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 36 

Abstract 37 

 38 

A major limitation in modeling global ozone (O3) vegetation damage has long been the reliance on 39 

empirical O3 sensitivity parameters derived from a limited number of species and applied at the level of 40 

plant functional types (PFTs), which ignore the large interspecific variations within the same PFT. Here, 41 

we present a major advance in large-scale assessments of O3 plant injury by linking the trait leaf mass per 42 

area (LMA) and plant O3 sensitivity in a broad and global perspective. Application of the new approach 43 

and a global LMA map in a dynamic global vegetation model reasonably represents the observed 44 

interspecific responses to O3 with a unified sensitivity parameter for all plant species. Simulations suggest 45 

a contemporary global mean reduction of 4.8% in gross primary productivity by O3, with a range of 1.1%-46 

12.6% for varied PFTs. Hotspots with damages > 10% are found in agricultural areas in the eastern U.S., 47 

western Europe, eastern China, and India, accompanied by moderate to high levels of surface O3. 48 

Furthermore, we simulate the distribution of plant sensitivity to O3, which is highly linked with the 49 

inherent leaf trait trade-off strategies of plants, revealing high risks for fast-growing species with low 50 

LMA, such as crops, grasses and deciduous trees.  51 

  52 
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1. Introduction 53 

Tropospheric ozone (O3) has long been recognized as a hazardous pollutant for plants (Reich and 54 

Amundson, 1985; Richards et al., 1958). As a strong oxidant, O3 can cause damage to leaf cells and 55 

modulate the carbon balance of ecosystems through both direct and indirect impacts on plant function 56 

(Ainsworth et al., 2012; Feng et al., 2014; Wittig et al., 2009). To date, O3 fumigation experiments have 57 

revealed a large variation in O3 sensitivities among and within plant functional types (PFTs) (Buker et al., 58 

2015; Mills et al., 2018a) (Table S1). Generally, needleleaf trees, deciduous woody plants, and crop 59 

species show ascending sensitivities to O3 (Buker et al., 2015; Davison and Barnes, 1998; Reich and 60 

Amundson, 1985). The cause of such variation is not fully understood and thus has not been uniformly 61 

described in vegetation models (Massman et al., 2000; Tiwari et al., 2016). As a result, large-scale 62 

assessments of O3 vegetation damage have to rely on a PFT-based range of sensitivity parameters derived 63 

from a limited number of plant species (Felzer et al., 2009; Lombardozzi et al., 2015; Sitch et al., 2007). 64 

For example, Sitch et al. (2007) (hereafter S2007) attempted to envelop the range of O3 impacts by 65 

assuming all species within a PFT are either “high” or “low” sensitive to O3, which cannot resolve intra-66 

PFT variations and thus may cause large uncertainties in regional to global assessments.  67 

 68 

Recent observations revealed a uniform plant sensitivity to O3 if stomatal O3 flux is expressed based on 69 

leaf mass rather than leaf area (Feng et al., 2018; Li et al., 2016; Li et al., 2022). The trait of leaf mass per 70 

area (LMA) is an important metric linking leaf area to mass. In a comparative study with 21 woody 71 

species (Li et al., 2016) and a meta-analysis of available experimental data (Feng et al., 2018), the dose-72 

response relationship (DRR) shows convergent O3 sensitivities for conifer and broadleaf trees if the area-73 

based stomatal uptake was converted to the mass-based flux with LMA. Meanwhile, a large number of 74 

trait observations were synthesized by global networks in recent decades (Gallagher et al., 2020). The 75 

TRY initiative (Kattge et al., 2011) is one of the most influential datasets with 2.3 billion trait data by the 76 

year 2021. Based on the TRY dataset, global LMA was estimated with upscaling techniques such as 77 

Bayesian modeling (Butler et al., 2017) (thereafter B2017) or the random forest model (Moreno-Martinez 78 

et al., 2018) (thereafter M2018). These advances in the retrieval of LMA provide the possibility to depict 79 

more accurate O3 vegetation damage at the global scale.  80 
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 81 

