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Abstract. Aeolian dust has significant impacts on climate, public health, infrastructure and ecosystems. Assessing dust con-

centrations and the impacts is challenging because the emissions depend on many environmental factors and can vary greatly

with meteorological conditions. We present a data-driven aeolian dust scheme that combines machine learning components

and physical equations to predict atmospheric dust concentrations and quantify the sources. The numerical scheme was trained

to reproduce dust aerosol optical depth retrievals by the Infrared Atmospheric Sounding Interferometer on board the MetOp-A5

satellite. The input parameters included meteorological variables from the fifth generation atmospheric reanalysis of the Eu-

ropean Centre for Medium-Range Weather Forecasts. The trained dust scheme can be applied as an emission submodel, to

be used in climate and Earth system models, which is reproducibly derived from observational data so that a priori assump-

tions and manual parameter tuning can be largely avoided. We compared the trained emission submodel to a state-of-the-art

emission parametrisation, showing that it substantially improves the representation of aeolian dust in the global atmospheric10

chemistry-climate model EMAC.

1 Introduction

Aeolian dust is one of the most abundant aerosol components worldwide and substantially affects the Earth system in many

ways. In contrast to sea salt, the only other component contributing a comparable fraction to the total aerosol loading, aeolian

dust is emitted over land, where accordingly the highest dust loads occur and severely interfere with human health and activities.15

The generally high and often exceptional particulate matter concentrations in the vicinity of dust sources cause both, acute

health problems (Goudie, 2014) and contribute to the long-term exposure with associated health risks and excess mortality

(Lelieveld et al., 2019b, a). Reduced visibility during dust events can interrupt road and air traffic, cause accidents and reduce

solar electricity production, the latter aggravated by deposited dust, resulting in high economical costs (Middleton et al., 2019).

Since the particles interact with radiation and clouds, atmospheric dust significantly affects weather and climate. Deposited20

on snow and ice, mineral dust reduces the surface albedo and accelerates glacier melting (Di Mauro et al., 2019; Francis

et al., 2022). On the other hand, deposited dust particles are an important source of mineral nutrients, both on land and in the

ocean (Bristow et al., 2010). Although aeolian dust predominantly originates from natural sources, they can be affected by
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anthropogenic climate change and land use (Klingmüller et al., 2016), moreover atmospheric dust interacts with anthropogenic

air pollution (Klingmüller et al., 2019, 2020). Consequently, aeolian dust is not a purely natural phenomenon.25

These are only some of the diverse aspects which constitute the great relevance of aeolian dust in Earth science and drive the

demand for accurate representations in atmospheric models. However, meeting this demand is challenging as can be seen, for

example, from the large uncertainty range of model estimates for the global annual dust emission (Huneeus et al., 2011). Aeo-

lian dust emissions depend on many environmental factors. Considering that some of those have been identified only recently

(Rodriguez Caballero et al., 2022), presumably not all relevant factors and their impacts are known or well quantified. Tem-30

porally changing environmental factors have to be considered, which can vary within seconds (wind and turbulence), seasons

(vegetation), years (land cover) and geological time scales (soil composition). Quantitative observations of dust emissions are

difficult and thus a direct comparison of modelled emission fluxes with observations, especially on global scale, not feasible.

Therefore, dust emission models can only be validated indirectly based on atmospheric dust concentration observations or

scarce dust deposition measurements, which requires that atmospheric processing and transport are taken into account.35

We present a novel approach to address these challenges combining two developments which have become main drivers

of Earth system science, the increasing availability of satellite observations and the advancing machine learning technology

(Reichstein et al., 2019; Bauer et al., 2021; Eyring et al., 2021; Irrgang et al., 2021). We used the resulting, hybrid dust emission

scheme to substantially improve the representation of aeolian dust in the global atmospheric chemistry-climate model EMAC

(Jöckel et al., 2006), demonstrating a valuable synergy of machine learning and physical process based modelling.40

This article is structured as follows: The datasets are described in section 2. The architecture of the data-driven dust model

is presented in section 3, its training and evaluation in sections 4 and 5. Section 6 documents the EMAC setup used in section 7

to demonstrated the benefits of the newly derived dust emissions. Conclusions are drawn in section 8.

