
 1

AutoQS v1: Automatic parameterization of QuickSampling 1

based on training images analysis 2
 3

Mathieu Gravey1,2,3, Grégoire Mariethoz1 4
1 University of Lausanne, Faculty of Geosciences and Environment, Institute of Earth Surface Dynamics, 5
Switzerland 6
2 Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innsbruck, Austria 7
3 Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands 8

Correspondence to: Mathieu Gravey (research@mgravey.com) 9

 10

Highlights 11

• Adaptative calibration as a function of the simulation progression 12
• Calibration depends on each training image 13
• Robust parameterization based on a rapid prior analysis of the training image 14

Abstract. Multiple‐point geostatistics are widely used to simulate complex spatial structures based on a training 15

image. The practical applicability of these methods relies on the possibility of finding optimal training images and 16

parametrization of the simulation algorithms. While methods for automatically selecting training images are 17

available, parametrization can be cumbersome. Here, we propose to find an optimal set of parameters using only 18

the training image as input. The difference between this and previous work that used parametrization optimization 19

is that it does not require the definition of an objective function. Our approach is based on the analysis of the errors 20

that occur when filling artificially constructed patterns that have been borrowed from the training image. Its main 21

advantage is to eliminate the risk of overfitting an objective function, which may result in variance underestimation 22

or in verbatim copy of the training image. Since it is not based on optimization, our approach finds a set of 23

acceptable parameters in a predictable manner by using the knowledge and understanding of how the simulation 24

algorithms work. The technique is explored in the context of the recently developed QuickSampling algorithm, 25

but it can be easily adapted to other pixel-based multiple-point statistics algorithms using pattern matching, such 26

as Direct Sampling or Single Normal Equation Simulation (SNESIM). 27

 28

1 Introduction 29

Geostatistics is extensively used in natural sciences to map spatial variables such as surface properties (e.g., soils, 30

geomorphology, meteorology) and subsurface geological features (e.g. porosity, hydraulic conductivity, 3D 31

geological facies). Its main applications involve the estimation and simulation of natural phenomena. In this paper, 32

we focus on simulation approaches. 33

Traditional two-point geostatistical simulations preserve the histogram and variogram inferred from point data 34

(Matheron, 1973). However, inherent limitations make the reproduction of complex structures difficult (Gómez-35

Hernández and Wen,1998; Journel and Zhang, 2006). Multiple-point statistics (MPS), by accounting for more 36

 2

complex relations, enables the reproduction of such complex structures (Guardiano and Srivastava, 1993), but 37

comes with its own limitations (Mariethoz and Caers, 2014). The main requirements for using MPS algorithms 38

are 1) analog images (called training images) and 2) appropriate parametrization. While training images can often 39

be provided by expert knowledge, and several methods have been proposed to automatically select one or a subset 40

of appropriate training images among a set of candidates (Pérez et al., 2014; Abdollahifard et al., 2019). However, 41

the parametrization of an MPS algorithm depends not only on the chosen training image but also on the specifics 42

of the algorithm. This makes the task of finding good parametrization cumbersome, and therefore users often have 43

to resort to trial-and-error approaches (Meerschman et al., 2013). Here we will mainly focus on QuickSampling 44

(QS) (Gravey and Mariethoz, 2020) which has as two main parameters: ! that defines the maximum number of 45

conditional data points to consider during the search process, and " which is the number of best candidates from 46

which to sample the simulated value. Additionally, QS supports a kernel that allows weighting each conditioning 47

pixel in the pattern based on its position related to the simulated pixel. Direct Sampling (DS) has for parameters: 48

! which has an identical role as in QS, #ℎ that represents the pattern acceptance threshold, or the degree of 49

similarity between local data patterns and the training image, and % the maximum proportion of the image that can 50

be explored for each simulated pixel. In summary, ! controls the spatial continuity, and " or #ℎ and % control the 51

variability. 52

Over the last few years, several studies have addressed the challenge of automatically finding appropriate 53

parameters for MPS simulation. These can be categorized in two approaches. The first approach is to assume that 54

an optimal parametrization is related to the simulation grid (including possible conditioning data), the training 55

image and the MPS algorithm. In this vein, Dagasan et al. (2018) proposed a method that uses the known hard 56

data from the simulation grid as a reference for computing the Jensen-Shannon divergence between histograms. 57