Here, we present a major advance in large-scale assessments of O3 plant damage using a trait-based 82 

approach. We implement LMA into a stomatal flux-based O3 damage framework aiming at a unified 83 

representation of plant O3 sensitivities over the global grids. We couple this new approach to the Yale 84 

Interactive terrestrial Biosphere (YIBs) model (Yue and Unger, 2015) and evaluate the derived O3 85 

sensitivities against observations. We further assess contemporary O3 impacts on global gross primary 86 

productivity (GPP) in combination with the recently developed LMA datasets (Butler et al., 2017; 87 

Gallagher et al., 2020; Moreno-Martinez et al., 2018) (Fig. S1a) and the multi-model ensemble mean 88 

surface O3 concentrations (Fig. S1b). The updated risk map for O3 vegetation damage is used to identify 89 

the regions and species with the largest sensitivity to O3 threats.  90 

 91 

2. Scheme development and calibration 92 

2.1 The trait-based O3 vegetation damage scheme  93 

We develop the new scheme based on the S2007 framework for transient O3 damage calculation. In the 94 

original S2007 scheme, the undamaged fraction F for net photosynthetic rate is dependent on the 95 

excessive area-based stomatal O3 flux, which is calculated as the difference between fO3 and PFT-specific 96 

area-based threshold y, and modulated by the sensitivity parameter aPFT: 97 

𝐹 = 1 − 𝑎!"# ×𝑚𝑎𝑥{𝑓$% − 𝑦, 0}                                                                                                                                               (1) 98 

where aPFT is calibrated and varies among PFTs with a typical range from “low” to “high” values 99 

indicating uncertainties of plant species within the same PFT in Sitch et al. (2007). The stomatal O3 flux 100 

fO3 is calculated as:  101 

𝑓$% =
[$!]

()* "#!$%×'
+
                                                                                                                                                                         (2) 102 

where [O3] is the O3 concentration at the reference level (nmol m-3), r is the aerodynamic and boundary 103 

layer resistance between leaf surface and reference level (s m-1). kO3 setting to 1.67 represents the ratio of 104 
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leaf resistance for O3 to that for water vapor. gp represents potential stomata conductance for H2O (m s-105 
1).  106 

 107 

Studies suggested that LMA could be used to unify the area-based plant sensitivities to O3 (Feng et al., 108 

2018; Li et al., 2016), resulting in a constant mass-based parameter a independent of plant species and 109 

PFTs: 110 

𝑎 = 	𝑎!"# × 𝐿𝑀𝐴                                                                                                                                                                      (3) 111 

Here, we convert the area-based O3 stomatal flux expression in Equation (1) to a mass-based flux as 112 

follows: 113 

 𝐹 = 1 − 𝑎 ×max 6,#!
-./

− 𝑥, 07                                                                                                                                                   (4) 114 

where the new sensitivity parameter a is a cross-species constant (nmol-1 s g); LMA is leaf mass per area 115 

(g m-2); the flux threshold is replaced by a mass-based value of x (nmol g-1 s-1) (Feng et al., 2018). This 116 

equation is applied at the timestep of photosynthesis calculation in the YIBs model (i.e. hourly). The 117 

updated LMA-based framework (YIBs-LMA) reduces the number of O3 sensitivity parameters from three 118 

for each PFT (Sitch et al., 2007)  in S2007 to a single parameter a for all PFTs. For YIBs-LMA framework, 119 

the default value of the x threshold in Equation (4) is set to 0.019 nmol g-1 s-1 as recommended by Feng 120 

et al. (2018).  121 

 122 

2.2 Dose-response relationship (DRR) 123 

We compare the simulated and observed sensitivities to O3 so as to calibrate the LMA-based scheme. In 124 

field experiments, DRR is used to quantify species-specific damage by O3 with a generic format as follows: 125 

𝑅 = 100 + 𝑆$ × 𝜙$%                                                                                                                                                                     (5) 126 

where R (%) is the relative percentage of a bio-indicator (such as biomass or yield) after and before O3 127 

damage; 𝜙$% is an area-based O3 metric (e.g., PODy measured in sunlit leaves at the top of canopy); SO 128 

