
Functional ANOVA for Carbon Flux Estimates from Remote
Sensing Data
Jonathan Hobbs1, Matthias Katzfuss2, Hai Nguyen1, Vineet Yadav1, and Junjie Liu1

1Jet Propulsion Laboratory, California Institute of Technology
2Texas A&M University

Correspondence: Jonathan Hobbs (Jonathan.M.Hobbs@jpl.nasa.gov)

Abstract. The constellation of Earth-observing satellites now produces atmospheric greenhouse gas concentration estimates

across multiple years. Their global coverage is providing additional information on the global carbon cycle. These products

are combined with complex inversion systems to infer the magnitude of carbon sources and sinks around the globe. Multiple

factors, including the atmospheric transport model and satellite product aggregation method, can impact flux estimates. Func-

tional analysis of variance (ANOVA) invokes a spatio-temporal statistical model to efficiently estimate common flux signals5

across multiple inversions, and partitions variability across the discrete factors considered. The approach is illustrated on inver-

sion experiments with different satellite retrieval aggregation methods and identifies significant flux anomalies in the presence

of mode differences across aggregation methods. Functional ANOVA is also applied to a recent flux model intercomparison

project (MIP), and the relative magnitudes of transport model effects and data source (satellite versus in situ) are similar but

exhibit slightly different importance for inversions over different continents.10

1 Introduction

Many of the key processes in the global carbon cycle have undergone substantial change in recent decades, yet their impacts

remain challenging to estimate. This is due in large part to the sparsity of direct observations of carbon fluxes. In particular,

a lack of global coverage requires alternative approaches for understanding the global carbon cycle. Fluxes can be inferred15

indirectly with atmospheric transport models in combination with information on atmospheric carbon dioxide concentration.

Frequent global CO2 estimates from satellites Greenhouse Gases Observing Satellite (GOSAT; Kuze et al., 2009) and the

Orbiting Carbon Observatory-2 (OCO-2; Eldering et al., 2017) have enhanced the tractability and precision of flux inversion.

Since the satellite estimates arise from a retrieval (O’Dell et al., 2018), the end-to-end inference from satellite radiance spectra

to flux estimates involves two complex inverse problems subject to multiple sources of uncertainty (Cressie, 2018), including20

observational errors, spatio-temporal representation uncertainty, and model transport error (Engelen et al., 2002). Some flux

solutions attempt to account for these sources in their representation of the posterior uncertainty, but these are not always
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available and a coherent probabilistic assessment becomes challenging in the presence of multiple flux estimates with varying

assumptions. Further, the spatio-temporal structure of flux estimates is of particular interest, and dependence can be exploited

in quantifying uncertainty. The statistical methodology in this work provides a framework for this common situation.25

Different flux estimates can arise from combinations of multiple categorical factors, and partitioning their relative contribu-

tions to the range of solutions can guide priorities for future research in carbon cycle science. In this work we are particularly

interested in flux estimates derived from different inversion systems, such as those investigated in model intercomparison

projects (MIPs; Thompson et al., 2016; Gaubert et al., 2019; Crowell et al., 2019). A second factor of interest is the makeup of

the CO2 concentration data used in the inversions. Our effort contrasts inversions that use Level 2 satellite retrievals directly30

versus inversions that use Level 3 products produced through data fusion (Nguyen et al., 2017).

Given a set of flux maps obtained under different scenarios, or combinations of these factors of interest, our goal is to find

common features among the scenarios, and to identify systematic ways or regions in which fluxes from different scenarios

differ. Analysis of variance (ANOVA) is a statistical modeling framework that facilitates the estimation of the common and

factor-specific effects. It further characterizes the magnitude of the differences within factors relative to the inherent variability35

within a scenario. Model assumptions dictate the estimation of this within-scenario variability and will be an additional focus

of our investigation. ANOVA methodology has been extended to functional data, such as time series and spatial fields, where

it can provide a coherent depiction of space/time patterns and anomalies due to various factors (Kaufman and Sain, 2010).

The ANOVA approach can be particularly useful for analyzing output from a collection Earth system models or assimilation

systems with a common quantity of interest and similar experimental setup. This setup is often formalized as a MIP, an40

enterprise becoming commonplace among multiple component process models in Earth system modeling (see Eyring et al.,

2016, and associated special issue). Several MIPs have been conducted for carbon flux inversion systems, both for in situ

observations (Gaubert et al., 2019) and for the growing satellite record (Crowell et al., 2019; Peiro et al., 2022). These recent

flux MIPs report on experiments involving multiple inversions from several modeling groups using different combinations of

in situ and spatially aggregated OCO-2 products in multiple observing modes. In addition to diagnosing differences among45

combinations of data sources and inversion systems, these efforts seek consensus flux estimates that suitably combine the

results. Cressie et al. (2022) discuss an ANOVA-based approach with associated statistical model to develop weights for

individual results in estimating a consensus flux, and the method is demonstrated for regionally-aggregated fluxes.

