of phenophases corresponding to budburst, leaf development and 

senescence (Chuine et al., 2013; Delpierre et al., 2009). During bud formation periods, the model updates the maximum leaf 

area that can be achieved, as the product of current sapwood area and a target leaf area to sapwood area ratio, following the 

pipe model (Shinozaki et al., 1964). Assuming no allocation or C limitations, daily leaf area increase due to growth is 

estimated using:

Δ LAgrowth=SA·RGRleafmax ·
rcell (Ψ leaf , T )

rcellmax
(1)

where RGRleafmax is the maximum leaf area growth rate per unit sapwood area, rcell is the relative cell expansion rate, 

depending on leaf water potential (Ψleaf) and temperature (T) (Cabon et al., 2020a), and rcellmax is a reference cell expansion 

rate at T = 30ºC and Ψleaf = 0. Leaf senescence occurs due to leaf aging in evergreen species, programmed leaf senescence in 

deciduous species or as defoliation triggered by cavitation (i.e. following increases in PLC).  

The maximum fine root biomass that a given individual can have depends on its leaf area target, the root area to leaf area 

ratio and specific root surface area. Thus, fine root biomass is constrained by allocation parameters in a similar way as leaf 
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area. Assuming no allocation or C limitations, daily fine root biomass increment in a given soil layer s (ΔFRBgrowth,s) is 

modeled analogously to eq. (1):

Δ FRBgrowth , s=FRBs · RGR finerootmax ·
r cell (Ψ s ,T s )

r cellmax

(2)

where FRBs  is the current fine root biomass in layer s,  RGRfinerootmax is the maximum relative growth rate for fine roots, and 

rcell depends here on the water potential (Ψs) and temperature (Ts) in soil layer s. Fine root senescence is estimated assuming a

linear temperature dependence:

Δ FRBsenescence , s=FRBs · SRfineroot ·
max (T s −5 ,0 )

20
(3)

where SRfineroot  is the daily relative rate of fine root senescence at 25 ºC. 

Unlike leaves and fine roots, formation of new sapwood area is not constrained by allocation parameters. On the contrary, 

sapwood growth and senescence are the processes that constrain the target biomass of the other organs. This lack of an 

explicit allocation rule does not imply continuous sapwood growth, because it is regulated by temperature/turgor limitations 

and two additional constraints: First, formation of sapwood area can only occur if unfolded leaves are present, assuming that 

hormonal signals controlling cambium division and sapwood development are mainly synthesized within leaves. Second, 

sapwood formation does not occur if C storage levels are below a given threshold, so that the maintenance of metabolic 

functioning and replacement of leaves/fine roots are prioritized over plant growth whenever C storage levels are low 

(Martínez-Vilalta et al., 2016), helping to maintain a safety margin against the risk of carbon starvation (Huang et al., 2019). 

This threshold is specified in relative terms via species parameter RSSG, the minimum relative starch for sapwood growth. 

When the former two constraints do not operate, daily sapwood area increases (ΔSAgrowth) are modeled analogously to the 

other tissues:

Δ SAgrowth=π ·DBH·RGR cambiummax ·
rcell (Ψ stem , T )

rcellmax

 for tree cohorts, and (4a)

Δ SAgrowth=SA·RGR sapwoodmax ·
rcell (Ψ stem , T )

r cellmax

 for shrub cohorts, (4b)

where DBH is the current diameter at breast height (for a tree cohort), SA is the current sapwood area (for a shrub cohort), 

rcell now depends on stem water potential (Ψstem) and temperature (T), RGRcambiummax is the maximum growth rate relative to the

current cambium perimeter and RGRsapwoodmax is the maximum growth rate relative to the current area of sapwood (note that 

diameter is not available in multi-stemmed shrubs). Unlike other models where height-to-diameter variations arise from an 
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explicit regulation of the activity of apical and lateral (i.e. cambium) meristems (e.g., Hayat et al., 2017), in MEDFATE tree 

height increases are estimated as a function of diameter increases and a height-to-diameter ratio varying with FPAR (Rasche 

et al., 2012).

Sapwood area senescence (i.e., conversion to heartwood) is assumed to occur with aging, although evidence points towards a

plant-controlled developmental process (Spicer, 2005). Most process-based forest models assume a fixed rate of sapwood 

turnover (Collalti et al., 2020). Like in eq. (3), we assume that the rate of conversion to heartwood is faster under warmer 

conditions and, similarly to 3-PG (Landsberg and Waring, 1997), that the relative turnover rate of sapwood is smallest for 

young plants, and it progressively increases with size:

Δ SA senescence=SA·
SR sapwood

1+15· e− H · max (T − 5 ,0 )
20

(5)

where SRsapwood  is the daily rate of sapwood conversion to heartwood at 25 ºC and H is plant height (m). 

When using the advanced sub-model, leaf, stem and soil water balances provide the water status for eqs. (1)-(5); while the 

soil and canopy energy balances provide temperature values. Leaf and sapwood area changes feed back on maximum stem 

hydraulic conductance, and fine root biomass changes feed back on rhizosphere conductance. Moreover, recovery from stem

embolism is assumed to be the result of new xylem formation (Choat et al., 2018; Rehschuh et al., 2020). Specifically, 

formation of new sapwood reduces the proportion of conductance loss (PLC) between time steps t and t+1:

PLC t+1=max [PLC t −
Δ SAgrowth

SA
, 0] (6)

When using the basic sub-model, it is assumed that Ts = T  and Ψs = Ψstem = Ψleaf = Ψplant. In this case, changes in sapwood 

area affect maximum transpiration rates per unit of leaf area via reduction of PLC only.

2.5. Mortality and recruitment

Dynamic vegetation models implement mortality in very different ways, from purely-empirical to entirely mechanistic 

approaches (Hawkes, 2000; Keane et al., 2001; Bugmann et al., 2019). In MEDFATE, woody plants are assumed to die at a 

constant basal rate due to processes not explicitly included in the model (e.g., biotic attacks or windstorms), but mortality 

rates increase whenever physiological stress thresholds presumed to lead to plant mortality are surpassed (McDowell et al., 

2022). The model allows plants to die explicitly from either starvation (if metabolic carbon is exhausted) or desiccation 

(extreme tissue dehydration) (McDowell et al., 2008, 2011). Starvation is assumed to occur whenever the size of the 

sapwood metabolic C pool decreases below 30% of its maximum value (Martínez-Vilalta et al., 2016). Plant desiccation 

occurs when stem symplastic relative water content decreases below 30% (Mantova et al., 2021; Kursar et al., 2009). 
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Although the two thresholds are applied independently, drought-driven starvation and dessication processes are strongly 

coupled in the model: Decreases in soil water potential cause stomatal closure and cavitation-induced defoliation, both 

reducing carbon assimilation and, in turn, reduced carbon storage impacts the capacity of plants to produce new tissues and, 

hence, recover hydraulic conductance and normal gas exchange rates (McDowell et al., 2022).  

Although recruitment is known to be the result of a number of processes (e.g., flowering and pollination, fruit/seed 

production, dispersal, storage, seed predation, germination, seedling establishment and survival until the sapling stage), they 

are challenging to include in models (Price et al., 2001; König et al., 2022). Recruitment in MEDFATE is thus modeled 

using a single aggregated process that estimates the appearance of young plants, as done in other models (Hanbury-Brown et 

al., 2022). Dispersal is not considered and local seed production is considered as a binary process, namely plants are fertile 

and able to produce viable seeds if they reach a given taxon-specific height (different for shrubs and trees). Recruitment of 

species with available seeds is further constrained by three species-specific thresholds, including minimum temperature, 

maximum aridity and minimum FPAR, that are used to determine whether recruitment (i.e., ingrowth into an initial plant 

size) is possible, similarly to FORCLIM (Bugmann, 1996). A constant probability of recruitment determines actual 

recruitment within these bioclimatic limits.

3. Study area, forest, soil and historic weather data

Our target region for parameter estimation, model evaluation and application was Catalonia (32,108 km2, NE Spain). Most of

the region has a Mediterranean climate, with hot and dry summers, but it includes strong climatic variation due to its 

complex orography. Mean annual temperature ranges between +3 ºC and +17 ºC (average +12.3 ºC) and annual rainfall 

ranges between 344 and 1587 mm (average 684 mm). Abandonment of rural areas during the second half of the 20th century 

led to a remarkable increase in the area covered by forests. Nowadays, forests cover around 47% of Catalonia and are 

increasing in density and wood volume stock. Among forested areas, 52% are dominated by conifers, 36% by broadleaves, 

and 13% are considered mixed forests (Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, 2017). 