(usually negative) is the observed sensitivity derived as the slope of linear relationship between R and 129 

𝜙$%. We collected SO from DRRs with conventional criteria (typically PODy=1 for natural PFTs and 130 

PODy=6 for crops as dose metrics (CLRTAP, 2017); the bio-indicators include the relative biomass for 131 

natural PFTs and relative yield for crops) among plant species from International Cooperative Programme 132 
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on Effects of Air Pollution on Natural Vegetation and Crops (CLRTAP) (CLRTAP, 2017) and multiple 133 

literature sources (Table S1). Such observations are used to calibrate the LMA-based scheme. 134 

 135 

As a comparison with observations, we calculate annual relative GPP percentage (RGPP, %) and PODy of 136 

sunlit leaves in first canopy layer (mmol m-2 year-1, based on per leaf area) from the vegetation model to 137 

derive the slopes (SS) of simulated DRRs. Here, PODy is a diagnostic variable calculated as: 138 

𝑃𝑂𝐷0 = ∫(𝑓$% − 𝑦)                                                                                                                                                              (6) 139 

where fO3 represents the stomatal O3 flux under instant O3 stimulus at each timestep, which can be 140 

calculated following Equation (2) on the leaf level; y is the prescribed critical level (1 nmol m-2 s-1 for 141 

natural or 6 nmol m-2 s-1 for crop species (CLRTAP, 2017)). Excessive O3 flux above y is accumulated 142 

for the top canopy layer and over the growing season to derive the PODy. Simulated SS is calculated as 143 

the slope of regression between simulated RGPP (%) and PODy at the PFT level. Only the dominant PFT 144 

in each grid is considered for the estimate of SS at both PFT-level or gridded analyses.  145 

 146 

Similarly, mass-based PODx is derived from O3 impacted fO3 (nmol m-2 s-1) in Equation (2), together with 147 

gridded LMA (g m-2) and mass-based threshold x (nmol g-1 s-1) as: 148 

𝑃𝑂𝐷1 = ∫B,#!-./
− 𝑥C                                                                                                                                                            (7) 149 

 150 

2.3 Simulations and calibrations 151 

We perform two groups of supporting experiments (Table 1). The first group explores modeling 152 

uncertainties associated with the mass-based framework: (1) YIBs-LMA_B2017 replaces the default 153 

LMA map of M2018 (Moreno-Martinez et al., 2018) with B2017 (Butler et al., 2017). (2) YIBs-154 

LMA_PFT applies PFT-specific LMA values (Table S2) for each PFT without considering global LMA 155 

geo-gradient. (3) YIBs-LMA_T replaces the default threshold of x=0.019 nmol g-1 s-1 with x =0.006 nmol 156 

g-1 s-1, which is an alternative parameter suggested by observations (Feng et al., 2018). The second group 157 

of supporting experiments explores the differences between mass-based and S2007 area-based 158 
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frameworks. Typically, S2007 has a “low to high” aPFT range for each PFT. Here, a mean sensitivity 159 

parameterization of S2007 (YIBs-S2007_adj) is re-calibrated according to SO in Table S1.  160 

 161 

For all supporting experiments, the parameter a for YIBs-LMA or the eight mean aPFT for YIBs-162 

S2007_adj are derived with the optimal 1:1 fitting between SS and SO to minimize the possible biases 163 

(Tables S3-S7). Since SO are available only for six out of the eight YIBs PFTs, including EBF, NF, DBF, 164 

C3 grass, C4 grass, and crop (Table S1), SO of these PFTs are used for calibration.   165 

 166 

2.4 YIBs model and forcing data 167 

In this study, all O3 vegetation damage schemes are implemented in the YIBs model (Yue and Unger, 168 

2015). The YIBs is a process-based dynamic global vegetation model incorporated with well-established 169 

carbon, energy, and water interactive schemes. The model applies the same PFT classifications as the 170 

Community Land Model (Bonan et al., 2003) (Fig. S2). Eight PFTs are employed including evergreen 171 

broadleaf forest (EBF), needleleaf forest (NF), deciduous broadleaf forest (DBF), cold shrub (C_SHR), 172 

arid shrubland (A_SHR), C3 grassland (C3_GRA), C4 grassland (C4_GRA), and cropland (CRO) (Fig. 173 

