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2 Responses to Reviewer 2 (RC2)

2.1 Major comments

• This study applies a functional ANOVA (analysis of variance) method to extract spatially-
varying effects related to different experimental factors from carbon dioxide inversion
results. The ideas are not completely new, but some computationally efficient tricks are
introduced, and the methodology is applied to a few different questions in the context
of interpreting fluxes from atmospheric inversions. The goal is to quantify the impact of
different sources of data, different methods of data aggregation, and the use of different
inversion models. The code has been made public, and appears to be sufficiently docu-
mented. (I did not replicate the results, but a cursory inspection of the code repository
suggests that this would be possible.) The study is generally well written, and the
figures are of high quality. The subject matter is appropriate for publication in GMD
once some issues are addressed.

We appreciate the reviewer’s assessment of the work and its context within the existing literature. The
insightful comments have motivated revisions in our approach and presentation in this manuscript.

• A significant concern about the methodology is related to the use of adjacent months
(June, July, and August) as independent replicates to represent the accumulated JJA
signal. This seems questionable in two regards:

1. These are not truly independent: There is certainly some correlation between the
fluxes of adjacent months, in terms of the data constraint, the geophysical processes
involved, and likely even the optimization of the fluxes via a 4DVar approach.

This is indeed an important point regarding the functional ANOVA model used in the first
version of the manuscript, and we have revisited the methodology after receiving similar com-
ments from both reviewers. The revised functional ANOVA model is defined in Section 3.1
and allows for temporal correlation in the error terms εijk(s). The resulting estimates for the
temporal correlation parameters are discussed with the other results in Section 4. It should
also be noted that this temporal correlation is for the error/residual after accounting for the
remaining ANOVA terms, which are constant in time and vary across space. The estimated
temporal correlation parameters are relatively small but impact the inference for the ANOVA
terms to some degree.

2. These are not realizations of the same quantity: The fluxes for June are not a
replicate of the fluxes for August, due to both seasonal cycles (as can be clearly seen
in the columns of Figure 1) and differences in short-term anomalies (e.g. June could
be anomalously hot and dry while August of the same year could be anomalously
cool and wet).
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This point may speak to a benefit in using the flux increments in the functional ANOVA. This
approach accounts for some of the seasonal evolution that is also present in the prior fluxes.
This choice represents a compromise that facilitates analysis of the intraseasonal variability to
identify some coherent spatial patterns, which are present for some of the remaining ANOVA
components (overall mean and main effects) for the examples. Indeed short-term anomalies
within a season can be present and these would be realized in the error process. The relatively
small magnitudes of spatio-temporal correlation in the error process parameters would suggest
that any large-scale short-term anomalies might be dominated by other sources of variation in
the residual.

Both of these points call into question whether this choice is valid. This is rather
different than the previous studies mentioned in the conclusion, which used different
years (not adjacent months!) to infer spatially-varying climate signals and model effects
in the presence of interannual variability. (The studies cited that analyzed climate
models also used an order of magnitude more replicates.)

The modification of the model to include temporal correlation for adjacent months, along with use
of flux deviations from the assumed prior, help address these important challenges in the examples
presented. The reviewer notes the important distinction in defining pseudo-replicates in the current
study versus other instances in the literature. We have highlighted this distinction in the revised
manuscript’s discussion of the functional ANOVA model in Section 3.1.

• The findings seem to suggest that, indeed, these are not appropriate to use as replicates.
Lines 242 and 243 point out that the estimated GP standard deviation for the is largest
for the error fields (10 times larger, in fact), which indicates that the month-to-month
variability within each treatment combination is rather large. Indeed, the standard
deviation of the error term is largest for all the experiments, as seen in Tables 3 and 4.
This is discussed in the conclusion, with the remark that such a “low-replication, high-
variance scenario often translates to higher uncertainty in the other ANOVA effects and
a tendency for them to shrink to the assumed population mean”, namely zero. Is there
a way that the study could have been conceived in order to have a larger number of
replicates?

The large variance of the error process is indeed a common characteristic across all of the examples
presented. We note that this is a result of not only high month-to-month variation, but also spatial
variability at local scales after accounting for the other ANOVA effects. This does not necessarily
invalidate the methodology in a strict sense, rather it is a characteristic of the data, and it is not an
uncommon occurrence in classical ANOVA. The functional ANOVA is able to borrow strength via
spatial correlation to some extent, but the large error standard deviation is a challenge for the power
to detect meaningful signals for the remaining factors. The comment about alternative formulations
is appreciated. For the OCO-2 MIP, additional analysis could make use of the multiple years in the
datasets. Given the results from the CMS-Flux inversions for the fused product study, the ANOVA
would likely need to consider a factor for interannual variability. This additional model complexity
is possible, but we think would detract from the existing messages in the analysis in this paper.

