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Abstract. The reconstruction of sea surface currents from satellite altimeter data is a key challenge in spatial oceanography,

especially with the upcoming wide-swath SWOT (Surface Ocean and Water Topography) altimeter mission. Operational sys-

tems however generally fail to retrieve mesoscale dynamics for horizontal scales below 100km and time-scale below 10 days.

Here, we address this challenge through the 4DVarnet framework, an end-to-end neural scheme backed on a variational data

assimilation formulation. We introduce a parametrization of the 4DVarNet scheme dedicated to the space-time interpolation5

of satellite altimeter data. Within an observing system simulation experiment (NATL60), we demonstrate the relevance of the

proposed approach both for nadir and nadir+swot altimeter configurations for two contrasted case-study regions in terms of

upper ocean dynamics. We report relative improvement with respect to the operational optimal interpolation between 30% and

60% in terms of reconstruction error. Interestingly, for the nadir+swot altimeter configuration, we reach resolved space-time

scales below 70km and 7days. The code is open-source to enable reproductibility and future collaborative developments. Be-10

yond its applicability to large-scale domains, we also address uncertainty quantification issues and generalization properties of

the proposed learning setting. We discuss further future research avenues and extensions to other ocean data assimilation and

space oceanography challenges.

1 Introduction

Satellite altimetry is the main data source for the observation and reconstruction of sea surface dynamics on a global scale15

(Chelton et al., 2001). Current satellite altimeters only deliver along-track nadir observations. This results in a very scarce sam-

pling of the ocean surface. Interpolation schemes are then key components of the operational processing of satellite altimetry

data. Current operational products (Taburet et al., 2019; Lellouche et al., 2018) show however a limited ability to retrieve the

full-range of mesoscale dynamics. Upcoming wide-swath altimetry SWOT mission, see e.g. (Gaultier et al., 2015), will provide

for the first time two-dimensional observation of the sea surface height. The space-time sampling of satellite altimeters will20

however still remain scarce for a long time, which has motivated a recent research literature towards the improvement of the

interpolation of satellite-derived SSH fields, see e.g. (Lopez-Radcenco et al., 2019; Lguensat et al., 2017; Beauchamp et al.,

2021; Ballarotta et al., 2019).
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Besides operational schemes based on optimal interpolation techniques (Taburet et al., 2019) and data assimilation schemes25

for ocean circulation models (Benkiran et al., 2021), we may sort the proposed SSH interpolation schemes into three main cat-

egories: extension of optimal interpolation approaches towards multi-scale schemes (Ardhuin et al., 2020), data assimilation

schemes using sea surface dynamical priors such as quasi-geostrophic (QG) dynamics (Le Guillou et al., 2020), and data-driven

interpolation methods. The latter comprises both EOF-based (Empirical Orthogonal Function) techniques (Beckers and Rixen,

2003b; Alvera-Azcárate et al., 2009), analog approaches (Lguensat et al., 2017; Tandeo et al., 2020) and more recently deep30

learning schemes (Fablet et al., 2020; Fablet and Chapron, 2022; Manucharyan et al., 2021; Beauchamp et al., 2020) which

relates to their recent application to computational imaging problems.

Here, we explore further this avenue and more specifically the 4DVarNet framework recently introduced in Fablet et al. (2021).

As it relies on a variational data assimilation formulation, it appears particularly suited to the space-time interpolation of sea35

surface variables from irregularly-sampled observations. We propose a parametrization of the 4VarNet scheme dedicated to

SSH interpolation from satellite altimeter data and report OSSE (Observing System Simulation Experiment) results to support

the relevance of the proposed scheme. Our main contributions are as follows:

The proposed 4DVarNet-SSH scheme delivers an end-to-end neural architecture using as inputs raw satellite altimeter

data and optimally-interpolated fields. We also address uncertainty quantification issues using an ensemble method.40

For OSSE on two case-study regions, respectively along the GULFSTREAM and for an open ocean area dominated by

mesoscale eddy dynamics, the 4DVarNet-SSH scheme outperforms previous work and significantly improves perfor-

mance metrics with respect to the operational processing. We also support the relevance of wide-swath SWOT altimeter

data to significantly improve the reconstruction of sea surface dynamics compared to nadir-only satellite altimeters.

We deliver an open source code for the proposed 4DVarNet-SSH scheme. It relies on a Pytorch and associated state-of-45

the-art packages. As such, it supports multi-GPU configuration and can scale up to large-scale domains.

We believe these contributions to contribute to the development of deep learning approaches for satellite altimetry, and more

broadly for operational oceanography.

This paper is organized as follows. Sect. 2 briefly reviews key methodological aspects and related work. We describe the50

proposed 4DVarNet-SSH approach in Sect. 3 and Sect. 4 presents the considered OSSE setting. We report our results in Sect.

5 and discuss further our main contributions in Sect. 6.
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2 Background and related work

From a methodological point of view, interpolation problems in geoscience are classically regarded as data assimilation issues

(Asch et al., 2016). They aim at estimating the state xt of a multi-dimensional dynamical system:55




dxt
dt = M (xt)+η t

yt = Ht
(
xt

)
+ ε t

. (1)

The first equation relates to the forecast step which describes the evolution of the system from time t to t +dt according to the

potentially non-linear model M . The second equation introduces the observations yt at time t where Ht is the corresponding

observation operator, usually known, but also potentially trainable. η(t) is the model error and ε(t) the observation error. Both

errors are generally assumed to be Gaussian, unbiased and uncorrelated over time. When discretized on a spatio-temporal grid60

where index k = 1, · · · ,T refers to time tk, their associated covariance matrices write Qk ∈ Rm×m and Rk ∈ Rpk×pk .

Broadly speaking, a vast family of data assimilation methods stems from the minimization of some energy or functional which

involves two terms, a dynamical prior and an observation term. We may distinguish two main categories of data assimilation

approaches (Evensen, 2009): variational and statistical data assimilation. Specifically, within a variational data assimilation65

framework, the state analysis xa results in a gradient-based minimization of the defined variational cost J (x) = JΦ(x,y,Ω)

(Asch et al., 2016). The latter generally combines the sum of an observation term and a regularization term involving an

operator Φ:

JΦ(x,y,Ω) =
1
2
||y−H (x)||2R−1 +

1
2
||x−Φ(x)||2Q−1

(2)70

In a weak-constrained 4DVar scheme (Carrassi et al., 2018), prior operator Φ is a time-stepping operator associated with

dynamical model M . H is the observation operator, Ω = {Ωk} is the set of subdomains of D with observations at time tk,

k = 1, · · · ,T . Q and R are, respectively, the background and the observation error covariance matrices and Φ(x) denotes here

the background estimation, i.e. the physical prior, more often noted as the deterministic forecast xb.

