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Highlights 11 

• Adaptative calibration as a function of the simulation progression 12 
• Calibration depends on each training image 13 
• Robust parameterization based on a rapid prior analysis of the training image 14 

Abstract. Multiple‐point geostatistics are widely used to simulate complex spatial structures based on a training 15 

image. The practical applicability of these methods relies on the possibility of finding optimal training images and 16 

parametrization of the simulation algorithms. While methods for automatically selecting training images are 17 

available, parametrization can be cumbersome. Here, we propose to find an optimal set of parameters using only 18 

the training image as input. The difference between this and previous work that used parametrization optimization 19 

is that it does not require the definition of an objective function. Our approach is based on the analysis of the errors 20 

that occur when filling artificially constructed patterns that have been borrowed from the training image. Its main 21 

advantage is to eliminate the risk of overfitting an objective function, which may result in variance underestimation 22 

or in verbatim copy of the training image. Since it is not based on optimization, our approach finds a set of 23 

acceptable parameters in a predictable manner by using the knowledge and understanding of how the simulation 24 

algorithms work. The technique is explored in the context of the recently developed QuickSampling algorithm, 25 

but it can be easily adapted to other pixel-based multiple-point statistics algorithms using pattern matching, such 26 

as Direct Sampling or Single Normal Equation Simulation (SNESIM). 27 

 28 

1 Introduction 29 

Geostatistics is extensively used in natural sciences to map spatial variables such as surface properties (e.g., soils, 30 

geomorphology, meteorology) and subsurface geological features (e.g. porosity, hydraulic conductivity, 3D 31 

geological facies). Its main applications involve the estimation and simulation of natural phenomena. In this paper, 32 

we focus on simulation approaches. 33 

Traditional two-point geostatistical simulations preserve the histogram and variogram inferred from point data 34 

(Matheron, 1973). However, inherent limitations make the reproduction of complex structures difficult (Gómez-35 

Hernández and Wen,1998; Journel and Zhang, 2006). Multiple-point statistics (MPS), by accounting for more 36 
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complex relations, enables the reproduction of such complex structures (Guardiano and Srivastava, 1993), but 52 

comes with its own limitations (Mariethoz and Caers, 2014). The main requirements for using MPS algorithms 53 

are 1) analog images (called training images) and 2) appropriate parametrization. While training images can often 54 

be provided by expert knowledge, and several methods have been proposed to automatically select one or a subset 55 

of appropriate training images among a set of candidates (Pérez et al., 2014; Abdollahifard et al., 2019). However, 56 

the parametrization of an MPS algorithm depends not only on the chosen training image but also on the specifics 57 

of the algorithm. This makes the task of finding good parametrization cumbersome, and therefore users often have 58 

to resort to trial-and-error approaches (Meerschman et al., 2013). Here we will mainly focus on QuickSampling 59 

(QS) (Gravey and Mariethoz, 2020) which has as two main parameters: ! that defines the maximum number of 60 

conditional data points to consider during the search process, and " which is the number of best candidates from 61 

which to sample the simulated value. Additionally, QS supports a kernel that allows weighting each conditioning 62 

pixel in the pattern based on its position related to the simulated pixel. Direct Sampling (DS) has for parameters: 63 

! which has an identical role as in QS, #ℎ that represents the pattern acceptance threshold, or the degree of 64 

similarity between local data patterns and the training image, and % the maximum proportion of the image that can 65 

be explored for each simulated pixel. In summary, ! controls the spatial continuity, and " or #ℎ and % control the 66 

variability. 67 

Over the last few years, several studies have addressed the challenge of automatically finding appropriate 68 

parameters for MPS simulation. These can be categorized in two  approaches. The first approach is to assume that 69 

an optimal parametrization is related to the simulation grid (including possible conditioning data), the training 70 

image and the MPS algorithm. In this vein, Dagasan et al. (2018) proposed a method that uses the known hard 71 

data from the simulation grid as a reference for computing the Jensen-Shannon divergence between histograms. 72 