2 Data

Our selection of input variables follows that of common online dust emissions schemes (e.g., Astitha et al., 2012; Klingmüller45

et al., 2018). Data for several input variables were taken from the fifth generation European Centre for Medium-Range Weather

Forecasts (ECMWF) atmospheric reanalysis (ERA5), including the single-level variables surface friction velocity, total pre-

cipitation, snow depth, volumetric soil water in the topmost soil layer, leaf area index (LAI) of low vegetation, LAI of high

vegetation and surface geopotential (Hersbach et al., 2018b), and the height dependent variables of the u-component of wind,

v-component of wind and vertical velocity (Hersbach et al., 2018a). The latter variables where considered at four pressure50

levels, 650 hPa, 750 hPa, 850 hPa and 950 hPa, to represent the atmosphere up to about 4 km altitude. Mineral dust can reach

higher altitudes, but since most of the dust mass remains within these layers, this approximation is a reasonable compromise

between a realistic representation of dust transport and an acceptable computational burden. For all time dependent variables,

hourly data were considered. Horizontally, we re-gridded the data to a regular longitude-latitude grid at 1° resolution.
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The ERA5 data were complemented by the static soil clay fraction distribution from the SOILPOP30 data base (Nickovic,55

2011) and the annual Moderate-resolution Imaging Spectroradiometer (MODIS) collection 6 International Geosphere–Biosphere

Programme (IGBP) land surface class fractions (Friedl and Sulla-Menashe, 2015), both re-gridded to the same 1° grid.

As output variable representing the atmospheric dust distribution we consider the dust aerosol optical depth (DAOD) which

is closely related to the vertically integrated amount of dust and can be retrieved remotely from satellites so that datasets with

consistent global coverage are available. We used version 8 of the 10 µm DAOD product developed at the Université libre60

de Bruxelles (ULB) based on observations by the Infrared Atmospheric Sounding Interferometer (IASI) on board the MetOp-

A satellite (Clarisse et al., 2019). In the infrared, coarse particles scatter radiation more efficiently than submicron particles.

Therefore, observations at a wavelength of 10 µm are most sensitive to mineral dust and sea salt and are little affected by

other aerosols, resulting in a particularly reliable DAOD retrieval. We considered all years which are completely covered by

the dataset, in total 12 years from 2008 to 2019. Years with incomplete coverage and the continuation of the product based on65

retrievals from the MetOp-B satellite were omitted. The level 2 data were split into hourly data by rounding the observation

times to the nearest full hour and gridded to the 1° grid of the input data by averaging all retrievals covered by each grid cell.

Grid cell values below the 0.05 % percentile and above the 99.95 % percentile were omitted.

Towards the poles, less DAOD retrievals are obtained, the grid cell geometry increasingly deviates from a rectangular shape

that we assume in our dust scheme, and the Courant–Friedrichs–Lewy criterion gains importance, while only a small fraction70

of the global dust is transported to or emitted from these regions. Therefore we restricted the domain of all data sets to latitudes

between 60°S and 60°N.

We assume the aerosol extinction contributing to the DAOD to be proportional to the dust concentration. Accordingly, the

total amount of dust over each grid cell is proportional to the DAOD and the horizontal area of the grid cell. By multiplication

with the latitude dependent cell area, we converted the DAOD to a quantity proportional to the total amount of dust over each75

grid cell, which, after normalisation, corresponds to the vertical integral of the dust representation in our model.

Surface friction velocity, soil moisture, snow depth, LAI, geopotential and clay fraction were normalised by subtracting their

mean and division by their standard deviation. Dust amount and precipitation were only divided by their standard deviation

to preserve their sign. This normalisation maps all input variables and associated gradients into a similar and relatively small

range to support the model parameter optimisation routine during the training process.80

The 12 years of DAOD data and the corresponding input data were split into a validation period (2008), a test period (2009)

and a training period (2010 to 2019). While we used the validation period to monitor the training procedure and validate the

model development, the test period was exclusively used to evaluate the final, trained model. Only the training period was

used for model training. The order of the periods was chosen such that reliable emission data for EMAC was readily available

for the test period, but at the same time the training period could be easily extended in the course of the model development.85

Moreover, the validation period before the test period serves as spin-up period of the EMAC simulations.
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3 The data-driven dust model

The data-driven dust model combines multiple modules representing different processes, including dust emission, transport

and removal. Figure 1 provides an outline of the model architecture. The processes are applied iteratively once every hour,

synchronous with the hourly time step of the input and output data. Consistent with the input wind fields, the instantaneous90

dust concentration is implemented as 3 dimensional array (dijk), where i= 1, · · · ,nlon, j = 1, · · · ,nlat and k = 1, · · · ,nlev,

corresponding to a grid with 1° horizontal spacing (nlon = 360, nlat = 120) and nlev = 4 vertical layers. All nlon×nlat×nlev

array elements dijk are initialised with 0. We used nt = 168 iterations, corresponding to a time interval of 168 h, i.e., 7 days.