Regarding statistical data assimilation, many state-of-the-art methods rely on optimal formulation (OI), Interestingly, the an-75

alyzed state obtained from OI matches the minimization of the 3DVar cost function, which relates to the stationary case

of 4DVar formulation described above, see e.g. Carrassi et al. (2018). This establishes the formal link between the sta-

tistical DA frameworks and the optimal control theory used in the variational formulation. Optimal Interpolation (OI) has

been used for decades (Taburet et al., 2019) for the interpolation of along-track nadir altimeter datasets and is still used

today for the operational Marine (CMEMS) and Climate (C3S) production of the E.U. Copernicus program. It involves80

a significant smooting, solving spatial scales up to 150km. Extensions of OI schemes to multi-scale to better account for

mesoscale sea surface dynamics have recently been proposed (Ardhuin et al., 2020; Ubelmann et al., 2016). Variational DA
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schemes have also been widely explored for the assimilation of satellite altimeter data in ocean general circulation mod-

els, see e.g. Ngodock et al. (2015), Benkiran et al. (2021) or Li et al. (2021). Previous works have also considered quasi-

geostrophic (QG) dynamics as an approximate and reduced-order dynamical prior for sea surface dynamics, leading to state-85

of-the-art performance (Ubelmann et al., 2016; Le Guillou et al., 2020). Overall, BOOST-SWOT 2020 data challenge (https:

//github.com/ocean-data-challenges/2020a_SSH_mapping_NATL60) provides a representative benchmarking framework to

assess the performance of SSH mapping schemes for nadir-only and nadir+SWOT altimetry datasets. It further stresses the

limited ability of the state-of-art to retrieve fine-scale dynamics below 1◦ and 10 days.

90

Whereas model-driven and optimal interpolation approaches are the state-of-the-art solutions for operational products, data-

driven strategies have recently emerged as promising alternatives to improve the space-time resolution of interpolated products.

We may cite among others DINEOF (Beckers and Rixen, 2003a; Alvera-Azcárate et al., 2005; Alvera-Azcárate et al., 2009) and

the Analog Data Assimilation, AnDA (Lguensat et al., 2017; Tandeo et al., 2020) and the recent developments of deep learning

schemes (Barth et al., 2019; Beauchamp et al., 2020) . Beauchamp et al. (2020) have reported a benchmarking experiment,95

which supported the relevance of data-driven schemes compared with the operational OI product. Here, we further explore

deep learning approaches, and more particularly the 4DVarNet scheme (Fablet and Chapron, 2022), which bridges variational

data assimilation and deep learning. As detailed herefater, we introduce a parameterization of the 4DVarNet scheme dedicated

to SSH interpolation issues and demonstrate its relevance in the context of the benchmarking settings introduced in BOOST-

SWOT 2020 data challenge.100

3 Method

This section details the proposed learning-based framework for the interpolation of satellite altimeter data. We first briefly

review 4DVarNet framework recently introduced in Fablet et al. (2021) in Sect. 3.1 and present the proposed parameterization

for SSH mapping from nadir and SWOT altimeter data in Sect. 3.2. We describe the resulting Pytorch package and associated

implementation details in Sect. 3.4 and the proposed learning setting in Sect. 3.3.105

3.1 4DVarNet framework

4DVarNet framework introduced in Fablet et al. (2021) provides a generic approach for the learning of 4DVar models and

solvers. They have been shown to outperform classic 4DVar solver for toy case-studies such as Lorenz-63 and Lorenz-96 dy-

namics, when considering partially-observed systems. 4DVarNet framework can be regarded as an extension using trainable

gradient-based solvers of the deep learning scheme, which led to the best SSH interpolation performance in our previous work110

(Beauchamp et al., 2020).
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From a methodological point of view, 4DVarNet framework derives an end-to-end neural architecture from an underlying

variational DA formulation:

JΦ(x,y,Ω) = λ1||y−H (x)||2Ω +λ2||x−Φ(x)||2, (3)115

where λ1,2 are predefined or tunable scalar weights and we replaced the Mahalanobis norms ||.||−1
R and ||.||−1

Q by a standard

mean-square norm for sake of simplicity. In the regularization term, we substitute to the traditional dynamical prior M a

neural operator Φ which convolutional architecture. Then, we can exploit the automatic differentiation tools embedded in deep

learning framework to consider the following iterative gradient-based solver for the minimization of variational cost JΦ w.r.t.

state x:120




g(i+1) = LST M
[
α ·∇xJΦ(x(i),y,Ω),h(i),c(i)

]

x(i+1) = x(i)−T
(

g(i+1)
) , (4)

where L is a convolutional LSTM model, see e.g. (Shi et al., 2015), α a normalization scalar and T a linear mapping. This

iterative rule based on a trainable LSTM operator is similar to that classically used in meta-learning schemes (Andrychowicz

et al., 2016). Due to the ability of LSTM models to capture long-term dependencies, it results in a trainable gradient descent

with momentum.125

Overall, a 4DVarNet scheme defines a neural architecture which runs a predefined number of iterative gradient-based update

(see Eq. 4). The resulting neural architecture is referred as an end-to-end architecture in the sense as it uses as inputs raw

observation data y and an initial guess x(0) and as outputs the reconstructed state x̂. Let us denote by ΨΦ,Γ(x(0),y,Ω) the output

of the 4DVarNet architecture for given priors Φ and solver Γ, see Fig. 1 and Algorithm below, the initialization x(0) of state x

and the observations y on domain Ω.130

Then, the joint learning of operators {Φ,Γ} is stated as the minimization of a reconstruction cost, see Sect. 3.3:

argmin
Φ,Γ

L (x,x⋆) s.t. x⋆ = ΨΦ,Γ(x(0),y,Ω). (5)

In Appendix A, a parameter-free fixed point version of the solver is also given, based on the previous results of (Beauchamp

et al., 2020). In addition, Beauchamp et al. (2021) have already shown how the iterative gradient-based update is more efficient135

that the simpler fixed-point formulation.

3.2 4DVarNet-SSH parameterization

The proposed 4DVarNet-SSH framework aims at exploiting and improving the mapping performance of current operational OI

products. Given that OI products retrieve consistent large-scale dynamics, we rely on the following multiscale decomposition:

x = x+dx+ ε (6)140

where the anomaly dx is seen as the difference between the true state x and the large-scale components x. Regarding the

observations data, let us denote by y(Ω) = {yk(Ωk)} the partial and potentially noisy altimetry observations associated with

5
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Figure 1. Sketch of the gradient-based algorithm: the upper-left stack of images corresponds to an example of SSH observations temporal

sequence with missing data used as inputs. The upper-right stack of images is an example of intermediate reconstruction of the SSH gradient

at iteration i while the bottom-left stack of images identifies the updated reconstruction fields used as new inputs after each iteration of the

algorithm.