S2). For each PFT, phenology is well-evaluated (Yue and Unger, 2015) to generate a reliable growing 174 

season, which is crucial for the simulation of stomatal O3 uptake (Anav et al., 2018). Photosynthesis and 175 

stomatal processes are calculated using Farquhar et al. and Ball-Berry algorithms (Ball et al., 1987; 176 

Farquhar et al., 1980), respectively. Leaf area index (LAI) and tree height are predicted dynamically based 177 

on vegetation carbon allocation. The YIBs model has joined the multi-model ensemble project TRENDY 178 

and showed reasonable performance in the simulations of global biomass, GPP, LAI, net ecosystem 179 

exchange, and soil carbon relative to observations (Friedlingstein et al., 2020). Key plant biogeochemical 180 

parameters of the YIBs model are adjusted for this research (Table S8).  181 

 182 

The hourly modern-era retrospective analysis for research and applications version 2 (MERRA2) climate 183 

reanalyses (Gelaro et al., 2017) are used to drive the YIBs model. The gridded LMA required for the main 184 

mass-based simulation is derived from Moreno-Martinez et al. (2018) (M2018), which shows the highest 185 

value of >150 g m-2 for needleleaf forest at high latitudes while low values of ~40 g m-2 for grassland and 186 
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cropland (Fig. S1a and Fig. S2). Grids with missing LMA data are filled with the mean of the 187 

corresponding PFT. Contemporary O3 concentration fields in the year of 2010 from the multi-model mean 188 

in Task Force on Hemispheric Transport of Air Pollutants (TF-HTAP) experiments (Turnock et al., 2018) 189 

(Fig. S1b) are used as forcing data. The original monthly O3 data are downscaled to hourly using the 190 

diurnal cycle predicted by the chemistry-climate-carbon fully coupled model ModelE2-YIBs (Yue and 191 

Unger, 2015). All data are interpolated to the spatial resolution of 1º×1º.  192 

 193 

3. Results 194 

3.1 Comparison of simulated sensitivities with observations 195 

Simulated relative GPP percentage (RGPP) at global grids were sorted by dominant PFTs (Fig. S2) and 196 

plotted against area-based accumulated phytotoxic O3 dose above a threshold y nmol m-2 s-1 (PODy=1) at 197 

the corresponding grids (Fig. 1). The DRR shows varied slopes among different PFTs, resulting in a 198 

coefficient of determination (R2) around 0.54 for all PFTs (Figs 1a-1c). We further calculated the mass-199 

based accumulated phytotoxic O3 dose above a threshold of 0.019 nmol g s-1 (PODx=0.019) and compared 200 

it with RGPP. The updated DRR showed convergent slopes and reached a high R2 of 0.77 across all PFTs 201 

(Figs 1d-1f), suggesting that the mass-based scheme could better unify O3 sensitivities among different 202 

PFTs.  203 

 204 

We then calibrated the single, best-fit a value for YIBs-LMA framework by minimizing the absolute 205 

difference between simulated (SS) and observed (SO) slopes of O3 DRR for all PFTs. With different a 206 

parameters, the YIBs-LMA framework yielded considerably high R2 of ~1.0 but varied biases between 207 

simulated and observed O3 impacts across PFTs (Fig. 2). Both the 1:1 fitting and the lowest bias between 208 

SS and SO were achieved with an optimal a =3.5 nmol-1 s g (Fig. 2c). Consistent with observations, YIBs-209 

LMA with this optimal a parameter simulated low SS of -0.18% and -0.36% per mmol m-2 year-1 of PODy=1 210 

for evergreen broadleaf forest and needleleaf forest, respectively (Figs 3a, b), median SS from -0.53% per 211 

mmol m-2 year-1 for arid shrubland (Fig. 3e), and high SS from -0.64% to -1.04% per mmol m-2 year-1 for 212 

deciduous broadleaf forest, C3/C4 grassland, cropland and cold shrubland (-3.28% for crops with PODy=6, 213 