Following this, they employ a simulated annealing optimization to update the MPS parameters until the metrics 58

achieve the lowest divergence. This method is flexible enough to be adapted to any other metric. The second type 59

of approach assumes that the parametrization is only related to the training image and the MPS algorithm. Along 60

these lines, Baninajar et al. (2019) propose the MPS Automatic Parameter Optimizer (MPS-APO) method based 61

on the cross-validation of the training image (TI) to optimize simulation quality and CPU cost. In this approach, 62

artificially generated gaps in the high gradient areas of the training image are created, and a MPS algorithm is used 63

to fill those gaps. The performance of a particular parameterization is quantified by assessing the correspondence 64

between the filled and original training data. By design, this approach is extremely interesting for gap-filling 65

problems. The authors state that it can be used for the parametrization of unconditional simulations; however, the 66

use of limited gaps cannot guarantee the reproduction of long-range dependencies. Furthermore, due to the design 67

of the framework for generating gaps, only MPS algorithms able to handle gap-filling problems can be used. 68

While both approaches yield good results based on their objective functions, they all rely on a stochastic 69

optimization process, therefore the duration of the optimization process cannot be predetermined or controlled by 70

the user. Furthermore, an objective function is needed, which can be difficult because it depends on the training 71

image used: many metrics can be accounted for in the objective function, such as histogram, variogram, pattern 72

histogram, connectivity function, Euler characteristic, etc., (Boisvert et al., 2010; Renard and Allard, 2013; Tan et 73

al., 2013) or a weighted combination of these. Similarly, one has to define meta-parameters linked to the 74

optimization algorithm itself, such as the cooling rate in simulated annealing or maximum number of iterations. 75

As a result, MPS parameter optimization approaches tend to be complex and difficult to use. 76

 3

In this contribution, we propose a simplified optimization procedure for simulating complex systems. Rather than 77

using a complex optimization algorithm, our approach focuses on finding optimal parameters to accurately 78

simulate a single pixel in the system. The underlying principle of our approach is that if each pixel is accurately 79

simulated, the resulting sequence of pixels will converge to an accurate representation of the real-world system 80

being simulated. The goal is therefore to find the optimal parameters to simulate a single pixel using the training 81

image as the only reference. Baninajar et al. (2019) showed that computing the prediction error (i.e., the error 82

between the simulation and the reference) is an appropriate metric to identify optimal parameters. To find the 83

optimal parameters for simulating a single pixel, we propose an exhaustive exploration of the parameter space and 84

a computation of the prediction error between the simulation and the reference image. 85

The remainder of this paper is structured as follows: Section 2 presents the proposed method. Section 3 evaluates 86

the approach in terms of quantitative and qualitative metrics. Finally, section 4 discusses the strengths and 87

weaknesses of the proposed approach and presents the conclusions of this work. 88

2 Understanding and Addressing Verbatim Copy in Multiple Point Simulation 89

The principle underlying multiple point simulation is that the neighborhood of a given pixel & (the pattern 90

generated by known or previously simulated pixels) is informative enough to constrain the probability density 91

function of the value '(&). This requires a training image with several pattern repetitions. The Extended Normal 92

Equation Simulation (ENESIM) algorithm (Guardiano and Srivastava, 1993) computes the full probability 93

distribution for each simulated pixel. To ensure that enough samples are used, the SNESIM (Strebelle, 2002) and 94

the Impala (Straubhaar et al., 2011) algorithms include a parameter to define a minimum number of patterns 95

replicates. Direct Sampling (DS) (Mariethoz et al., 2010) adopts a different strategy by allowing for the interrupted 96

exploration of the training image. It includes a distance threshold parameter that defines what is an acceptable 97

match for a neighborhood, however, too small a threshold typically results in a single acceptable pattern in the 98

training image, leading to exact replication of parts of the training image, a phenomenon known as verbatim copy. 99

To reduce this issue, a parameter % is introduced controlling the fraction of the explored training image. 100

QuickSampling (QS) (Gravey and Mariethoz, 2020) also suffers from verbatim copy when the number of candidate 101

patterns is set to " = 1, the authors recommend the use of " > 1, and highlight that " is similar to the number of 102

replicates in SNESIM or IMPALA. A value " = 1.5 in QS can be seen as SNESIM with a minimum number of 103

replicates of 1 for 50% of the simulated values and 2 for the remaining values. 104