Algorithme 1 : 4DVarNet algorithm, Fablet et al. (2020)
Data :
- x ∈ RT×m = {xk}, k = 1, · · · , T
- yΩ = {yk,Ωk

}, k = 1, · · · , T : observations on domains Ωk ⊂ D
- NI : number of iterations
- η: gradient step
List of procedures :
- Train ΨΦ,Γ: end-to-end learning procedure with:
* Φ: NN-based representation of the dynamical system
* GradLSTM : residual NN-based representation of ∇xJ (x)
* Γ: iterative gradient-based update operator
x = Φ(y)
while i < NI do

x(i+1) ← x(i) − η ×GradLSTM(x(i))
NI ↗ ; η ↘ ; i← i + 1

end
Train ΨΦ,Γ

Result : x⋆ ← ΨΦ,Γ(x(0),y, Ω)
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masks Ω = {Ωk} ⊂D , where Ωk corresponds to the gappy part of the field and index k refers to time tk. We use the operational

OI product as a gap-free obervation data, denoted as y, for state component x, whereas the observation data for anomaly dx is

y−y over domain Ω.145

Numerical experiments showed that an augmented state formulation led to better interpolation performance regarding potential

stripping artifacts due to the nadir along-track sampling. This results in the application of 4DVarNet model (see Eq. 5) to

augmented states x̃ and observations ỹ defined as follows:

x̃ =
( x

dx1
dx2

)
, ỹ =

( y
dy1
dy2

)
, Ω̃ =

(
1
Ω
0

)
(7)

(8)150

This augmented state parameterization introduces two anomaly components. While only the first one is actually observed, the

reconstructed SSH state is given by x+dx2.

Following Fablet et al. (2021), the operator Φ follows a purely data-driven parameterization with a two-scale residual archi-

tectures involving bilinear units (Fablet et al., 2020). The number of residual blocks is set to 2 and the bilinear units are made

of two hidden convolutional layers, respectively with linear and ReLU activations, followed by a linear scheme combining155

the outputs of the second layer. A final convolutional layer with linear activation is involved to bring the outputs back to the

initial state dimension. In its current implementation, Φ contains about 500.000 parameters. In any case, the number of gradient

iterations for the solver Γ is fixed at 5. Complementary tests showed that a higher number of iterations leads to a large increase

of the training time (because of the implicit number of parameters which grows linearly with this number of iterations) without

a significant gain in terms of 4DVarnet reconstruction skills.160

Regarding the initial state for iterative gradient-based rule (4), we consider the OI field y for state component x, y− y for

anomaly component dx1 and a zero state for anomaly component dx2. For anomaly component dx1, gaps are initialized to 0.

3.3 Learning setting

We implement a classic supervised learning strategy using gap-free targets. The considered training loss L combines recon-165

struction losses and additional regularization terms:

L (x,x⋆) = λ1

N

∑
i=1

wi||x−x⋆||2 +λ2|
N

∑
i=1

wi|∇x−∇x⋆ ||2

+λ3

N

∑
i=1

wi||x−Φ(x⋆)||2 +λ4

N

∑
i=1

wi||x−Φ(x)||2 (9)

i.e., the L2-norm of the difference between state x and reconstruction x⋆ as well as for the their gradients, and regularisation

losses according to prior Φ to enforce that both the true states and the reconstructed ones are correctly encoded by prior Φ.170

w = {wi}, i = 1, · · · ,N denotes a weighting vector along the data assimilation window of size N (=7 here). To give more

7
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importance to the center of the DAW, we use:

w = [0 0.25 0.75 1 0.75 0.25 0]T (10)

This training loss is used in Sect. 4 for the OSSE-based BOOST-SWOT data challenge framework.

175

Let precise that state sequences xk±l = xk−l:k+l of length N = 2l +1 are used in the training for the interpolation problem. The

idea is to optimize the results for the time tk at the center of the window [tk−l ; tk+l ]. The value of N has to be chosen according

to the dynamics of the geophysical field considered. In the following experiments, we use a value of N = 7 which seems to be

enough to describe the spatio-temporal correlations of the anomaly between the Ground Truth and the DUACS OI scheme.

Regarding the training configuration, when the domain is small (see GULFSTREAM and OSMOSIS regions definition in Sect.180

4), we use a single GPU and Adam optimizer with batch size of 2 over 200 epochs. The same set of parameters holds for larger

domain (NATL and cNATL, see again Table 1) but we use the 4DVarNet-distributed version of the code over 4 GPUs. The

computational time of the training procedure lies between 4 and 5 hours for the small-domain setup and between 7 and 8 hours

for the large-domain setup.

3.4 Implementation aspects185

We provide an open source PyTorch implementation of the 4dVarNet-SSH scheme1. Pytorch is a state-of-the-art deep learning

framework. We benefit from associated packages such as lightning and hydra to provide a high-level environment and make

easier the reproduction of the experiments as well as the development of other applications. Through lightning package, our

implementation supports multi-GPU distributed learning configurations. This may be highly relevant to speed up the training

process.190

Regarding computational issues, the OSSE-based applications, see Sect. 4, involves the processing of 7x240x240 tensors (i.e.,

7-day time series over a 12◦× 12◦ domain with a 1/20◦ resolution). GPU with a significant RAM (typically above 30Go),

such as NVidia V100, A40, A100, can process such tensors through the proposed 4DVarNet architecture. The direct training

4DVarNet models over larger spatial domains is however limited by the GPU memory. To address this issue, we develop a

specific data management module, through the so-called dataloaders. Our dataloader module automatically extracts patches195

of a predefined size (typically, 7x240x240 in the reported experiments) from the considered training dataset according to

stride parameters as sketched in Fig.2. One can exploit the same approach to apply a learnt model to a large domain during

the evaluation or production stage. In both cases, we benefit from the fully-convolutional feature of the considered neural

architecture. This guarantees that, up to border effects, the 4DVarNet processing is translation-invariant.

1The code is available at https://github.com/CIA-Oceanix/4dvarnet-core
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Figure 2. Patch-based strategy: the whole spatio-temporal dataset is split into small patches. The temporal size of the patches corresponds to

the data assimilation window. The spatial size of the patches is chosen to match the maximal distance with spatial autocorrelation of the SSH

4 Observation System Simulation Experiments200

This Section details the experimental setup considered in this study for the quantitative evaluation of the proposed framework.

We first introduce the simulation dataset used in our experiments as well as the case-study regions. Sect. 4.2 reviews the

simulation satellite altimetry datasets and Sect. 4.3 describes our evaluation framework.