Following this, they employ a simulated annealing optimization to update the MPS parameters until the metrics 73 

achieve the lowest divergence. This method is flexible enough to be adapted to any other metric. The second type 74 

of approach assumes that the parametrization is only related to the training image and the MPS algorithm. Along 75 

these lines, Baninajar et al. (2019) propose the MPS Automatic Parameter Optimizer (MPS-APO) method based 76 

on the cross-validation of the training image (TI) to optimize simulation quality and CPU cost. In this approach, 77 

artificially generated gaps in the high gradient areas of the training image are created, and a MPS algorithm is used 78 

to fill those gaps. The performance of a particular parameterization is quantified by assessing the correspondence 79 

between the filled and original training data. By design, this approach is extremely interesting for gap-filling 80 

problems. The authors state that it can be used for the parametrization of unconditional simulations; however, the 81 

use of limited gaps cannot guarantee the reproduction of long-range dependencies. Furthermore, due to the design 82 

of the framework for generating gaps, only MPS algorithms able to handle gap-filling problems can be used. 83 

While both approaches yield good results based on their objective functions, they all rely on a stochastic 84 

optimization process, therefore the duration of the optimization process cannot be predetermined or controlled by 85 

the user. Furthermore, an objective function is needed, which can be difficult because it depends on the training 86 

image used: many metrics can be accounted for in the objective function, such as histogram, variogram, pattern 87 

histogram, connectivity function, Euler characteristic, etc., (Boisvert et al., 2010; Renard and Allard, 2013; Tan et 88 

al., 2013) or a weighted combination of these. Similarly, one has to define meta-parameters linked to the 89 

optimization algorithm itself, such as the cooling rate in simulated annealing or maximum number of iterations. 90 

As a result, MPS parameter optimization approaches tend to be complex and difficult to use. 91 
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In this contribution, we propose a simplified optimization procedure for simulating complex systems. Rather than 137 

using a complex optimization algorithm, our approach focuses on finding optimal parameters to accurately 138 

simulate a single pixel in the system. The underlying principle of our approach is that if each pixel is accurately 139 

simulated, the resulting sequence of pixels will converge to an accurate representation of the real-world system 140 

being simulated. The goal is therefore to find the optimal parameters to simulate a single pixel using the training 141 

image as the only reference. Baninajar et al. (2019) showed that computing the prediction error (i.e., the error 142 

between the simulation and the reference) is an appropriate metric to identify optimal parameters. To find the 143 

optimal parameters for simulating a single pixel, we propose an exhaustive exploration of the parameter space and 144 

a computation of the prediction error between the simulation and the reference image. 145 

The remainder of this paper is structured as follows: Section 2 presents the proposed method. Section 3 evaluates 146 

the approach in terms of quantitative and qualitative metrics. Finally, section 4 discusses the strengths and 147 

weaknesses of the proposed approach and presents the conclusions of this work. 148 

2 Understanding and Addressing Verbatim Copy in Multiple Point Simulation 149 

The principle underlying multiple point simulation is that the neighborhood of a given pixel & (the pattern 150 

generated by known or previously simulated pixels) is informative enough to constrain the probability density 151 

function of the value '(&). This requires a training image with several pattern repetitions. The Extended Normal 152 

Equation Simulation (ENESIM) algorithm (Guardiano and Srivastava, 1993) computes the full probability 153 

distribution for each simulated pixel. To ensure that enough samples are used, the SNESIM (Strebelle, 2002) and 154 

the Impala (Straubhaar et al., 2011) algorithms include a parameter to define a minimum number of patterns 155 

replicates. Direct Sampling (DS) (Mariethoz et al., 2010) adopts a different strategy by allowing for the interrupted 156 

exploration of the training image. It includes a distance threshold parameter that defines what is an acceptable 157 

match for a neighborhood, however, too small a threshold typically results in a single acceptable pattern in the 158 

training image, leading to exact replication of parts of the training image, a phenomenon known as verbatim copy. 159 