• Regardless, the authors argue that they have been able to extract “significant anoma-
lies”. It is unclear to me how to judge the significance of these results. Is it just because
there are coherent spatial patterns? The 95% credible intervals are generally smaller
for the error than for the mean, α, β, or interaction terms – does this say something
about the relative significance of the results?

This remark underscores the importance in communicating multiple aspects of the functional ANOVA
results, which we seek to improve in the revised manuscript. In the revised Results section, we have
added a paragraph that outlines the two broad categories of quantities we examine from the functional
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ANOVA inference. The first category is the covariance parameters reported in Tables 3-4. Since
these parameters summarize the collective spatial and spatio-temporal variability of each factor, it is
useful to contrast their values, and the implications for their spatial coherence, across the factors, as
discussed in the Results. In fact, the capability of the method to partition the spatial coherence of
the various factors is a key capability. While noteworthy, the actual width of the credible intervals
is largely a function of the number of spatial fields that inform the estimates. This is analogous to
degrees of freedom in traditional ANOVA. All of the pseudo-replicate monthly fields inform the error
process parameters, so they are estimated precisely relative to the α, β, and interaction parameters.

The second collection of results is the set of maps of the ANOVA components. In cases where
the pointwise intervals are shown (Figures 8 and 11), areas with intervals that do not contain zero
represent a significant anomaly/deviation.

• The authors argue that the large standard deviation of the error fields is offset by the
relatively small estimated range parameter of the error term. How is this distance to be
interpreted? In some cases, the range parameter is significantly smaller than the size of
the models’ pixels (e.g. a median value of 70.5 km for the range parameter of the error
for the African region in Table 4, compared to model resolutions an order of magnitude
larger, from 4◦ × 5◦to 6.7◦ × 6.7◦, based on Table 1 of Peiro et al., 2022). It would be
helpful to provide some more information about how to interpret these numbers. As
another example, the unitless smoothing parameter is reported in the tables, but these
results are never discussed in the text. What do these mean?

There are two aspects of this comment that we have attempted to address in the revised manuscript.
The first has to do with the resolution of the MIP flux estimates. The modeling teams all provided
gridded fluxes at 1◦ × 1◦, and these are the datasets provided publicly and analyzed in this study.

The second aspect we address is the interpretation of the covariance parameters. The Matérn range
and smoothness parameters combine to characterize how correlation between spatial locations decays
with separation distance. For an exponential model with smoothness ν = 0.5, the range parameter is
the distance at which the correlation reaches 1/e. For larger values of ν, the correlations decay more
slowly at shorter distances. Theoretically, the smoothness identifies the degree of differentiability of
the Gaussian process.

We have added some of this practical interpretation to the revised manuscript when the Matérn
covariance is introduced in Section 3.1.

• I think it would be useful to include some discussion about the similarities and the
differences between your approach (and results) and those of Cressie et al. (2022).
The latter study applied ANOVA to the same two years of very similar OCO-2 MIP
results (a previous iteration), also using individual months of a three-month season
as replicates (which seems questionable in their study as well). The application was
different, however, as they were using it to develop an optimally-weighted multi-model
mean for regional fluxes, and considered all seasons and regions covering the whole
globe.

We appreciate both reviewers raising the importance of framing the functional ANOVA approach
and results in the context of the recent contribution from Cressie, Bertolacci, and Zammit-Mangion
(2022). In the revised manuscript, we have added a sentence at the above location in the Introduction
to highlight our contribution. Further, the connection to Cressie et al. is highlighted again in the
first two paragraphs of the Conclusions.

• This raises the question: why did you decide to focus on JJA, and why only on this one
season? How would you expect the results to change if different seasons were analyzed?
Why did you only use two years of data, when the OCO-2 MIP results you are using
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(from Peiro et al., 2022) provide four full years of valid results? What led you to
look only at these specific regions? There is some discussion of why North America
and Africa were chosen to illustrate the technique, due to contrasting measurement
coverage, but there is no clear argument as to why Eurasia was chosen for the first part
of the study. Providing a justification for why a given region was chosen to explore the
specific question would make the scientific results more compelling.