4.1 NATL60 dataset and case-study regions

In our study, the Nature Run (NR) corresponds to the NATL60 configuration (Molines, 2018) of the NEMO (Nucleus for205

European Modeling of the Ocean) model. It is one of the most advanced state-of-the-art basin-scale high-resolution (1/60◦)

simulation available today, whose surface field effective resolution is about 7km.

In this work, we will use five different subdomains of the North Atlantic basin (see Fig. 3):

two 10◦×10◦ GULFSTREAM and GULFSTREAM2 domains,210

two 8◦×10◦ OSMOSIS and OSMOSIS2 "open ocean" domains,

a large 20◦×40◦ cNATL domain, at the center North Atlantic basin, used to assess 4DVarNet training on large domains,

without any pieces of land inside to avoid any issues in the learning process.

The GULFSTREAM and OSMOSIS domains (blue and red solid lines in Fig. 3) are the domains used by the BOOST-SWOT

project in the framework of the NATL60 OSSE throughout the different related studies, see their 2020 ocean data challenges215

and Le Guillou et al. (2020). Because we aim at exploring the capabilities of 4DVarNet to deploy at the basin scale, we

also propose the two alternate GULFSTREAM2 and OSMOSIS2 domains (blue and red dashed lines in Fig. 3), with similar

9
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NATL
cNATL

GF
GF2

OSMOSIS

OSMOSIS2

Figure 3. Extents of the GULFSTREAM, GULFSTREAM2, OSMOSIS, OSMOSIS2 and cNATL domains used in this work, all part of the

North Atlantic (NATL) basin used in the BOOST-SWOT data challenge

dynamical properties than the two initial domains, as well as a larger domain centered in the North Atlantic basin (cNATL,

purple dashed lines). The full extent of the subdomains are summarized in Table 1:

Table 1. Description of the NATL subdomains used for assessing 4DVarNet capabilites generalization

Domain longitude latitude extent
GULFSTREAM [-65 ◦, - 55 ◦] [33 ◦, 43 ◦] 10°×10°
GULFSTREAM2 [-45 ◦, - 35 ◦] [42 ◦, 52 ◦] 10°×10°
OSMOSIS [ -19.5 ◦, -11.5 ◦] [45 ◦, 55 ◦] 8°×10°
OSMOSIS2 [-28.5 ◦, -20.5 ◦] [50 ◦, 60 ◦] 8°×10°
cNATL [-50 ◦, -10 ◦] [33 ◦, 53 ◦] 20° × 40°
NATL [-79 ◦, 7 ◦] [27 ◦, 65 ◦] 38° × 88°

The GULFSTREAM regions display physical processes 100 times more energetic at scales larger than 100km with a greater220

temporal variability than the OSMOSIS regions. As a consequence, the SSH spatial gradient at scales above 100km is lower for

OSMOSIS regions which explains why we can see more small scales related structures on such domains. In addition of their

intrinsic differences in terms of dynamical regimes, the latitudes of GF-based and OSMOSIS-based regions implies different

SWOT temporal samplings. For OSMOSIS regions, one SWOT observation is available every day, while over the low-latitude

GULFSTREAM domains, the SWOT sampling is irregular leading to sequences of several days with only pseudo-nadir obser-225

vations.

Over these regions, the Sea Surface Height (SSH) resolution of the nature run is downgraded to 1/20◦, which is enough to

capture both mesoscale dynamical regimes and the OSMOSIS-related smaller scales, while avoiding unnecessary heavy com-

putation time.230
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The NATL60 nature run will then be used as the reference Ground Truth (GT) in an observing system simulation experiments

(OSSE). The pseudo-altimetric nadir and SWOT observational datasets will be generated by a realistic sub-sampling of satellite

constellations.

235

4.2 Simulated altimetry datasets

Regarding the pseudo-nadir altimetry dataset, representative of the current pre-SWOT observational altimetric dataset, we use

the groundtracks of 4 altimetric missions (TOPEX/Poseidon, Geosat, Jason-1 and Envisat) picked up from the 2003 constel-

lation to interpolate the NATL60 simulation from October 1st, 2012 to September 29th, 2013. A Gaussian white noise with

variance σ2 = (4 · · ·9)cm2 is added to the interpolated NATL60 simulation by the SWOTsimulator tool to mimic a noise with240

a spectrum of error consistent with global estimates from the Jason-2 altimeter (Dufau et al., 2016). We aggregate the nadir

pseudo-observations on a daily basis to procude the gappy daily fields used as inputs by 4DVarNet-SSH. Fig. 4(c) vs Fig. 4(d)

and Fig. 5(c) vs Fig. 5(d) illustrate the resulting nadir altimetry data on 2012, October 25.

(a) Ground Truth (b) Ground Truth (Gradient)

(c) Pseudo-observations (4 nadirs) (d) Pseudo-observations (1 swot + 4 nadirs)

Figure 4. NATL60 Ground Truth (a) and its gradient (b) ; one day accumulated along-track 4 nadirs (c) and wide-swath SSH pseudo-

observations + 4 nadirs (d) on 2012, October 25 (domain: GULFSTREAM)
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(a) Ground Truth (b) Ground Truth (Gradient)

(c) Pseudo-observations (4 nadirs) (d) Pseudo-observations (1 swot + 4 nadirs)

Figure 5. NATL60 Ground Truth (a) and its gradient (b) ; one day accumulated along-track 4 nadirs (c) and wide-swath SSH pseudo-

observations + 4 nadirs (d) on 2012, October 25 (domain: OSMOSIS

We proceed similarly to simulate SWOT pseudo observations using the swotsimulator tool (Gaultier et al., 2015) in its swath245

mode with an along-track and across-track 2km spatial resolution (the same theoretical resolution that the upcoming SWOT

mission derived products is expected to provide). Let us note that we consider error-free SWOT pseudo-observations.

4.3 Evaluation framework

Our evaluation framework exploits and extends the one introduced in Le Guillou et al. (2020) as follows:

250

Training and evaluation setting: We train all learning-based models using the time period from 2013, February 4 to September

30 as training period. During the training procedure, we select the best model according to metrics computed over the validation

period from 2013, January 1 to February 2. Overall, we evaluate performance metrics over the test period from 2012, October

22 to December 2 for intercomparison purposes.