The definition of verbatim copy is the unintended pasting of a large section from the training image to the 105

simulation (patch-based approaches do so intentionally, e.g. (Rezaee et al., 2013)). This means that the relative 106

position of the simulated values is the same as that in the training image. This occurs when the neighborhood 107

constraints on the simulated pixels are too strong and only the exact same patterns as those in the training image 108

are acceptable. To detect this issue, a common strategy is to create a position map (similar to the index map), 109

which represents the provenance of simulated values by mapping their original coordinates in the training image, 110

as shown in Figure 1. 111

Figure 1 illustrates the most common forms of verbatim copy. The pure verbatim (the most common type of 112

verbatim copy) is a simple copy of a large part of the image, with all pixels in the same order inside of the patches. 113

Block verbatim typically appears when there are many replicates of a very specific type of pattern in the training 114

image and few replicates of all other patterns. Consequently, the MPS algorithm uses common patterns for 115

 4

transitioning between copied blocks resulting from rare patterns. Structural verbatim occurs when the copied 116

portion spreads throughout the simulation without giving a direct impression of copying (e.g., pure verbatim over 117

a subset of pixels). Structural verbatim tends to appear when large-scale structures are unique in the training image, 118

which often allows a visually satisfying image to be quickly obtained, but with large non-stationary features 119

identical to the training image. Often, users are willing to allow verbatim on large-scale structures, but this can 120

easily introduce bias between simulations. This is one of the hardest types of verbatim to detect. Typically, this 121

can occur when the maximum neighborhood radius is too large, leading to the duplication of large structures in 122

the initial phase of the simulation. Finally, no verbatim, which is the expected result of simulations, occurs when 123

the position of pixels does not have any particular structure (i.e. their position is unpredictable). 124

125
Figure 1 Visualization of verbatim copies using a position map. This is an extreme case that highlights that verbatim is 126

not defined by the values simulated but by their position in the training image. 127

3 Method 128

The objective of the approach presented here is to find an optimal set of parameters using only the training image 129

and knowledge of the simulation algorithm's mechanics. The simulation algorithm is not used in this context; in 130

fact, simulations are not required to obtain a proper calibration with the proposed method. The main target 131

application of the presented approach is the pattern matching simulation algorithm QuickSampling (QS), where 132

the values, at a pixel scale, are directly sampled from the training image. The method is suitable for the simulation 133

of continuous and/or categorical variables. 134

Simulation algorithms such as QS, can be summarized by Algorithm 1. The key operation occurs at Line 3, which 135

is when the algorithm searches for an optimal match based on the neighboring conditioning data. 136

Algorithm 1 The sequential simulation algorithm. In gray the parametrization for QS. 137

 5

 138
Inputs: 139
/: training images 140
0: simulation grid, including the conditioning data 141
1: simulation path 142
2: parametrization 143
 !	: number of neighbors 144

" : the number of best candidates 145
4: the kernel, by default uniform 146

1. For each unsimulated pixel & following the path 1: 147
2. Find the neighborhood 5(&) in 0 composed of the n(2) closest neighbors 148
3. Find a candidate in / those matches 5(&) using the parametrization 2 149
4. Assign the value of the selected candidate to & in 0 150
5. End 151
 152

Here, we propose a divide and conquer approach that splits any pixel-based sequential simulation into its atomic 153

operation: the simulation of a single pixel. We assume that if all pixels are perfectly simulated, then the resulting 154

simulation should also be good. By a perfectly simulated pixel, we mean a pixel that respects the conditional 155

probability distribution. When simulating a pixel, there may be numerous potential valid values, but at the very 156

least, there should be one valid value, i.e., the conditional probability distribution should be represented in the 157

data. This can be formalized by the following condition: 158

|{8|1(8|5(&)) > 0}| ≥ 1 (1) 159

where |	. | represents the cardinality of a set. 1<8=5(&)> denotes the probability of 8 (a given value) knowing 160

5(&), the neighborhood. 161

The proposed approach consists of finding a set of parameters that results in accurate samples for each pattern. At 162

the same time, we want to avoid systematically sampling perfect matches (the exact same neighborhood is 163

available in the training image), which results in verbatim copy. 164

The search for the optimal parametrization is carried out by exhaustive exploration (Error! Reference source not 165

found.), and the choice of optimal parameters is based on a prediction error defined as the difference between the 166

original value of the pattern and the value of the selected pattern in the training image. 167