To reduce this issue, a parameter % is introduced controlling the fraction of the explored training image. 160 

QuickSampling (QS) (Gravey and Mariethoz, 2020) also suffers from verbatim copy when the number of candidate 161 

patterns is set to " = 1, the authors recommend the use of " > 1, and highlight that " is similar to the number of 162 

replicates in SNESIM or IMPALA. A value " = 1.5 in QS can be seen as SNESIM with a minimum number of 163 

replicates of 1 for 50% of the simulated values and 2 for the remaining values. 164 

The definition of verbatim copy is the unintended pasting of a large section from the training image to the 165 

simulation (patch-based approaches do so intentionally, e.g. (Rezaee et al., 2013)). This means that the relative 166 

position of the simulated values is the same as that in the training image. This occurs when the neighborhood 167 

constraints on the simulated pixels are too strong and only the exact same patterns as those in the training image 168 

are acceptable. To detect this issue, a common strategy is to create a position map (similar to the index map), 169 

which represents the provenance of simulated values by mapping their original coordinates in the training image, 170 

as shown in Figure 1. 171 

Figure 1 illustrates the most common forms of verbatim copy. The pure verbatim (the most common type of 172 

verbatim copy) is a simple copy of a large part of the image, with all pixels in the same order inside of the patches. 173 

Block verbatim typically appears when there are many replicates of a very specific type of pattern in the training 174 

image and few replicates of all other patterns. Consequently, the MPS algorithm uses common patterns for 175 
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transitioning between copied blocks resulting from rare patterns. Structural verbatim occurs when the copied 350 

portion spreads throughout the simulation without giving a direct impression of copying (e.g., pure verbatim over 351 

a subset of pixels). Structural verbatim tends to appear when large-scale structures are unique in the training image, 352 

which often allows a visually satisfying image to be quickly obtained, but with large non-stationary features 353 

identical to the training image. Often, users are willing to allow verbatim on large-scale structures, but this can 354 

easily introduce bias between simulations. This is one of the hardest types of verbatim to detect. Typically, this 355 

can occur when the maximum neighborhood radius is too large, leading to the duplication of large structures in 356 

the initial phase of the simulation. Finally, no verbatim, which is the expected result of simulations, occurs when 357 

the position of pixels does not have any particular structure (i.e. their position is unpredictable). 358 

359 
Figure 1 Visualization of verbatim copies using a position map. This is an extreme case that highlights that verbatim is 360 

not defined by the values simulated but by their position in the training image. 361 

3 Method 362 

The objective of the approach presented here is to find an optimal set of parameters using only the training image 363 

and knowledge of the simulation algorithm's mechanics. The simulation algorithm is not used in this context; in 364 

fact, simulations are not required to obtain a proper calibration with the proposed method. The main target 365 

application of the presented approach is the pattern matching simulation algorithm QuickSampling (QS), where 366 

the values, at a pixel scale, are directly sampled from the training image. The method is suitable for the simulation 367 

of continuous and/or categorical variables.  368 

Simulation algorithms such as QS, can be summarized by Algorithm 1. The key operation occurs at Line 3, which 369 

is when the algorithm searches for an optimal match based on the neighboring conditioning data. 370 

Algorithm 1 The sequential simulation algorithm. In gray the parametrization for QS. 371 
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 397 
Inputs: 398 
/: training images 399 
0: simulation grid, including the conditioning data 400 
1: simulation path 401 
2: parametrization 402 
 !	: number of neighbors 403 

" : the number of best candidates 404 
4: the kernel, by default uniform 405 

1. For each unsimulated pixel & following the path 1: 406 
2. Find the neighborhood 5(&) in 0 composed of the n(2) closest neighbors 407 
3. Find a candidate in / those matches 5(&) using the parametrization 2 408 
4. Assign the value of the selected candidate to & in 0 409 
5. End 410 
 411 