Centrepiece of the model is the emission module which itself consists of three components. At each horizontal grid cell

(i, j), an interim emission flux sij is calculated by a stack of densely connected neural layers using the 6 input variables surface95

friction velocity, LAI of low vegetation, LAI of high vegetation, soil moisture, snow cover and clay fraction. This generic

deep neural network architecture is computationally efficient but still very powerful for various classification and, as in our

application, regression problems.

The stack consists of 2 hidden layers of 64 units each with leaky rectified linear unit (ReLU) activations, LeakyReLU(x) =

max(0,x)+ 0.01 min(0,x), and a final output unit with softplus activation, Softplus(x) = ln(1+ exp(x)), to ensure positive100

output. The non-zero gradient of the leaky ReLU function at negative values avoids vanishing gradients that can hinder the

model optimisation process when using the ordinary ReLU activation function, which is zero at negative values. Within the

layers, each unit calculates the weighted sum of its input variables, where the weights are trainable parameters, adds a trainable

bias, and applies the activation function before passing the result to the next layer. In the densely connected stack, all units

in one layer are connected to all units in the next layer. The emission module is translation invariant in both space and time105

because identical trainable weights and biases are used for all locations (i, j) and time steps. Therefore, spatial and temporal

variations of the modelled emissions are based solely on changing input parameters.

The effect of the topography is considered by multiplying the interim emission flux with a topography dependent factor

βtopo,ij , similarly to the use of topographic source functions in existing dust emission schemes (Ginoux et al., 2001; Kling-

müller et al., 2018),110

sij ← βtopo,ijsij . (1)

Unlike the intermediate emission flux, which depends only on the local input parameter values, the topography effect considers

the surrounding terrain to account for, e.g., the accumulation of sediments in valleys and depressions. In deep learning, such

dependency on surrounding values is commonly addressed by convolutional layers which consider all values from grid cells

defined by the convolution kernel and apply trainable weights and biases which are translation invariant. The topography factor115

βtopo,ij is computed from the geopotential height field by a stack of convolutional layers with 3 by 3 grid cell kernels. The stack

consists of 3 hidden layers with 4 output channels each and leaky ReLU activations, and a 1 channel output layer with sigmoid

activation, sig(x) = (1+ exp(−x))−1, to limit the output to the interval (0, 1). This architecture computes the topography

factor for each grid cell based on the geopotential in the surrounding 9 by 9 grid cells, i.e., a 9° by 9° region, similarly to the

10° by 10° region used by Ginoux et al. (2001).120
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Figure 1. Outline of the dust model. It combines multiple modules representing different processes and effects (small grey boxes), each with

trainable parameters. The dust emissions are represented by three submodels (large grey box).
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The size of the convolutional network and the densely connected neural network, i.e. the number of layers and number of

units or channels per layer, were adjusted based on experiments with different settings. The model should be large enough

to provide sufficient capacity to learn the relevant relationships, but not larger than necessary to avoid overfitting and reduce

computational requirements. Model performance is not very sensitive to limited changes in model size, but could be improved

by systematic optimisation of the latter.125

Also the land cover effect is considered by multiplying the interim emission flux with a corresponding factor, generalising

the concept of the land cover class based emission mask used by Klingmüller et al. (2018), for example. The land cover factor

is represented by a single linear layer with 16 inputs representing the 16 IGBP land cover classes. The layer multiplies the

fraction fijl of grid cell (i, j) that is covered by class l with a trainable, class specific emission efficiency βlc,l ranging from

0 to 1 and sums over all classes to obtain the average emission efficiency of the grid cell βlc,ij =
∑16

l=1 fijlβlc,l. The interim130

emission flux is multiplied by this emission efficiency to obtain the final emission flux,

sij ← βlc,ijsij . (2)

According to this emission flux, the dust concentration in the lowest vertical layer (k = nlev) of the dust array is increased,

dijnlev
← dijnlev

+ sijAij , (3)

where Aij is the grid cell area, before the dust array is processed further by the transport module.135

The transport module successively applies vertical diffusion, vertical wind transport, north-south transport and east-west

transport. The vertical diffusion considers that some fraction of the dust is exchanged vertically between grid cells independent

of the large scale vertical velocity of the air masses, e.g., by convection or sedimentation, and is parametrised by two trainable

parameters, the total fraction of dust leaving the grid cell, and the fraction thereof moving upwards. The transport by wind in

each of the 3 spatial dimensions is calculated by considering the overlap of the grid cells translated according to the wind speed140

and the time step length of 1 hour with the neighbouring cells, and has no trainable parameters. The wind speed components

are limited so that the Courant number C ≤ 1. In the vertical transport calculation, dry deposition is considered by allowing

a fraction of the dust transported onto the surface to remain on the surface, the rest is retained in the lowest dust layer. The

fraction represented by the latter is defined by a trainable parameter. However, during training this parameter typically quickly

converges to 1, indicating that the current implementation of our approach is not sensitive enough to identify dry deposition.145

The reason is likely the limited atmospheric residence time discussed below, representing an unrealistic additional removal

process. Moreover, a fraction of the deposition that always occurs collocated with emissions might be represented by a reduced

emission flux.