Algorithm 2 168

Inputs: 169
?: list of stages of the simulation (i.e. pattern decimation levels, equivalent to fractions of the simulation path) 170
2: list of discretized parameters 171
/ the training images 172
@ a set of random positions (in practice we generated the random position on the fly) 173

1. For each possible combination of ?	and 2 do for all A ∈ @ : 174
2. Sample a neighborhood 5(A) from / and decimate it according to stage ? 175
3. Using 2, find a candidate in / that matches 5(A), excluding for A itself 176
4. Compute the error D between the selected candidate and '(A) 177
5. End 178
6. Analyze the errors D to determine the best 2 for each ?. 179
 180

The proposed algorithm explores a discretized parameter space 2 (Error! Reference source not found., Line 1) 181

(e.g., for QS: !, ", 4). While this discretization is natural for some parameters, such as ! that is an integer, it can 182

require an explicit discretization for other parameters, such as the kernel in QS (or #ℎ in DS). Furthermore, a key 183

component of our method is the exploration of the parameter space for several representative stages ? of the 184

 6

simulation (Error! Reference source not found., Line 1). In the case of a random path, the progress of the 185

simulation is directly related to the density of the neighborhoods, i.e., when &% of the pixels are simulated, in 186

average &% of neighbors are informed. To reproduce this behavior, at each stage D, we randomly decimate patterns 187

extracted from the TI by keeping only &% pixels informed. For each combination ?	and 2, multiple measures over 188

a set of random locations @ (500 < |@| < 10000) are computed in Lines 1-5 in Error! Reference source not 189

found., with their mathematical expression shown in Equation 2: 190

D(2, ?, /) = G 1
|@|HIZ(A) − ZLCand!\{$}

<2, 5(A,?)>QR
&

$∈(
(2) 191

where Cand(2,5) returns a single candidate position for a given neighborhood 5 and follows the parametrization 192

2. 5(A,?) denotes a neighborhood around A that is decimated according to stage	?. @ represents a random set 193

of positions in the training image, and '(A)	refers to the actual value at position A ∈ @ in the training image. To 194

avoid parameters that generate verbatim copy of the training image, the position A and its direct neighbors (in a 195

small radius (here 5 pixels) are excluded from the set of potential candidates. The set of candidates considering 196

this exclusion is denoted by /\{A} in Equation 2. Furthermore, in the case of equality between several optimal 197

options, we set as a rule to take the cheapest parameter set in terms of computational cost (e.g., the smallest !). 198

Error! Reference source not found. graphically represents the entire algorithm. Finally, for each stage 199

considered, the set of parameters with the minimum associated error D is considered optimal (Error! Reference 200

source not found., Line 6): 201

D<2)*+,-./ , ?, /> = min
0
D(2, ?, /) (3) 202

 203
Figure 2 All steps for a single pattern, summarizing Error! Reference source not found., Lines 2-4. 204

 205

4 An efficient implementation 206

In practice, the implementation of Algorithm 2 separates θ into two parameter subsets: 21 and 22. The 21 subset 207

consists of all parameters that influence the calculation of a single pattern match, which varies depending on the 208

algorithm used. For instance, in QS, it includes the number of neighbors ! and the kernel 4, while in DS, it 209

comprises the threshold #ℎ and !. The other hand, 22 encompasses parameters related to the sampling process of 210

Training image

Prediction error

Extracted pattern

Decimated pattern

Mismatch map

 7

the training image. For QS, this includes the number of candidates to keep ", while for DS, it involves the fraction 211

