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Highlights

e Adaptative calibration as a function of the simulation progression
e Calibration depends pn gach training image

e Robust parameterization based on a rapid prior analysis of the training image

Abstract. Multiple-point geostatistics are widely used to simulate complex spatial structures based on a training

image. The practical applicability of these methods relies on the possibility of finding optimal training images and

parametrization of the simulation algorithms. While methods for automatically selecting training images are

available, parametrization can be cumbersome. Here, we propose fo find an optimal set of parameters using only

the training image as input. The difference between this and previous work that used parametrization optimization

is that it does not require the definition of an objective function. Our approach is based on the analysis of the errors

that occur when filling artificially constructed patterns that have been borrowed from the training image. Jts main

advantage s togliminate the risk of overfitting an objective function, which may result inyvariance underestimation

or in, verbatim copy of the training image. Since it is not based on optimization, our approach finds a set of

acceptable parameters in a predictable manner by using the knowledge and understanding of how the simulation
algorithms work. The technique is explored in the context of the recently developed QuickSampling algorithm,
but it can be easily adapted to other pixel-based multiple-point statistics algorithms using pattern matching, such

as Direct Sampling or Single Normal Equation Simulation (SNESIM).

1 Introduction

Geostatistics is extensively used in natural sciences to map spatial variables such as surface properties (e.g., soils,

geomorphology, meteorology) and subsurface geological features, (e.g. porosity, hydraulic conductivity, 3D

geological facies). Its main applications involve the estimation and simulation of natural phenomena. In this paper,
we focus on simulation approaches.
Traditional two-point geostatistical simulations preserve the histogram and variogram inferred from point data

(Matheron, 1973). However, inherent limitations make the reproduction of complex structures difficult,(Gomez-

Hernandez and Wen,1998; Journel and Zhang, 2006). Multiple-point statistics (MPS), by accounting for more
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complex relations, enables the reproduction of such complex structures (Guardiano and Srivastava, 1993), but - CDeleted

: . However, MPS has

comes with its own limitations (Mariethoz and Caers, 2014). The main requirements for using MPS algorithms : (Deleted: To perform satisfactorily,
are 1) analog images (called training images) and 2) appropriate parametrization. While training images can often : (Deleted: require
be provided by expert knowledge, and several methods have been proposed to automatically selectone or a subset ‘ CDeleted: Training
of appropriate training images among a set of candidates (Pérez et al., 2014; Abdollahifard et al., 2019), However, . [Deleted: - Indeed, the training image is related to the property
* | that is being simulated
the parametrization of an MPS algorithm depends not only on the chosen training image but also on the specifics . ™ — -
5 Deleted: therefore it is common to all MPS algorithms. In
of the algorithm. This makes the task of finding good parametrization cumbersome, and therefore,users often have . | addition,
to resort to trial-and-error approaches (Meerschman et al.. 2013). Here we will mainly focus on QuickSampling . CDeleted: an
(QS) (Gravey and Mariethoz, 2020) which has as two main parameters: n_that defines the maximum number of CDeleted:
conditional data points to consider during the search process, and k which is the number of best candidates from Deleted: , users often have to resort to a trial-and-error
approaches (Meerschman et al., 2013)
which to sample the simulated value. Additionally, QS supports a kernel that allows weighting each conditioning
pixel in the pattern based on its position related to the simulated pixel. Direct Sampling (DS) has for parameters: (Dﬂetedi good MPS
n_which has an identical role as in QS, th that represents the pattern acceptance threshold, or the degree of (DeletedL
similarity between local data patterns and the training image, and f the maximum proportion of the image that can i (D eleted: to
. . . - ' { Deleted: different philosophies.
be explored for each simulated pixel. In summary, n_controls the spatial continuity, and k_or th and f control the C eleted: ditferent philosopnics
. (Deleted: categories
variability. i
. . . . ; ,'CDeleted: focused on the “simulation grid”, which assumes
Over the last few years, several studies have addressed the challenge of automatically finding appropriate ’ CD roted
| Deleted: a
parameters, for MPS simulation. These can be categorized in,two approaches, The first approach is fo assume that ;= CD leted
An optimal parametrization is related to the simulation grid, (including possible conditioning data), the training (Delete d: using
image and the MPS algorithm. In this vein, Dagasan et al. (2018) proposed a method that uses the known hard - { Deleted: to compute statistical metrics and then trying to
data from the simulation grid as a reference for computing the Jensen-Shannon divergence between histograms. improve the parametrization through
Following this, they employ a simulated annealing optimization o update the MPS parameters until the metrics CDeleted: process
achieve the lowest divergence. This method is flexible enough to be adapted to any other metric. The second type ) (Deleted: matched as closely as possible.
AP P . Deleted: is f d on the “training i ” and

of approach assumes that the parametrization is only related to the training image and the MPS algorithm. Along ( ¢lefec: s Tocused on the training image an