Functional ANOVA extends the classical approach to settings with quantities of interest that are functions of known in-

puts such as space and/or time. The statistical model is typically extended with a specification for the relationships among50

the ANOVA components across space/time. For applications involving spatial fields, individual ANOVA effects are typically

assumed to be spatially correlated, and this structure can be estimated from the data available. This strategy has been applied to

output from regional climate models (RCMs; Kaufman and Sain, 2010; Sain et al., 2011; Kang and Cressie, 2013). Kaufman

and Sain capture spatial dependence in ANOVA effects with Gaussian process (GP) models. Estimation and inference for GP

models can be computationally demanding due to operations such as matrix inversion and Cholesky factorization. Sain et al.55

develop a Markov random field (MRF) model with a sparse precision matrix, but in two spatial dimensions, the cost for the

necessary Cholesky decomposition isO(N3/2), whereN is the number of locations. Another option used in the current work is
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to model the Cholesky factor as sparse with the Vecchia approximation (Vecchia, 1988; Katzfuss and Guinness, 2021; Schäfer

et al., 2021).

In this paper, we implement the functional ANOVA methodology for multiple flux inversion solutions in order to identify60

meaningful, spatially-coherent, carbon cycle signals and partition variability among various solutions in the multi-model en-

semble. We illustrate the approach for a recent model intercomparison (MIP) effort (Peiro et al., 2022) and for flux estimates

produced with multiple spatial aggregation approaches (Nguyen et al., 2020). Specifically, in section 2, we formulate the sta-

tistical model for functional ANOVA. In section 3, we describe the OCO-2 flux MIP and datasets. Results are presented in

section 4, and concluding remarks are provided in section 5.65

2 Datasets

In subsequent sections, we employ the functional ANOVA methodology for multiple collections of flux inversions using in

situ data and products from OCO-2. For the satellite data, the inversion systems use retrievals of XCO2, the column-average

dry air mole fraction of CO2. These retrievals, termed Level 2 data products, use the Atmospheric Carbon Observations from

Space (ACOS) retrieval algorithm (O’Dell et al., 2018) to infer atmospheric CO2 from the Level 1 satellite spectra. Additional70

diagnostic data from the retrievals, including XCO2 averaging kernels, are used in the inversions to map model states to

the retrieval space when the data products are assimilated. For OCO-2 in particular, the large data volume and small spatial

footprint are impractical for global flux inversions, so the retrievals are often aggregated spatially within a single polar orbit.

These aggregated retrievals are examples of Level 3 products that aim to provide additional utility to a broader user community

by providing manageable data volume and a regular spatio-temporal structure. In addition, aggregation can provide a precise75

estimate of a quantity of interest (CO2 concentration) at a coarser resolution that is still meaningful for applications. As

an illustration of functional ANOVA, we investigate the impact of spatial aggregation on flux estimates in the presence of

additional sources of variability.

2.1 Records of Fused CO2

An ongoing NASA MEaSUREs effort aims to provide inversion-ready data products that use OCO-2 and GOSAT retrievals.80

The effort produces spatially-aggregated and gap-filled estimates of XCO2 at daily intervals that span the period of overlap for

these satellite records, from 2014 to present. The gridded OCO-2 product and multi-instrument fused product are available from

the GES DISC (https://doi.org/10.5067/A613YBQVPHCD). The spatially aggregated XCO2, along with additional quantities

used in flux inversion, is estimated using a local kriging approach (Nguyen et al., 2020). The methodology accounts for and

exploits the short-range spatial correlation present in the Level 2 retrievals (Torres et al., 2019; Worden et al., 2017). The spatial85

dependence and uncertainty associated with the aggregated XCO2 are estimated from the available Level 2 retrievals and vary

in space and time. The spatial aggregation also reduces the data volume, making the OCO-2 record manageable for ingestion

into global flux inversion systems.
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Other spatial aggregation approaches have been devised for OCO-2 inversions. The averaging outlined in Baker et al. (2022)

has been implemented for the OCO-2 flux MIP (Peiro et al., 2022) and will be discussed in the next subsection. In addition,90

the NASA Carbon Monitoring System Flux (CMS-Flux) four-dimensional variational (4D-Var) inversion framework has used

an aggregation approach termed “super-obs” (Liu et al., 2017; Byrne et al., 2020). The model is driven by the Goddard Earth

Observing System version 5 of the NASA Global Modeling Assimilation Office (GEOS-FP) meteorology and runs at a 4◦×5◦

resolution. The CMS-Flux team has performed an experiment with two separate inversions: a run that ingested the traditional

OCO-2 super-obs and another that ingested the MEaSUREs gridded product.95

The ANOVA methodology is particularly convenient for analyzing the quantitative outcomes of experiments or trials under

various discrete combinations of one or more factors of interest. The approach formulates a statistical model that is outlined

in the next section. The parameters of the model include an overall mean response and additive effects for each combination

of factors. Replication within factor combinations allows the decomposition of variability between (mean differences) and

within combinations (noise). Our demonstration of the functional ANOVA for the records of fused CO2 incorporates the data100

aggregation method as one experimental factor, with the two levels being the super-obs approach (Control) and the SSDF

(Fused). The second factor in this investigation will be an interannual effect, contrasting June-July-August (JJA) of 2016

with the same time period in 2015. The variable of interest are the CMS-Flux estimates available at monthly increments, so

individual months represent replicates in this example. For spatio-temporal data applications, time is often used as a pseudo-

replicate (Cressie et al., 2022; Sain et al., 2011). Figure 1 shows the collection of CMS-Flux estimates that are used in the105

functional ANOVA demonstration.