% of the training image being scanned. 212

Our implementation precomputes and stores all matches for a specific 21 parameterization (e.g., a value of ! and 213

all matches for "). Consequently, the saved matches of 21 can be employed to swiftly evaluate all options for the 214

parameters in 2	 = 	21 	× 	22 (e.g., we can process for " = 1,2,3, …k-.3). This two-phase approach considerably 215

decreases redundant calculations. 216

The algorithm can be further accelerated by terminating the estimation of ε if the error remains at a high level after 217

assessing only a small amount of samples from @ (here set to 500). To this end, we increase @ for the parameter 218

combinations of interest, i.e., parametrization with potentially the lowest ε. This entails iterating and verifying at 219

each step whether additional computations are required. Only places respecting following inequality are refined 220

with extra measures: 221

D(2, ?, /) − D(2-,4, ?, /) <
1
2[(2, ?, /) +

1
2[(2-,4, ?, /) (4) 222

With 223

D(2-,4, ?, /) = min
0
D(2, ?, /) 224

[(2, ?, /) = G 1
|@|H ^IZ(A) − ZLCand

!\{$}
<2, 5(A,?)>QR − D(2, ?, /)_

&

$∈(
 225

With D(.) the error, and [(.) represent the standard deviation of all differences, between estimated and true values. 226

5 Results 227

5.1 Optimization of 2 parameters 228

All experimental tests in this section are performed using the training image shown in Error! Reference source 229

not found., and the stages ? are distributed following a logarithmic scale. 230

As a first test, we use the configuration 21 = {!} , and 22 = {"}. The kernel 4 is defined as uniform, meaning that 231

it has a constant value and is not part of the optimization. The outcome is represented in Figure 3, with the optimal 232

number of candidates	" and number of neighbors ! as a function of the density ?, which is assimilated to the 233

progression during the simulation. The ignorance threshold is defined as the average error between elements of 234

the marginal distribution. It represents the error value at which no further information can be derived from the 235

neighborhood, meaning that the simulated values can equivalently be drawn from the marginal distribution. 236

 8

 237
Figure 3 Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, 238
with the associated prediction error (in black). The red line represents the ignorance threshold. The dashed blue line 239
indicates the average maximal number of neighbors.. 240

 241

The optimal " remains small (in fact 1) throughout the simulation, which is probably due to the limited size of the 242

training image in this case. It seems important to use many neighbors in the early stages of the simulation. The 243

number of neighbors increases until approximately 3% of the simulation. This is followed by a subsequent drastic 244

reduction, indicating that once the large structures are informed, only the few direct neighbors are important. It 245

seems logical that MPS algorithms simulate large structure first and then smaller patterns in a hierarchical manner 246

where each smaller structure is part of the larger one. We however note that it remains generally difficult to predict 247

the optimal settings as a function of the simulation stage. This indicates that the use of a single parametrization for 248

the entire MPS simulation is generally suboptimal, and the parameters should be adapted as the simulation 249

progresses. 250

 251
Figure 4 Pattern error as a function of the number of neighbors !, with " = $, where each curve represents a 252
neighborhood density %. 253

 9

 254

Figure 4 shows the evolution of D as a function of the number of neighbors ! and the simulation progression ?. 255

Two regimes are visible: in the first percentages of the simulation, each extra neighbor is informative and improves 256

simulation quality. However, as the neighborhoods become denser, the importance of spatial continuity takes over, 257

and only the few neighbors are really informative. This two-step process is expected, as random large-scale 258

features are generated first, and then the image is filled with consistent fine-scale structures. Furthermore, it shows 259

that using a large number of neighbors at the end of the simulation generates suboptimal results, which could 260

explain the small-scale noise that is sometimes visible in some MPS simulations. 261

 262

5.2 Optimization of 3 parameters 263

Here, we use the following configuration 21 = {!, `} and 22 = {"}, and we consider kernels as having a radial 264

exponential shape, i.e. 4, = a56.8!. The wight of a given position b in the kernel	4 is defined as 4,, and its distance 265

to the kernel center as c,. 266

 267
Figure 5 Optimal parameters for QS (k in green, number of neighbors in blue, and best kernel in magenta), as a function 268
of the simulation progress, with the associated prediction error (in black). The dashed blue line indicates the average 269
density for the neighborhood considered. The ignorance threshold in red. 270

 271

The results presented in Figure 5 demonstrate the impact of the number of neighbors and narrow kernels 272

(characterized by high α values) on the evolution of the QS parameters. Specifically, it can be observed that 273

interactions arise between these two factors, resulting in slightly erratic calibrated parameters. As the number of 274

neighbors increases, the weights assigned to the furthest neighbors become negligible with larger α values. This 275

means that these far away neighbors, despite being considered, have very little influence. This insensitivity only 276

occurs for large n values, leading to minimal differences between possible configurations and noise in the metric. 277