In selecting the use cases for demonstrating the functional ANOVA, we sought a balance among multi-
ple objectives for the study. These included motivating carbon cycle questions from the OCO-2 MIP
and other recent investigations, motivating questions about sensitivity to data sources/algorithms
from the MEaSUREs data fusion effort, and a focus on a parsimonious presentation for a GMD
manuscript on assessment of models. This latter objective, along with an interest in the spatial mod-
eling aspect of the functional ANOVA, led to the focus on a single season across different continents.
In addition, JJA is a period with recent impactful carbon cycle perturbations and yields sizable un-
certainty in MIP consensus flux estimates (Cressie et al., 2022). For the OCO-2 MIP, the interannual
variability aspect could be investigated, but this would likely require an additional ANOVA factor.
This is feasible but we have kept the analysis to two factors for (relative) simplicity of illustration.
We have added further discussion of the carbon cycle science and algorithmic motivation for these
choices in the descriptions of the datasets in Section 2 of the revised manuscript.

• In general, more scientific interpretation of the spatial patterns that are presented
as results would improve the paper. In particular: in the plots of the “Data Source
Effect” in Figures 7 and 10, how do these patterns correspond to the location of in situ
measurement sites? (Yes, the stations are shown in Figure 1 of Peiro et al. (2022), but
putting the site locations onto your figures would make this easier to interpret.) Where
is there persistent cloud cover and/or good retrievals of OCO-2 data in North America
and Africa during the period in question? Interpreting the structure of these “Data
Source Effect” figures with reference to the measurements would be helpful.

We appreciate the suggestions and have implemented several of the points above. We have added in
situ locations to Figures 7, 10, and 11 in the revised manuscript. The discussion of the data source
differences for Africa includes a mention of reduced data density for OCO-2 over the same area.

• Another concern regarding the methodology is related to the fact that all the ANOVA
analysis in the MIP portion of the study is done on the flux increment, i.e. the posterior
flux minus the prior flux for a given space and time, as shown in Equation 1. I believe
that this is problematic, because the four models whose results are compared do not
have identical priors. All the inversions are constrained by the same data, and we
would expect that if transport is perfect, the data constraint is sufficient, and errors
are well-characterized, the four models should converge to the same posterior fluxes.
That does not mean that their flux increments will be the same. Consider a case where
the prior of model A is biased systematically high over a given region, while the prior
of model B is biased systematically low. Both models converge to the same response,
but when analyzing the increment (yijk(s)- yijk (0)(s)), model A’s would be negative
and model B’s would be positive. If the biases were equally biased, the “consensus flux
anomaly” of this ensemble of two would be zero. This is written in the text, e.g. in lines
283-284: “Noting again that the analysis is carried out the inversions’ deviations from
their respective priors, the map depicts a consensus flux anomaly from the collection
of inversions analyzed.” How can we interpret a “consensus flux anomaly” when the
models are starting from different priors? (This does not apply to the first part of the
study, only the MIP results.)

We appreciate the thorough exposition of this comment. The reviewer has outlined some of the
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key challenges in the interpretation of some of the ANOVA components when analyzing the flux
increments, particularly for the OCO-2 MIP examples. There are pros and cons to analyzing the flux
increments with this approach, and we have further outlined the motivation for this choice in the
definition of the functional ANOVA model in Section 3. Statistical modeling traditionally introduces
spatio-temporal correlation after accounting for systematic patterns in space and time, and the prior
fluxes are a reasonable representation of these systematic structures. For the flux MIP examples, we
have noted in the revised manuscript that the inferred model effects are a combination of imperfect
transport, prior flux differences, and other algorithm and processing artifacts. We also note that
these estimated model effects are useful as a diagnostic for individual modeling groups within the
MIP collection. Finally, the estimated overall mean field does exhibit mixed results, but some regions
exhibit mean increments in the presence of prior fluxes of the same sign.

• Going back to the theoretical model A and model B from before: these increments would
presumably show up as negative and positive flux model differences with a large spatial
range, perhaps similar to the all-red (Ames) and all-blue (CMS-Flux) posterior mean
maps seen for α for JJA in North America (Figure 7). However, the authors attribute
this to “large-scale regional flux differences among inversion systems with different
driving atmospheric transport” (L275-276). This could be the case, but without having
common priors, the effects of different priors and different transport cannot be teased
apart using this method. Ideally, such an analysis would be carried out on inversion
results with identical priors, so that we could truly say something about the influence of
the transport model and optimization. Lacking that, this limitation needs to be made
completely clear, so that the reader is not misled.