As dominant removal process we consider wet deposition. Every hourly time step, the dust concentration in all vertical layers

is reduced by a fraction proportional to the local total precipitation pij ,150

dijk← (1−βppij)dijk, (4)

where the proportionality factor βp is a trainable parameter. This approximation considers the correlation between precipita-

tion and dust removal as the dominant statistical relationship with the strongest influence on dust source parameters during
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training. More detailed parametrisations could improve future versions of the model. In addition, the finite number of iterations

considered by the model implies a corresponding maximum atmospheric residence time for the dust. Here, the use of nt = 168155

iterations corresponds to a maximum residence time of 1 week. In reality, dust particles can reside much longer in the atmo-

sphere, but because the contribution of those particles to the global DAOD distribution is comparatively small, most DAOD

features and the dominant dust sources can be identified regardless of this restriction. However, a noticeable bias of the DAOD

predictions is expected in regions remote from dust sources.

The 3 dimensional dust field is summed along the vertical dimension to obtain the total amount of dust in the vertical column.160

Finally, denormalisation and division by the cell area yields the DAOD prediction.

Since by design the dust emission flux is positive and neither the transport nor the removal processes can alter the sign of

the dust concentration in each grid cell, the amount of dust and the DAOD predictions are guaranteed to be positive, which is

desired for a realistic model. On the other hand, the noise range of the IASI retrievals includes negative values which crucially

contribute to a realistic overall DAOD level. Even though these retrievals cannot be reproduced by the model, they are included165

in the training process to avoid a positive bias in the DAOD predictions. In combination with the expected negative bias

in remote regions, this a priori limits the agreement of predicted and observed DAOD. However, for our main purpose, the

extraction of enhanced dust emissions for climate simulations, it is sufficient, as demonstrated in the following.

We implemented the model using the PyTorch machine learning framework (Paszke et al., 2019). This framework is very

flexible and allows the seamless combination of the different modules described above, including standard deep learning170

models such as densely connected neural layers and convolutional networks, classical regression models and iterative physical

processing as used in the transport module, into a single hybrid model. The autograd engine, one of PyTorch’s core features,

automatically differentiates this complex model with respect to the trainable parameters, and the resulting gradients are used

by the optimisation routines during model training.

4 Training175

During training, the predicted amount of dust in each vertical column is compared to the observed DAOD (the latter normalised

and weighted by the grid cell area as described above) by means of a loss function.

In addition to the discrepancy between predictions and observations, the training procedure should also consider reason-

able a priori assumptions: The surface friction velocity initiates and sustains the horizontal flux of saltating particles and is

therefore the driving force of mineral dust emissions. Consequently, the dust emission flux generally increases with increasing180

surface friction velocity. In contrast, vegetation, soil moisture and snow cover reduce soil erodibility and saltation and thus

the emission flux. To incorporate this information into the emission module we imposed a knowledge-based regularisation by

penalising violations of these rules similar to Gupta et al. (2019). For this purpose, before each optimisation step during train-

ing, we computed the partial derivatives of the emission module with respect to the corresponding input variables for ns = 106

randomly sampled input parameters. The values consistent with the rules were set to zero, i.e., positive derivatives with respect185

to the surface friction velocity and negative derivatives with respect to the high and low vegetation LAI, soil moisture and snow
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depth. The mean of the absolute value of the thus adjusted derivatives, divided by the mean of the ns = 106 emission values,

was added to the mean squared error (MSE) loss function fMSE to obtain the total loss function,

floss = fMSE +

(
1

5ns

ns∑
l=1

5∑
m=1

ReLU(σm
∂sl
∂xm

)

)(
1

ns

ns∑
l=1

sl

)−1

, (5)

where (xm) are the input variables and σm =−1 if xm is the surface friction velocity, otherwise σm = 1. The total loss was190

then minimised using the Adam optimiser (Kingma and Ba, 2014).