2.2 OCO-2 Flux MIP

Our second demonstration of the functional ANOVA approach comes from a multi-institution flux MIP using data products

from OCO-2, which provides global estimates of XCO2 suitable for assimilation into a inversion systems that estimate carbon

fluxes at regional to global scales. The maturity and diversity of inversion systems continue to grow with scientific interest in110

the carbon cycle, and a sizeable collection of research groups have the capability to provide global flux estimates based on

satellite data products. Like many inferences for the Earth system, flux estimation is an ill-posed inverse problem. An inversion

system combines available atmospheric CO2 concentration data with a transport model, prior assumptions on fluxes, and a

statistical/computational inverse method. Various combinations of these system components are employed in satellite CO2

inversion frameworks.115

Multiple flux inversion teams applied a common inversion protocol to their individual inversion systems as part of the OCO-

2 Version 9 Model Intercomparison Project (V9 MIP; Peiro et al., 2022). The MIP was designed in part to quantify the impacts

of the above inversion system elements on flux estimates. In addition, each team conducted multiple inversion experiments

using the same collections of atmospheric CO2 data. The data collections represent combinations of in situ (IS) surface-based

CO2 observations and aggregated OCO-2 retrievals from the Version 9 products (Kiel et al., 2019). The OCO-2 collections120

use combinations of its primary observing modes and surface types: land nadir (LN), land glint (LG), and ocean glint (OG).

As noted previously, the individual retrievals are both variable and moderately correlated in space and time (Worden et al.,
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Figure 1. Monthly flux estimates from CMS-Flux for combinations of year and aggregation method. The top two rows depict fluxes for JJA

of 2015 from the two aggregation methods, and the bottom two rows depict fluxes for JJA 2016. Fluxes are in units of gC m−2 yr−1.

2017). The V9 MIP used spatially aggregated OCO-2 retrievals following the methodology outlined in Baker et al. (2022). The

aggregated retrievals include uncertainty estimates that incorporate assumed spatial correlation in retrieval errors and transport

uncertainty.125

The V9 MIP flux experiment suite includes estimates from ten inversion systems (Peiro et al., 2022, Tables 1-2) and four

combinations of data collections. Our investigation focuses on flux estimates using IS and LNLG data collections, which were

also the focus in the MIP. Further, we illustrate the functional ANOVA for a subset of four inversion systems as outlined in Table

1. This subset was selected to provide a contrast among different atmospheric transport models that have similar resolution for

the flux solution. The functional ANOVA is implemented for the spatially referenced monthly flux estimates for JJA 2016 over130

North America and separately for the same time period over Africa. Figures 2 and 3 provide maps of these collections of flux

estimates. In the subsequent implementation of functional ANOVA, the first factor is the flux model and the second factor is

the data source (IS and LNLG).
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Figure 2. Monthly flux estimates from four inversion systems for JJA 2016 based over North America. The top three rows show flux estimates

using in situ (IS) data, and the bottom three rows show flux estimates from OCO-2 land nadir and glint (LNLG) retrievals.
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Figure 3. Monthly flux estimates from four inversion systems for JJA 2016 over Africa. The top three rows show flux estimates using in situ

(IS) data, and the bottom three rows show flux estimates from OCO-2 land nadir and glint (LNLG) retrievals.
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Table 1. Flux inversion systems in this study; see Tables 1-2 of Peiro et al. (2022) for further details.

Model name Institution Transport model Inverse method

Ames NASA Ames Research Center GEOS-Chem 4D-Var

Baker Colorado State University PCTM 4D-Var

CMS-Flux NASA Jet Propulsion Laboratory GEOS-Chem 4D-Var

OU University of Oklahoma TM5 4D-Var

3 Functional ANOVA

Analysis of variance (ANOVA) is a statistical method with a long history connected to designed experiments. In such exper-135

iments, one or more factors can be controlled at levels selected by the the experimenters, and ANOVA provides a framework

for estimating the factors’ impact on response variables of interest. The method relies on replication within combinations of

factors, or treatments, in order to estimate a mean response for each combination of factors, along with a partitioning of vari-

ability between and within treatments. The treatment means are typically re-parameterized into an overall mean and individual

effects for each level of the factors, as well as interaction effects.140

The classic implementation of ANOVA considers a univariate response, such as an integrated or average carbon flux over a

region of interest. This is frequently extended to a multivariate response with MANOVA, and the decomposition of variance is

accompanied by estimation of the correlation structure among the multivariate responses (Johnson and Wichern, 2002). As the

dimension of the multivariate response grows, the number of parameters to be estimated from the available data grows as well.

The ANOVA approach can be extended to spatial fields using tools from functional data analysis and spatial statistical model-145

ing. In this setting, the dimension can be large but the parameter space can be managed through a hierarchical approach and

by exploiting the spatial dependence present in the data. This functional ANOVA approach has been implemented for spatial

fields of output from climate model experiments (Kaufman and Sain, 2010; Kang and Cressie, 2013). Our implementation and

notation for the carbon flux inversion results generally follows that from Kaufman and Sain.