As expressed in the methodology section, in cases of a similar error, the cheapest solution is considered. In the 278

case of QS, having a large number of neighbors can marginally increase the computational time, therefore, we 279

introduce a small tolerance that results in favoring small ! values. It is formulated as a small cost for each extra 280

neighbor, i.e., by adding 5e-5 × (max(/) −min(/)) for each extra neighbor. However, the speed-up during 281

simulation was limited to up to 10 %. Figure 6 shows similar quality (D curves) as in Figure 5, but with the added 282

 10

tolerance. As expected, the number of neighbors required during the simulation drastically decreases as advanced 283

simulation stages, and the fluctuations in n are avoided. 284

 285
Figure 6 Optimal parameters for QS (k in green and number of neighbors in blue, and the best kernel in magenta) 286
as a function of the progression, with the associated prediction error (in black). The dashed blue line is the average 287
density for the neighborhood considered. The ignorance threshold is in red. 288

5.3 Sequential simulation using automatic calibration 289

Figure 7 shows qualitative results using the evolutive parametrization resulting of the proposed autocalibration, 290

using a case study that was published in Gravey and Mariethoz (2020). QS with an adaptive kernel refers to the 291

use of different values of ` for the kernel as a function of the simulation progression. In this case, the results are 292

similar to state-of-the-art simulations using a manual calibration. Tests using QS with a uniform kernel fail to 293

reproduce some structures, in particular the size of the objects is incorrect. Each position-map shows few 294

homogenous areas; therefore, realizations are produced with a low rate of verbatim copy. 295

 296
Figure 7 Simulation using QS with parameters generated by the automatic calibration. 297

 298

 11

From a quantitative evaluation, Figure 8 illustrates different metrics (variograms, connectivity as a structural 299

indicator, and the Euler characteristic as noise indicator) (Renard and Allard, 2013) across a set of 100 realizations. 300

The automatic calibration method proposed here allows obtaining better quality simulations than in Gravey and 301

Mariethoz (2020). 302

Figure 9 shows that variogram and connectivity metrics are well reproduced, although they have not been directly 303

constrained in the calibration process. Indeed, the parameter optimization only considers the simulation of single 304

pixels and never computes global metrics over an entire grid. 305

 306

 307
Figure 8 Benchmark between QS with an adaptive kernel (Figure 6) and a uniform (without) kernel (Figure 3) over 100 308
simulations for 5 different metrics. 309

6 Discussion and conclusion 310

The proposed method allows for the automatic calibration of QS and potentially similar pixel-based MPS 311

approaches, reaching a similar or better quality as that of manual parameterization from both quantitative and 312

qualitative points of view. Furthermore, it demonstrates that the optimal parametrization should not remain 313

constant and instead needs to evolve with the simulation progression. The metrics confirm the good reproduction 314

 12

of training patterns and the method finds a calibration that avoids verbatim copy. One major advantage of our 315

approach is the absence of a complex objective function, which often itself requires calibration. 316

A limitation of our approach is that it cannot be used to determine an optimal simulation path because it focuses 317

on the simulation of a single pixel. It also does not optimize the computational cost required for a simulation. 318

The computation time necessary to identify the appropriate parameters is contingent upon the expected quality. 319

However, the maximum time required for completion is predictable and depends on the number of patterns tested. 320

If required, the calibration can be further refined based on prior outcomes without restarting the entire process; 321

this can be achieved by adjusting ?, incorporating additional kernels, or increasing |@|.	 In certain instances, 322

adjusting the kernel parameter offers only minor improvements while necessitating a substantial number of 323

computations. Employing a more streamlined parameter space can yield comparable, and significantly reduce the 324

computational cost. This streamlined parameter space can be established, for instance, by subsampling the number 325

of neighbors according to a squared function (2,4,9,16,25,…) or by leveraging external or expert knowledge. 326

The proposed methodology was evaluated in multivariate scenarios, resulting in a more expansive parameter space 327

compared to single-variable cases. Although the approach yields satisfactory parameters, the inclusion of extra 328

parameters significantly extends the computation time, rendering the process impractical, particularly when 329

dealing with four or more variables. 330

In the context of testing the generality of our approach, calibration was computed on multiple training images 331