. . . .. ~( Deleted: d
these lines, Baninajar et al. (2019) propose,the MPS Automatic Parameter Optimizer (MPS-APO) method based E

o | Deleted: quantify
on the cross-validation of the training image (TI) to pptimize simulation quality and CPU cost. In this approach, -
CDeleted: algorithms are

artificially generated gaps in the high gradient areas of the training image are created, and a MPS algorithm is used

(et

: simulate the

to fill those gaps. The performance of a particular parameterization is quantified by assessing the correspondence CDelete d: cach
between the filled and original training data. By design, this approach is extremely interesting for gap-filling CDeleted: algorithm needs to be
problems. The authors state that it can be used for the parametrization of unconditional simulations; however, the i CDeleted: for the error to be estimated properly
use of limited gaps cannot guarantee the reproduction of long-range dependencies. Furthermore, due to the design CDeleted: If
of the framework for generating gaps, only MPS algorithms able to handle gap-filling problems can be used. 7 CDeleted: show
While both approaches yield good results, based on_their objective functions, they all rely on a stochasti : (Deleted:  then
optimization process, therefore,the duration of the optimization process,cannot be predetermined or controlled by ‘ (Deleted: are both related to
the user. Furthermore, an objective function is needed, which can be difficult because it depends on the training X Sy (Deleted: methods, and
. . . Lo . . . ‘CDeleted: , the user has no control over
image used; many metrics can be accounted for in the objective function, such as histogram, variogram, pattern . C
v [ Deleted: .
histogram, connectivity function, Euler characteristic, etc., (Boisvert et al., 2010; Renard and Allard, 2013; Tanet - : -
X L. L. . 4 Deleted: . Finding this objective function is a challenge in
al.,, 2013) or a weighted combination of these. Similarly, one has to define meta-parameters linked to the itself
optimization algorithm itself, such as the cooling rate in simulated annealing or maximum number of iterations. CDeleted: can change depending
As a result, MPS parameter optimization approaches tend to be complex and difficult to use. (Dﬂeted: - Using optimization approaches,
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In this contribution, we propose a simplified optimization procedure for simulating complex systems. Rather than

using a complex optimization algorithm, our approach focuses on finding optimal parameters to accurately

simulate a single pixel,in the system. The underlying principle of our approach is that jf each pixel is accurately

simulated, the resulting sequence of pixels will converge to an accurate representation of the real-world system

being simulated. The goal is therefore to find the optimal parameters to simulate a single pixel using the training /

image as the only reference. Baninajar et al. (2019) showed that computing the prediction error (i.e., the error
between the simulation and the reference) is an appropriate metric to jdentify optimal parameters. JTo find the

optimal parameters for simulating a single pixel, we propose an exhaustive exploration of the parameter space and

& computation of the prediction error,between the simulation and the reference image.

The remainder of this paper is structured as follows: Section 2 presents the proposed method. Section 3 evaluates

the approach in terms of quantitative and qualitative metrics. Finally, section 4 discusses the strengths and

weaknesses of the proposed approach and presents the conclusions of this work.

2 Understanding and Addressing Verbatim Copy in Multiple Point Simulation

The principle underlying multiple point simulation is that the neighborhood of a given pixel ,x (the pattern

generated by known or previously simulated pixels) is informative enough to constrain the probability density

function of the value Z (x). This requires a training image with several pattern yepetitions. The Extended Normal

Equation Simulation (ENESIM) algorithm (Guardiano and Srivastava, 1993) computes fhe full probability

distribution for each simulated pixel, To gnsure that enough samples are used, the SNESIM (Strebelle, 2002) and

the Jmpala (Straubhaar et al., 2011), algorithms include a parameter to define a minimum number of patterns

replicates. Direct Sampling (DS) (Mariethoz et al., 2010) adopts a different strategy by allowing for the interrupted
exploration of the training image. It includes a distance threshold parameter that defines what is an acceptable

match for a neighborhood, however, too small a threshold typically results in a single acceptable pattern in the

training image, leading to exact replication of parts of the training image, a phenomenon known as verbatim copy.