Evaluation metrics: We use BOOST-SWOT DC metrics to benchmark 4DVarnet-SSH scheme with respect to the state-of-the-255

art SSH interpolation schemes. They comprise: RMSE-scores, in terms of mean -µ(RMSE)- and standard deviation -σ (RMSE)-

, and minimal spatial and temporal scales resolved (λx and λ t). We refer the reader to Le Guillou et al. (2020) for the detailed

description of these metrics. Besides this quantitative metrics, we analyse the space-time distribution of the interpolation error.
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Table 2. 4DVarNet-SSH performance on the GULFSTREAM domain compared to DUACS OI (traditional covariance-based Optimal In-

terpolation), BFN (Back and Forth Nudging of A QG model), MIOST (Multi-scale OI), DYMOST (Dynamic OI accounting for non-linear

temporal propagation of the SSH fields), and Fixed-point versions with 10 and a single iteration of the 4DVarNet solver, over the period from

2012-10-22 to 2012-12-02 (42 days)

Method Description µ(RMSE) σ (RMSE) λx (degree) λ t (days)
DUACS 4 nadirs OI 0.92 0.01 1.42 12.0
BFN 4 nadirs QG-based DA (nudging) 0.92 0.02 1.23 10.6
DYMOST 4 nadirs Dynamic OI 0.91 0.01 1.36 11.79
MIOST 4 nadirs Multi-scale OI 0.93 0.01 1.35 10.19
4DVarNet 4 nadirs Fixed-Point solver, Ni=10 0.92 0.01 1.22 11.51
4DVarNet 4 nadirs NN-based 4DVar (ours) 0.94 0.01 0.83 8.01
DUACS 1 swot + 4 nadirs OI 0.92 0.01 1.22 11.15
BFN 1 swot + 4 nadirs QG-based DA (nudging) 0.93 0.02 0.8 10.09
DYMOST 1 swot + 4 nadirs Dynamic OI 0.93 0.02 1.2 10.07
MIOST 1 swot + 4 nadirs Multi-scale OI 0.94 0.01 1.18 10.14
4DVarNet 1 swot + 4 nadirs Fixed-Point solver, Ni=10 0.94 0.01 1.18 9.65
4DVarNet 1 swot + 4 nadirs NN-based 4DVar (ours) 0.95 0.01 0.62 5.29

We also explore the impact of the interpolaion onto the characterization of mesoscale eddy dynamics. Based on the work of

Mason et al. (2014), we detect anticyclonic and cyclonic eddies in the Ground Truth NATL60 outputs and interpolated SSH260

fields using py-eddy-tracker toolbox (https://py-eddy-tracker.readthedocs.io) and analyze how key features of matching eddies,

such as speed radius (km), outter radius (km), amplitude (cm) and speed max (cm/s), are retrieved.

5 Results

This section presents the considered OSSE for the evaluation of the 4DVarNet-SSH scheme. We first report the benchmarking

experiments with respect to the state-of-the-art (Sect. 5.1). Sect. 5.2 studies the impact of wide-swath SWOT data to improve265

the reconstruction of finer-scale SSH pattern. Last, we analyze generalization issues and uncertainy quantitication in Sect. 5.3

and 5.4.

5.1 Benchmarking experiments

Regarding the BOOST-SWOT OSSE data challenge on the GULFSTREAM domain, we provide both performance with 4

nadirs and 1 swot + 4nadirs in Table 2. For both settings, the improvement is quite significant with respect to all benchmarked270

schemes, i.e. not only compared to DUACS OI (Taburet et al., 2019), but also with respect to the recently proposed SSH inter-

polation schemes Le Guillou et al. (2020), DYMOST (Dynamic OI accounting for the SSH non-linear temporal propagation),

see e.g. Ballarotta et al. (2020) and MIOST (Multi-scale OI) of Ardhuin et al. (2020). While DUACS OI has minimal spatial

and temporal resolution of 1.42°(4 nadirs)/1.22°(1 swot + 4 nadirs) and 12 days (4 nadirs)/11.15 days (1 swot + 4 nadirs),

4DVarNet-SSH reaches 0.83°(4 nadirs)/0.62°(1 swot + 4 nadirs) and 8.01 days (4 nadirs)/5.29 days (1 swot + 4 nadirs). It275

amounts to a gain up to 33% in the 4 nadirs setup and 50% in the 1 swot + 4 nadirs configuration.
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Table 3. 4DVarNet-SSH performance on the OSMOSIS domain compared to DUACS OI over the period from 2012-10-22 to 2012-12-02

(42 days)

Method µ(RMSE) σ (RMSE) λx (degree) λ t (days)
duacs 4 nadirs 0.78 0.02 1.10 18.80
4DVarNet 4 nadirs (ours) 0.80 0.01 1.18 14.51
duacs 1 swot + 4 nadirs 0.81 0.02 1.03 17.50
4DVarNet 1 swot + 4 nadirs (ours) 0.87 0.02 0.35 6.84

Fig. 6 displays the SSH gradient field of DUACS OI and 4DVarNet-SSH interpolations on October, 25. The comparison to the

associated Groundtruth displayed in Fig. 4(b) clearly reveals the improvement brought by 4DVarNet-SSH, in particular along

the main meandrum of the GULFSTREAM.

(a) 4 nadirs

(b) 1 swot + 4 nadirs

Figure 6. SSH Gradient (DUACS OI & 4DVarNet reconstruction) on the 2012-10-25 for the GULFSTREAM domain

We can draw similar conclusions from the experiments reported in Table 3 and Fig. 7 for the OSMOSIS domain. We may280

emphasize that 4DVarNet-SSH interpolation for the 1 swot + 4 nadirs configuration, see e.g. Fig.7, retrieves most of the fine-

scale features of the SSH fields, which are smoothed out by the optimal interpolation.
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(a) 4 nadirs

(b) 1 swot + 4 nadirs

Figure 7. SSH Gradient (DUACS OI & 4DVarNet-SSH reconstruction) on the 2012-10-25 for the OSMOSIS domain

5.2 Impact of SWOT data on the interpolation performance

Thanks to its ability to reconstruct finer-scale patterns, 4DVarNet-SSH complements the assessment of the potential impact

of SWOT data onto the reconstruction of mesocale sea surface dynamics. Though the interpolation performance (Tab. 2 and285

3) improves with the use of SWOT data for all the interpolation methods, the relative improvement strongly depends on the

interpolation method. Interestingly, contrary to OI DUACS scheme, we report a significant improvement when using SWOT

data with 4DVarNet-SSH for both GULFSTREAM and OSMOSIS regions. These results emphasize the ability of our scheme

to exploit irregularly-sampled high-resolution data. For instance, for the OSMOSIS region, we truly benefit from SWOT data to

reconstruct mesoscale dynamics up to 0.4◦ and 7 days, whereas OI DUACS smooths out the altimetry signals in the mesoscale290

range below 1◦ and 14 days.

While we report relative gains of 20− 25% for the GULFSTREAM region for the different evaluation metrics, it reaches

40− 60% for the OSMOSIS domain. We interpret these results as a direct consequence of differences in the space-time

sampling of SWOT data for these two regions. As revealed by Fig. 8(b) and 9(b) no SWOT data may be available over 4 (resp.