3.1 Statistical Model150

In the current work, we invoke a two-way functional ANOVA in the context of carbon flux fields over land. In the two-way

model, there are two experimental factors examined, generically termed Factor A and Factor B. In the records of fused CO2

example, year is factor A, and aggregation method is factor B. In the OCO-2 flux MIP example, the modeling group is factor

A, and data source is factor B. Then yijk(s) represents the flux field at location s for level (setting) i of factor A, level j of

factor B, and replicate k. In addition, flux inversions incorporate a space-time varying prior flux field, which we denote y(0)
ijk(s).155

The prior fluxes incorporate biospheric contributions, fossil fuel emissions, and fires. The CMS-Flux prior methodology is

summarized in Liu et al. (2017) and Byrne et al. (2020), and the OCO-2 MIP prior specifications are summarized in Table 1 of

8
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Table 2. Summary of flux inversion results used in functional ANOVA examples. Region numbers indicate TRANSCOM regions used in

each example (e.g. Crowell et al., 2019).

Experiment Domain Time Period Factor A Factor B

Records of Fused CO2 Eurasia JJA 2015, 2016 Year Aggregation Method

Regions 7, 8, 11 nα = 2 nβ = 2

OCO-2 V9 MIP North America JJA 2016 Inversion System Data Source

Regions 1, 2 nα = 4 nβ = 2

OCO-2 V9 MIP Africa JJA 2016 Inversion System Data Source

Regions 5, 6 nα = 4 nβ = 2

Peiro et al. (2022). The functional ANOVA statistical model can be written in two equivalent forms,

yijk(s)− y(0)
ijk(s) = µij(s) + εijk(s) (1)

= µ(s) +αi(s) +βj(s) + (αβ)ij(s) + εijk(s). (2)160

The cell means formulation in (1) clearly defines a unique mean field for each treatment, µij , at level i of factor A and level

j of factor B. With nα levels of factor A and nβ levels of factor B, there are nα×nβ cell mean fields. The effects model

in (2) separates the mean field into the additive effects of the experimental factors. In the effects model, µ is the mean field

representing spatial features in the common response, αi quantifies the variation around µ due to level i of factor A, βj

quantifies the variation around µ due to level j of factor B, and (αβ)ij is an interaction effect. In both forms, εijk quantifies the165

internal variability within each scenario. In all examples, the replication within each treatment, indexed by k, is across months

within a season. Table 2 defines the factors for the carbon flux functional ANOVA examples.

The effects model (2) is commonly used in ANOVA because it provides a convenient setup for partitioning variability

among the factors and their interaction. Further, inference for the overall mean effect µ and linear contrasts among the factors

is straightforward. However, the model is over-parameterized, so constraints among the effects are often enforced to ensure170

identifiability. Following Kaufman and Sain (2010), the flux inversion examples invoke sum-to-zero constraints, meaning that

the factor and interaction effects add to zero, e.g.

nα∑

i=1

αi(s) = 0

nβ∑

j=1

βj(s) = 0
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for all locations s. For interaction effects, the constraints apply across all levels of each factor,175
nα∑

i=1

(αβ)ij(s) = 0; j = 1, . . . ,nβ ,

nβ∑

j=1

(αβ)ij(s) = 0; i= 1, . . . ,nα.

In classic univariate ANOVA, the effects model parameters are estimated by assembling a series of contrast effects of reduced

dimension to ensure identifiability. For factor A, there are nα−1 of these contrast effects, denoted α∗. In the case where nα = 2,180

there is a single contrast effect and can be interpreted as the difference in mean response for the two levels of Factor A; in the

records of fused CO2 example, this contrast effect is the difference between the two years studied, 2016 and 2015. Similarly,

factor B has nβ − 1 contrast effects β∗, and there are (nα− 1)× (nβ − 1) contrast effects for interaction, (αβ)∗. The contrast

effects are related to the original effects model (2) parameters through linear transformations. This is discussed further in the

supplement and in Kaufman and Sain (2010).185

Since the quantities of interest are spatial fields, the ANOVA effects are functions of location. The estimation can account

for this structure and exploit potential spatial correlation if a suitable spatial statistical model is incorporated in a hierarchical

fashion. To that end, a Gaussian process (GP) is assumed for each spatial field. For the spatial field of mean effects,

µ∼GP (0,Cθµ
).

The covariance function C describes the covariance between any realizations as a function of their locations. For the carbon flux190

inversion examples, the Matérn covariance model is used and is parameterized as θµ ≡ {σµ,λµ,νµ}, where σµ is a standard

deviation, λµ is a range parameter describing the rate of decay of spatial correlation with distance, and νµ is a smoothness

parameter (Stein, 1999). The GP mean here is taken to be zero because the flux prior has been subtracted in (1)-(2).