Here, we propose a divide and conquer approach that splits any pixel-based sequential simulation into its atomic 412 

operation: the simulation of a single pixel. We assume that if all pixels are perfectly simulated, then the resulting 413 

simulation should also be good. By a perfectly simulated pixel, we mean a pixel that respects the conditional 414 

probability distribution. When simulating a pixel, there may be numerous potential valid values, but at the very 415 

least, there should be one valid value, i.e., the conditional probability distribution should be represented in the 416 

data. This can be formalized by the following condition: 417 

|{8|1(8|5(&)) > 0}| ≥ 1 (1) 418 

where |	. | represents the cardinality of a set. 1<8=5(&)> denotes the probability of 8 (a given value) knowing 419 

5(&), the neighborhood.  420 

The proposed approach consists of finding a set of parameters that results in accurate samples for each pattern. At 421 

the same time, we want to avoid systematically sampling perfect matches (the exact same neighborhood is 422 

available in the training image), which results in verbatim copy. 423 

The search for the optimal parametrization is carried out by exhaustive exploration (), and the choice of optimal 424 

parameters is based on a prediction error defined as the difference between the original value of the pattern and 425 

the value of the selected pattern in the training image.  426 

Algorithm 2 427 

Inputs: 428 
?: list of stages of the simulation (i.e. pattern decimation levels, equivalent to fractions of the simulation path) 429 
2: list of discretized parameters 430 
/ the training images 431 
@ a set of random positions (in practice we generated the random position on the fly) 432 

1. For each possible combination of ?	and 2 do for all A ∈ @ : 433 
2. Sample a neighborhood 5(A) from / and decimate it according to stage ? 434 
3. Using 2, find a candidate in / that matches 5(A), excluding for A itself 435 
4. Compute the error D between the selected candidate and '(A) 436 
5. End 437 
6. Analyze the errors D to determine the best 2 for each ?. 438 
 439 

The proposed algorithm explores a discretized parameter space 2 (, Line 1) (e.g., for QS: !, ", 4). While this 440 

discretization is natural for some parameters, such as ! that is an integer, it can require an explicit discretization 441 

for other parameters, such as the kernel in QS (or #ℎ in DS). Furthermore, a key component of our method is the 442 

exploration of the parameter space for several representative stages ? of the simulation (, Line 1). In the case of a 443 
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random path, the progress of the simulation is directly related to the density of the neighborhoods, i.e., when &% 469 

of the pixels are simulated, in average &% of neighbors are informed. To reproduce this behavior, at each stage D, 470 

we randomly decimate patterns extracted from the TI by keeping only &% pixels informed. For each combination 471 

?	and 2, multiple measures over a set of random locations @ (500 < |@| < 10000) are computed in Lines 1-5 in 472 

, with their mathematical expression shown in Equation 2: 473 

D(2, ?, /) = G
1
|@|HIZ(A) − ZLCand!\{$} <2, 5(A,?)>QR

&

$∈(
(2) 474 

where Cand(2,5) returns a single candidate position for a given neighborhood 5 and follows the parametrization 475 

2. 5(A,?) denotes a neighborhood around A that is decimated according to stage	?. @ represents a random set 476 

of positions in the training image, and '(A)	refers to the actual value at position A ∈ @ in the training image. To 477 

avoid parameters that generate verbatim copy of the training image, the position A and its direct neighbors (in a 478 

small radius (here 5 pixels) are excluded from the set of potential candidates. The set of candidates considering 479 

this exclusion is denoted by /\{A} in Equation 2. Furthermore, in the case of equality between several optimal 480 

options, we set as a rule to take the cheapest parameter set in terms of computational cost (e.g., the smallest !).  481 

graphically represents the entire algorithm. Finally, for each stage considered, the set of parameters with the 482 