This is a further important observation about the use of the flux increments in the analysis. In
the revised manuscript, we have added further exposition on this point in the discussion of the
methodology, results, and conclusions. Specific revisions include:

– Functional ANOVA (Section 3): The revised manuscript includes an additional paragraph after
Equation 1. This discussion provides additional methodological and practical motivation for
analyzing the flux increments. The different MIP modeling groups’ processing resulted in small-
scale artifacts in prior and posterior fluxes that were not as evident in the flux increments.
Further, as noted in a previous comment, large-scale spatial and temporal patterns are common
in the prior and posterior fluxes, and common intra-seasonal signals can be uncovered in the
flux increments.

– Results (Section 4): The disussion of the OCO-2 flux MIP results has been modified. In dis-
cussing Table 4, we have added a remark, “Further, since the statistical model is applied to the
flux increments, prior flux differences contribute to the model effects.” In addition, discussion of
Figure 6 later, we have added, “the patterns can be a combination of difference in prior fluxes,
as well as other aspects of the inversions, particularly atmospheric transport.”

– Conclusions (Section 5): The revised manuscript includes an additional paragraph discussing the
limitations of analyzing the flux increments in the MIP experiments. This discussion mentions
that the ANOVA model effects could result from combinations of differences in transport, prior,
and additional inversion system implementation choices. Some additional remarks on multi-
model experiment design, particularly implementing common priors, are included.

Finally, we have adopted the reviewer’s use of the term flux increment in discussing this approach in
the revised manuscript.

• As a more minor/technical note: The treatment of the different spatial resolutions in the
MIP part of the study should be explicitly explained. For the first part of the study, only
results from the CMS-Flux model are used, and the plots appear to match the 4°x5°
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resolution of the model. For the MIP, models of different resolutions are compared
(but none with a higher resolution than the still relatively coarse 4◦ × 5◦ resolution of
CMS-Flux), but the data appear to have been resampled onto a higher spatial grid in
Figures 6, 8 and 9. In Figures 7, 10 and 11, the resolution appears smoother still. What
procedure was followed?

The revised manuscript includes additional details about the spatial resolution for the flux estimates.
These details are provided in the dataset descriptions in Section 2. The fluxes from the fused CO2

experiments with the CMS-Flux system are available at 4◦ × 5◦ resolution.

For the OCO-2 flux MIP, the modeling groups all provided gridded fluxes at 1◦ × 1◦ resolution, and
this is noted at the end of Section 2 in the revised manuscript. These datasets on a common grid
are the products that have been provided to the community from the flux MIP and were the data
source for the functional ANOVA. Modeling groups implemented their own re-gridding approaches,
and this is another potential contributor to model effects in the functional ANOVA. As noted in a
previous response and in Section 3 of the revised manuscript, exploratory analysis indicated that the
flux increments exhibited fewer local artifacts due to re-gridding.

Finally, the smooth appearance in Figures 7, 10, 11 is mostly the result of the relatively large spatial
ranges estimated for the model and data source effects for both MIP functional ANOVA examples.
The plots are produced at the 1◦ × 1◦ resolution in the same fashion as other maps from the MIP
examples.

2.2 Minor Comments

• L1-2: This sentence is a bit odd, making it sound as if measurements made today
(present tense) span several years. Perhaps: “has now produced atmospheric green-
house gas concentration estimates covering a period of several years”?

This change has been made in the revised manuscript.

• L8: Not clear what is meant by “mode differences” here.

The term has been removed from the updated abstract to provide additional clarity on the results of
the CMS-Flux example over Eurasia.

• L10: For inversions over different continents, or for fluxes over different continents?

Fluxes is the appropriate word. This has been changed in the revised manuscript.

• L17: The language here makes it sound as if the satellites are providing an estimate
of global CO2 concentrations frequently, which is not the case. Instead of “frequent”,
perhaps quantify it? How many good quality measurements per year, on average?

We have modified this discussion slightly in the revised manuscript to address this and the following
comment. We have included information on the annual data volume for OCO-2.

• L18: Has flux inversion become demonstrably more tractable (not quite sure what that
means here) and precise due to satellite measurements? If so, please provide a reference
providing evidence of this!

This was unintentional phrasing in the original manuscript. Our primary intention was to provide
some context for contrasts in the pre-processing/use of satellite data versus in situ observations in
flux inversions. The revised manuscript provides additional emphasis on this aspect by mentioning
the use of spatially-aggregated satellite products in global inversions.

• L24-25: Not clear what is meant by “dependence can be exploited in quantifying un-
certainty”. Dependence of what on what? Please explain.
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This was intended to be spatio-temporal dependence. It has been rephrased as “characterizing spatio-
temporal correlation is necessary in quantifying uncertainty” in the revised manuscript.

• L39: collection Earth → “collection of Earth”

This change has been made in the revised manuscript.