1) consecutive days for the GULFSTREAM (resp. OSMOSIS) domain, This time variability of the sampling pattern translates295

for the GULFSTREAM region into a periodic variability of the MSE time series. By contrast, the OSMOSIS region leads to

a much lower time variability of the interpolation performance. The PSD-based analysis reported in Fig.8(c) and 9(c) further

supports these conclusions.
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(a) spatial

(b) temporal

(c) spectral

Figure 8. (a) Spatial performance: RMSE time series are computed for each spatial position of the GF domain (left: 4 nadirs ; right: 1 swot

+ 4 nadirs) ; (b) Temporal performance: RMSE daily GF maps are computed along the BOOST-SWOT DC evaluation period (left: 4 nadirs

; right: 1 swot + 4 nadirs) ; (c) Spectral performance: the PSD-based score evaluates the spatio-temporal scales resolved in GF mapping

(yellow area) (top: 4 nadirs ; bottom: 1 swot + 4 nadirs)
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(a) spatial

(b) temporal

(c) spectral

Figure 9. (a) Spatial performance: RMSE time series are computed for each spatial position of the GF domain (left: 4 nadirs ; right: 1 swot

+ 4 nadirs) ; (b) Temporal performance: RMSE daily GF maps are computed along the BOOST-SWOT DC evaluation period (left: 4 nadirs

; right: 1 swot + 4 nadirs) ; (c) Spectral performance: the PSD-based score evaluates the spatio-temporal scales resolved in GF mapping

(yellow area) (top: 4 nadirs ; bottom: 1 swot + 4 nadirs)
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To complement with the analysis of contribution of SWOT altimetry on the interpolation performance, Fig. 10 displays eddy

identification results on 2022, October 25 after application of a 200km high pass filter when using 1 swot + 4 nadirs configura-300

tion. Additional Figures are given in Appendix B for illustrations for both the GULFSTREAM and OSMOSIS domains in the

two observational configurations (4 nadirs and 1 swot + 4 nadirs). Clearly, 4DVarNet-SSH improves the matching between true

and interpolated eddies (39 vs 35), and the features of the matching eddies are also more similar to those of the true eddies, in

terms of speed radius (km), outter radius (km), amplitude (cm) and speed max (cm/s), with respect to their true values. Again,

the interpolation of eddy-related dynamics significantly improves with the exploitation of SWOT data.305

Figure 10. Eddies detected on the GULFSTREAM domain (2012-10-25) over SSH (1 swot + 4 nadirs)
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Figure 11. Speed radius (km), outter radius (km), amplitude (cm), speed max (cm/s) scatterplots of 4DVarNet/DUACS OI (1 swot + 4 nadirs)

vs Ground truth on the GULFSTREAM domain (2012-10-25) for matching eddies

5.3 Generalization performance

Whereas the results reported in the previous sections involve 4DVarNet-SSH models evaluated on the same domain as the

training one, we assess how 4DVarNet-SSH schemes trained for a specific domain may also apply to another one. Besides the

GULFSTREAM and OSMOSIS regions, we consider three additional domains:310

cNATL domain: a larger 20◦×40◦ North Atlantic domain, which involves a variety of dynamical regimes;

GF2 domain: a domain similar to the reference GULFSTREAM domain in terms of upper ocean dynamics, but with a

disjoint spatial extent;

OSMOSIS2 domain: a domain similar to the reference OSMOSIS domain in terms of upper ocean dynamics, but with a

disjoint spatial extent;315

For the 1 swot + 4 nadirs configuration, we train 4DVarNet-SSH schemes on these three domains. We then evaluate how these

models compare with the models reported in Sect. 5.1 for the GULFSTREAM and OSMOSIS domains. We also evaluate how

the different models apply to the cNATL domain. Table 4 summarizes the resulting performance metrics.

As expected for each evaluation domain, we retrieve the best performance for the model trained on this domain. For the

GULFSTREAM regions, the difference in terms of minimal temporal scales is negligible while the minimal spatial scales may320

exhibit an increase of 30% using the model trained on the GULFSTREAM2 domain. This does not hold in the other way when

applying on the GULFSTREAM2 domain a model learnt on GULFSTREAM, with similar spatial scales resolved in the end.
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Table 4. 4DVarNet performance on the GULFSTREAM and OSMOSIS domain compared to DUACS OI over the period from 2012-10-22

to 2012-12-02 (42 days)

Domain Method µ(RMSE) σ (RMSE) λx (degree) λ t (days) Train/Test

GF
DUACS OI 1 swot + 4 nadirs 0.92 0.01 1.22 11.31 -
4DVarNet 1 swot + 4 nadirs 0.96 0.01 0.62 5.29 GF/GF
4DVarNet 1 swot + 4 nadirs 0.95 0.01 0.86 5.67 GF2/GF
4DVarNet 1 swot + 4 nadirs 0.92 0.02 1.25 10.93 cNATL/GF

OSMOSIS
DUACS OI 1 swot + 4 nadirs 0.81 0.02 1.04 17.80 -
4DVarNet 1 swot + 4 nadirs 0.89 0.02 0.35 6.84 OSMOSIS/OSMOSIS
4DVarNet 1 swot + 4 nadirs 0.88 0.02 0.41 8.05 OSMOSIS2/OSMOSIS
4DVarNet 1 swot + 4 nadirs 0.84 0.02 0.93 9.59 cNATL/OSMOSIS

cNATL
DUACS OI 1 swot + 4 nadirs -
4DVarNet 1 swot + 4 nadirs cNATL/cNATL
4DVarNet 1 swot + 4 nadirs cNATL/GF
4DVarNet 1 swot + 4 nadirs cNATL/OSMOSIS

The same conclusions hold for the OSMOSIS regions, except that the minimal resolved temporal scales also display a slight

increase (lower than 20%) over OSMOSIS. These results are consistent with the dynamical properties given in Sect. 4 and

support the generalization capabilities of 4DVarNet-SSH schemes. The comparison with the performance metrics reported for325

the model trained on the cNATL domain suggests that the considered 4DVarNet-SSH parameterization applies to a regional

scale. This training configuration only leads to a relatively marginal gain w.r.t. OI DUACS when applied to the GULFSTREAM

region. We report a slightly better performance for the OSMOSIS domain. We expect future work to explore new 4DVarNet-

SSH parameterizations, which could better account for basin-scale variabilities.