minimum associated error D is considered optimal (, Line 6): 483 

D<2)*+,-./ , ?, /> = min
0
D(2, ?, /) (3) 484 

 485 

Figure 2 All steps for a single pattern, summarizing , Lines 2-4. 486 

 487 

4 An efficient implementation 488 

In practice, the implementation of Algorithm 2 separates θ into two parameter subsets: 21 and 22. The 21 subset 489 

consists of all parameters that influence the calculation of a single pattern match, which varies depending on the 490 

algorithm used. For instance, in QS, it includes the number of neighbors ! and the kernel 4, while in DS, it 491 

comprises the threshold #ℎ and !. The other hand, 22 encompasses parameters related to the sampling process of 492 

the training image. For QS, this includes the number of candidates to keep ", while for DS, it involves the fraction 493 

% of the training image being scanned. 494 

Training image 

Prediction error 

Extracted pattern 

Decimated pattern 

Mismatch map 

Deleted: ion495 

Deleted: a496 

Deleted: therefore # represents the density497 

Deleted: a neighborhood498 

Deleted: occur at 499 

Deleted: Algorithm 2 and500 

Deleted: is 501 

Deleted: ,502 

Deleted: ¶503 

Deleted: decimated 504 

Deleted: respects the condition505 

Moved (insertion) [5]

Deleted: ¶506 

Deleted: (in Algorithm 2, Line 6).507 

Deleted: To avoid over-constrained situations from 508 
generating a verbatim copy of the training image, the position 509 
$ and its direct neighbors (in a small radius, usually around 5 510 
pixels, but can we increase depending of the small scale 511 
structure of the training image) are removed from the set of 512 
potential candidates. Furthermore, in the case of equality 513 
between several optimal options, we propose the simple rules 514 
of taking the cheapest parameter set in terms of 515 
computational cost (e.g., …516 

Moved up [5]: the smallest %).517 

Deleted: ¶518 

Deleted: Algorithm 2 divides !519 

Deleted:  of parameters520 

Deleted: contains 521 

Deleted: the 522 

Deleted: affect523 

Deleted: computation of the match524 

Deleted: . This is dependent525 

Deleted: ;526 

Deleted: the case of 527 

Deleted: these are528 

Deleted: ,529 

Deleted: (530 

Deleted: would be &ℎ,531 

Deleted: ,532 

Deleted: ).533 

Deleted: includes the534 

Deleted: In the case of 535 

Deleted: these are the number of matches to retain (, 536 

Deleted: (and in the case of 537 

Deleted: ), which is538 

Deleted: that is539 

Deleted: ). Interestingly, we can precompute540 



 7 

Our implementation precomputes and stores all matches for a specific 21 parameterization (e.g., a value of ! and 541 

all matches for "). Consequently, the saved matches of 21 can be employed to swiftly evaluate all options for the 542 

parameters in 2	 = 	21 	× 	22 (e.g., we can process for " = 1,2,3, …k-.3 ). This two-phase approach considerably 543 

decreases redundant calculations. 544 

The algorithm can be further accelerated by terminating the estimation of ε if the error remains at a high level after 545 

assessing only a small amount of samples from @ (here set to 500). To this end, we increase @ for the parameter 546 

combinations of interest, i.e., parametrization with potentially the lowest ε. This entails iterating and verifying at 547 

each step whether additional computations are required. Only places respecting following inequality are refined 548 

with extra measures: 549 

D(2, ?, /) − D(2-,4, ?, /) <
1
2[(2, ?, /) +

1
2[(2-,4, ?, /) (4) 550 

With 551 

D(2-,4, ?, /) = min
0
D(2, ?, /) 552 

[(2, ?, /) = G
1
|@|H ^IZ(A) − ZLCand!\{$} <2, 5(A,?)>QR − D(2, ?, /)_

&

$∈(
 553 

With D(. ) the error, and [(. ) represent the standard deviation of all differences, between estimated and true values. 554 