Three surveys of Spanish National Forest Inventory (SNFI) are available for the region (SNFI2, 1989-1991; SNFI3, 2000-

2001; and SNFI4, 2013-2016). These were conducted using a systematic sampling scheme, with 10,820 plots in SNFI2, 

11,314 plots in SNFI3 (average density of 1 plot/km2 in both cases) and 5,500 plots in SNFI4 (0.5 plot/km2). Plot sampling 

involves a variable radius with circular nested subplots, where trees of different diameter classes are identified to the species 

level and their DBH and height is measured. Shrub sampling consists in determining mean height and percent cover by 

species. Since field soil data is absent in forest inventory plots, soil physical properties (i.e., texture, bulk density, organic 

matter content) in plot locations were drawn from the global database SoilGrids (Hengl et al., 2017), complemented by rock 

fragment content estimates derived from surface stoniness measurements made during SNFI surveys. Soil water retention 

and conductivity curves followed the van Genuchten (1980) model, with parameters estimated following Tóth et al. (2015). 

Historical daily weather data used for parameter estimation and model evaluation exercises was obtained via interpolation of 
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weather records from Catalan and Spanish surface station networks on forest plot locations using the R package ‘meteoland’ 

(De Cáceres et al., 2018).

4. Parameter estimation

We reduced the tree and shrub species classification codes included in the SNFI to 217 taxon entities, from which 144 taxa 

were at the species level, and 73 were aggregated at the genus level based on their frequency and the availability of species-

specific data. Upper taxonomic levels (genus, family, order) were filled using the R package ‘taxize’ (Chamberlain and 

Szocs, 2013). MEDFATE (ver. 2.9.3) requires taxon-specific estimates for 117 different parameters (including qualitative 

variables and allometric coefficients) to be run. The different procedures employed for parameter estimation are summarized 

in Table 2 and are detailed in the following subsections. Table B1 includes the strategy used to estimate taxon values for 

each parameter. The final taxon parameter estimates are given in Table B3. 

a) Estimation procedures Num. Params. %

Forest Inventory Data (section 4.1) 12 10.3%

Plant trait databases (section 4.2) 49 41.9%

Allometry databases (section 4.2) 19 16.2%

Meta-modelling exercise (section 4.3) 6 5.1%

Calibration exercise (section 4.4) 3 2.6%

None (always requiring imputation) 28 23.9%

b) Imputation procedures (section 4.5) Num. Params. %

Quantitative trait relationship 17 14.5%

Qualitative trait relationship 31 26.5%

Family means / Qualitative trait relationship 4 3.4%

Family means / Default value 11 9.4%

Default value 44 37.6%

None (completely specified from databases) 10 8.5%

Table 2: Summary of procedures used for taxon parameter estimation (a) and model-inbuilt imputation of missing values 
(b). The number of parameters is indicated as well as the percentage with respect to the 117 parameters in MEDFATE.

4.1 Parameter estimates obtained from forest inventory data

We used SNFI data from the entire Spanish territory to find suitable values for twelve parameters. A number of quantitative 

traits, such as maximum and median plant heights and tree diameter-height relationships under shade/sunlit conditions, were 

directly calculated from SNFI shrub/tree records (Morin et al., 2021). We also used permanent forest inventory plot data 

corresponding to the SNFI2-3 and SNFI3-4 periods and the entire Spanish territory to estimate tree mortality and recruitment

parameters, to maximize the amount of data available for each taxon. We first estimated observed tree mortality rates, 

excluding those plots where management effects (i.e. stumps) were detected (observed mortality rates for different SNFI 
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periods are provided in Table B5). Since the model incorporates mortality due to carbon starvation and desiccation 

explicitly, using observed mortality rates as estimates of model’s basal mortality rates leads to overestimation of mortality. 

Following preliminary tests, we defined tree basal mortality rates for all species as one-third of observed mortality rates. We 

then manually modified basal mortality rates for the main tree species to obtain an acceptable bias in basal area mortality 

predictions when evaluating the model at the regional level for the SNFI3-4 period (see section 5.1). To obtain species-

specific recruitment parameter estimates we first calculated three bioclimatic variables (minimum monthly temperature, 

moisture index and ground FPAR) for each forest plot. For tree taxa, we fitted a non-linear model by maximum likelihood 

for the probability of ingrowth into the 7.5 < DBH < 12.5 cm class between inventory surveys, based on plots where the 

species was present in the initial survey, and where the parameters to be calibrated were the thresholds for the three 

bioclimatic variables mentioned in Section 2.5 and the probability of ingrowth within those limits (ingrowth probabilities 

estimated for different SNFI periods are provided in Table B6). For shrub taxa, bioclimatic thresholds were determined using

1% percentiles among plots where the species was found and we assumed a constant 5% probability of annual recruitment 

within these limits. 

4.2 Parameter estimates obtained from allometric and plant trait databases

We used available allometric relationships for shrub/tree leaf biomass and crown base height assembled from multiple 

sources (Hasenauer, 1997; Burriel et al. 2004; De Cáceres et al., 2019) to populate 19 (16%) of model parameters. In turn, 49

(42%) model parameters were matched to plant trait definitions from existing plant trait databases (see Table B1). Among 

those, 23 (47%) model parameters were matched to plant traits drawn from TRY public data sets (ver 5.0; https://www.try-

db.org/) (Kattge et al., 2020). TRY data sets were complemented with additional data bases, global analysis papers and 

personal compilations for phenology, anatomy and morphology (Tavşanoǧlu and Pausas, 2018; Zanne et al., 2009; Morris et 

al., 2016), plant hydraulics (Mencuccini et al., 2019; Sanchez‐Martinez et al., 2020; Martin-StPaul et al., 2017; Choat et al., 

2012), tissue water content (Bartlett et al., 2012) and stomatal or cuticular conductance (Hoshika et al., 2018; Duursma et al.,

2018) (see Table B2). Transipiration and photosynthesis functions of the advanced sub-model were readily parameterizable 

with measured traits, although hydraulic parameters were often missing for leaf and root segments. In the case of the basic 

sub-model, xylem vulnerability curves were taken as estimates of the parameters regulating stem PLC, but eight other 

parameters regulating transpiration and photosynthesis (eqs. (C.2), (C.3) and (C.4))  could not be conceptually matched to 

plant traits. 

Most plant traits were mapped directly, sometimes requiring homogenizing measurement units, whereas a few required the 

use of transforming functions. While most parameters were estimated from measurable plant traits, the minimum relative 

storage for sapwood growth (RGGS) was estimated by monotonically re-scaling an ordinal (0-5) shade tolerance index 

(Niinemets and Valladares, 2006) to a proportion [0-1], relying on the expectation that a higher degree of shade tolerance 

implies a stronger prioritization of leave/fine root maintenance over stem growth. Parameters for plant taxa were estimated 
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using species-level averages or genus-level averages (for genus taxa or when the target species was not found in the source 

database). 

4.3 Estimation of transpiration and photosynthesis parameters of the basic sub-model

As indicated above, eight key parameters regulating transpiration and photosynthesis in the basic sub-model could not be 

estimated from plant trait databases. To make transpiration, gross photosynthesis and growth predictions obtained by the 

basic sub-model as similar as possible to those produced by the advanced sub-model, we conducted a meta-modelling 

exercise in which the results of simulations with the advanced sub-model were used to provide estimates for the eight 

parameters of the basic sub-model. The meta-modelling exercise was conducted separately for each of twelve prioritized 

species on the basis of their importance in the study area. These were Pinus halepensis Mill. (Aleppo pine), Pinus nigra spp. 

salzmannii J. F. Arnold (black pine), Pinus sylvestris L. (Scots pine), Pinus pinea L. (stone pine), Pinus uncinata Ramond ex

A. DC. (mountain pine), Fagus sylvatica L. (European beech), Abies alba (white fir), Quercus ilex L. (holm oak), Quercus 

faginea Lam. (Portuguese oak), Quercus pubescens Mill. (downy oak) and Quercus suber (cork oak), which altogether 

represent 87% of the total number of stems (Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, 2017). 

Transpiration and photosynthesis parameters of each species were carefully revised by experts prior to conducting the meta-

modelling exercise. Furthermore, for six out of the twelve taxa an evaluation of the performance of the advanced sub-model 

had been conducted previously using observed data from experimental forest plots, which revealed and good predictive 

ability in terms of soil moisture dynamics and transpiration rates, but a more limited ability to accurately predict plant water 

status (De Cáceres et al. 2021). Details of the meta-modelling procedure and results are provided in Appendix C.2. 