Analogous GP assumptions are made for the remaining ANOVA model components. Some of these components, particularly

the error process εijk have multiple realizations, which are assumed to be independent and identically distributed (iid) GP195

realizations,

εijk ∼GP (0,Cθε
); i= 1, . . . ,nα; j = 1, . . . ,nβ ; k = 1, . . . ,nε

The GP assumptions are applied to the contrast effect specification of the main effects and interactions,

α∗i′ ∼GP (0,Cθα
); i′ = 1, . . . ,nα− 1

β∗j′ ∼GP (0,Cθβ
); j′ = 1, . . . ,nβ − 1200

(αβ)∗i′j′ ∼GP (0,Cθαβ
); i′ = 1, . . . ,nα− 1; j′ = 1, . . . ,nβ − 1

3.2 Estimation

Bayesian inference is commonly used for hierarchical spatio-temporal statistical models and has been implemented in previous

work on functional ANOVA incorporating spatial dependence (Kaufman and Sain, 2010; Kang and Cressie, 2013). The com-
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putational overhead for Bayesian inference can be substantial, particularly when working with GP models for spatial processes,205

since operations must be performed on large, dense covariance matrices numerous times. Therefore, the GP models in the func-

tional ANOVA are formulated using the Vecchia approximation of Katzfuss and Guinness (2021). The representation yields

sparse matrices that allow for more efficient computations in Bayesian inference. The GP approximations are still functions of

the same parameters as the original Matérn models, and each ANOVA component has a unique set of parameters. Bayesian

inference interrogates the joint posterior distribution of the ANOVA components and parameters, p(), given the available flux210

fields. This is written as

p
(
µ,α∗,β∗,(αβ)∗,θ|y−y(0)

)
∝ f

(
y−y(0)|α∗,β∗,(αβ)∗,θ

)
π (θ) , (3)

where f(y−y(0)|·) is a joint Gaussian likelihood arising from the GP models for the ANOVA components, including the noise,

and π (θ) is a prior distribution for the collection of GP parameters. Prior distributions are independent for all elements of θ.

The distributional forms and parameters are selected to maintain proper, yet diffuse, prior distributions guided by previous work215

on Bayesian analysis of hierarchical models (Gelman, 2006; Kaufman and Sain, 2010). Further details on the prior distribution

assumptions are provided in the supplement.

The posterior distribution (3) is complex and high-dimensional, but it can be sampled using Markov chain Monte Carlo

methods (MCMC). In particular, a Metropolis-within-Gibbs MCMC algorithm is used (Gelman et al., 2013). This approach

uses the general Gibbs sampler to sample sequentially at each iteration from individual-component conditional posterior dis-220

tributions, p(µ|θµ,θε,y−y(0)), p(α∗|θα,θε,y−y(0)), p(β∗|θβ ,θε,y−y(0)), and p((αβ)∗|θαβ ,θε,y−y(0)). As outlined

in the supplement, the individual component distributions are multivariate Gaussian and depend on summary statistics of the

data y−y(0), the GP parameters for the component and the noise, but not on other ANOVA components. In addition to these

distributions, the Gibbs sampler cycles through draws from the GP parameters conditional distributions: p(θµ|µ), p(θα|α∗),
p(θβ |β∗), p(θαβ |(αβ)∗), and p(θε|(y−y(0)). Each of these distributions are sampled with a Metropolis-Hastings (MH)225

proposal. Further details on the MCMC procedure can be found in the supplement.

The functional ANOVA model and MCMC algorithm for the carbon flux examples is broadly similar to previous demon-

strations with climate model output (Kaufman and Sain, 2010; Sain et al., 2011; Kang and Cressie, 2013), but there are a few

notable extensions in the current work. The OCO-2 MIP examples use more than two levels per factor, which is addressed

through the contrast effects. All examples include Bayesian inference for all Matérn parameters; in previous work the smooth-230

ness parameter ν is often fixed. Finally, the current work invokes the Vecchia approximation (Katzfuss and Guinness, 2021)

for the Gaussian processes, which provides necessary computational efficiency for the MCMC algorithm.

4 Results

The MCMC algorithm outlined in the previous section yields a large collection of random draws from the posterior distribution

of the GP parameters and ANOVA components. The posterior samples can be summarized for individual parameters, as well as235

for arbitrary functions of them. For example, while the MCMC samples the contrast effects α∗, the draws can be transformed
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Table 3. Functional ANOVA Gaussian process parameter estimates for the CMS-Flux inversions in the records of fused CO2 experiment.

The posterior median is the value listed first in each cell, and the values in parentheses are the lower and upper endpoints of 95% posterior

credible intervals. Data and standard deviations have units of gC m−2 yr−1. Range parameters have units of km and smoothness parameters

are unitless.

CMS-Flux Fusion Experiment, Eurasia JJA 2015-16

Parameter Mean µ Year α Aggregation β Interaction (αβ) Error ε

2016 - 2015 Fused - SuperObs

Standard Deviation σ 55 (34, 87) 20 (1, 58) 2.5 (0.1, 8.6) 1.9 (0.1, 7.0) 233 (225, 242)

Range λ [km] 1100 (520, 3000) 1550 (170, 6800) 150 (50, 410) 160 (60, 440) 420 (370, 490)

Smoothness ν 0.88 (0.53, 1.51) 1.08 (0.60, 1.67) 0.94 (0.50, 1.54) 0.95 (0.50, 1.58) 0.78 (0.69, 0.88)

to summarize the main effects α. The functional ANOVA results for the experiments outlined in Table 2 are summarized in

various ways in this section.