To generalise the model and prevent overfitting during training, we regularised the stack of densely connected layers in

the emission module by applying a 5 % dropout rate to the hidden layers (Hinton et al., 2012). The combination of machine

learning components and numerical implementations of physical processes such as atmospheric transport in a single model

adds a novel aspect to the overfitting problem. For pure machine learning models, analysing the validation data set is sufficient195

to detect overfitting. In contrast, when combined with numerics, the machine learning algorithm can reduce the validation loss

further by adapting to the numerical approximations (here, e.g., maximum transport period and discretisation), which is then

not necessarily based on a more realistic representation of the underlying process. To avoid this type of overfitting, we trained

the model using the whole training data set only once and did not repeat the training for multiple epochs. Tests using more

epochs showed that the training loss can indeed be reduced further, i.e., the DAOD predictions become more realistic, however200

the resulting emissions did not clearly improve the EMAC simulations.

5 Trained model evaluation

Figure 2 shows the hourly grid-cell DAOD values predicted by the trained model during the test period (year 2009) vs. the

corresponding IASI retrievals. In the range typically observed over the dust belt between West Africa and East Asia (10 µm

DAOD ≳ 0.05), the predictions are realistic. Towards smaller values, the model seems to underestimate the observations. This205

is partly attributed to the expected underestimation in remote areas due to the aforementioned limitation of the transport time.

The large scatter of the observed values around DAOD = 0 corresponds to a maximum of the density distribution at about

0.01 on the logarithmic scale. Accordingly, observations in this range are consistent with 0 and the low model predictions.

The overall good performance of the model is reflected by a high Pearson correlation coefficient of 0.502, calculated using all

14371211 prediction-observation pairs for the test data set.210

The temporal correlation coefficients of the observed and predicted hourly DAOD values within each grid cell (i, j),

rij = r(DAODobs,ij ,DAODpred,ij), are typically greater than 0.5 over the regions affected by desert dust (Fig. 3). In re-

gions remote from dust sources, where mineral dust is of minor relevance, the low, randomly varying dust concentrations result

in correlation coefficients close to zero, e.g., over large parts of the Pacific and Southern Oceans. The negative correlation

coefficients over some regions, notably west of Australia over the southern Indian Ocean, result from the transport time limit215

in our model. They occur when enhanced DAOD values are caused by dust reaching the region after more than 1 week of

transport over non-emitting regions including the ocean, while the model predicts clean air with low DAOD values. Also the

daily correlation coefficient, r(t) = r(DAODobs(t),DAODpred(t)), quantifying the similarity of the spatial pattern of predic-
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Figure 2. Predicted vs. observed hourly grid-cell DAOD values during the test period. The colours represent the density of data points.

Correlation coefficient r, root-mean-square error RMSE, mean absolute error MAE and the number of data pairs n are indicated.
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Figure 3. Correlation coefficient of the observed and predicted DAOD time series for each grid cell during the test period.

Figure 4. Daily correlation coefficient of the observed and predicted DAOD during the test period.

tions and observations on day t, reaches or exceeds 0.5 during the dust season in northern hemispheric spring and summer

(Fig. 4). During winter, the decline of dust activity and thus the absence of distinct spatial patterns results in lower correlation220

coefficients.

The distribution of the predicted annual mean DAOD (Fig. 5 (b)) agrees well with the IASI result (Fig. 5 (a)). The most

notable discrepancy is an overestimation by the predictions over the Sahara. Here, the mean values of the IASI retrievals are

significantly affected by small or even negative values between the major dust outbreaks, where the model usually predicts

small but non-zero values which accumulate to a larger annual average.225
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Figure 5. Annual mean 10 µm DAOD during the year 2009 observed by IASI (a), predicted by the trained dust model (b), and simulated by

EMAC with reference (c) and trained (d) mineral emissions.

We conclude that the model generally reproduces the main features of the global dust distribution. This makes it suitable for

the application in climate models, as discussed in the next sections. Additionally, valuable information can be obtained directly

from analysing the model.

To study the relative contribution of different source regions to the global dust emissions, we compute hourly dust emission

fluxes by evaluating the dust emission submodel (light grey box in Fig. 1) from the trained model stand-alone. Accumulating230

the emission fluxes from the 9 major dust source regions considered by Kok et al. (2021) over the test period (year 2009) yields

the fractional contributions to the global dust emissions shown in Table 1. These contributions are well within the range of the

models considered by Kok et al. (2021), with a comparably large contribution from the Middle East and Central Asia.

To estimate the importance of the individual input variables, we made use of the skill score S defined by Taylor (2001),

S =
4(1+ r)4

(σ1/σ2 +σ2/σ1)2(1+ r0)4
, (6)235
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Table 1. Fractional contribution of major source regions to the global mineral dust emissions.