4.4 Calibration of sapwood respiration, growth and senescence parameters

We conducted calibration exercises to obtain suitable estimates for three key parameters regulating sapwood respiration, 

growth and senescence. Given the large amount of sapwood biomass in trees, the daily maintenance respiration rate of 

sapwood parenchyma (RERsapwood) is an important parameter determining C availability for growth. Maximum daily sapwood

growth rates relative to cambium perimeter (RGRcambiummax) represents optimum growth rates and, since leaf and fine root 

allocation targets depend on sapwood area, it determines whole-tree growth rates. Finally, maximum daily sapwood 

senescence rate (SRsapwood) defines the rate of sapwood-to-heartwood conversion and contributes to modulate sapwood 

biomass and its maintenance costs. Parameters regulating the maximum growth rates of leaves and fine roots were deemed 

less important, given the allocation constraints to the formation of these organs. Tree ring data has been previously used for 

the calibration of growth parameters in other models (Fyllas et al., 2017), so we adopted the same approach. The tree ring 

data set used for the calibration exercise was sampled in 75 SNFI plots, located in pure stands whose dominant species are F.

sylvatica, P. halepensis, P. nigra, P. sylvestris or Q. pubescens, and selected to encompass a range of climatic aridity (Rosas 

et al., 2019). We took annual basal area increments of each tree as the observations to be matched by model predictions of 

sapwood growth. Simulations of the calibration exercise were performed using the basic sub-model only, for computational 
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reasons, but we compared the performance of the two sub-models with calibrated parameter values. Further details of the 

calibration procedure and results, are given in Appendix C.3. We did not find any significant independent effect of species 

identity on RGRcambiummax and RERsapwood, and only moderately for SRsapwood . In contrast, plots where the trees grew faster 

resulted in larger calibrated values of RGRcambiummax (Table C4). This result allowed us to devise a strategy to obtain estimates 

of this parameter for all tree species. Assuming that RGRcambiummax should scale proportionally to observed growth rates, we 

fitted a regression through the origin for the observed relationship between observed mean annual relative growth rates and 

RGRcambiummax (Fig. 2). We then estimated mean annual growth rates relative to cambium perimeter for all tree species using 

re-measured tree records in SNFI permanent plots by solving for the annual rate leading to the observed diameter increment 

between consecutive surveys. These growth rate estimates were obtained using data from both the SNFI23 and SNFI34 

periods in the Catalan territory (but estimates for different SNFI periods and the entire Spain are provided in Table B4). We 

finally obtained estimates of RGRcambiummax for all tree taxa by using the calculated mean annual relative growth rates as input 

in the fitted linear models. We took the averages of calibrated SRsapwood and RERsapwood values as defaults for all taxa.

Fig. 2. Linear relationships, fitted using regression through the origin, between observed mean annual relative growth rates 
in calibration plots and calibrated RGRcambiummax. Symbols represent individual forest plots. The adjusted R2 value of 
regressions through the origin cannot be compared to those of ordinary linear regression models.

4.5 Inbuilt parameter estimation procedures
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Altogether, the previous estimation procedures provided suitable values for 89 parameters, still leaving 28 (24%) model 

parameters to be populated (Table 2). Moreover, only for 10 (8.5%) parameters estimates were obtained for all 217 taxa. 

Therefore, large amounts of missing values remained after previous estimation procedures (Tables B1 and B3). Different 

imputation strategies were adopted to address this issue (Table 2.b; Table B1). Trait-trait relationships are frequently 

employed for parameter estimation, most often following functional syndromes (Maréchaux and Chave, 2017; Sakschewski 

et al., 2015). Following this strategy, we defined trait-to-trait mappings between parameters with low missing rates and 

parameters with higher missing rates (see Fig. A1). Quantitative trait-trait relationships were adopted for 17 (15%) 

parameters, based on functional spectra, mainly to estimate parameters of hydraulic conductivity curves, pressure-volume 

curves, photosynthetic parameters and tissue respiration rates. Relationships with qualitative traits were adopted to populate 

31 (26.5%) quantitative parameters, with average values for combinations of leaf shape, life size and/or life form being 

frequently used as a source for the estimation of other parameters. For 15 (13%) parameters we estimated family-level 

averages, but we combined this strategy with other imputation strategies whenever family-level values were missing. Finally,

we provided single value defaults for 44 (38%) parameters where we felt that taxonomic resolution was not critical. Among 

them, 13 parameters had not been estimated by any procedure and, therefore, can be considered as constants in the current 

model version. Instead of filling imputed values in the taxon parameter table, we implemented inbuilt parameter imputation 

procedures within MEDFATE initialization routines. 

5. Evaluation and application at the regional level

5.1 Evaluation with SNFI data

While complex models can be applied to a range of purposes, model suitability should be assessed with respect to intended 

application (Planque et al., 2022). Our aim to use MEDFATE to project forest dynamics at the regional level required 

evaluating the capacity of the model to reproduce observed changes in forest dynamics. We therefore compared simulated 

forest dynamics between surveys of the SNFI in Catalonia against observations from repeated SNFI plots. Specifically, we 

selected 1,779 permanent plots (i.e. common to all three surveys) without signs of management and avoiding large decreases

(i.e. > 10%) in stand basal area, which could indicate the effect of disturbances. Three sets of simulations were performed: (i)

between SNFI2 and SNFI3 (~ 10 years); (ii) between SNFI3 and SNFI4 (~15 years); and (iii) between SNFI2 and SNFI4 

( ~25 years). Since the model simulates ingrowth at DBH = 7.5 cm, smaller trees were excluded from the initial forest state. 

Both the basic and advanced sub-models were tested, taking 5h and 120h of computation on 20 parallel threads, respectively,

for the longest period. Evaluation focused on predictions of: (a) changes in stand basal area due to growth of surviving trees; 

(b) stand basal area losses due to tree mortality; (c) stand basal area increases due to ingrowth into the first diameter class 

(ingrowth into large size classes can occur in the observed data due to the variable radius sampling, but these were not 

included); and (d) overall changes in stand basal area. With the aim to compare the performance of MEDFATE with that of 

an empirical alternative, we used an Integral Projection Model (IPM) calibrated using SNFI data for the whole of Spain and 
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evaluated its predictive performance over the same target region. Unlike matrix-based models, the IPM methodology does 

not classify the population of trees into discrete stage classes. Rather, each tree population is described by a continuous 

distribution as a function of a continuous variable like size (Easterling et al., 2000). A brief description of the IPM 

implemented in this work is given in Appendix C.4. For further details, see García-Callejas et al. (2017).

Fig. 3: Model evaluation results with respect to annual rates of basal area (BA) changes (m2·ha-1·yr-1) predicted for different 
processes (growth, mortality, ingrowth) and taking into account all of them (overall). Results are shown for the two sub-
models and for simulations spanning different periods between forest inventory surveys (SNFI2-3, SNFI3-4 and SNFI2-4). 
Note that calibration of growth, mortality and recruitment parameters was performed using data for the SNFI2-3 and SNFI3-
4 periods. Fig. A5 shows model evaluation results for the SNFI2-3 and SNFI3-4 periods with parameters calibrated using 
data from a different period.

Overall annual changes in stand basal area for the SNFI2-4 period (~ 25 years) had a mean bias of -0.03 m2·ha-1·yr-1 (-7.8%) 

for the basic sub-model, and -0.02 m2·ha-1·yr-1 (-4.4%) for the advanced sub-model (Fig. 3), whereas the empirical IPM over 
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the same region exhibited a larger mean bias, +0.18 m2·ha-1·yr-1 (+46%), likely because it was calibrated for the whole Spain 

(Table E1). RMSE was 0.28 m2·ha-1·yr-1 (74%) for the basic sub-model and 0.31 m2·ha-1·yr-1 (82%) for the advanced sub-

model, whereas RMSE for IPM was 0.30 m2·ha-1·yr-1 (80%), indicating a comparable prediction capacity of MEDFATE and 

IPM at the plot level. When inspecting the error distribution of overall basal area change predictions we observed a small 

tendency to under-predict basal area increases in the coldest areas of the Pyrenees (Figs. A2 and A3). Overall, MEDFATE 

performed better for the SNFI2-3 and SNFI2-4 periods, than for the SNFI3-4 period (Figs. 3 and A5 ). Predicted stand

basal area increments due to growth had slightly larger error rates when using the advanced sub-model than when using the 

basic sub-model but, conversely, the advanced sub-model yielded slightly more accurate predictions of mortality than the 

basic sub-model for SNFI3-4 and SNFI2-4 periods (Fig. 3; Table E1). Simulations using the two sub-models performed 

similarly with respect to ingrowth.

5.2 Application

To illustrate the potential of the fully-parameterized model to project future forest functioning and dynamics at the regional 

level, we took all forest plots surveyed in Catalonia during SNFI3 (yr. ~ 2000) and projected them for the 21st century. We 

took interpolated historical records for the 2001-2020 period and climate projections for the 2021-2100 period, 

corresponding to the 5th phase of the Coupled Model Intercomparison Project (CMIP5) under Representative Concentration 

Pathways (RCPs) 4.5 and 8.5. We obtained daily weather projections from the EURO-CORDEX project (Kotlarski et al., 

2014), corresponding to a single global/regional climate model couple (i.e. MPI-ESM/RCA4), which has been deemed 

appropriate to describe future climate change in Catalonia (Altava-Ortiz and Barrera-Escoda, 2020). Since the spatial 

resolution of climate model predictions was 0.1º (~ 9km), we used empirical quantile mapping to bias-correct and downscale

weather to the forest plot scale, taking interpolated historical records (1976-2005 period) as reference data (De Cáceres et al.,

2018). Annual [CO2] series under RCP 4.5 and RCP 8.5 scenarios were obtained from Meinshausen et al (2011). A climate 

scenario assuming constant climate (No CC) was also evaluated for comparison with RCP scenarios, by repeating historical 

2001-2020 weather over the century and assuming [CO2] = 386 ppm. Forest management and natural disturbances such as 

wildfires or biotic attacks were not considered for simplicity. MEDFATE runs were conducted using the basic sub-model, 

which nevertheless required 72h of computation on 20 parallel threads to process each scenario (a graphical comparison of 

results obtained with the two sub-models is provided in Fig. A4 for a small subset of plots).