(found in the Supplementary material). The calibration pattern with two regimes (! large, then ! small) seems to 332

be universal, at least for univariate simulations. While the position of the abrupt transition between regimes seems 333

to vary greatly (between 0.5% and 20% of the path), the overall shape remains the same. Therefore, the approach 334

proposed by Baninajar et al. (2019), in which long ranges are not considered, could be extended by using large ! 335

values in the early stages of the simulation. 336

While show that it is possible to calibrate a parametric kernel, in future work one can envision the optimization of 337

a nonparametric kernel where the weight of each individual neighbor e, is considered a variable to optimize using 338

D as an objective function (e.g., using a machine learning regression framework). 339

The study of the evolution of parameters shows a smooth behavior of the average error. Therefore, the use of 340

multivariate fitting approaches to estimate the error surface with fewer evaluations could be an interesting solution 341

to speed up the parametrization. The use of machine learning to take advantage of transfer learning between 342

training images also has a high potential. 343

 344

Code availability 345

The source code of the AutoQS algorithm is available as part of the G2S package at: https://github.com/GAIA-346

UNIL/G2S (last access: 1st May 2023) under the GPLv3 license. And permanently available at 347

https://doi.org/10.5281/zenodo.7792833. Platform: Linux/macOS/Windows 10+. Language: C/C++. Interfacing 348

functions in MATLAB, Python3, and R. 349

Author contributions. 350

MG proposed the idea, implemented and optimized the autoQS approach and wrote the article. GM provided 351

supervision, methodological insights and contributed to the redaction. 352

 13

Competing interests 353

The authors declare that they have no conflict of interest. 354

Acknowledgements 355

This research was funded by the Swiss National Science Foundation. 356

6.1 Financial support 357

This research has been supported by the Swiss National Science Foundation (grant no. 200021_162882). 358

7 References 359

Abdollahifard, M. J., Baharvand, M., and Mariéthoz, G.: Efficient training image selection for multiple-point 360

geostatistics via analysis of contours, Computers & Geosciences, 128, 41–50, 361

https://doi.org/10.1016/j.cageo.2019.04.004, 2019. 362

Baninajar, E., Sharghi, Y., and Mariethoz, G.: MPS-APO: a rapid and automatic parameter optimizer for multiple-363

point geostatistics, Stoch Environ Res Risk Assess, 33, 1969–1989, https://doi.org/10.1007/s00477-019-01742-7, 364

2019. 365

Boisvert, J. B., Pyrcz, M. J., and Deutsch, C. V.: Multiple Point Metrics to Assess Categorical Variable Models, 366

Nat Resour Res, 19, 165–175, https://doi.org/10.1007/s11053-010-9120-2, 2010. 367

Dagasan, Y., Renard, P., Straubhaar, J., Erten, O., and Topal, E.: Automatic Parameter Tuning of Multiple-Point 368

Statistical Simulations for Lateritic Bauxite Deposits, Minerals, 8, 220, https://doi.org/10.3390/min8050220, 2018. 369

Gómez-Hernández, J. J. and Wen, X.-H.: To be or not to be multi-Gaussian? A reflection on stochastic 370

hydrogeology, Advances in Water Resources, 21, 47–61, https://doi.org/10.1016/s0309-1708(96)00031-0, 1998. 371

Gravey, M. and Mariethoz, G.: QuickSampling v1.0: a robust and simplified pixel-based multiple-point simulation 372

approach, Geosci. Model Dev., 13, 2611–2630, https://doi.org/10.5194/gmd-13-2611-2020, 2020. 373

Guardiano, F. B. and Srivastava, R. M.: Multivariate Geostatistics: Beyond Bivariate Moments, in: Quantitative 374

Geology and Geostatistics, Springer Netherlands, 133–144, https://doi.org/10.1007/978-94-011-1739-5_12, 1993. 375

Journel, A. and Zhang, T.: The Necessity of a Multiple-Point Prior Model, Math Geol, 38, 591–610, 376

https://doi.org/10.1007/s11004-006-9031-2, 2006. 377

Mahmud, K., Mariethoz, G., Caers, J., Tahmasebi, P., and Baker, A.: Simulation of Earth textures by conditional 378

image quilting, Water Resour. Res., 50, 3088–3107, https://doi.org/10.1002/2013wr015069, 2014. 379

Mariethoz, G., Caers, J., 2014. Multiple-point geostatistics: stochastic modeling with training images. Wiley. 380