Region Contribution to global emissions Coordinates

Western North Africa 21 % 20◦W to 7.5◦E, 18 to 37.5◦N

Eastern North Africa 18 % 7.5 to 35◦E, 18 to 37.5◦N

Southern Sahara and Sahel 13 % 20◦W to 35◦E, 0 to 18◦N

Middle East/Central Asia 26 % 35 to 75◦E, 0 to 35◦N and 35 to 70◦E, 35 to 50◦N

East Asia 8.4 % 70 to 120◦E, 35 to 50◦N

North America 1.7 % 130 to 80◦W, 20 to 45◦N

Australia 3.2 % 110 to 160◦E, 10 to 40◦S

South America 1.9 % 80 to 20◦W, 0 to 60◦S

Southern Africa 1.1 % 0 to 40◦E, 0 to 40◦S

where r is the correlation coefficient and σ1 and σ2 are the standard deviations of modelled and observed values. As maximum

attainable correlation coefficient we simply used r0 = 1 since we focus on relative changes of the skill score (a more accurate

estimate r0 < 1 would result in higher skill scores).

We computed the DAOD during the test period multiple times, each time replacing the values of one input variable with

random values sampled from the probability distribution of the same variable, or, in the case of topography, using its mean240

value (695 m) as a constant input (random values would correspond to an unrealistic terrain). Subtracting the resulting skill

scores from those obtained using the full input data yields the impact ∆S of each variable, which indicates the importance

of the variable to the model predictions. Figure 6 identifies soil moisture and surface friction velocity as important input

parameters. Due to the slightly different methodology, the exact value obtained for the topography should not be directly

compared with the other values, but the use of topographic data clearly improves the model predictions. In contrast, the effect245

of snow is small because conditions where snow suppresses emissions that are not already suppressed by other input variables

are rare. We assume that the importance of the variables for the model predictions is to some extent representative of their

real importance for dust emissions. This assumption neglects the interdependence of the input variables as well as the effect

of model approximations and needs to be verified by detailed analysis in future studies. Nevertheless, the importance of soil

moisture in our model is remarkable and consistent with the conclusions of Klingmüller et al. (2016).250

Similarly, the dependence of modelled emissions on input parameters should indicate realistic relationships. As an example,

the dependence of emissions on the two local input variables with the greatest influence on the skill score, surface friction

velocity and soil moisture, was assessed (Fig. 7). Under ideal conditions, i.e. without soil moisture, vegetation and snow, emis-

sions increase only slowly with surface friction velocity until they increase more rapidly from about 0.2 ms−1. As soil moisture

increases, emissions decrease until they vanish at a volumetric soil moisture of about 0.3. Like the parameter importance, this255

analysis will be addressed in detail in a separate study.
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Figure 6. The importance of the individual input variables, estimated by their impact on the model skill score S. For each variable, the impact

was obtained by comparison with a model evaluation replacing the variable with random or, in case of the topography, constant values.

Figure 7. The modelled emission flux as a function of surface friction velocity (a, without soil moisture) and soil moisture (b, with surface

friction velocity 0.7 m s−1). The flux was computed assuming the absence of vegetation and snow and an average clay fraction (20.6 %).

The topography and land cover factors were set to unity and the normalised described in Section 6 was applied.
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Figure 8. Mean aeolian dust emission flux during the test period.

6 EMAC setup

The output of the emission submodel corresponds to the change of the DAOD (weighted by the grid cell area and the standard

deviation of the DAOD). Avoiding assumptions on the size distribution and optical properties of the mineral dust particles and

consistent with our simplifying assumption that dust extinction and concentration are proportional, we converted the hourly260

emission flux output to a mass concentration flux in kg m−2 s−1 using a single tuning parameter chosen such that the global

annual emission for 2008 amounts to 4.3 Gt which is the upper limit of the range reported by Huneeus et al. (2011). This

choice represents a relatively high global total emission. However, since our model does not use any a priori emission mask,

also regions with locally very low emissions contribute to the global total emissions, which significantly enhances the value

due to the large area of those regions. Our choice for the total emission value is supported by the realistic DAOD levels we265

obtain over the dust belt. The mean of the resulting emission flux during the test period 2009 is shown in Fig. 8.

The resulting dust emission flux data were used in a validation simulation with the ECHAM/MESSy atmospheric chem-

istry–climate model (EMAC) (Jöckel et al., 2006). We employed a recent EMAC version based on release 2.55.2. A list of the

activated EMAC submodels including references is provided in Table A1 in appendix A.