Climate projections for Catalonia include a steady increase in temperature (+3.5ºC under RCP8.5) and, while much more 

uncertain, a 40% reduction in annual precipitation during the second half of the 21st century under RCP 8.5 (Fig. 4a) (Altava-

Ortiz and Barrera-Escoda, 2020). Despite these trends, the most important regional-level pattern predicted by the model was 

a steady increase in wood volume stock throughout the century under all three scenarios and for all main tree species (Figs. 

4d and 5). This is largely because most forests in Catalonia are relatively young as a consequence of abandonment of 

agricultural lands and reduction of forest management during the second half of the 20th century (Vilà-Cabrera et al., 2017). 

20

470

475

480

485

490

495



Net primary production (NPP) decreased steadily along the century under a stable climate due to the increase in respiration 

costs needed to sustain an increasing forest biomass (Fig. 4b). Under two climate change scenarios, however, the progressive

increase in temperatures and air [CO2] resulted in higher NPP and slightly larger timber accumulation during the central part 

of the 21st century, compared to predictions under stable climate. The continuation of ongoing forest densification caused 

LAI to increase asymptotically under stable climate (Fig. 4c). Nevertheless, strong decreases in NPP and LAI were predicted 

between 2070 and 2100 under RCP 4.5 and RCP 8.5, as a result of years with very low rainfall which, together with the 

increased VPD, caused widespread drought-induced defoliation. Increased mortality rates were also predicted under RCP 8.5

for this last period, as shown by the lower rates of wood volume stock accumulation (Fig. 4d). We found differences among 

species in the effect of extreme drought events on tree mortality, being Pinus nigra, P. sylvestris and P. halepensis the most 

affected species among pines (Fig. 5). We also found increased drought-related mortality rates in oak species (Quercus ilex 

and Q. suber) but, since the model does not account for resprouting at present, these predictions should be interpreted as 

above-ground mortality. 
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Fig. 4. Precipitation input (a) and model predictions of annual net primary production (b), canopy leaf area index (c) and 
wood volume stock (d) for the 21st century under a scenario without climate change (No CC) and two climate change 
scenarios (RCP4.5 and RCP8.5) in Catalan forests. Results for the period 2000-2020 correspond to historic climate. 
Continuous lines correspond to median values and shaded areas indicate the 25%-75% quantile range, all of them estimated 
across all forest plots. 

Fig. 5. Regional-level timber accumulation (left panels) and annual mortality loss (right panels) predicted by MEDFATE 
under a scenario of constant climate (No CC) and two climate change scenarios (RCP4.5 and RCP8.5) for the ten main tree 
species in Catalonia, grouped into conifer (upper panels) and broad-leaf species (lower panels). Results for period 2000-2020
correspond to historic climate. 

6. Discussion

6.1 Accounting for functional diversity in regional-level forest models 

Species-specific parameter estimation in complex dynamic vegetation models is often done by focusing on one species at a 

time (e.g., Davi and Cailleret, 2017; Guillemot et al., 2017), but this becomes impractical when the number of taxonomic 

entities increases. The wealth of information in global plant trait databases and forest inventory data facilitates dealing with 

functional diversity, but our experience shows that model parametrization using these resources has its own challenges. 
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Clearly, this strategy becomes more useful the larger the fraction is of taxon-specific parameters that can be conceptually 

matched to observable traits, which needs to be accounted for during model design and formulation. In other words, the 

model should be ‘trait-enabled’. The design of MEDFATE allowed us to match up to 49 parameters with functional trait 

definitions, which correspond to 50% of parameters if we exclude allometric coefficients. Even in ‘trait-enabled’ models 

there will always be parameters that are not observable or are only seldom measured, even for the most common species, 

which requires adopting alternative parameter estimation procedures. Calibration of key, but non-observable, parameters 

using field data from particular stands can be employed in some cases. For example, we used calibration and tree ring series 

from 75 SNFI plots to address the estimation of growth/senescence parameters. However, this approach implies the 

possibility that taxon-average estimates across calibration plots led to biased predictions in the application at the regional 

level. Moreover, it is unlikely to have the appropriate calibration data (e.g., tree ring series) for all woody taxa occurring in 

the target region. We circumvented these problems by fitting a relationship between calibrated growth or senescence rates 

(RGRcambiummax and SRsapwood) and observed annual growth rates relative to cambium perimeter, which can be empirically 

estimated using resampled plot data for all species included in the forest inventory. Another alternative estimation procedure 

that we adopted to populate non-observable key parameters was meta-modeling. The strong computational requirements of 

the advanced sub-model for regional applications led us to conduct improvements in the basic sub-model (including an 

increased sensitivity to environmental variables) and a meta-modeling exercise to obtain estimates for non-observable 

transpiration and photosynthesis parameters. This estimation procedure can be applied to any taxon, but requires confidence 

in the trait parameter estimates of the model used as reference (here, the advanced sub-model). We partially built this 

confidence from previous stand-level evaluation exercises (De Cáceres et al., 2021), but the meta-modelling exercise should 

be repeated if current parameter values were deemed incorrect for some species. Developers should always avoid manual 

tuning, due to its non-reproducibility and slowness of application. We only resorted on this procedure for baseline mortality 

rates, forced by the mixture of mechanistic and empirical design in mortality modeling, although we acknowledge that 

calibration exercises should be preferred (e.g., Hartig et al., 2012). 

Another important limitation when estimating parameters for multiple taxa is, obviously, plant trait data availability. Even 

though plant trait databases continue to increase in size (Kattge et al., 2020), the finer the taxonomic resolution is, the less 

information is available. This leads to a trade-off between the taxonomic resolution of the model entities vs. the amount of 

missing parameter values in the final parameter table. When parsing trait databases we took both species- or genus-level 

averages as valid estimates to reduce the frequency of missing values in the parameter table, but this entails a potential loss 

of accuracy at the species level. Regardless of this decision, and no matter how much effort is put in parameter estimation 

procedures, parameter imputation will always be needed to fill information gaps in models representing multiple taxa. We 

recommend implementing imputation procedures in initialization routines, keeping them separated from taxon parameter 

tables because the large number of missing values in the table reveals information gaps to be addressed with additional data 

gathering. A range of parameter imputation procedures is possible for observable traits. Models often use quantitative-
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quantitative trait relationships from functional syndromes and averages across levels of qualitative traits to obtain suitable 

species parameter estimates (Thonicke et al., 2020; Sakschewski et al., 2015). Assuming taxonomic families bear a trait 

phylogenetic signal, we complemented the information provided by functional covariation with family-level averages 

(Anderegg et al., 2022), but more sophisticated phylogenetically-informed approaches would also be possible (Sanchez‐

Martinez et al., 2020). Note that models can also use known relationships between measured traits and demographic rates 

(i.e., between wood density and mortality rates) for the imputation of the latter (Fyllas et al., 2017; Thonicke et al., 2020). In 

our opinion, more research is needed around the imputation procedures to fill in missing taxon parameter values. For 

example, future research could evaluate the phylogenetic signal of multiple traits; or compare the relative performance of 

different imputation alternatives, analogously to the comparison of alternative biomass allometries (Ameztegui et al., 2022); 

or evaluate the loss of accuracy of model predictions caused by imputations. As for databases of biomass or volume 

allometric equations, the development of databases documenting bi- or multivariate trait relationships and their domain of 

application could help modelers to implement adequate imputation strategies. 

We addressed specific- and supra-specific trait variability in our study, but did not consider intra-specific variability, which 

can amount to 25% of overall phenotypic variation (Funk et al., 2017; Siefert et al., 2015). Berzaghi et al. (2020) describe 

three main strategies to account for intra-specific trait variability in vegetation models, among which the first two could be 

combined with our parameter estimation approach. First, prescribed (i.e. non-plastic) intra-specific trait variation may be 

approximated in models using within-species environmental-trait relationships or trait covariation (Rosas et al., 2019; 

Poyatos et al., 2007). To implement this strategy, intra-specific functional trait databases are needed, but they are presently 

scarce (López et al., 2021). These relationships may be implemented as inbuilt estimation rules to be applied at the time of 

initialization. Second, intra-specific variation can be considered in vegetation models by dynamically changing parameter 

values (e.g., photosynthesis) depending on transient environmental conditions (i.e. nitrogen content, average temperature or 

light availability) (Prentice et al., 2014; Crous et al., 2022). This strategy can also be combined with our parameter 

estimation approach, but requires implementing equations internally, while acknowledging trade-offs between traits and 

limits to phenotypic plasticity. Finally, trait inheritance and, therefore, eco-evolutionary dynamics can be simulated (Oddou‐

Muratorio and Davi, 2014), but we believe this approach to be computationally too demanding for regional-level 

applications.