To reduce this issue, a parameter f_is introduced controlling the fraction of the explored training image.

QuickSampling (QS) (Gravey and Mariethoz, 2020) also suffers from verbatim copy when the number of candidate

patterns is set to k = 1, the authors recommend the use of k > 1, and highlight that k is similar to the number of

replicates in SNESIM or IMPALA. A value k = 1.5 in QS can be seen as SNESIM with a minimum number of

replicates of 1 for 50% of the simulated values and 2 for the remaining values.

Jhe definition of yerbatim copy js the unintended pasting of a large section from the training image to the

simulation (patch-based approaches do so intentionally, e.g. (Rezaee et al., 2013)). This means that the relative

position of the simulated yalues is the same as that in the training image. This occurs when the neighborhood

constraints on the simulated pixels are too strong and only the exact same patterns as those in the training image
are acceptable. To detect this issue, a common strategy is to create a position map (similar to the index map),

which represents the provenance of simulated values by mapping their original coordinates in the training image,

as shown in Figure 1,

Figure 1 jllustrates the most common forms of verbatim copy. The pure verbatim (the most common type of

verbatim copy) is a simple copy of a large part of the image, with all pixels in the same order inside of the patches.
Block verbatim typically appears when there are many replicates of a very specific type of pattern in the training

image and few replicates of all other patterns. Consequently, the MPS algorithm pses common patterns for
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transitioning between copied blocks resulting from rare patterns. Structural verbatim pccurs when the copied

portion spreads throughout the simulation without giving a direct impression of copying (e.g., pure verbatim over
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is an example of

Asubset of pixels). Structural verbatim tends to appear when large-scale structures are unique in the training image, (Deleted: the white
which often allows a visually satisfying image to be quickly obtained, but with large non-stationary features CDeletedL
identical to the training image. Often, users are willing to allow verbatim on large-scale structures, but this can ) (Deleted? .
easily introduce bias, between simulations. This is one of the hardest types of verbatim to detect. [['ypically, this CDeleted: ready
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Figure 1 Visualization of verbatim copies using a position map. This is an extreme case that highlights that verbatim is

not defined by the values simulated but by their position in the fraining image.

3 Method

The objective of the approach presented here is to find an optimal set of parameters using only the training image

and knowledge of the simulation algorithm's mechanics. The simulation algorithm is not used in this context; in

fact, simulations are not required to obtain a proper calibration, with the proposed method. The main target

application of the presented approach is the pattern matching simulation algorithm QuickSampling (QS), where
the values, at a pixel scale, are directly sampled from the training image. The method is suitable for the simulation

of continuous and/or categorical variables. ,

Simulation algorithms,such as QS, can be summarized by Algorithm 1. The key operation occurs at Line 3, which

is when the algorithm searches for an optimal match based on the neighboring conditioning data.
Algorithm 1 The sequential simulation algorithm. In gray the parametrization for QS.
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Inputs:

T: training images
S: simulation grid, including the conditioning data
P: simulation path
6: parametrization,

. n : number of neighbors

k_ the number of best candidates
w: the kernel, by default uniform

1. For each unsimulated pixel x following the path P:

2 Find the neighborhood N (x) in § composed of the n(8) closest neighbors
3. Find a candidate in T those matches N (xyusing the parametrization 6

4 Assign the value of the selected candidate to x in S

5. End

Here, we propose a divide and conquer approach that splits any pixel-based sequential simulation into its atomic

operation: the simulation of a single pixel. We assume that if all pixels are perfectly simulated, then the resulting

simulation should also be good. By a perfectly simulated pixel, we mean a pixel that respects the conditional

probability distribution. When simulating a pixel, there may be numerous potential valid values, but at the very

least, there should be one valid value, i.e., the conditional probability distribution should be represented in the

data. This can be formalized by the following condition:

|{A|P(A|N(x)) >0=z1 @

where | .| represents the cardinality of a set. P (AlN (X)) denotes the probability of A (a given value) knowing

N (x), the neighborhood. ,

The proposed approach consists of finding a set of parameters that results in accurate samples for each pattern. At

the same time, we want to avoid systematically sampling perfect matches (the exact same neighborhood is

available in the training image), which results in,verbatim copy.
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/ CDeleted: Algorithm 2). The

,CDeleted: is computed, which is

7 CDeleted: pattern (Figure 2).

The search for the optimal parametrization is carried out by exhaustive exploration (), and the choice of optimal

parameters is based on a prediction error defined as the difference between the original value of the pattern and

the value of the selected pattern in the training image,

Algorithm 2

Inputs:

D: list of stages of the simulation (i.e. pattern decimation levels, equivalent to fractions of the simulation path)
0: list of discretized parameters

T the training images

7V a set of random positions (in practice we generated the random position on the fly)

1. For each possible combination of D and 6 do forall v € V:

Sample a neighborhood N(/zr) from T and decimate it according to stage D

WUsing 0, find a candidate in T that matchcs N (1, excluding for v itself

4. Compute the error & between the selected candidate and Z(v)
5. End

6. Analyze the errors ¢ to determine the best 6 for each D.

v

The proposed algorithm explores a discretized parameter space 6 (, Line 1) (e.g., for QS: n, k, w). While this

discretization is natural for some parameters, such as n _that is an integer, it can require an explicit discretization

for other parameters, such as the kernel in QS (or th in DS). Furthermore, a key component of our method is the

exploration of the parameter space for several representative stages D of the simulation (, Line 1). In the case of a
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this exclusion is denoted by T\{v}_ in Equation 2. Furthermore, in the case of equality between several optimal Deleted:

To avoid over-constrained situations from

generating a verbatim copy of the training image, the position

v and its direct neighbors (in a small radius, usually around 5

/| pixels, but can we increase depending of the small scale
structure of the training image) are removed from the set of
potential candidates. Furthermore, in the case of equality
between several optimal options, we propose the simple rules

(3) .| of taking the cheapest parameter set in terms of

computational cost (e.g., ...

options, we set as a rule to take the cheapest parameter set in terms of computational cost (e.g., he n),
graphically represents the entire algorithm. Finally, for each stage considered, the set of parameters with the

minimum associated error ¢ is considered optimal {, Line 6):
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Training image Mismatch map

_(Moved up [5]: the smallest n).
(Deteted:
( Deleted: Algorithm 2 divides 6

: of parameters

_a

Prediction error

Decimated pattern

: contains

: the

: affect

: computation of the match

: . This is dependent

, i (Deleted: the case of
(Deleted: these are

Figure 2 All steps for a single pattern, summarizing , Lines 2-4.

<>

—~

tation : would be th,

4 An efficient impl

D).
g CDeleted: includes the
CDeleted: In the case of

In practice, the implementation of Algorithm 2 separates 6 into two parameter subsets; 8, and 6. The 8, subsct

consists of all parameters that jnfluence the calculation of a single patte:

i /
jt includes the number of neighbors n, and the kernel w, while in DS, it |

algorithm, used. For instance, in QS, |

CDeleted: these are the number of matches to retain k,
- CDeleted: (and in the case of
fof the training image being scanned, h [Deleted: f, which is
: - (Deleted: that is
(Deleted: ). Interestingly, we can precompute

N AN A A A AN A AN A A AN AN ANAAAANANA




541
542
543
544
545
546
547
548
549

550

551
552

553

554

555

556

557
558
559
560
561
562
563
564

Our implementation precomputes and stores all matches for a specific 8, parameterization (e.g., a value of n and C])eleted; store of

all matches for k). Consequently, the saved matches of 8, can be gmployed to swifily evaluate all pptions for the CDeleted: given
parametersing = 0, X 6, (e.g.. we can process for k = 1,2,3, ... Kua. ). This two-phase approach considerably ‘ CDeleted: 6y, Then
decreases redundant calculations. [ % CDeleted: used

CDeleted: quickly measure

( Deleted: possibilities

(Deleted: 6 = 6, + 6.

3 CDeleted: step

\ CDeleted: allows to significantly reduce

The algorithm can be further accelerated by ferminating the estimation of ¢ if the error remains at a high level after b

Assessing only a small amount of samples from V, (here set to 500). To this end, we increase V for the parameter 3

combinations of interest, i.c., parametrization with potentially the lowest €. This entails iterating and verifying at

each step, whether additional computations are yequired. Only places respecting following jnequality are refined

with extra measures: k - - -
e i\ CDeleted: computations. It is possible to

L (Deleted: accelerate this algorithm
(Deleted: aborting

‘ (Deleted: €

‘ i [Deleted: having tested

2 \ i (Deleted: number (at least 500)

J(H,D, T) = %Z (Z(U) -7 <(%z\1(r/;()i(9,N(v, D)))) - S(H,D,T) : (Deleted: .