Figs 3c-d, 3f-h).   214 
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 215 

3.2 Global map of O3 vegetation damage 216 

We estimated contemporary GPP reductions induced by O3 with the global concentrations of surface O3 217 

(Fig. S1b) in the year of 2010. The YIBs-LMA framework using an increase of a parameter yielded an 218 

almost linearly enhancement of global GPP reduction (Fig. S3) with consistent spatial distributions (Fig. 219 

S4). The simulation with the optimal a =3.5 nmol-1 s g predicted a global GPP reduction of 4.8% (Fig. 220 

4a), which was similar to the value estimated with the area-based S2007 scheme (YIBs-S2007_adj, Table 221 

1). Large reductions of >10% were predicted over eastern U.S., western Europe, eastern China, and India 222 

(Fig. 4a). Hotspots were mainly located in cropland and agricultural areas mixed with deciduous broadleaf 223 

forest or grassland, accompanied with moderate to high levels of surface O3. Few discrepancies between 224 

the damage maps of YIBs-LMA and YIBs-S007_adj were found (Fig. 4b), even though the number of 225 

parameters was greatly reduced in YIBs-LMA scheme.  226 

 227 

For YIBs-LMA, PFTs with low LMA such as cropland, grassland, and deciduous broadleaf forest account 228 

for 73.3 Pg C yr-1 (50.0%) of the global GPP (Table S9). However, these PFTs contributed to a total GPP 229 

reduction of 5.4 Pg C yr-1 (75.5% of total GPP loss) by O3 damage. In contrast, evergreen broadleaf and 230 

needleleaf forests with high LMA accounted for 48.8 Pg C yr-1 (33.0%) of total GPP but yielded only a 231 

reduction of 0.75 Pg C yr-1 (10.5% of total GPP loss). Differences in GPP percentage losses were in part 232 

associated with the global pattern of O3 concentrations, which were usually higher over mid-latitudes with 233 

populated cities and dense crop plantations (Fig. S1b). However, the differences in LMA and simulated 234 

O3 sensitivities of these PFTs were the main cause of discrepancies in GPP damage at the large scale. 235 

 236 

3.3 Uncertainties of the LMA-based scheme 237 

We quantified the uncertainties of LMA-based shceme by comparing simulated GPP damages among 238 

different experiments (Table 1). The experiment with the alternative LMA map of B2017 (Fig. S5) 239 

showed a slightly enhanced GPP reduction of 5.3% (Fig. 5a) but similar spatial patterns compared with 240 

YIBs-LMA using M2018 (Fig. 4a). However, B2017 has a much less source of LMA data than M2018 241 

(~40%), leading to some unexpected areas with high O3 threats such as the tundra in Arctic region (Fig. 242 
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S6). The experiment with PFT-specific LMA estimated a global GPP reduction of 4.6% (Fig. 5b) with 243 

consistent spatial pattern as the prediction with YIBs-LMA, suggesting the reasonable application of PFT-244 

level LMA at the lack of global LMA data. The experiment with an alternative threshold flux (Feng et al., 245 

2018) of 0.006 nmol g-1 s-1 estimated a higher GPP reduction of 6.5% by global O3 (Fig. 5c) with 246 

overestimations of O3 sensitivities for some tree PFTs (Fig. 6). The YIBs-S2007_adj run using 247 

recalibrated PFT-level sensitivities predicts a similar global GPP damage of 4.8% as the YIBs-LMA run 248 

with a high spatial correlation coefficient of 0.98 (Fig. 5d). All sensitivity experiments achieve consistent 249 

results as the YIBs-LMA simulation with an uncertaintiy range from -0.2% to 1.7% and spatial correlation 250 

coefficients larger than 0.94.  251 

 252 

4. Discussion 253 

4.1 Mechanisms behind the LMA-based approach 254 

In recent decades, the plant science community examined how traits could be used to differentiate and 255 

predict the functions of plant species (Reich et al., 1999; Reich et al., 1997). LMA, related to leaf density 256 

and thickness, is a key trait reflecting many aspects of leaf function (Reich et al., 1998). In the field of O3 257 