Mariethoz, G., Renard, P., and Straubhaar, J.: The Direct Sampling method to perform multiple-point geostatistical 381

simulations, Water Resour. Res., 46, https://doi.org/10.1029/2008wr007621, 2010. 382

Matheron, G.: The intrinsic random functions and their applications, Advances in Applied Probability, 5, 439–383

468, https://doi.org/10.2307/1425829, 1973. 384

Meerschman, E., Pirot, G., Mariethoz, G., Straubhaar, J., Van Meirvenne, M., and Renard, P.: A practical guide 385

to performing multiple-point statistical simulations with the Direct Sampling algorithm, Computers & 386

Geosciences, 52, 307–324, https://doi.org/10.1016/j.cageo.2012.09.019, 2013. 387

 14

Pérez, C., Mariethoz, G., and Ortiz, J. M.: Verifying the high-order consistency of training images with data for 388

multiple-point geostatistics, Computers & Geosciences, 70, 190–205, 389

https://doi.org/10.1016/j.cageo.2014.06.001, 2014. 390

Renard, P. and Allard, D.: Connectivity metrics for subsurface flow and transport, Advances in Water Resources, 391

51, 168–196, https://doi.org/10.1016/j.advwatres.2011.12.001, 2013. 392

Rezaee, H., Mariethoz, G., Koneshloo, M., and Asghari, O.: Multiple-point geostatistical simulation using the 393

bunch-pasting direct sampling method, Computers & Geosciences, 54, 293–308, 394

https://doi.org/10.1016/j.cageo.2013.01.020, 2013. 395

Straubhaar, J., Renard, P., Mariethoz, G., Froidevaux, R., and Besson, O.: An Improved Parallel Multiple-point 396

Algorithm Using a List Approach, Math Geosci, 43, 305–328, https://doi.org/10.1007/s11004-011-9328-7, 2011. 397

Strebelle, S.: Mathematical Geology, 34, 1–21, https://doi.org/10.1023/a:1014009426274, 2002. 398

Tan, X., Tahmasebi, P., and Caers, J.: Comparing Training-Image Based Algorithms Using an Analysis of 399

Distance, Math Geosci, 46, 149–169, https://doi.org/10.1007/s11004-013-9482-1, 2013. 400

 401

 402
 403

 15

Appendix 404

 405
This supplementary material contains a similar calibration for other training images. 406

A. Stone 407

 408
Figure A.1 Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, 409
with the associated prediction error (in red). The red line represents the ignorance threshold. The dashed blue line is 410
the average density for the neighborhood considered. The dot-dashed line represents the variability in 1% of the error. 411

B. Strebelle (Strebelle, 2002) 412

 413
Figure B.1 Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, 414
with the associated prediction error (in red). The red line represents the ignorance threshold. The dashed blue line is 415
the average density for the neighborhood considered. The dot-dashed line represents the variability in 1% of the error. 416

 16

 417
Figure B.2 Optimal parameters for QS (k in green and number of neighbors in blue, and the best kernel in magenta) 418
as a function of the progression, with the associated prediction error (in red). The dashed blue line is the average density 419
for the neighborhood considered. 420

 421
Figure B.3 Simulation using QS using parameters generated by the automatic calibration. 422

 17

 423
Figure B.4 Benchmark between QS with adaptative kernel (Figure B.2) and uniform (without) kernel (Figure B.1) 424
over 100 simulations for 5 different metrics. 425

 426

 18

C. Delta Lena (Mahmud et al., 2014) 427

 428
Figure C.1 Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, 429
with the associated prediction error (in red). The red line represents the ignorance threshold. The dashed blue line is 430
the average density for the neighborhood considered. The dot-dashed line represents the variability in 1% of the error. 431

 432
Figure C.2 Optimal parameters for QS (k in green and number of neighbors in blue, and the best kernel in magenta) 433
as a function of the progression, with the associated prediction error (in red). The dashed blue line is the average density 434
for the neighborhood considered. 435

 19

 436
Figure C.3 Simulation using QS using parameters generated by the automatic calibration. 437

 20

 438
Figure C.4 Benchmark between QS with adaptative kernel (Figure C.2) and uniform (without) kernel (Figure C.1) 439
over 100 simulations for 5 different metrics. 440

441