CDeleted: carry out

1 1
5(9, D, T) — £(9mm, D, T) < 20(9, D, T) + Eg(gmi”' D, T) (4)

With

E(@min, D, T) = mein E(G,D,T)

(Deleted: last operation efficiently, the algorithm increases
(Deleted: LAt

(Deleted: increase

5 Results (Deleted: , it checks if more

CDeleted: needed. The

g (Deleted: rules proved a good trade-off
All experimental tests in this section are performed using the training image shown in, and the stages D are [Deleted: . Therefore, a given parametrization is only further

With £(.) the error, and o(.) represent the standard deviation,of all differences, between estimated and true values.

5.1 Optimization of 2 parameters

distributed following a logarithmic scale. , A\ explored if the error is a range of a o

C Deleted: <#>Resultq|

s a first test, we use the configuration 8, = (ny . and 65 = ky. The kernel w is defined as uniform, meaning that NN
) CDeleted: Figure 2. The

it has a constant value and is not part of the optimization. The outcome is represented in Figure 3, with the optimal Y

Deleted: Experimentation shows that the nodes simulated in
the initial stages of the path are critical for the overall
simulation

number of candidates, k and number of neighbors 7 as a function of the density D, which is assimilated to the

— AN NN A A A A A A A A A AN A A A AN A A AN

progression during the simulation, The ignorance threshold is defined as the average error between elements of

4 Deleted: <#>Automatic calibration for QS
In the case of QS, the method finds optimal values for k the
number of candidates, n the number of neighbors and w the
kernel.§
Automatic calibration for QS with a uniform kernel
In this

the marginal distribution. It represents the error value at which no further information can be derived from the i

neighborhood, meaning that the simulated values can gquivalently be drawn from the marginal distribution,

Deleted: <#>results are shown

Deleted: <#>Figure 3. It shows
Deleted: <#>k

Deleted: <#> progress (equivalent to the neighborhood
density D).

(
(
E
( Deleted: <#>by computing
(
(
(
(
(

Deleted: <#>beyond

Deleted: <#>is extracted

Deleted: <#>stage where

Deleted: <#>then

N AN AN A A A AN

Deleted: <#> without introducing bias




—e— Optimal number of neighbors —— Optimal k —s— Mean prediction error —— Ignorance threshold

200110
0.30
175
8 0.25
£150
Q
<
125 0.20,
< 6y 5
15} =
g 100 015"
Q
g 75
4
4 0.10
50
25 2 0.05
— — —~
0.00
0.1% 0.3 % 1% 3% 10 % 30 % 100 %
Progression
612 ¢
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Figure 4 shows the evolution of € as a function of the number of neighbors y1 and the simulation progression D.

Two regimes are visible: in the first percentages of the simulation, gach extra neighbor is informative and improves

simulation quality. However, as the neighborhoods become denser, the importance of spatial continuity takes over, *

and only the few neighbors are really informative. This two-step process is expected, as random large-scale

features are generated first, and then the image is filled with,consistent fine-scale structures. Furthermore, it shows

that using a large number of neighbors at the end of the simulation generates suboptimal results, which could

explain the small-scale noise that is sometimes visible in some MPS simulations.
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simulation stages, and the fluctuations in » are avoided.
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5.3  Sequential simulation using automatic calibration Training image
Figure 7, shows qualitative results using the evolutive parametrization resulting of the proposed autocalibration,
using a case study that was published in Gravey and Mariethoz (2020). QS with an adaptive kernel refers to the |
] ()
use of different values of g for the kernel as a function of the simulation progression. In this case, the results are 2
. 2
similar to state-of-the-art simulations using a manual calibration. Tests using QS with a uniform kernel fail to g
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From a quantitative gvaluation, Figure & illustrates different metrics (variograms, connectivity as a structural

indicator, and the Euler characteristic as noise indicator) (Renard and Allard, 2013) across a set of 100 yealizations. h

The automatic calibration method proposed here allows pbtaining better quality simulations than in Gravey and

Mariethoz (2020).
Figure 9 shows that variogram and connectivity metrics are well reproduced, although they have not been directly
constrained in the calibration process. Indeed, the parameter optimization only considers the simulation of single

pixels and never computes global metrics over an entire grid.
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Figure 8 Benchmark between QS with an adaptive kernel (Figure 6) and a uniform (without) kernel (Figure 3) over 100

simulations for 5 different metrics.