phytotoxicology, experiments have revealed plants with high LMA usually have thick leaves with 258 

physical and chemical defenses (Poorter et al., 2009), which can strengthen their resistance to O3 (Feng 259 

et al., 2018; Li et al., 2016). On the contrary, plants with low LMA normally have thin leaves which are 260 

likely to be less O3-tolerant (Feng et al., 2018; Li et al., 2016). Moreover, it seems plausible that the 261 

oxidative stress caused by a given amount of stomatal O3 flux per unit leaf area would be distributed over 262 

a larger leaf mass, and hence diluted, in a leaf with high LMA. Such a LMA-O3 sensitivity relationship 263 

can be well reproduced by our LMA-based model (Figs 7a and 7b). Below we explore the linkage between 264 

O3 plant sensitivities and the mutual adaptation of growth strategies and leaf morphology with plant leaf 265 

trade-off theory (Reich et al., 1999; Shipley et al., 2006). 266 

 267 

In the natural world, plants often adapt to maximize carbon uptake under prevailing conditions (Reich et 268 

al., 1998; Shipley et al., 2006). To make full use of resources in the growing season, leaves under varied 269 

living conditions choose either fast photosynthetic rates (fast-growing deciduous types) or long 270 
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photosynthesis duration (slow-growing evergreen types) with compatible leaf structures (Diaz et al., 2016; 271 

Reich, 2014). The former species expand leaf area (low LMA) to maximize light interception while the 272 

latter species produce thick and mechanically strong leaves (high LMA) with ample resistant substances 273 

for durable utilization (Poorter et al., 2009) in resource-limited and/or environment-stressed habitats 274 

(Wright et al., 2002). As a side effect of such leaf trade-offs, deciduous plants with their high rates of 275 

photosynthesis, associated large stomatal conductance (Davison and Barnes, 1998; Henry et al., 2019), 276 

and less total defense capacity through the leaf profile (Poorter et al., 2009), are highly O3 sensitive 277 

(Mode1 in Fig. 8). In contrast, the moderate photosynthesis, relatively low maximum stomatal 278 

conductance (Davison and Barnes, 1998; Henry et al., 2019), and reinforced dense leaves (Poorter et al., 279 

2009) lead to low sensitivity for evergreen plants (Mode2 in Fig. 8). Therefore, in our modelling practice, 280 

the mass-based O3 gas exchange algorithm can be regarded as taking into account several interrelated 281 

factors such as growth-driven gas exchange requirements, gas path length and biochemical reserves, in a 282 

unified, simplified and effective manner via LMA. 283 

 284 

4.2 Implication of potential risks for fast-growing plants 285 

Our new approach reflected the general experimental findings that deciduous plants are much more 286 

vulnerable to O3 than evergreen species (Feng et al., 2018; Li et al., 2017), and in turn within a PFT, 287 

early-successional/pioneers with low LMA are likely more vulnerable than late-successional/canopy trees 288 

with high LMA (Fyllas et al., 2012). This law has been neglected in previous modeling studies due to the 289 

dependence on the limited observed data used for PFT-specific tuning. Our LMA-based approach bridges 290 

this gap through grid-based parameterization, and in addition, our data-model integration specifically 291 

emphasizes the broad high risks for fast-growing plants, especially for crops. Among PFTs, crops may 292 

endure the largest O3 threats (Davison and Barnes, 1998; Feng et al., 2021; Mukherjee et al., 2021) 293 

because they are artificially bred with high photosynthetic capacities (Richards, 2000), stomatal 294 

conductance, generally low LMA (Bertin and Gary, 1998; Li et al., 2018; Wang and Shangguan, 2010; 295 

Wu et al., 2018) (roughly 30-60 g m-2), and cultivated in populated regions with high ambient O3 296 

concentrations. Modern technology aims to promote crop yield (Herdt, 2005), but this can potentially 297 

elevate crop sensitivities to O3 (Biswas et al., 2013; Biswas et al., 2008). This study estimated the highest 298 
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annual mean GPP damage for crop, 12.6%, which is at the high end of the 4.4-12.4% of the O3-induced 299 

yield loss estimated for global modeling of soybean, wheat, rice, and maize (Mills et al., 2018b). 300 