The total dust emission flux was distributed over the accumulation and coarse modes consistently with the online dust emis-270

sion scheme, where 94.7 % of the dust is emitted into the coarse mode. The modes are represented by log-normal distributions

with fixed geometric standard deviations (σg = 1.59 for the accumulation and σg = 2 for the coarse mode). The count median

diameter of each mode can vary with a fixed threshold between accumulation and course mode at 1.4 µm. Accordingly, the

percentage of fine particles in the emissions is comparable to the 4.3 % (95 % conficence interval 3.5 to 5.7 %) found by Kok

et al. (2017) for particles smaller than 2 µm. There is no strict upper limit for the size of coarse particles, but super coarse275

particles with diameters exceeding 20 µm are only represented by the upper tail of the log-normal coarse mode.
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The simulation covered three years from 2008 to 2010, where the year 2008 is used as model spin-up period. The results for

the years 2009 and 2010 are used to evaluate the performance of the trained dust emissions during test and training periods,

respectively.

Horizontally, the setup used a Gaussian T63 grid with approximately 1.9° latitude/longitude spacing. The simulation as-280

similated observational data by nudging temperature, vorticity and divergence above the boundary layer to meteorological

reanalysis data of the ECMWF and by using the sea surface temperature from the same dataset.

For comparison, we performed a reference simulation with the same settings but using the online dust emission scheme of

Klingmüller et al. (2018) instead of the trained emissions.

7 EMAC evaluation285

The aerosol optical depth (AOD) at 10 µm wavelength is dominated by coarse aerosol particles which in turn are dominated

by mineral dust and sea salt particles. Accordingly, we obtain the EMAC DAOD by weighting the 10 µm AOD with the

volume fraction of dust in the local dust (DU, 2.65 g cm−3) and sea salt (SS, 2.17 g cm−3) mixture, DAOD(10µm) =

AOD(10µm) VDU/(VDU +VSS).

The results for the annual mean 10 µm DAOD for the year 2009 from the reference and validation simulations are shown in290

Fig. 5 (c) and (d). Both simulations yield a DAOD distribution similar to that obtained from IASI. Note that the model results

are obtained from daily average values and thus consider data for all model time steps of the year, whereas the IASI result is

based on the instantaneous values which are retrieved at most twice a day and include a substantial amount of missing values,

therefore the IASI distribution is more noisy and has a larger year-on-year variability.

The fact that the trained emissions reproduce the high DAOD values that are expected over the dust belt, but low levels295

elsewhere, is quite remarkable as the model architecture treats all regions worldwide equally and there is no a priori selection

of dust source regions involved. Moreover, the spatial pattern of the DAOD resulting from the trained emissions agrees more

closely with the IASI observation than the reference result. The correlation coefficient of the modelled annual grid cell DAOD

values and the corresponding IASI values (re-sampled to the model grid) is 0.82 for the reference simulation, but 0.88 for the

trained emissions.300

The annual mean AOD at 550 nm from the reference and validation simulations are compared to the corresponding MODIS

observations in Fig. 9. Again the result based on the trained emissions is closer to the observations than the reference results.

The correlation coefficient of the modelled annual grid cell AOD values and the corresponding MODIS values (re-sampled to

the model grid) is 0.72 for the reference simulation, and 0.73 for the trained emissions.

To complement the satellite observations, we considered ground based observations by Aerosol Robotic Network (AERONET)305

stations in the 7 dust affected regions defined by Klingmüller et al. (2018) (Fig. 10). We quantified the degree of agreement of

AERONET and EMAC daily AOD values using the Pearson correlation coefficient and the skill score S. The AERONET data

was interpolated to the 550 nm wavelength of the EMAC output using the Ångström exponent.
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Figure 9. Annual mean 550 nm AOD during the year 2009 observed by MODIS (a) and simulated by EMAC with reference (b) and trained

(c) mineral dust emissions.
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Figure 10. Location of the AERONET stations used for the model evaluation.

Figure 11 reveals that the validation simulation using the trained emissions achieves substantially higher skill scores and

correlation coefficients over Africa and the Middle East than the reference simulation. Over regions where the atmospheric310

aerosol is less dominated by aeolian dust, including Asia, the Americas and Australia, the effect of the new emissions is

smaller but generally enhancing both, the skill scores and the correlation coefficients.