5.4 Uncertainty Quantification for 4DVarNet-SSH interpolations330

Table 5. 4DVarNet performance on the GULFSTREAM domain based on nine different trainings with random initialization of both Φ and Γ

weights but similar training parameters (number of epochs, learning rates, optimizers, gradient steps, etc.) over the period from 2012-10-22

to 2012-12-02 (42 days)

Members µ(RMSE) σ (RMSE) λx (degree) λ t (days)
4DVarNet (#1) 0.96 0.01 0.68 5.16
4DVarNet (#2) 0.96 0.01 0.66 4.52
4DVarNet (#3) 0.96 0.01 0.62 4.66
4DVarNet (#4) 0.96 0.01 0.63 4.12
4DVarNet (#5) 0.96 0.01 0.87 4.92
4DVarNet (#6) 0.96 0.01 0.86 5.07
4DVarNet (#7) 0.96 0.01 0.68 5.18
4DVarNet (#8) 0.96 0.01 0.85 4.99
4DVarNet (#9) 0.96 0.01 0.62 5.29
4DVarNet (median) 0.96 0.01 0.67 4.62

Besides gap-free fields, operational interpolation products generally require to provide some evaluation of the reconstruction

uncertainty. While this is a built-in feature of OI and statistical DA methods, uncertainty quantification may involve specific

methodological or computational methods for other data assimilation schemes, among which ensemble methods represent a

widely-considered family of approaches, see e.g. Asch et al. (2016). Their common feature is to generate an ensemble of

solutions, generally through some randomization process.335

Here, we benefit from the stochastic nature of the training procedure of 4DVarNet-SSH schemes (Goodfellow et al., 2016).

Similarly to most deep learning schemes, we exploit a stochastic gradient descent during the learning stage and a random
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initilization of model parameters. As such, for a given training configuration, we can learn an ensemble of 4DVarNet-SSH

schemes by running multiple training procedures.

(a) 4DVarNet temporal variability

(b) 4DVarNet median reconstruction

(c) 4DVarNet standard deviation

Figure 12. Interpolation performance of an ensemble of nine 4DVarNet-SSH models trained using similar training parameters (number of

epochs, learning rates, optimizers, gradient steps, etc.) but different random initialization of both Φ and Γ weights. (a) : spatial RMSE time

series on the BOOST-SWOT DC evaluation period ; (b) 4DVarNet median run (2012-10-25, GF domain) and (c) its spatial standard deviation
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We apply this approach to build an ensemble of nine 4DVarNet-SSH schemes for a given training configuration, which com-340

prises a training dataset, the considered 4DVarNet-SSH parameterization and given training hyperparameters (i.e., number of

epochs, learning rates, optimizers). For a given observation time window, we then retrieve nine interpolations, from which we

can compute a median field and the associated standard deviation. We report in Tab. 5 the performance metrics for the GULF-

STREAM domain of the nine trained models as well as the median model. It reveals the internal variability of the training

process. Though it does not reach the best performance, the median model combines a resolved spatial scale below 0.7◦ and a345

resolved time scale below 5 days, which is only the case of 6 over 9 of the trained models. Fig. 12(a) further illustrates this as-

pect. Interestingly, the standard deviation of the ensemble of 4DVarNet-SSH schemes correlates to the interpolation error, with

an R2 coefficient of determination equals to 0.86, see Fig. 13. As such, it can be regarded as an indicator of the interpolation

error.

Figure 13. Standard deviation of the 4DVarNet-SSH median ensemble interpolation error (left) and average of the daily standard deviation

interpolation errors on the test period (right)

6 Conclusion and Discussion350

This paper introduced 4DVarNet-SSH scheme, an end-to-end neural architecture for the space-time interpolation of SSH fields

from nadir and wide-swath satellite altimetry data. 4DVarNet-SSH scheme draws from recent methodological development

to bridge data assimilation and deep learning with a view to learning 4DVar DA models and solvers from data. Numerical

experiments within an OSSE setting support the relevance of 4DVarNet-SSH scheme with respect to the state-of-the-art.

We discuss further our main contributions according to three aspects: the added value of deep learning scheme for satellite al-355

timetry and operational oceanography, the exploitation of upcoming SWOT data and the ability to scale up learning approaches

from regional case-studies to the global scale.

Deep learning for satellite altimetry and operational oceanography: This study contributes to a growing research effort360

regarding the potential benefit of deep learning schemes for space and operational oceanography challenges, see e.g. Bal-

larotta et al. (2020). Given the sampling of available satellite and in situ data sources, interpolation problems naturally arise
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as critical challenges. This study brings an additional evidence of the potential of deep learning schemes to outperform the

state-of-the-art operational techniques, generally based on optimal interpolation and data assimilation. Importantly, we do not

rely on the off-the-shelf application of some reference deep learning architectures. The considered class of neural architec-365

tures relates to a variational DA formulation, such that it can be regarded as the implementation of a neural and trainable

version of a DA model and solver. Our results for satellite altimetry are in line with other recent studies for other ocean pa-

rameters, such as sea surface temperature (Barth et al., 2019), suspended sediments (Vient et al., 2022) and 3D temperature

and salinity fields (Pauthenet et al., 2022). All these studies support the potential of neural approaches to retrieve finer-scale

variabilities from available satellite and/or in situ observations. Regarding satellite altimetry, future challenge includes the ap-370

plication to real altimetry datasets, see e.g. the 2021 Observation System Experiment (OSE) BOOST-SWOT data challenge

https://github.com/ocean-data-challenges/2021a_SSH_mapping_OSE, as well as the exploitation of multimodal synergies (Fa-

blet and Chapron, 2022).

Making the most of SWOT data: Our study brings new evidence that the wide-swath space-time sampling of upcoming375

SWOT mission could lead to a very significant improvement of the reconstruction of mesoscale sea surface dynamics. For the

considered case-study regions, with contrasted dynamical regimes in play and revisit times of SWOT orbits, we report rela-

tive gains from 20% to 60% compared to nadir altimetry data only in terms of RMSE and resolved space-time scales. These

results assume an error-free SWOT product. Therefore, exploring further how these results could generalize to error-prone

(Esteban-Fernandez, 2014; Gaultier and Ubelmann, 2010) and uncalibrated SWOT data (Febvre et al., 2022) is a critical chal-380

lenge. Preliminary preprocessing of the pseudo-SWOT observations (Metref et al., 2020) to filter out its correlated components

and avoid major issues in the assimilation and/or learning process of the interpolation methods may also be considered. The

extension of the considered OSSE to multi-swot configurations could also provide new means to optimize the deployment of

multi-satellite configurations in coming years.

