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Table 4. 4DVarNet performance on the GULFSTREAM and OSMOSIS domain compared to DUACS OI over the period from 22 October
to 2 December 2012 (42 d).

Domain Method µ (RMSE) σ (RMSE) λx (degrees) λt (days) Train/test

GULFSTREAM
DUACS OI (one SWOT plus four nadirs) 0.92 0.01 1.22 11.31 –
4DVarNet (one SWOT plus four nadirs) 0.96 0.01 0.62 5.29 GULFSTREAM/GULFSTREAM
4DVarNet (one SWOT plus four nadirs) 0.95 0.01 0.86 5.67 GULFSTREAM2/GULFSTREAM
4DVarNet (one SWOT plus four nadirs) 0.92 0.02 1.25 10.93 cNATL/GULFSTREAM

OSMOSIS
DUACS OI (one SWOT plus four nadirs) 0.81 0.02 1.04 17.80 –
4DVarNet (one SWOT plus four nadirs) 0.89 0.02 0.35 6.84 OSMOSIS/OSMOSIS
4DVarNet (one SWOT plus four nadirs) 0.88 0.02 0.41 8.05 OSMOSIS2/OSMOSIS
4DVarNet (one SWOT plus four nadirs) 0.84 0.02 0.93 9.59 cNATL/OSMOSIS

cNATL
DUACS OI (one SWOT plus four nadirs) –
4DVarNet (one SWOT plus four nadirs) cNATL/cNATL
4DVarNet (one SWOT plus four nadirs) cNATL/GULFSTREAM
4DVarNet (one SWOT plus four nadirs) cNATL/OSMOSIS

Table 5. 4DVarNet performance on the GULFSTREAM domain based on nine different training sessions with a random initialization of
both8 and 0 weights but similar training parameters (number of epochs, learning rates, optimizers, gradient steps, etc.) over the period from
22 October to 2 December 2012 (42 d).

Members µ (RMSE) σ (RMSE) λx (degrees) λt (days)

4DVarNet (no. 1) 0.96 0.01 0.68 5.16
4DVarNet (no. 2) 0.96 0.01 0.66 4.52
4DVarNet (no. 3) 0.96 0.01 0.62 4.66
4DVarNet (no. 4) 0.96 0.01 0.63 4.12
4DVarNet (no. 5) 0.96 0.01 0.87 4.92
4DVarNet (no. 6) 0.96 0.01 0.86 5.07
4DVarNet (no. 7) 0.96 0.01 0.68 5.18
4DVarNet (no. 8) 0.96 0.01 0.85 4.99
4DVarNet (no. 9) 0.96 0.01 0.62 5.29
4DVarNet (median) 0.96 0.01 0.67 4.62

dian field and the associated standard deviation. We report
the performance metrics for the GULFSTREAM domain of
the nine trained models and the median model in Table 5. It
reveals the internal variability in the training process. Though
it does not reach the best performance, the median model5

combines a resolved spatial scale below 0.7◦ and a resolved
timescale below 5 d, which is only the case for 6 out of 9
of the trained models. Figure 12a further illustrates this as-
pect. Interestingly, the standard deviation of the ensemble of
4DVarNet-SSH schemes correlates to the interpolation error,10

with an R2 coefficient of determination equal to 0.86. Even
if the scales between the interpolation error and the training-
related 4DVarNet internal variability differ (see Fig. 13), the
latter can be regarded as an indicator of the interpolation er-
ror, usually with an appropriate localization of large errors.15

In future works, we plan to draw from traditional ensemble
DA methods or ensemble Gaussian-based simulations to ad-
dress all the components of the interpolation error related to
the data assimilation scheme.

6 Conclusion and discussion 20

This paper introduced the 4DVarNet-SSH scheme, an end-
to-end neural architecture for the space–time interpolation
of SSH fields from nadir and wide-swath satellite altimetry
data. The 4DVarNet-SSH scheme draws from recent method-
ological development to bridge data assimilation and deep 25

learning with a view to training 4D-Var DA models and
solvers from data. Numerical experiments within an OSSE
setting support the relevance of the 4DVarNet-SSH scheme
with respect to the state of the art.

We further discuss our main contributions according to 30

three aspects, namely the added value of a deep learning
scheme for satellite altimetry and operational oceanography,
the exploitation of upcoming SWOT data, and the ability to
scale up learning approaches from regional case studies to
the global scale. 35

– Deep learning for satellite altimetry and operational
oceanography. This study contributes to a growing re-
search effort regarding the potential benefit of deep
learning schemes for space and operational oceanog-
raphy challenges (see, e.g., Ballarotta et al., 2020). 40