4.1 Records of Fused CO2

The CMS-Flux inversion results over Eurasia for JJA 2015 and 2016 using the super-obs and data fusion aggregation methods240

were incorporated into the first functional ANOVA implementation. Table 3 summarizes the posterior distributions for the

GP parameters for each of the ANOVA components. The estimated GP standard deviation is largest for the error fields ε,

indicating that the month-to-month variability within each treatment combination is relatively large. However, the estimated

range parameter λε is relatively small. The estimated range for the overall mean µ and year effect α exceed 1000 km and are

an order of magnitude larger.245

The location-specific posterior means of the ANOVA components are summarized in Figure 4. The upper left panel provides

the estimates of µ(s), the overall mean deviation from the prior flux for JJA across the two years, 2015-16. There are broad

swaths of the domain with sizeable negative mean effects, particularly over central and eastern Asia. The estimated difference

between 2016 and 2015, α∗(s), shown in the upper right panel also exhibits large-scale coherence but of a modest magnitude.

The contrast effects for the aggregation method, β∗(s), and for interaction, (αβ)∗(s), are shown in the bottom left and right250

panels, respectively. In both cases, the magnitudes are small with limited spatial coherence.

The product development team for the records of fused CO2 is particularly interested in the impact of the aggregation

method on the estimated fluxes from an inversion system. Figure 5 illustrates a metric from the posterior distribution for de-

tecting meaningful flux anomalies in the presence of different aggregation methods. The left panel shows Pr(|µ(s)|> |β∗(s)|),
the location-specific posterior probability that the overall mean flux anomaly has a magnitude greater than the magnitude of255

the effect due to aggregation method. The probabilities are nearly 1 for the entire domain, with some slight regional differ-

ences. This suggests that the overall mean flux anomalies are meaningfully distinguishable from differences due to use of the

fused product versus the super-obs approach. Similarly, the right panel of Figure 5 shows Pr(|α∗(s)|> |β∗(s)|), the posterior
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Figure 4. Posterior means for functional ANOVA model components for the records of fused CO2 example. Note the different color scales

for the panels.
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Figure 5. Location specific posterior probabilities for the records of fused CO2 example. Left panel shows the probability that the magnitude

of the overall mean exceeds the aggregation method effect, Pr(|µ(s)|> |β∗(s)|). Right panel shows the probability that the magnitude of

the year effect exceeds the aggregation method effect, Pr(|α∗(s)|> |β∗(s)|)

probability that the year-to-year difference has a magnitude greater than the aggregation effect. These probabilities are fairly

uniform spatially at around 0.6.260

4.2 OCO-2 Flux MIP

The functional ANOVA inference was carried out separately for flux fields from the OCO-2 V9 flux MIP over North America

and Africa for JJA 2016. In both cases the two ANOVA factors are the flux inversion system with four levels (modeling groups)

and the data source with two levels (IS and LNLG). These two regions represent distinct scenarios for the methodology for a

number of reasons. The carbon cycle of the temperate and boreal land regions, and transitions therein, of North America differ265

from the tropical and subtropical areas of Africa. In addition, data availability for the two regions is markedly different. As

shown in Figure 1 of Peiro et al. (2022), the density of in situ CO2 observations is substantially higher over North America than
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Table 4. Functional ANOVA Gaussian process parameter estimates for North America and Africa for JJA 2016. The posterior median is the

value listed first in each cell, and the values in parentheses are the lower and upper endpoints of 95% posterior credible intervals. Data and

standard deviations have units of gC m−2 yr−1. Range parameters have units of km and smoothness parameters are unitless.

OCO-2 MIP, North America JJA 2016

Parameter Mean µ Flux Model α Data Source β Interaction (αβ) Error ε

Standard Deviation σ 153 (137, 173) 22 (14, 35) 19 (2, 39) 0.6 (0.2, 2.1) 409 (403, 414)

Range λ [km] 196 (159, 248) 2300 (1000, 6900) 340 (80, 740) 160 (70, 360) 104 (101, 108)

Smoothness ν 1.10 (0.99, 1.22) 1.06 (0.67, 1.48) 1.30 (0.64, 1.82) 0.89 (0.53, 1.33) 1.28 (1.25, 1.30)

OCO-2 MIP, Africa JJA 2016

Parameter Mean µ Flux Model α Data Source β Interaction (αβ) Error ε

Standard Deviation σ 68 (60, 77) 6.6 (1.1, 13.5) 27 (20, 39) 11.2 (6.6, 16.1) 199 (197, 202)

Range λ [km] 203 (160, 264) 700 (260, 1770) 500 (330, 830) 580 (420, 810) 70.5 (67.8, 73.6)

Smoothness ν 1.48 (1.27, 1.72) 1.64 (0.93, 2.12) 1.68 (1.29, 2.18) 1.80 (1.44, 2.29) 2.96 (2.81, 3.10)

over Africa. OCO-2 has dense coverage over both continents with some regional disparities (O’Dell et al., 2018). For example,