5 Results 555 

5.1 Optimization of 2 parameters 556 

All experimental tests in this section are performed using the training image shown in , and the stages ? are 557 

distributed following a logarithmic scale.  558 

As a first test, we use the configuration 21 = {!} , and 22 = {"}. The kernel 4 is defined as uniform, meaning that 559 

it has a constant value and is not part of the optimization. The outcome is represented in Figure 3, with the optimal 560 

number of candidates	" and number of neighbors ! as a function of the density ?, which is assimilated to the 561 

progression during the simulation. The ignorance threshold is defined as the average error between elements of 562 

the marginal distribution. It represents the error value at which no further information can be derived from the 563 

neighborhood, meaning that the simulated values can equivalently be drawn from the marginal distribution. 564 
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 612 
Figure 3 Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, 613 
with the associated prediction error (in black). The red line represents the ignorance threshold. The dashed blue line 614 
indicates the average maximal number of neighbors.. 615 

 616 

The optimal " remains small (in fact 1) throughout the simulation, which is probably due to the limited size of the 617 

training image in this case. It seems important to use many neighbors in the early stages of the simulation. The 618 

number of neighbors increases until approximately 3% of the simulation. This is followed by a subsequent drastic 619 

reduction, indicating that once the large structures are informed, only the few direct neighbors are important. It 620 

seems logical that MPS algorithms simulate large structure first and then smaller patterns in a hierarchical manner 621 

where each smaller structure is part of the larger one. We however note that it remains generally difficult to predict 622 

the optimal settings as a function of the simulation stage. This indicates that the use of a single parametrization for 623 

the entire MPS simulation is generally suboptimal, and the parameters should be adapted as the simulation 624 

progresses. 625 

 626 
Figure 4 Pattern error as a function of the number of neighbors /, with 0 = 1, where each curve represents a 627 
neighborhood density 2. 628 
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 646 

Figure 4 shows the evolution of D as a function of the number of neighbors ! and the simulation progression ?. 647 

Two regimes are visible: in the first percentages of the simulation, each extra neighbor is informative and improves 648 

simulation quality. However, as the neighborhoods become denser, the importance of spatial continuity takes over, 649 

and only the few neighbors are really informative. This two-step process is expected, as random large-scale 650 

features are generated first, and then the image is filled with consistent fine-scale structures. Furthermore, it shows 651 

that using a large number of neighbors at the end of the simulation generates suboptimal results, which could 652 

explain the small-scale noise that is sometimes visible in some MPS simulations. 653 

 654 

5.2  Optimization of 3 parameters 655 

Here, we use the following configuration 21 = {!, `} and 22 = {"}, and we consider kernels as having a radial 656 

exponential shape, i.e. 4, = a56.8!. The wight of a given position b in the kernel	4 is defined as 4,, and its distance 657 

to the kernel center as c,. 658 

 659 
Figure 5 Optimal parameters for QS (k in green, number of neighbors in blue, and best kernel in magenta), as a function 660 
of the simulation progress, with the associated prediction error (in black). The dashed blue line indicates the average 661 
density for the neighborhood considered. The ignorance threshold in red. 662 

 663 

The results presented in Figure 5 demonstrate the impact of the number of neighbors and narrow kernels 664 

(characterized by high α values) on the evolution of the QS parameters. Specifically, it can be observed that 665 

interactions arise between these two factors, resulting in slightly erratic calibrated parameters. As the number of 666 

neighbors increases, the weights assigned to the furthest neighbors become negligible with larger α values. This 667 

means that these far away neighbors, despite being considered, have very little influence. This insensitivity only 668 

occurs for large n values, leading to minimal differences between possible configurations and noise in the metric.  669 