6.2 Reproducibility and transferability of parameter estimation strategies

Given the iterative nature of model development, taxon-specific model parameters need to be re-estimated (and model 

performance re-evaluated) in many situations, such as when the design or mathematical formulation of the model is 

modified, when taxonomic entities are redefined, or when updates of existing trait data sources occur. Unlike models 

developed for single or few species, parameter re-estimation for multiple-taxa requires that procedures are reproducible and 

automated. All the procedures mentioned in the previous section, except manual tuning, are reproducible and were repeated 
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several times during the development of MEDFATE. The code to implement parameter estimation and evaluation 

procedures should be continuously integrated into workflows coupled to modeling development cycles, in the same way as 

model evaluation procedures for all the key outputs related to the most important applications. In our opinion, this aspect of 

trait-enabled model development deserves more attention and should be one of the foci of collaboration efforts between 

modelers, with the long-term aim of achieving community modeling cyber-infrastructures (Fer et al., 2021).

Another practical issue is the transferability of parameter estimates and estimation procedures, initially developed for a given

trait-enabled model and region, to new target regions and/or other models. Even though intra-taxon variability is neglected, 

taxon-average estimates derived from global plant trait databases are, in principle, as valid for our target region as they are 

for other regions, assuming that processes where they operate have been represented in a proper way. Moreover, trait-

enabled forest models could share databases of taxon-based parameter estimates thanks to parameter definitions being 

matched to the same measurable entities. Since they derive from global data, imputation procedures based on among-species 

trait covariation or family-level averages should be equally valid in different regions. Procedures for extracting taxon-

specific parameter estimates from (global) trait databases could also be used for new taxa or other models, which points to 

the possibility of sharing these procedures among developers, although the information available will differ widely 

depending on the target region. In contrast, empirical parameters obtained from forest inventory data are unlikely to be valid 

in different areas (Thonicke et al., 2020), and the procedures to derive them may need to be tailored to idiosyncratic aspects 

of national forest inventories (e.g., plot spatial arrangement and temporal replication, taxonomic treatment, field sampling 

protocols), unless harmonized forest inventory data is used. Calibration and meta-analyses procedures, or relationships 

between growth/senescence parameters and observed annual relative growth rates, could be applied to other target regions or

species but they are specific to MEDFATE.

6.3 The value of trait-enabled models for the projection of forest dynamics at the regional level

Mechanistic models are often regarded as having a larger degree of uncertainty than empirical models – due to their larger 

number of parameters (Adams et al., 2013), but mechanistic models of vegetation dynamics can achieve good performance 

when calibrated for specific stands and parameter estimates are carefully chosen for target species (de Wergifosse et al., 

2022; Forrester et al., 2021). In the case of mechanistic trait-enabled models, one can expect substantial biases with respect 

to the prediction of forest dynamics because key parameters of demographic processes are unlikely to be matched by 

available plant database traits. We achieved a relatively small bias in overall basal area changes by introducing key empirical

elements in the model design and parameter estimation – annual relative growth rates, mortality rates, bioclimatic limits and 

probabilities of ingrowth –, all of them estimated from SNFI data. The accuracy of MEDFATE was similar to that of the 

IPM over Catalonia, and to that reported in Trasobares et al. (2022) for an empirical forest projection system developed for 

the entire Spanish territory. This increases our confidence in MEDFATE for applications like projecting regional standing 

timber volume in the target region. However, this does not mean that MEDFATE should be preferred to more empirical 
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approaches, which will be much faster, robust and equally predictive, when the purpose is to predict forest dynamics. 

Highly-resolved models like MEDFATE can potentially better represent the effect of extreme climatic events on forest 

dynamics, but process and input data uncertainties can substantially increase prediction errors. The use of a global soil 

product for soil properties, as opposed to regional data sources, and the lack of information on rock content and the 

topographic context of forest inventory plots surely contributes to larger errors. The fact that estimates of rock fragment 

content obtained in the calibration exercise were different across species (Fig. C3.d and Table C4) is an indication of the 

importance of these factors for accurate growth (and mortality) predictions. We did not account for spatial variation in 

nutrient availability either, which is known to influence growth rates. At present, MEDFATE is unbalanced in the detail 

accorded to water, carbon and growth processes, with respect to mortality and recruitment processes. The approach taken to 

model baseline mortality rates and ingrowth was even simpler than many forest gap models (Bugmann and Seidl, 2022), 

which may explain the relatively poor results regarding those processes and points to future development efforts. For 

example, mortality predictions could be improved by fitting more complex empirical models that account for tree size or 

recent growth (Vanoni et al., 2019). However, these equations may be difficult to parameterize in a model that also includes 

explicit mortality mechanisms based on water and carbon levels (i.e. desiccation and carbon starvation). Mechanistic 

modelling of drought-induced mortality is an active field of research  (Venturas et al., 2020; Liu et al., 2021; Trugman et al., 

2021; McDowell et al., 2022), but important developments are still required to address multiple interactions between drivers.

In our opinion, hybrid mechanistic and empirical approaches are thus needed to produce unbiased predictions of tree 

mortality currently. Recruitment prediction could benefit from considering additional refinements, such as accounting for 

resprouting capacity or mechanistically dealing with seedling and sapling mortality (König et al., 2022), at the potential cost 

of increasing the number of non-observable model parameters. 

It is also interesting to discuss the differences between MEDFATE simulations conducted using the basic vs. advanced sub-

models. Mechanistic models are expected to perform well under novel environmental conditions, due to their ability to 

separate the causal effects of different climatic variables. MEDFATE with the advanced sub-model is clearly a better choice 

than with the basic sub-model in this respect, but the advanced sub-model is computationally too demanding for large-scale 

applications. Like other models before (e.g., Landsberg and Sands, 2011), the modifications made to the basic, yet faster, 

sub-model show that it is possible to design and parameterize simpler approaches while fully retaining the ecophysiological 

responsiveness to key climate change variables such as [CO2] or VPD. However, further work would be necessary to 

compare the performance of the two sub-models in terms of key stand-level E, GPP or NPP fluxes under different 

conditions. In terms of forest dynamics, the advanced sub-model produced somewhat less accurate growth estimates than the

basic sub-model. We attribute this different performance to the fact that calibration of growth parameters was conducted 

using the basic sub-model, and to differences in the predictions of soil moisture and plant water status yielded by the two 

sub-models. 
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Given this its lower computational requirements and better evaluation results, we recommend using MEDFATE with the 

basic sub-model for regional-scale joint projections of Mediterranean forest function and dynamics under a coherent set of 

mechanistic assumptions, although calibration and evaluation exercises may need to be repeated for novel target regions. In 

our application to Catalonia we illustrated the projection of structural variables of interest for forest management planning 

(such as basal area, density or volume stock per tree species) as well as variables directly related to ecosystem function (such

as LAI, E, GPP or NPP). Future work should focus on the evaluation of MEDFATE’s performance with respect to this 

second set of variables. 

7. Conclusion

Here we presented the design, parameter estimation and evaluation of the MEDFATE model, coupled with forest inventory 

data, for its application at the regional level in Catalonia. Our model is similar to many forest gap models in terms of its 

representation of population structure, but it has a higher degree of detail in the representation of water and carbon processes,

much like other hybrid models (Fisher et al., 2018; Liu et al., 2021). Models that are similar to MEDFATE have been 

previously developed to simulate regional forest dynamics in the Mediterranean Basin (Fyllas et al., 2007; Mouillot et al., 

2001; Fyllas and Troumbis, 2009). However, the detail on plant hydraulics of the advanced sub-model is similar to more 

specialized models focusing on drought-induced plant desiccation (Cochard et al., 2021; Ruffault et al., 2022). MEDFATE 

has some unique features (i.e., the link between xylem cavitation and leaf defoliation, together with the need to build new 

sapwood tissue to recover water transport capacity) that make it suitable to study drought legacy effects. Overall, we think 

that MEDFATE is an attractive tool to study forest function and dynamics under projections of increased water limitations, 

such as those of Mediterranean climate. Besides the value of the model, we illustrated the process, challenges and potential 

strategies to determine parameter estimates for a large number of taxa by extensively using plant trait databases, which can 

be useful for the parametrization of other trait-enabled models.
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Appendix A: Supplementary Figures