OCO-2 has substantially more successful retrievals over northern and southern Africa than over the tropics. Despite some of

these differences in behavior, both continents should exhibit some spatial heterogeneity in the overall flux signal.270

Table 4 summarizes the posterior distributions for the GP parameters for the OCO-2 MIP functional ANOVA. Once again,

the estimated GP standard deviation σε is largest for the error fields ε for both regions, indicating sizable month-to-month

variability after accounting for the overall mean anomaly along with the model, data source, and interaction effects. In addition,

the spatial range λε is relatively short for the error component. The estimated spatial range is largest among all components for

the flux model effect (λα) for both regions. This result is consistent with large-scale regional flux differences among inversion275

systems with different driving atmospheric transport (Peiro et al., 2022; Basu et al., 2018). The two regions differ slightly in

the relative variability of the model, data source, and interaction effects (σα,σβ ,σ(αβ)). Over North America, the model and

data source effects have similar variability, and the interaction effect is an order of magnitude smaller. On the other hand, the

variability in the model and interaction effects are similar over Africa, but the data source effect standard deviation, σβ , is

larger than these. The difference in coverage between in situ and OCO-2 likely contributes to this relatively large data source280

effect.

Figure 6 shows the estimated spatial pattern for the overall mean flux anomaly, µ(s), for the OCO-2 MIP North America

functional ANOVA. Noting again that the analysis is carried out the inversions’ deviations from their respective priors, the

map depicts a consensus flux anomaly from the collection of inversions analyzed. The patterns indicate generally negative

anomalies (increased uptake) over the eastern United States and positive anomalies over the southwestern U.S. While some285

spatial coherence is present, the estimated range is around 200 km and less than that for the model effect in particular. This

difference is evident in Figure 7, which provides maps of the estimated (posterior mean) individual model effects, α(s), as

14

https://doi.org/10.5194/gmd-2022-230
Preprint. Discussion started: 14 November 2022
c© Author(s) 2022. CC BY 4.0 License.



20°N

40°N

60°N

80°N

150°W 120°W 90°W 60°W

−800

−400

0

400

800
Flux

MIP Flux ANOVA Overall Mean

Figure 6. Posterior mean for the functional ANOVA overall mean µ for JJA 2016 over North America.

well as the data source effects, β(s). While generally smaller in magnitude than some of the localized mean anomalies, the

estimated model effects in the top panels of Figure 7 are quite coherent across the continent for each model. The data source

effect exhibits spatial dependence that decays at shorter distances.290

The MCMC procedure provides samples from the full joint posterior distribution, and the samples can be summarized in

various ways to describe the uncertainty for quantities of interest. Figure 8 summarizes the posterior distribution for the overall

mean µ(s) through spatially-referenced credible intervals. Some of the inferred local anomalies are evident here, including

negative anomalies over the U.S. Midwest and Atlantic coast, and modest positive anomalies over the Southwest.

Figure 9 shows the estimated spatial pattern for the overall mean flux anomaly, µ(s), for the OCO-2 MIP Africa functional295

ANOVA. This posterior mean map suggests broad negative anomalies over western tropical Africa. The prior fluxes over the

continent (not shown) contrast uptake north of the Equator and a net source to the south. This contrast manifests in some of

the remaining ANOVA effects, as shown in Figure 10, where the estimated model effects (top panels) change sign across the

Equator. It should also be noted that the magnitude of these model effects is generally smaller over Africa than over North

America. A north-south contrast is also evident in the data source effect estimates in the lower panel of Figure 10. The contrast300

between the two data sources (IS - LNLG) is captured in the contrast effect β∗(s). Posterior credible intervals for this contrast

are mapped in Figure 11. For most of the continent the intervals cover zero, but the in situ inversions appear to have consistently

higher fluxes over southern tropical Africa.
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Figure 7. Posterior mean for the functional ANOVA main effect for flux model (α, top) and for data source (β, bottom) for JJA 2016 over

North America.
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Figure 8. Posterior credible intervals for the functional ANOVA overall mean µ for JJA 2016 over North America. Left (right) panel depicts

the 2.5th (97.5th) percentile of the posterior distribution for each location.
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Figure 9. Posterior mean for the functional ANOVA overall mean µ for JJA 2016 over Africa.
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Figure 10. Posterior mean for the functional ANOVA main effect for flux model (α, top) and for data source (β, bottom for JJA 2016 over

Africa.)
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Figure 11. Posterior credible intervals for the functional ANOVA data source effect β∗, the difference between in situ (IS) and OCO-2 land

(LNLG) inversions for JJA 2016 over Africa. Left (right) panel depicts the 2.5th (97.5th) percentile of the posterior distribution for each

location.

5 Conclusions

Flux inversions produce estimates of the land-ocean-atmosphere exchange of carbon as spatio-temporal fields, providing crit-305

ical information on the global climate system. These estimates can be variable due to the combinations of factors, such as

the atmospheric transport model and the input data source(s), used in the inversions. The functional ANOVA presented and

illustrated here provides a statistical model for partitioning variability among these factors while estimating the common sig-

nals from the various flux inversions. In addition, the approach accounts for spatial dependence in the flux fields. The extent

of spatial dependence is estimated separately for each of the factors considered, along with their interactions. Each of the310

ANOVA components is represented as a spatial GP using the Vecchia approximation for computational efficiency. This paper

has illustrated the functional ANOVA method for flux estimates at continental scale under multiple configurations (Table 2).