• L41: Hyphenate “multiple-component” as a compound adjective, also “spatially-aggregated”
on L45.

This change has been made in the revised manuscript.

• L47: with associated → “with an associated”

This change has been made in the revised manuscript.

• L55: Is the year missing from Sain et al. reference here? Is this consistent with the
Copernicus style guide?

The year for the reference has been added in the revised manuscript.

• L56: Would replace the comma with a period here, breaking into two sentences. (Or at
least a semicolon.)

This has been split into two sentences in the revised manuscript.

• L57: Would be easier to parse if “used in the current work” were preceded and followed
by a comma.

The commas have been added in the revised manuscript.

• L70: Which version of ACOS?

In the revised manuscript, we have noted that the examples in this paper are based on the OCO-2
Version 9 products.

• L73-75: Please clarify about the creation of super-observations through aggregation.
How it’s written here, it sounds as if the data are aggregated across the whole orbit.
Aggregation to superobservations is not the same as what is generally considered a L3
product, which is rather gap-filled concentration fields, perhaps through data assimila-
tion to optimize atmospheric state (instead of fluxes). This is explained further in 2.1,
but seems inconsistent with what is written here.

This description was somewhat unclear as written, and in the revised manuscript, we have clarified
that all of the aggregation approaches used produce estimates over some type of regular grid, which
is 1◦ × 1◦ in the case of the fused products.

• L101: What is SSDF? I believe this has not been defined.

We intended to drop the SSDF acronym from the manuscript. The revised manuscript has removed
this item.

• L103: variables of interest?

This change has been made in the revised manuscript.

• L120: Perhaps specify that you mean ACOS version 9?

We have added this note in the revised manuscript.

• Caption Figure 2: remove “based”

This change has been made in the revised manuscript.
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• L181: and: should maybe be changed to “, which” or “that”?

We have changed the word choice to “which” in the revised manuscript.

• L224: parameters → parameters’

This change has been made in the revised manuscript.

• L225: are → is

This change has been made in the revised manuscript.

• L227: is → are

This change has been made in the revised manuscript.

• L231: is → was

This change has been made in the revised manuscript.

• L232: The wording here is a bit dense. Perhaps better: “which makes the MCMC
algorithm more computationally efficient.”

This change has been made in the revised manuscript.

• Caption Table 3: Not clear what “in the records of [the] fused CO2 experiment” means
here. Perhaps just “for the fused CO2 experiment”? Also, “of 95% posterior credible
intervals”→ “of the 95% credible intervals of the posterior”. The same comment applies
to the caption of Table 4 as well. In general, I was a bit confused by the use of “the
records of fused CO2 experiment”, also in the captions of Figures 4 and 5.

We have changed the description to “fused CO2 experiment” in the revised manuscript. “Records
of fused CO2” is an abbreviation of the overarching CO2 data fusion project, but we agree that the
phrase can be confusing out of context. The wording for the credible intervals has been changed in
the revised manuscript.

• Figure 4: Units are missing. Somewhere in the caption it should be made clear that the
“mean” is actually the mean difference from the prior for JJA over 2015-2016, rather
than the mean flux itself. The label on the lower right panel should be “Interaction”
rather than “Interact”.

The panel label has been changed in the revised manuscript. In addition, the figures now include
units for fluxes and flux increments, and the information is included in figure captions.

• L270: Differences in behaviour, or differences in data coverage?

Yes, differences in data coverage conveys the message more clearly. We have made this change in the
revised manuscript.

• L283: Missing the word “on” (carried out on the inversions)?

Yes, this has been corrected in the revised manuscript.

• L315-316: Really? The probability that the difference across years was larger than the
aggregation method effect did not exceed 0.6. This does not convince me that using such
a fused product provides internally consistent information for analyzing e.g. interannual
variability in fluxes. Perhaps I have misunderstood something.

This is a fair point, particularly on the interannual effect aspect. In the revised manuscript, we
have modified this discussion to highlight the contrast in spatial coherence of these components. We
have further noted the challenge of detecting year-to-year differences of the magnitude seen in this
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example. Even so, the estimated year-to-year differences can stand on their own as an interannual
difference averaged across the aggregation methods. With respect to the aggregation methods, our
intent is to characterize the differences due to the method and to highlight impacts on additional
inferences from the flux estimates.

• L339-340: Is the word “variance” (or something else) missing? i.e. “Alternative pa-
rameterizations with heterogeneous variance across space could be developed.”

Yes, this has been corrected in the revised manuscript.

• Supplement L32: model → models

This change has been made in the revised supplement.
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