385

Scaling up to a global scale with learning-based scheme: Our numerical experiments focused mainly on a regional- scale,

typically 10◦× 10◦ domains as illustrated by the GULFSTREAM and OSMOSIS regions. The reported results support the

relevance of the proposed 4DVarNet-SSH parameterization to account for such regional space-time variabilities. Scaling up

to a basin scale or even the global scale naturally arises as a key challenge for future work. Through the built-in features of

Pytorch framework and associated packages, our open-source code can leverage multi-GPU distribution learning schemes and390

on-the-fly mini-batch generation tools to deal with larger-scale dataset from a computational point of view. To account for a

greater diversity of dynamical regimes in play on the global scale, or even on a basin scale, it also seems necessary to explore

more complex 4DVarNet-SSH parameterizations, especially regarding dynamical prior Φ. This could benefit from the variety

of neural architectures recently introduced in computational imaging (Barbastathis et al., 2019), especially using attention

mechanisms (Vaswani et al., 2017) to achieve some decomposition of the underlying space-time variabilities.395

23

https://doi.org/10.5194/gmd-2022-241
Preprint. Discussion started: 15 November 2022
c© Author(s) 2022. CC BY 4.0 License.



Code and data availability. The open-source 4DVarNet version of the code is available on GitHub (https://github.com/CIA-Oceanix/4dvarnet-core).

The datasets is shared through the BOOST-SWOT data challenge also available on Github (https://github.com/ocean-data-challenges/2020a_

SSH_mapping_NATL60)

Video supplement. The animations corresponding to the 4DVarNet comparison to DUACS OI on the BOOST-SWOT DC test period are

given for both GULFSTREAM and OSMOSIS domains in the 4 nadirs and 1 swot + 4 nadirs configuration. They can be found on the AI400

CHair OceaniX Youtube channel:

GF (4 nadirs): https://youtube.com/shorts/QKXukB_Rd5E

GF (1 swot + 4 nadirs): https://youtube.com/shorts/i91Z1pMm4gY

OSMOSIS (4 nadirs): https://youtube.com/shorts/Pxcsd0Afco0

OSMOSIS (1 swot + 4 nadirs): https://youtube.com/shorts/HbVSJFtdG6Q405
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Appendix A: Fixed-point formulation of the solver

Let note that when replacing both CNN/LSTM cell by the identity operator and the minimization function JΦ(x,y,Ω) by

its single regularization term J b
Φ(x), the gradient-based solver simply leads to a parameter-free fixed-point version of the

algorithm, the same used in Beauchamp et al. (2020); Fablet et al. (2019), which is similar to the DINEOF approach, see Fig.

A1.525

y(Ω)

x(k)

NN model

for Uφ

× 1Ω ×1Ω̄+
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k

=
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Figure A1. Sketch of the iterative fixed-point algorithm: the upper-left stack of images corresponds to an example of SSH observations

temporal sequence with missing data used as inputs. The upper-right stack of images is an example of intermediate reconstruction of the SSH

gradient at iteration i while the bottom-left stack of images identifies the updated reconstruction fields used as new inputs after each iteration

of the algorithm.
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This fixed-point solver is parameter-free and easily implemented as a neural network in a joint solution with the NN-parametrization

of JΦ for the interpolation problem.

Appendix B: Additional results on the 4DVarNet generalization capabilities
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Table B1. 4DVarNet performance on the GULFSTREAM2 and OSMOSIS2 domain compared to DUACS OI over the period from 2012-10-

22 to 2012-12-02 (42 days)

Domain Method µ(RMSE) σ (RMSE) λx (degree) λ t (days) Train/Test

GF2
DUACS OI 1 swot + 4 nadirs 0.87 0.02 1.26 11.95 -
4DVarNet 1 swot + 4 nadirs 0.93 0.02 0.63 6.30 GF2/GF2
4DVarNet 1 swot + 4 nadirs 0.92 0.01 0.66 6.53 GF/GF2
4DVarNet 1 swot + 4 nadirs 0.88 0.02 1.26 11.22 cNATL/GF2

OSMOSIS2
DUACS OI 1 swot + 4 nadirs 0.91 0.02 1.35 17.69 -
4DVarNet 1 swot + 4 nadirs 0.96 0.01 0.70 33.61 OSMOSIS2/OSMOSIS2
4DVarNet 1 swot + 4 nadirs 0.95 0.01 0.69 36.84 OSMOSIS/OSMOSIS2
4DVarNet 1 swot + 4 nadirs 0.93 0.02 1.10 9.64 cNATL/OSMOSIS2

(a) temporal (b) spatial (c) spectral

Figure B1. 4DVarNet generalization capabilities (GULFSTREAM): spatial, temporal and spectral performance on the BOOST-SWOT DC

evaluation period based on three different training domains: GULFSTREAM, GULFSTREAM2 and cNATL

(a) temporal (b) spatial (c) spectral

Figure B2. 4DVarNet generalization capabilities (OSMOSIS): spatial, temporal and spectral performance on the BOOST-SWOT DC evalu-

ation period based on three different training domains: OSMOSIS, OSMOSIS2 and cNATL
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(a) temporal (b) spatial (c) spectral

Figure B3. 4DVarNet generalization capabilities (cNATL): spatial, temporal and spectral performance on the BOOST-SWOT DC evaluation

period based on three different training domains: cNATL, GF and OSMOSIS

(a) temporal (b) spatial (c) spectral

Figure B4. 4DVarNet generalization capabilities (GULFSTREAM2): spatial, temporal and spectral performance on the BOOST-SWOT DC

evaluation period based on three different training domains: GULFSTREAM2, GULFSTREAM and cNATL
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(a) temporal (b) spatial (c) spectral

Figure B5. 4DVarNet generalization capabilities (OSMOSIS2): spatial, temporal and spectral performance on the BOOST-SWOT DC eval-

uation period based on three different training domains: OSMOSIS2, OSMOSIS and cNATL
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Appendix C: Eddy identifications530

Figure C1. Eddies detected on the GULFSTREAM domain (2012-10-25) over SSH (4 nadirs)
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Figure C2. Speed radius (km), outter radius (km), amplitude (cm), speed max (cm/s) scatterplots of 4DVarNet/DUACS OI (4 nadirs) vs

Ground truth on the GULFSTREAM domain (2012-10-25) for matching eddies
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Figure C3. Eddies detected on the OSMOSIS domain (2012-10-25) over SSH (4 nadirs)
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Figure C4. Speed radius (km), outter radius (km), amplitude (cm), speed max (cm/s) scatterplots of 4DVarNet/DUACS OI (4 nadirs) vs

Ground truth on the OSMOSIS domain (2012-10-25) for matching eddies
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Figure C5. Eddies detected on the OSMOSIS domain (2012-10-25) over SSH (1 swot + 4 nadirs)
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Figure C6. Speed radius (km), outter radius (km), amplitude (cm), speed max (cm/s) scatterplots of 4DVarNet/DUACS OI (1 swot + 4

nadirs) vs Ground truth on the OSMOSIS domain (2012-10-25) for matching eddies
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