6  Discussion and conclusion

The proposed method allows for the automatic calibration of QS and potentially similar pixel-based MPS
approaches, reaching a similar or better quality as that of manual parameterization from both quantitative and

qualitative points of view. Furthermore, it demonstrates that the optimal parametrization should not remain

constant and instead needs to evolve with the simulation progression. The metrics confirm the good reproduction
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of training patterns and the method finds a calibration that avoids verbatim copy,One major advantage of our
approach is the absence of a complex objective function, which often itself requires calibration. , /

A limitation of our approach is that it cannot be used to determine an optimal simulation path because it focuses

on the simulation of a single pixel. Jt also does not pptimize the computational cost required for a simulation.

The computation time piecessary to identify the appropriate parameters js contingent upon the expected quality.

However, the maximum time required for completion is predictable and depends on the number of patterns tested.

If required, the calibration can be further refined based on prior outcomes without restarting the entire process;

this can be achieved by adjusting D, incorporating additional kernels, or increasing |V|. In certain instances

adjusting the kernel parameter offers only yninor improvements while necessitating a_substantial number of

computations. Employing a more streamlined parameter space can yield comparable, and significantly reduce the

computational cost. Thisstreamlined parameter space can be gstablished, forjnstance, by subsampling the number

of neighbors according to a squared function {2.4.9.16.25....) or by leveraging external, or expert knowledge.

The proposed methodology was gvaluated in multivariate scenarios, resulting in ajnore expansive parameter space

compared to single;variable, cases. Although the approach, vields satisfactory parameters, the inclusion of extra

parameters significantly extends the computation time, rendering the process impractical, particularly when

dealing with four or more variables.

In the context of testing the generality of pur approach, calibration was computed on multiple training images

(found in the Supplementary material). The calibration pattern with two regimes (n large, then n small) seems to

be universal, at least for univariate simulations. While the position of the abrupt transition between yegimes seems |

to vary greatly (between 0.5% and 20% of the path), the overall shape remains the same. Therefore, the approach
proposed by Baninajar et al. (2019), in which long ranges are not considered, could be extended by using large n

values in the early stages of the simulation.

While show that it is possible to calibrate a parametric kernel, in future work one can envision the optimization of |

a nonparametric kernel where the weight of each individual neighbor w; is considered a variable to optimize using * \

€ as an objective function (e.g., using a machine learning yegression framework). -\

The study of the evolution of parameters shows a smooth behavior of the average error. Therefore, the use of;

multivariate fitting approaches to estimate the error surface with fewer evaluations could be an interesting solution
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Appendix

This supplementary material contains a similar calibration for other training images.
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Figure A.1 Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression,
with the associated prediction error (in red). The red line represents the ignorance threshold. The dashed blue line is
the average density for the neighborhood idered. The dot-dashed line represents the variability in 1% of the error.
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Figure B.1 Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression,
with the associated prediction error (in red). The red line represents the ignorance threshold. The dashed blue line is
the average density for the neighborhood considered. The dot-dashed line represents the variability in 1% of the error.
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Figure B.2 Optimal parameters for QS (k in green and number of neighbors in blue, and the best kernel in magenta)
as a function of the progression, with the associated prediction error (in red). The dashed blue line is the average density
for the neighborhood considered.
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the average density for the neighborhood idered. The dot-dashed line represents the variability in 1% of the error.
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Figure C.2 Optimal parameters for QS (k in green and number of neighbors in blue, and the best kernel in magenta)
as a function of the progression, with the associated prediction error (in red). The dashed blue line is the average density
for the neighborhood considered.
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Figure C.3 Simulation using QS using parameters generated by the automatic calibration.

QS with an adaptative kernel




129

130
1131

1132

Connectivity Euler characteristic

> 1 5000 Py
808 . \ /
c [0}
8 o 0
g06 E
5 c
0.4 o)
£ 2 5000
ol o
$0.2
e 7
) -10000 :
0 0.5 1 0 0.5 1
Threshold Threshold
Variogram X-axis Variogram Y-axis
0.03 0.03 "
~0.02 gy ~0.02
0.01 0.01+
0 0
5 10 15 5 10 15
Lag Lag
Omni-directional variogram
—Training image
0.03
—QS adaptative kernel (AK) median
«0.02 | /@S AK, envelope 5%-95%
0.01 —Q@S uniform kernel (UK) median
| QS UK, envelope 5%-95%
0
5 10 15
. Lag

Figure C.4 Benchmark between QS with adaptative kernel (Figure C.2) and uniform (without) kernel (Figure C.1)

over 100 simulations for 5 different metrics.
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