The CMS-Flux inversion system was used in a set of inversion experiments to investigate the impact of satellite retrieval

aggregation on flux inferences, contrasting a super-obs method with data fusion for aggregating fine-scale OCO-2 retrievals.

Overall the aggregation method effect estimated via functional ANOVA was small in magnitude and in its extent of spatial315

dependence relative to the overall flux anomaly and differences across years. This consistency across aggregation methods

bolsters the utility of the fused CO2 products, which provide an internally consistent summary of the satellite retrievals at a

common spatial resolution with a substantial reduction in data volume and complexity.

The functional ANOVA was also implemented for a subset of inversions from the OCO-2 flux MIP over both North America

and Africa for JJA 2016. The functional ANOVA identified local consensus flux anomalies for both continents in the presence320

of variability across inversion systems and atmospheric CO2 data sources. Over Africa, the data source effect (in situ versus

satellite-only) was larger than the flux model effect. This assessment could be a useful diagnostic for understanding the relative
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roles of transport model uncertainty and input data challenges such as bias and incomplete sampling. Over both continents,

the range of spatial correlation was largest for the model effect, suggesting that model-to-model implementations contribute to

differences at large scales, including aggregated regional fluxes (Peiro et al., 2022; Crowell et al., 2019).325

The four inversion systems represented in the MIP functional ANOVA use the same inverse method and have similar spatial

resolution in their flux solutions. This subset was selected to illustrate the ANOVA, including the Vecchia approximation for

GPs, for a factor with more than two levels, where a more complex set of contrasts is employed to preserve the sum-to-zero

constraints. This demonstration indicates that the extension to more than two levels per factor is attainable methodologically and

computationally. The estimation could be extended to the full collection of inversion systems in the OCO-2 MIP collection.330

This extension would modestly increase the computational burden of the MCMC, but the intensive operations on the GP

precision matrices would still be executed just once per ANOVA component per MCMC iteration, as noted in the supplement.

MCMC convergence could be somewhat more challenging with more levels per factor.

ANOVA methods and the resulting estimates can be used to devise potentially unequal weights for combining flux estimates

into a consensus flux estimate (Cressie et al., 2022). This weighting is employed with univariate ANOVA when there are335

different variances, e.g. σ2
α,i, for all levels of a particular factor. Provided these additional parameters can be estimated reliably

from the available data, the weights are taken to be inversely proportional to the level-specific variances. In the functional

ANOVA setting in this paper, related extensions for the ANOVA GPs are possible. The GP models used in this paper result in

a variance that differs by ANOVA component but is constant across space. Alternative parameterizations with heterogeneous

across space could be developed. Kang and Cressie (2013) used a spatial random effects (SRE) model for functional ANOVA340

components that could result in additional nonstationarity across space.

The current implementation of functional ANOVA for carbon flux estimates has extended related applications to climate

models (e.g. Kaufman and Sain, 2010; Sain et al., 2011; Kang and Cressie, 2013) in a number of ways, including the estimation

of ANOVA effects for factors with more than two levels and the incorporation of the Vecchia approximation for GPs. The data

structure for the examples in this paper differ in some key ways from the previous climate applications as well. These previous345

studies used multiple years in a climate simulation as replicates to infer a spatially-varying climate signal and model effects in

the presence of interannual variability. In these studies, the number of replicates was sizeable, with nε ≈ 30. The carbon flux

examples presented here all used nε = 3, and the ANOVA error term’s GP standard deviation, σε, is relatively large. This low-

replication, high-variance scenario often translates to higher uncertainty in the other ANOVA effects and a tendency for them

to shrink to the assumed population mean, zero in this case (Gelman, 2005). Even so, significant anomalies can be inferred in350

this case. As the satellite CO2 record, particularly from OCO-2, extends to multiple years, the methodology can be extended

to also include replicates across years. The functional ANOVA approach can additionally be modified to analyze groups of

time series (Kaufman and Sain, 2010; Cuevas et al., 2004). Finally, extension to spatio-temporal inference is possible with

the inclusion of a suitable statistical model and appropriate handling of pseudo-replication. This may require more complex

modeling of the error terms in the statistical model. Overall, the functional ANOVA methodology offers suitable flexibility for355

anomaly detection among discrete collections of Earth system models.

20

https://doi.org/10.5194/gmd-2022-230
Preprint. Discussion started: 14 November 2022
c© Author(s) 2022. CC BY 4.0 License.



Code and data availability. The OCO-2 V9 MIP surface gridded fluxes used in the examples are available from https://www.esrl.noaa.

gov/gmd/ccgg/OCO2_v9mip. R code for processing the flux fields and implementing the functional ANOVA via MCMC is available at

https://github.com/co2anomaly/flux_fanova. The repository release used to produce the examples is available at https://doi.org/10.5281/

zenodo.7080750. The supporting datasets for the examples, including the MCMC posterior samples, are available at https://doi.org/10.5281/360

zenodo.7081161
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