Furthermore, human-induced land use activities may also increase O3 damage risks. The global demand 301 

for food and commodities leads to the conversion of natural forests to irrigated croplands, grazing pastures, 302 

and economical-tree plantations (Curtis et al., 2018; Zalles et al., 2021). Meanwhile, the urgent actions to 303 

combat climate change promote large-scale afforestation and reforestation (Cook-Patton et al., 2020). 304 

These land use changes with fast-growing plant species may increase the risks of terrestrial ecosystems 305 

to surface O3.  306 

 307 

4.3 Advances in the global O3 damage assessment 308 

For the first time, we implemented plant trait LMA into a process-based O3 impact modeling scheme and 309 

obtained reasonable interspecific and inter-PFT O3 responses supported by observations. This LMA-310 

based approach indicates an important advance in global O3 damage assessments. First, it significantly 311 

reduces the number of required key parameters. To account for interspecific sensitivities, many schemes 312 

have to define PFT-level parameters to cap the ranges of plant responses (Felzer et al., 2009; Lombardozzi 313 

et al., 2015; Sitch et al., 2007). As a result, those schemes rely on dozens of parameters which increase 314 

the uncertainties of modeling and the difficulties for model calibration. The LMA-based approach 315 

requires the calibration of one single parameter a, largely facilitating its application across different 316 

vegetation models. Second, the new approach accounts for the continuous spectrum of O3 sensitivities. 317 

Previous studies usually categorized species into groups of low or high O3 sensitivity, depending on very 318 

limited data from O3 exposure experiments. As a result, gridcells for a specific PFT share the same 319 

sensitivities regardless of their geographic locations and ecosystem characteristics. In reality, there are 320 

hundreds and thousands of plant species in each PFT and they usually have large variation in biophysical 321 

parameters including LMA and O3 sensitivities. The LMA-based approach takes advantage of the newly 322 

revealed unifying concept in O3 sensitivity (Feng et al., 2018; Li et al., 2016; Li et al., 2022) and the 323 

recent development in a trait-based LMA global map (Fig. S1a). Such configurations present a spectrum 324 

of gridded O3 sensitivities (Fig. 7a) following the variations of LMA and bring the possibility of capturing 325 

spatiotemporal variation in vegetation O3 sensitivity through time-sensitive LMA products in the future.  326 
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 512 

Table 1. Summary of simulations.  513 

 514 

 515 
a Units of thresholds are nmol g-1 s-1 for x and nmol m-2 s-1 for y 516 
b Units of key parameters are nmol-1 s g for a and nmol-1 m2 s for aPFT 517 

  518 

Experiment a Method 
Thresholds a  

(x or y) 

LMA 

format 

LMA 

map 

Optimal  

(a or aPFT) 

Tests  

( a or aPFT ) 

YIBs-LMA 

Mass-

based 
 

x=0.019 gridded M2018 
a=3.5 

(Table S3) 

five tests  

(a=2.5, 3, 3.5, 4, 4.5) 

YIBs-LMA_PFT x=0.019 
PFT-

specific 
M2018 

a=2.0 

(Table S4) 

five tests  

(a=2, 2.5, 3, 3.5, 4) 

YIBs-LMA_T x=0.006 gridded M2018 
a=3.0 

(Table S5) 

five tests  

(a=2, 2.5, 3, 3.5, 4) 

YIBs-LMA_B2017 x=0.019 gridded B2017 
a=2.8 

(Table S6) 

five tests  

(a=2, 2.5, 2.8, 3, 3.5) 

YIBs-S2007_adj 
Area-

based 

8 values for y 

(Table S7) 
/ / 

8 values for aPFT  

(Table S7) 

40 tests 

(five each for 8 PFTs) 
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 519 

 520 

 521 

Figure 1. Area-based (top) or mass-based (bottom) DRRs for the YIBs-LMA experiment. Three tests 522 

from the YIBs-LMA experiment all adopt x=0.019 nmol g-1 s-1 and gridded LMA from M2018 with 523 

parameter a=2.5, 3.5, 4.5 nmol-1 s g, respectively. Each dot represents estimated POD-RGPP (PODy=1 for 524 