Fig. A1. Percentage of missing values for model parameters across species and parameter relationship (arrow) from which 
imputation is performed (trait-trait quantitative relationship, averages for combinations of categorical traits or imputation 
from family means). Parameters that are given constant values when missing are not shown. The definition of parameters is 
given in Table B1.
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Fig. A2. Comparison of predicted vs observed overall basal area changes and the distribution of model errors depending on 
initial basal area, moisture index and mean annual temperature. Gray dots and black lines correspond to observations; orange
dots and red lines to predictions with the basic sub-model; and light blue dots and blue lines to predictions with the advanced
sub-model.
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Fig. A3. Spatial distribution of prediction errors in overall basal area changes for simulations using the basic sub-model (left)
or the advanced sub-model (right). 
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Fig. A4. Comparison of predictions obtained by MEDFATE using either the basic or advanced sub-models, for the 21st 
century under a scenario of constant climate and a subset of 120 forest inventory plots. Continuous lines correspond to 
median values and shaded areas indicate the 25%-75% quantile range, estimated across all forest plots. 
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Fig. A5: Model evaluation results with respect to annual rates of basal area (BA) changes (m2·ha-1·yr-1) predicted for 
different processes (growth, mortality, ingrowth) and taking into account all of them (overall). Results are shown for 
simulations with the basic sub-model and spanning either the SNFI2-3 or SNFI3-4 periods. Bar colors indicate the period 
used for calibration of growth, mortality and recruitment parameters: ‘2-3-4’ corresponds to calibration using data for the 
SNFI2-3 and SNFI3-4 periods; ‘crossed’ corresponds to SNFI2-3 simulations with parameters calibrated using data from 
SNFI3-4 periods, and SNFI3-4 simulations with parameters calibrated using data from SFNI2-3.
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Appendix B: Supplementary Tables

Supplementary file: ‘Appendix_B_SupplementaryTables.xlsx’

Table B1: Parameter definition, units, estimation procedures, missing value rates and imputation procedures.

Table B2: Bibliographic references of trait data sources

Table B3: Taxon parameter value table for MEDFATE ver. 2.9.3.

Table B4: Average relative annual growth rates (cm2·cm-1·yr-1) for tree taxa, obtained using permanent forest inventory 

plots. Averages are calculated for different SNFI periods (SNFI2-3, SNFI3-4 and SNFI2-4) and either Catalonia or the entire

Spanish territory. 

Table B5: Annual mortality probabilities for tree taxa, obtained using permanent forest inventory plots. Mortality 

probabilities are calculated for different SNFI periods (SNFI2-3, SNFI3-4 and SNFI2-4) and either Catalonia or the entire 

Spanish territory. 

Table B6: Annual recruitment probabilities for tree taxa, obtained using permanent forest inventory plots. Recruitment 

probabilities are calculated by fitting a non-linear model, as explained in the text, for different SNFI periods (SNFI2-3, 

SNFI3-4 and SNFI2-4) and either Catalonia or the entire Spanish territory. 
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Appendix C: Details of the design of the basic sub-model and parameter estimation procedures

All mathematical symbols used here are described in Table 1 of the main text. Parameter definitions and units are given in 

Table B1.

C.1 Transpiration and photosynthesis in the basic sub-model

We describe here the modifications of transpiration and photosynthesis processes included in recent versions of the sub-

model, with respect to the description given in De Cáceres et al. (2015). Radiation extinction, transpiration and 

photosynthesis processes are represented at a daily time-scale in the basic sub-model. Extinction of short-wave radiation 

(SWR) and photosynthetically-active radiation (PAR) through the canopy follows Beer-Lambert’s equation with parameters 

currently depending on leaf shape. Maximum transpiration – i.e. before accounting for soil water deficit – for the whole 

stand (Emax, stand) is estimated using daily Penman’s potential evapotranspiration (PET) and an empirical relationship 

developed by Granier et al. (1999):

Emax, stand

PET
=0.036+0.134 · LAI −0.006 · LAI 2 (C.1)

where LAI is the leaf area index of the stand. While Granier et al. (1999) estimated the coefficients of the eq. (C.1) by 

pooling empirical data from different forest stands, species differ in the relationship between leaf area and maximum 

transpiration. Hence, we modified the estimation of Emax, stand implemented in the original sub-model (De Cáceres et al., 2015)

as follows. If one neglects the intercept (so that transpiration is zero for a bare stand) and assumes that all leaf area of a stand

corresponds to a single cohort i,  eq. (C.1) becomes: 

Emax, stand ( i)

PET
=aTmax · LAI+bTmax · LAI2 (C.2)

where aTmax and bTmax are species-specific parameters for cohort i. Assuming that reasonable species-specific estimates are 

available for aTmax and bTmax, eq. (C.2) can be used to estimate Emax,stand (i), the maximum stand transpiration if dominated by the

species of cohort i. Once Emax,stand (i) has been estimated for each species in the stand, the fraction of SWR absorbed by a given 

cohort i is used to estimate its maximum transpiration (Emax,i) from Emax,stand (i) (Korol et al., 1995). Actual cohort transpiration 

(Ei) is a function of Emax,i, the vertical distribution of its fine roots and Ki,s, a Weibull function representing the relative 

reduction of transpiration in response to edaphic drought in each soil layer s. In turn, Ki,s depends on the soil water potential 

(Ψs) and two taxon-specific parameters, Ψextract and cextract, representing the soil water potential corresponding to 50% of 

maximum transpiration and the coefficient regulating the steepness of transpiration decrease, respectively  (De Cáceres et al.,

2015):

K i , s=
Ei

Emax ,stand ( i)
=exp( ln (0.5 ) ·( Ψ s

Ψ extract )
cextract) (C.3)
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Ki,s values corresponding to different soil layers are  averaged using the distribution of fine roots as weights. In contrast with 

the original formulation of the basic sub-model (De Cáceres et al., 2015), however, in the current MEDFATE version actual 

transpiration does not decrease to zero under severe drought conditions, since water losses can still occur via leaf cuticular 

conductance and incomplete stomatal closure (Duursma et al., 2018). 

The basic sub-model assumes a linear relationship between plant transpiration and gross photosynthesis. However, it 

accounts for the dependency of water use efficiency on light availability, air CO2 concentration ([CO2]) and vapor pressure 

deficit (VPD):

Ag ,i=E i · WUEmax · f 1 ( FPARi ) · f 2 (CO2 ) · f 3 (VPD ), with

f 1 ( FPAR i )=FPARi
WUE PAR , f 2 (CO2 )=1 − e− WUECO2 · [CO2] , f 3 (VPD )=VPDWUEVPD. (C.4)

where FPARi is the fraction of PAR at the mid-crown level of cohort i; and WUEPAR, WUECO2 and WUEVPD are empirical 

parameters modulating WUE depending on environmental conditions, i.e. FPAR, [CO2] and VPD, respectively. Given the 

formulation of eq. (C.4), WUEmax is interpreted as the water use efficiency of the species at VPD = 1kPa and without air 

[CO2] or light limitations to photosynthesis.

C.2  Details of the estimation of transpiration and photosynthesis parameters of the basic sub-model

Eight key parameters regulating transpiration (aTmax and bTmax from eq. (C.2); Ψextract and cextract from eq. (C.3)) and 

photosynthesis (WUEmax, WUEPAR, WUECO2 and WUEVPD; eq. (C.4)) in the basic sub-model could not be estimated from plant 

trait databases. Assuming that predictions of the advanced sub-model are more accurate than those of the basic sub-model, 

we adopted a meta-modelling approach to make transpiration (E), gross photosynthesis (Ag) and soil moisture predictions 

obtained by the basic sub-model as similar as possible to those produced by the advanced sub-model (both for present-day 

and projected climate). Increasing the similarity of the two sub-models was important because growth and senescence 

parameters were, later in the parametrization process, calibrated using simulations of the basic sub-model only (see section 

C.3); and therefore potential mismatches in E and Ag or plant water status could translate in a mismatch of growth (and 

hence, forest dynamics) predictions.

For each of the twelve species most important in the study area, the meta-modelling exercise was as follows. We first revised

the parameters of the advanced sub-model that regulated plant transpiration and photosynthesis (Table C1). Note that an 

evaluation of the performance of the advanced sub-model had been conducted previously (De Cáceres et al. 2021), using 

data from experimental forest plots which altogether encompassed six out of the twelve species. 
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Abies alba 0.004 0.23 6.00 1.66 -2.54 1.30 6.71 -3.93 1.76 -2.80 58.09 103.28

Fagus sylvatica 0.004 0.34 8.00 1.87 -1.74 0.90 7.31 -3.31 1.87 -1.05 94.50 159.90

Pinus halepensis* 0.003 0.29 4.00 11.14 -2.38 0.15 12.71 -5.29 11.14 -3.07 72.20 124.17

Pinus nigra* 0.003 0.24 5.00 2.24 -2.25 0.41 3.14 -3.37 2.24 -2.16 68.50 118.77

Pinus pinea 0.003 0.24 4.00 11.14 -2.38 0.25 7.11 -4.43 11.14 -3.07 72.42 124.50

Pinus sylvestris* 0.003 0.24 5.00 2.45 -2.05 0.45 10.24 -3.20 2.45 -2.08 83.00 143.00

Pinus uncinata 0.003 0.24 5.00 2.45 -2.05 0.69 17.26 -4.27 2.45 -2.08 73.41 125.94

Quercus pubescens* 0.004 0.28 6.00 2.18 -2.32 0.70 10.27 -4.98 2.18 -1.37 57.34 102.15

Quercus ilex* 0.004 0.20 4.00 1.34 -2.58 0.40 3.56 -7.72 1.34 -2.21 68.52 118.79

Quercus faginea* 0.006 0.28 6.00 2.18 -2.32 0.70 3.54 -4.13 2.18 -1.37 71.22 122.74

Quercus suber 0.006 0.29 4.00 1.34 -2.58 0.40 4.97 -5.60 1.34 -2.21 70.28 121.37

Table C1: Revised estimates of the parameters regulating photosynthesis and transpiration in the advanced sub-model, for 
the set of twelve prioritized species. Parameter definitions and units are provided in Table B1. Species with an asterisk 
indicate those for which the performance of the advanced sub-model had been evaluated previously. 