Figure 12 compares the modelled annual mineral dust deposition to observations at different sites worldwide (Huneeus

et al., 2011; Checa-Garcia et al., 2021). Both, the correlation coefficient r and the skill score S are higher for the validation

simulation, whereas the root-mean-square error (RMSE) and the mean average error (MEA) are smaller. All metrics indicate315

that the data-driven emission scheme used in the validation simulation results in a more realistic global distribution of the

mineral dust deposition than in the reference simulation.
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Figure 11. Skill score S and correlation coefficient r comparing the daily AOD simulated by EMAC with AERONET observations. The

AERONET data was interpolated to the 550 nm wavelength of the model output using the Ångström exponent. The red, green and grey bars

depict the differences between the results for the trained emissions and for the reference emissions, with green bars indicating that the results

for the trained emissions agree more closely with the measurements by at least 1 standard deviation (σ). The corresponding error intervals

are indicated by darker colours.
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Figure 12. Comparison of the mineral dust deposition simulated by EMAC and the observations from the AeroCom dust benchmark data set

(Huneeus et al., 2011). Correlation coefficient r, root-mean-square error RMSE, mean absolute error MAE and skill score S are provided for

both, the reference simulation and the validation simulation using the trained dust emissions.
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8 Conclusions

We presented a trainable aeolian dust model which successfully learned from satellite observations to compute realistic global

dust distributions and emissions based on the environmental conditions. On the one hand, the model architecture incorpo-320

rates little a priori assumptions about the nature of dust sources, on the other hand we explicitly modelled the better known

components of the dust cycle, in particular the atmospheric transport.

We focussed on the emission submodel of the trained model, representing a novel dust emission scheme which was derived

independently of existing methods. Using the EMAC model as example, we demonstrated its superior performance when

applied within an atmospheric chemistry-climate model.325

Future developments will include model improvements by adjusting hyperparameters and resolution, addressing characteris-

tics of the DAOD data set through preprocessing and model adjustments, considering additional input data (e.g., on biological

soil crusts, Rodriguez Caballero et al., 2022), and utilising related machine learning models (e.g., for soil moisture, Kling-

müller and Lelieveld, 2021).

The analysis of data-driven models will provide new insights into the nature of dust mobilisation processes and their depen-330

dency on environmental conditions. This might also allow to refine existing parametrisations of mineral dust emissions, e.g.,

the surface friction velocity or soil moisture terms.

Relating emission sources or surface concentrations to observed column burdens of gases and particles, being influenced

by transport and other processes at the surface and in the atmosphere, is an emerging challenge in applications of satellite

observations. The concept presented here in the context of aeolian dust can be generalised and applied to other atmospheric335

constituents for which satellite retrievals are available, for example additional aerosol components, nitrogen oxides or water

vapour.

Appendix A

The submodels used in the EMAC simulations are listed in Table A1.

Code and data availability. The data-driven dust model and all relevant data are available in the Edmond Open Research Data Repository340

of the Max Planck Society (https://doi.org/10.17617/3.XPDIES). The ECHAM climate model is available to the scientific community under

the MPI-M Software License Agreement (https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability, last access: 8 September

2022, MPI-M, 2022). The Modular Earth Submodel System (MESSy) is continuously further developed and applied by a consortium of

institutions. The usage of MESSy and access to the source code are licensed to all affiliates of institutions which are members of the MESSy

Consortium. Institutions can become a member of the MESSy Consortium by signing the MESSy Memorandum of Understanding. More345

information can be found on the MESSy Consortium Website (https://www.messy-interface.org, last access: 8 September 2022, MESSy,

2022). Commit 869808b6 in the MESSy source code repository was used, which is based on MESSy version 2.55.2. All relevant features

are included in the “devel” branch and will be available in the next official release.
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Table A1. EMAC submodels used in the present study

Submodel Domain Reference

AEROPT Aerosol optical properties Lauer et al. (2007); Klingmüller et al. (2014)

AIRSEA Air-sea exchange Pozzer et al. (2006)

BIOBURN Biomass burning emissions Kaiser et al. (2012)

CLOUD Cloud physics Jöckel et al. (2006)

CLOUDOPT Cloud optical properties Dietmüller et al. (2016)

CONVECT Convection Jöckel et al. (2006)

CVTRANS Convective transport Jöckel et al. (2006)

DDEP Dry deposition Kerkweg et al. (2006a)

E5VDIFF Vertical diffusion

GMXe Aerosol microphysics Pringle et al. (2010)

GWAVE Gravity waves

JVAL Photolysis Sander et al. (2014)

LNOX Lightning NOx Tost et al. (2007)

MECCA Gas-phase chemistry Sander et al. (2019)

OFFEMIS Offline emissions Kerkweg et al. (2006b)

ONEMIS Online emissions Kerkweg et al. (2006b)

ORBIT Orbital parameters Dietmüller et al. (2016)

ORACLE Organic aerosol composition and evolution Tsimpidi et al. (2014)

RAD Radiative transfer Dietmüller et al. (2016)

SCAV Scavenging Tost et al. (2006)

SEDI Sedimentation Kerkweg et al. (2006a)

SURFACE Surface parametrisations

TNUDGE Tracer nudging Kerkweg et al. (2006b)
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