As expressed in the methodology section, in cases of a similar error, the cheapest solution is considered. In the 670 

case of QS, having a large number of neighbors can marginally increase the computational time, therefore, we 671 

introduce a small tolerance that results in favoring small ! values. It is formulated as a small cost for each extra 672 

neighbor, i.e., by adding 5e-5 × (max(/) −min(/)) for each extra neighbor. However, the speed-up during 673 

simulation was limited to up to 10 %. Figure 6 shows similar quality (D curves) as in Figure 5, but with the added 674 
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tolerance. As expected, the number of neighbors required during the simulation drastically decreases as advanced 717 

simulation stages, and the fluctuations in n are avoided. 718 

 719 
Figure 6 Optimal parameters for QS (k in green and number of neighbors in blue, and the best kernel in magenta) 720 
as a function of the progression, with the associated prediction error (in black). The dashed blue line is the average 721 
density for the neighborhood considered. The ignorance threshold is in red. 722 

5.3 Sequential simulation using automatic calibration 723 

Figure 7 shows qualitative results using the evolutive parametrization resulting of the proposed autocalibration, 724 

using a case study that was published in Gravey and Mariethoz (2020). QS with an adaptive kernel refers to the 725 

use of different values of ` for the kernel as a function of the simulation progression. In this case, the results are 726 

similar to state-of-the-art simulations using a manual calibration. Tests using QS with a uniform kernel fail to 727 

reproduce some structures, in particular the size of the objects is incorrect. Each position-map shows few 728 

homogenous areas; therefore, realizations are produced with a low rate of verbatim copy. 729 

 730 

Figure 7 Simulation using QS with parameters generated by the automatic calibration. 731 
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From a quantitative evaluation, Figure 8 illustrates different metrics (variograms, connectivity as a structural 747 

indicator, and the Euler characteristic as noise indicator) (Renard and Allard, 2013) across a set of 100 realizations. 748 

The automatic calibration method proposed here allows obtaining better quality simulations than in Gravey and 749 

Mariethoz (2020). 750 

Figure 9 shows that variogram and connectivity metrics are well reproduced, although they have not been directly 751 

constrained in the calibration process. Indeed, the parameter optimization only considers the simulation of single 752 

pixels and never computes global metrics over an entire grid. 753 

 754 

 755 

Figure 8 Benchmark between QS with an adaptive kernel (Figure 6) and a uniform (without) kernel (Figure 3) over 100 756 
simulations for 5 different metrics. 757 

6 Discussion and conclusion 758 

The proposed method allows for the automatic calibration of QS and potentially similar pixel-based MPS 759 

approaches, reaching a similar or better quality as that of manual parameterization from both quantitative and 760 

qualitative points of view. Furthermore, it demonstrates that the optimal parametrization should not remain 761 

constant and instead needs to evolve with the simulation progression. The metrics confirm the good reproduction 762 
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of training patterns and the method finds a calibration that avoids verbatim copy. One major advantage of our 771 

approach is the absence of a complex objective function, which often itself requires calibration.  772 

A limitation of our approach is that it cannot be used to determine an optimal simulation path because it focuses 773 

on the simulation of a single pixel. It also does not optimize the computational cost required for a simulation. 774 

The computation time necessary to identify the appropriate parameters is contingent upon the expected quality. 775 

However, the maximum time required for completion is predictable and depends on the number of patterns tested. 776 

If required, the calibration can be further refined based on prior outcomes without restarting the entire process; 777 

this can be achieved by adjusting ?, incorporating additional kernels, or increasing |@|.	 In certain instances, 778 

adjusting the kernel parameter offers only minor improvements while necessitating a substantial number of 779 

computations. Employing a more streamlined parameter space can yield comparable, and significantly reduce the 780 

computational cost. This streamlined parameter space can be established, for instance, by subsampling the number 781 

of neighbors according to a squared function (2,4,9,16,25,…) or by leveraging external or expert knowledge. 782 