After revising the parameters of the advanced sub-model, we randomly selected up to 60 SNFI3 plots with a minimum stand 

basal area of 3 m2·ha-1 and where the target species was dominant (> 80% in basal area). Tree records corresponding to 

species different from the target species were discarded. Using daily weather corresponding to a single year (yr. 2001), we 

then ran the two sub-models with unlimited water supply (i.e., maintaining soils always at field capacity), so that 

transpiration and photosynthesis estimates were not affected by soil water deficit. The basic sub-model was run with default 

values for aTmax and bTmax, i.e., using coefficients of eq. (C.1). We found that the cohort’s annual Ebasic/Eadvanced ratio was rather 

unaffected by FPAR, on average, but we found substantial differences across species in this ratio (Fig. C1.a). We used the 

Ebasic/Eadvanced ratio, averaged across cohorts and plots, to scale coefficients of eq. (C.1), obtaining estimates for aTmax and bTmax.

To obtain estimates of Ψextract and cextract, the parameters regulating the decrease of transpiration with soil drought, we repeated

the simulations with the advanced model, this time allowing soil water extraction and removing any water supply (i.e. 

without precipitation) so that transpiration decreased following the progression of edaphic drought. Daily Eadvanced values 

were divided by the corresponding Eadvanced values under unlimited water supply, and we used non-linear least-squares 

regression to fit a Weibull model (eq. (C.3)) to the resulting ratio as a function of layer-averaged soil water potential (Fig. 

C1.b).

To estimate parameter WUEPAR, we began by calculating annual WUEg (i.e. annual Ag over annual E) for each cohort under 

the advanced sub-model (and unlimited water supply). We then calculated the ratio between WUEg of each cohort and the 
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plot’s maximum WUEg value. For each species, we fitted a model of this ratio as a power function of FPAR, and took the 

exponent as an estimate of WUEPAR (Fig. C1.c). 

Fig. C1. (a) Cohort Ebasic/Eadvanced values against their available FPAR; (b) Ratio of daily Eadvanced values between simulations 
with no water supply and simulations with unlimited water supply, as a function of soil water potential in the former case; (c)
Annual WUEg values (relative to the maximum WUEg value obtained for each plot) against available FPAR; (d) Daily WUEg 
values (relative to WUEg at VPD = 1kPa) against VPD; (e) Plot-level ratios between gross photosynthesis under increasing 
[CO2] values and gross photosynthesis under [CO2] = 386 ppm. Lines of panel (a) correspond to smoothed splines, whereas 
those of panels (b-e) indicate the non-linear models fitted for each species.
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We then analyzed the relationship between daily WUEg values and VPD under the advanced sub-model (and unlimited water 

supply). Specifically, a power relationship was fitted between VPD and WUEg relative to its value at VPD = 1kPa, except for

0 < VPD < 0.25 kPa range, where a linear relationship was assumed to avoid unrealistic values (Fig. C1.d). 

To estimate WUECO2 we conducted additional sets of simulations with the advanced model under increasing values of [CO2], 

from 350 to 900 ppm (and unlimited water supply), and fitted negative exponential models to the ratio between Ag at each 

given [CO2] and of Ag under [CO2] = 386 ppm (Fig. C1.e). Finally, WUEmax estimates were obtained by dividing annual Ag 

estimates over those obtained from the sum of daily E values multiplied by f1(FPAR), f2(VPD) and f3([CO2]) terms of eq. 

(C.4). 

Species aTmax bTmax
Ψextract cextract WUEmax WUEPAR WUECO2 WUEVPD

Abies alba 0.080 -0.0036 -1.722 1.232 7.22 0.194 0.0044 -0.433

Fagus sylvatica 0.130 -0.0058 -0.628 1.382 7.92 0.322 0.0024 -0.443

Pinus halepensis 0.138 -0.0062 -0.851 1.471 8.52 0.684 0.0025 -0.303

Pinus nigra 0.134 -0.0060 -1.095 1.238 7.46 0.273 0.0028 -0.504

Pinus pinea 0.165 -0.0074 -0.909 1.617 7.245 0.581 0.0028 -0.344

Pinus sylvestris 0.129 -0.0058 -1.041 1.256 7.60 0.326 0.0030 -0.460

Pinus uncinata 0.139 -0.0062 -1.004 1.163 5.55 0.253 0.0038 -0.326

Quercus faginea 0.125 -0.0056 -0.653 1.336 7.87 0.332 0.0021 -0.556

Quercus ilex 0.091 -0.0041 -1.660 1.065 8.45 0.252 0.0027 -0.579

Quercus pubescens 0.116 -0.0052 -0.677 1.420 8.31 0.349 0.0018 -0.519

Quercus suber 0.105 -0.0047 -1.664 1.123 9.936 0.400 0.0019 -0.634

Table C2: Parameter estimates obtained from the meta-modeling exercise, corresponding to equations (C.2), (C.3) and 
(C.4), for the twelve prioritized species. 

Final parameter estimates resulting from the meta-modeling exercise are shown in Table C2. To evaluate the improvement in

sub-model similarity achieved by the meta-modelling exercise, we repeated simulations of both the basic (default and new 

parameter values) and advanced sub-models, this time under real water supply and accounting for soil water dynamics. 

When replacing default parameter values with those obtained from the meta-modeling exercise, annual E and Ag estimates 

produced by the basic sub-model resembled more closely those produced by the advanced sub-model, although 

overestimation remained in some cases (Figs. C2.a-d). Soil moisture dynamics predicted by the basic sub-model under the 

new parameter values also matched more closely the dynamics predicted by the advanced sub-model (Fig. C2.e-f). 
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Fig. C2. Comparison of annual E (l · m2 · yr-1; panels a-b), annual Ag (g C · m2 · yr-1; panels c-d) and daily soil relative water 

content (panels e-f) obtained by the basic sub-model, using the default parameter values (panels a, c, e) or the new parameter

values (panels b, d, f), against E predictions of the advanced sub-model. Linear relationships (dashed black lines) and the 

corresponding R-square values are indicated. 
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C.3 Details of the calibration of growth and senescence parameters

The tree ring data set used for the calibration exercise was sampled in 75 SNFI plots, located in pure stands whose dominant 

species are F. sylvatica, P. halepensis, P. nigra, P. sylvestris or Q. pubescens, and selected to encompass a range of climatic 

aridity (Rosas et al., 2019). Tree ring series were available for 5 trees per plot, with samples taken in December 2015.  More 

information on tree-ring methods can be found in Serra-Maluquer et al. (2018) and González de Andrés et al (2021). We 

took annual basal area increments of each tree as the observations to be matched by model predictions of sapwood growth. 

Simulations were performed using the basic sub-model (with parameter values issued from the meta-modelling exercise) and

daily weather data for each target plot for the 2001 - 2015 period. We calibrated the three target parameters for the dominant 

species and rock fragment content in each plot using a genetic algorithm implemented in the R package ‘GA’ (Scrucca, 

2013). The objective function to be minimized was the average, across cohorts with tree ring data, of the relative mean 

absolute error resulting from comparing observed and predicted annual BAI series. Population size for the genetic algorithm 

was set to 40 individuals, a maximum of 25 iterations were allowed, and the procedure stopped if the best parameter 

combination did not change during 5 consecutive iterations. The distribution of final values of the objective function is 

shown in Fig. C3. We did not find significant correlations between pairs of calibrated parameters (Table C3). Estimates for 

RERsapwood and RGRcambiummax were not statistically different across species, whereas SRsapwood was slightly significant (Table 

C4; Fig. C4). In contrast, we found the calibrated rock fraction to strongly differ across tree species, indicating differences in

soil characteristics of the habitat where the species grow. To obtain growth parameter estimates for all tree species in the 

region, we examined the relationship between calibrated values and the mean annual growth rates relative to tree perimeter, a

variable that is easy to derive using data from permanent plots. The relationship turned out to be strongly significant for 

RGRcambiummax (Table C4; Fig. 2).