(a)-(c), PODx=0.019 for (d)-(e)) at a grid with corresponding PFT. The PFT-specific regressions between 525 

area- or mass- based POD and RGPP are displayed with solid lines shown in legend. Regression 526 

relationships of all PFTs are displayed in black dash line with coefficients of determination (R2) denoted 527 

on each panel. Note the differences of ranges in x axis among PFTs. The YIBs-LMA experiment is 528 

summarized in Table 1. 529 
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  531 

Figure 2. Comparison between SO (% per mmol m-2) and SS (% per mmol m-2) for the YIBs-LMA 532 

experiment. Five tests from the YIBs-LMA experiment all adopt x=0.019 nmol g-1 s-1 and gridded LMA 533 

from M2018 but with varied parameter a from (a) 2.5 to (e) 4.5 nmol-1 s g. SO are from Table S1. SS are 534 

derived as the slope between RGPP and PODy. The linear regression (dashed lines), normalized mean 535 

biases (NMB), and correlation coefficient (r) between SS and SO for varied PFTs are shown on each panel. 536 

The SS and SO of CRO are derived using PODy=6 while other PFTs use PODy=1. The YIBs-LMA 537 

experiment is described in Table 1. 538 
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  540 

Figure 3. Comparisons of observed and simulated dose-response relationships. Simulated PFT-specific 541 

DRRs are derived from YIBs-LMA with gridded LMA from M2018, x=0.019 nmol g-1 s-1, and a=3.5 542 

nmol-1 s g. Each dot represents results from a gridcell with corresponding PFT. The regressions between 543 

relative GPP percentage (RGPP) and leaf area-based stomatal O3 uptake fluxes (PODy=1 for natural PFTs 544 

and PODy=6 for crops) are shown for observations (red, see Table S1) and simulations (blue) with slopes 545 

of DRRs denoted as So and Ss, respectively. SO are missing for (d) cold and (e) arid shrubs. Coefficients 546 

of determination (R2) of simulations are displayed in each panel. Note the differences of ranges in x axis 547 

among PFTs (PFTs are shown in Fig. S2).  548 
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 549 

Figure 4. Global O3 vegetation damage simulated with the LMA-based scheme. Results shown are the 550 

(a) GPP reduction percentages by O3 simulated with the YIBs-LMA framework (gridded LMA from 551 

M2018, x=0.019 nmol g-1 s-1, and a=3.5 nmol-1 s g), and (b) their differences compared to the predictions 552 

from YIBs-S2007_adj simulation. Blue (red) patches indicate the regions where damages predicted in 553 

YIBs-LMA are lower (higher) than those in YIBs-S2007_adj. 554 
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 557 

Figure 5. Global O3-induced GPP reductions simulated in four supporting experiments. All damage 558 

maps are based on optimal parameters shown in Table 1. The spatial correlation coefficients between 559 

YIBs-LMA and these supporting simulations are shown on each panel as well as the global average 560 

damage percentage of each map. Simulations are described in Table 1. 561 
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  563 

Figure 6. Comparison of SS/SO among supporting experiments. Individual ratios for (b) different PFTs 564 

are grouped to the boxplot in (a). All experiments adopt optimal parameters shown in Table 1. 565 
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 568 

Figure 7. Relationships between O3 sensitivity and LMA. (a) Simulated O3 sensitivity (SS) at each grid 569 

is compared with LMA for different PFTs. Gridded SS is derived as GPP change per unit PODy=1 from 570 

the YIBs-LMA simulation. Each point represents the value in a grid cell with a dominant PFT. (b) The 571 

PFT-level relationships between LMA and O3 sensitivity are grouped as boxplots, which indicate the 572 

median, 25th percentile, and 75th percentile of y-axis variables within the same PFT. The width of boxplots 573 

represents one standard deviation of LMA for a specific PFT.  574 
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 576 

Figure 8. Illustration of the relationships between leaf trade-off strategy and its sensitivity to O3 577 
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