The proposed methodology was evaluated in multivariate scenarios, resulting in a more expansive parameter space 783 

compared to single-variable cases. Although the approach yields satisfactory parameters, the inclusion of extra 784 

parameters significantly extends the computation time, rendering the process impractical, particularly when 785 

dealing with four or more variables. 786 

In the context of testing the generality of our approach, calibration was computed on multiple training images 787 

(found in the Supplementary material). The calibration pattern with two regimes (! large, then ! small) seems to 788 

be universal, at least for univariate simulations. While the position of the abrupt transition between regimes seems 789 

to vary greatly (between 0.5% and 20% of the path), the overall shape remains the same. Therefore, the approach 790 

proposed by Baninajar et al. (2019), in which long ranges are not considered, could be extended by using large ! 791 

values in the early stages of the simulation. 792 

While show that it is possible to calibrate a parametric kernel, in future work one can envision the optimization of 793 

a nonparametric kernel where the weight of each individual neighbor e, is considered a variable to optimize using 794 

D as an objective function (e.g., using a machine learning regression framework). 795 

The study of the evolution of parameters shows a smooth behavior of the average error. Therefore, the use of 796 

multivariate fitting approaches to estimate the error surface with fewer evaluations could be an interesting solution 797 

to speed up the parametrization. The use of machine learning to take advantage of transfer learning between 798 

training images also has a high potential.  799 

 800 

Code availability 801 

The source code of the AutoQS algorithm is available as part of the G2S package at: https://github.com/GAIA-802 

UNIL/G2S (last access: 1st May 2023) under the GPLv3 license. And permanently available at 803 

https://doi.org/10.5281/zenodo.7792833. Platform: Linux/macOS/Windows 10+. Language: C/C++. Interfacing 804 

functions in MATLAB, Python3, and R. 805 
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Appendix 1092 

 1093 
This supplementary material contains a similar calibration for other training images. 1094 

A. Stone 1095 

 1096 
Figure  A.1 Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, 1097 
with the associated prediction error (in red). The red line represents the ignorance threshold. The dashed blue line is 1098 
the average density for the neighborhood considered. The dot-dashed line represents the variability in 1% of the error. 1099 

B. Strebelle (Strebelle, 2002) 1100 

 1101 
Figure  B.1 Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, 1102 
with the associated prediction error (in red). The red line represents the ignorance threshold. The dashed blue line is 1103 
the average density for the neighborhood considered. The dot-dashed line represents the variability in 1% of the error. 1104 
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 1105 
Figure  B.2 Optimal parameters for QS (k in green and number of neighbors in blue, and the best kernel in magenta) 1106 
as a function of the progression, with the associated prediction error (in red). The dashed blue line is the average density 1107 
for the neighborhood considered. 1108 

 1109 
Figure  B.3 Simulation using QS using parameters generated by the automatic calibration. 1110 
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 1111 

Figure  B.4 Benchmark between QS with adaptative kernel (Figure  B.2) and uniform (without) kernel (Figure  B.1) 1112 
over 100 simulations for 5 different metrics. 1113 
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C. Delta Lena (Mahmud et al., 2014) 1118 

 1119 
Figure  C.1 Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, 1120 
with the associated prediction error (in red). The red line represents the ignorance threshold. The dashed blue line is 1121 
the average density for the neighborhood considered. The dot-dashed line represents the variability in 1% of the error. 1122 

 1123 
Figure  C.2 Optimal parameters for QS (k in green and number of neighbors in blue, and the best kernel in magenta) 1124 
as a function of the progression, with the associated prediction error (in red). The dashed blue line is the average density 1125 
for the neighborhood considered. 1126 
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 1127 
Figure  C.3 Simulation using QS using parameters generated by the automatic calibration. 1128 
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 1129 

Figure  C.4 Benchmark between QS with adaptative kernel (Figure  C.2) and uniform (without) kernel (Figure  C.1) 1130 
over 100 simulations for 5 different metrics. 1131 
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