Fig. C3. Distribution of the minimum value of relative mean absolute error (MAE) obtained by calibration against tree ring 
data for the 15 plots of each species.
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Fig. C4. Distribution of the calibrated across the 15 plots of each species.

Parameter RERsapwood RGRcambium,max SRsapwood Fraction of rocks

RERsapwood +0.119 +0.103 +0.124

RGRcambium,max 0.307 +0.066 -0.046

SRsapwood 0.378 0.571 -0.049

Fraction of rocks 0.290 0.693 0.673

Table C3: Linear correlation between calibrated parameters across the 75 forest plots. Upper right triangle contains 
Pearson’s r statistics and the lower left triangle contains p-values (in italics).

Mean annual RGR Species Interaction

Parameter df F P-value df F P-value df F P-value

RERsapwood 1 0.024 0.879 4 1.348 0.261 4 0.328 0.858

RGRcambium,max 1 94.81 2.54e-14 4 1.192 0.323 4 0.726 0.577

SRsapwood 1 0.141 0.709 4 2.558 0.045 4 0.807 0.526

Fraction of rocks 1 2.989 0.088 4 5.398 0.001 4 0.914 0.461

Table C4: Results of an Analysis of Covariance (ANCOVA) for the four calibrated parameters, using the mean annual 
relative growth rate, species identity and their interaction as tested effects. Significant relationships are highlighted in bold.
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Since the calibration exercise had been conducted using the basic sub-model, it is expected that growth 

simulations with the advanced sub-model have larger error rates and, potentially, larger bias. To check this, we 

repeated growth simulations using the advanced sub-model, with the calibrated parameters specific to each plot. 

Fig. C5 shows a comparison of the performance of the two sub-models. Both sub-models slightly under-predicted

observed growth, on average, although mean bias had larger variation across forest plots when using the 

advanced model. Whereas MAE of the basic model was often below 50% of observed growth, error rates 

between 50% and 75% were often obtained with the advanced model.

Fig. C5. Distribution of mean bias and mean absolute error (MAE) of annual basal area increment predictions, obtained from
simulations with the basic and advanced sub-models and the calibrated parameters, across the 15 plots of each species. 
Panels (a-b) indicate mean bias and MAE of absolute growth, whereas panels (c-d) indicate mean bias and MAE of predicted
growth relative to observed values.
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Appendix D: Details of the Integral Projection Model (IPM)

The formulation of the IPM used in this work followed closely that of Easterling et al. (2000) with regard to adult trees, 

whereas it differed substantially for ingrowth and small trees. Below we will briefly describe the main characteristics of the 

methodology as we implemented it. For further details, see García-Callejas et al. (2017).

Models were developed for 16 main species and 5 functional types, the latter including species less abundant in the target

area. We determined, for each target species or functional type, the number of adult individual trees at a future time t+∆
from the number of adult individual trees at a previous time  t  plus tree ingrowth from saplings. In our simulations, time

interval ∆=10 years, which approximately corresponded to the mean time difference between SNFI2 and SNFI3.

In the model, the number of adult trees at any time  t+∆,  N Adult ( y , t+∆ ), was determined by two contributions: a) the

dynamics of adult trees that survived and growth from t  to t+∆,  and b) the ingrowth of saplings (i.e. DBH < 7.5cm) into

the adult tree class:

N Adult ( y , t+∆ )=∫N Adult (x , t ) ∙ S ( x , …) ∙G ( x , y ,…) ∙ dx+N Ingrowth ( y , t+∆ ) (D.5)

Contribution a) is represented by the integral term on the right-hand-side, whereas contribution b) consists of an additional

term  N Ingrowth.  In eq. (D.5),  variables  x and  y  indicate the DBH of adult trees at  t  and  t+∆,  respectively.  Functions

S ( x ,… ) and G ( x , y ,… ) correspond to tree survival and tree growth, respectively. They were calculated independently for

each target tree species or functional type with data from SNFI2 and SNFI3. Their dependence on variables other than DBH

(i.e. annual mean temperature, total annual precipitation, anomalies of temperature and precipitation, and basal area of the

stand) is expressed in eq.(D.4) with an ellipsis (...).

Tree ingrowth was not included within the IPM integral, unlike the formulation in Easterling et al. (2000), due to limitations

imposed by the SNFI sampling methodology. Instead, we assumed that N Ingrowth did not depend on DBH at time t  and took

it out of the integral. We then expressed it as:

N Ingrowth ( t +∆ )=I (… ) ∙ φ ( y ) (D.6)

Here, I  indicates the number of new adult trees. It depended on the number of saplings at t , the basal area of the stand and

the climatic variables described above, but not on previous size. In turn, term φ ( y ) consisted of a truncated (i.e. y ≥7.5 cm)

exponential distribution that determined the size distribution of the new cohort of adult trees. Finally, modeling of smaller

trees (DBH < 7.5 cm) was carried out by means of a zero-inflated Poisson linear regression with the same predictor variables

as I  above.
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Appendix E: Detailed model evaluation results

Response variable Period Sub-model Mean
observed

Mean
predicted

Bias Bias
(%)

RMSE RMSE
(%)

R2

Annual BA increment due to 
growth of live trees

SNFI2-3 basic 0.337 0.353 +0.015 +4.5 0.197 58.3 0.483

advanced 0.337 0.342 +0.004 +1.3 0.206 61.0 0.469

 SNFI3-4 basic 0.314 0.388 +0.074 +23.6 0.211 67.2 0.366

 advanced 0.314 0.366 +0.052 +16.5 0.231 73.3 0.354

 SNFI2-4 basic 0.303 0.315 +0.012 +3.9 0.178 58.8 0.452

advanced 0.303 0.301 -0.002 -0.7 0.198 65.4 0.428

Annual BA decrease due to dead
trees

SNFI2-3 basic 0.034 0.039 +0.005 +13.6 0.080 234.6 0.119

advanced 0.034 0.042 +0.008 +22.6 0.092 269.4 0.058

 SNFI3-4 basic 0.072 0.067 -0.006 -7.7 0.128 176.8 0.050

 advanced 0.072 0.056 -0.016 -22.3 0.108 149.9 0.122

 SNFI2-4 basic 0.047 0.048 +0.000 +1.0 0.078 165.6 0.140

advanced 0.047 0.041 -0.006 -13.0 0.070 148.1 0.202

Annual BA increase due to 
ingrowth

SNFI2-3 basic 0.096 0.066 -0.030 -31.3 0.168 174.7 0.004

advanced 0.096 0.075 -0.021 -22.0 0.171 178.2 0.002

 SNFI3-4 basic 0.075 0.074 -0.002 -2.1 0.143 189.8 0.001

 advanced 0.075 0.084 +0.008 +11.0 0.147 195.3 0.004

 SNFI2-4 basic 0.085 0.065 -0.020 -23.0 0.125 147.0 0.007

advanced 0.085 0.075 -0.010 -11.9 0.127 149.7 0.009

Overall annual changes in BA SNFI2-3 basic 0.397 0.378 -0.019 -4.7 0.318 80.2 0.120

advanced 0.397 0.375 -0.023 -5.7 0.333 83.8 0117

 IPM 0397 0.556 0.158 +39.9 0.352 88.5 0.154

 SNFI3-4 basic 0.337 0.403 +0.066 +19.6 0.326 96.7 0.038

 advanced 0.337 0.406 +0.069 +20.5 0.350 103.8 0.061

 IPM 0.337 0.556 +0.219 +65.2 0.388 115.1 0.078

 SNFI2-4 basic 0.378 0.349 -0.029 -7.8 0.281 74.3 0.074

advanced 0.378 0.361 -0.017 -4.4 0.309 81.7 0.084

 IPM 0.378 0.552 +0.175 +46.3 0.302 80.0 0.172

Table E1: Results of model evaluation at the regional level in terms of annual rates of basal area (BA) changes (m2·ha-1·yr-1) 
predicted for different processes and taking into account all of them. Results are shown for the two sub-models and for 
simulations spanning different periods between forest inventory surveys. We also include the evaluation results of an 
Integral Projection Model (IPM) calibrated using SNFI data, for the same simulation periods and the same set of forest plots.
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Bias % and RMSE % result from expressing mean bias and root mean squared error (RMSE) as percentage of the mean 
observed value.  

Code availability

Core model functions are coded in C++ and linked to a R user interface. MEDFATE is distributed via the R package 

‘medfate’, which is available at CRAN (https://cran.r-project.org/package=medfate) and GitHub (https://github.com/emf-

creaf/medfate). The model code to run MEDFATE (ver. 2.9.3) is available at https://doi.org/10.5281/zenodo.7  6  9  5331   (De 

Cáceres et al., 2022).

Data availability
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https://www.euro-cordex.net/index.php.en for noncommercial research and educational purposes. Spanish forest inventory 

data is available at https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-nacionales/inventario-forestal-nacional/.
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