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Abstract

We discuss the various performance aspects of parallelizing our global-scale groundwater model at 30ʺ resolution (30

arcseconds; ~1 km at the equator) on large distributed memory parallel clusters. This model, here referred to as the GLOBGM,

is the successor of our 5ʹ (5 arcminutes; ~10 km at the equator) PCR-GLOBWB 2 groundwater model based on MODFLOW

having  two  model  layers.  The  current  version  of  the  GLOBGM  (v1.0)  used  in  this  study  also  has  two  model  layers,  is15

uncalibrated, and uses available 30ʺ PCR-GLOBWB data. Increasing the model resolution from 5ʹ to 30ʺ gives challenges for

dealing with the increasing runtime, memory usage and data storage, going beyond the possibilities of a single computer. We

show that our parallelization tackles these problems with relatively low parallel hardware requirement to meet average

users/modelers who do not have exclusive access to hundreds or thousands of nodes within a supercomputer.

For our simulation we use unstructured grids and a prototype version of MODFLOW 6 that we have parallelized using the20

message passing interface. We construct an unstructured grid having a total of 278 million active cells to cancel all redundant

sea and land cells, while satisfying all necessary boundary conditions, and distribute independent (sub)grids over three

continental-scale models (Afro-Eurasia; 168 M, Americas; 77 M, and Australia; 16 M) and one remainder model for the smaller

islands (17 M). Each of the four groundwater models is partitioned into multiple non-overlapping submodels that are tightly

coupled within the MODFLOW linear solver, where each submodel is uniquely assigned to one processor core and associated25

submodel data is written in parallel during the pre-processing using data tiles. For balancing the parallel workload in advance,

we apply the widely used METIS graph partitioner in two ways: straightforwardly applied to all model grid cells, and area-

based applied to HydroBASINS catchments that are assigned to submodels for pre-sorting to a future coupling with surface

water. We consider an experiment for simulating 1958-2015 with daily timesteps and monthly input, including a 20-year spin-

up, on the Dutch national supercomputer Snellius. Given that the serial simulation would require ~4.5 months of runtime, we30

set a hypothetical target of a maximum of 16 hours of simulation runtime. We show that 12 nodes (32 cores per node, 384

cores in total) are sufficient to achieve this target, resulting in a speed-up of 138 for the largest Afro-Eurasia model using 7

nodes (224 cores) in parallel.

A limited evaluation of the model output using NWIS head observations for the contiguous United States was conducted,

showing that increasing the resolution from 5ʹ to 30ʺ results in a significant improvement with GLOBGM for the steady-state35

simulation compared to the 5ʹ PCR-GLOBWB groundwater model. However, results for the transient simulation are quite

similar and there is much room for improvement. For next versions of the GLOBGM further improvements require a more

detailed hydrogeological schematization and better information on the locations, depths and regime of abstraction wells.
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1 Introduction

The PCRaster Global Water Balance model (PCR-GLOBWB; van Beek et al., 2011) is a grid-based global-scale hydrology40

and water resource model for the terrestrial part of the hydrologic cycle, being developed at the Utrecht University, The

Netherlands. This model, using a Cartesian (regular) grid representation for the geographic coordinate system (latitude and

longitude), covers all continents except Greenland and Antarctica. For more than a decade, it has been applied to many water-

related global change assessments providing estimates and future projections, e.g. regarding drought and groundwater

depletion due to non-renewable groundwater withdrawal (Wada et al., 2010; de Graaf et al., 2017).45

The latest version of PCR-GLOBWB (version 2.0; Sutanudjaja et al., 2018), or PCR-GLOBWB 2, has a spatial resolution

of 5ʹ (5 arcminutes) corresponding to ~10 km the equator. It includes a 5ʹ global-scale groundwater model (GGM) based on

MODFLOW (Harbaugh, 2005), consisting of two model layers to account for confined and unconfined aquifers (de Graaf et

al.,  2015,  2017).  We consider  a  spatially  refined  version  of  this  model  30ʺ (~1  km at  the  equator),  here  referred  to  as  the

GLOBGM. The initial version of the GLOBGM, v1.0, that we use in this study, has a maximum of two model layers and uses50

refined input from available PCR-GLOBWB data. Improving schematization, e.g. by adding more model layers, as well as

obtaining more refined input parameters and subsequent model calibration, we therefore leave for further research and for next

versions of the GLOBGM.

Motivated by the need for better groundwater estimates and future projections of anthropogenic effects and climate change55

stresses, pushing forward to 30ʺ resolution is a direct result for the growing availability of high-resolution datasets and the

wish for exploiting the benefits of high performance computing (HPC) to maximize computer power and modeling capabilities

(Wood et al., 2011; Bierkens et al., 2015). Typically, high-resolution Digital Elevation Maps (DEMs) are available derived

from NASA Shuttle Radar Topography Mission products, such as HydroSHEDS (Lehner et al., 2008) at 30ʺ or the MERIT

DEM (Yamazaki et al., 2017) at even 3ʺ. Furthermore, subsurface data are becoming available in higher resolution, such as60

gridded soil properties at 250 m resolution from SoilGrids (Hengl et al., 2014), and global lithologies for ~1.8 million polygons

from GLHYMPS (Huscroft et al., 2018). Although Moore’s law still holds, viz. stating that processor performance doubles

every two years, more and more processor cores are being added to increase performance. This means that making software

suitable for HPC is becoming more and more inevitable for efficiently using the available hardware. Anticipating this, we

parallelized the groundwater solver for the GLOBGM as well as the pre-processing.65

In this paper, the focus in on the technical challenges of implementing the GLOBGM using HPC. Furthermore, this study

is mainly on transient simulation, since transient simulations make most sense for evaluating the effects of climate change and

human interventions (see e.g. Minderhoud et al., 2017). We apply a similar approach as de Graaf et al. (2017) to obtain initial

conditions for the GLOBGM: we use a steady-state result (under natural conditions; no pumping) to spin-up the model by70

running the first year back-to-back for 20 years to reach dynamic equilibrium. We restrict ourselves to present parallel

performance results for transient runtimes only, since we found that steady-state runtimes with the GLOBGM are negligible

compared to transient runtimes. We present a parallelization methodology for the GLOBGM and illustrate this by a transient

experiment on the Snellius Dutch national supercomputer (SURFsara, 2021) for simulating 1958-2015 (58 years), including a

20-year spin-up. We give a limited evaluation of the computed results and believe this provides a good starting point for further75

research (Gleeson et al., 2021). For this, the steady-state and transient results with the GLOBGM are compared to groundwater

head observations for the contiguous United States (CONUS), also considering the 5ʹ PCR-GLOBWB groundwater model, the

30ʺ global-scale inverse model of Fan et al. (2017), and the 250 m groundwater model at the CONUS-extent of Zell and

Sanford (2020).

80
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We use the model code program MODFLOW (Langevin et al., 2021, 2017), the most widely used groundwater flow

modeling program in the world, being developed by the U.S. Geological Survey (USGS). The latest version 6 of MODFLOW

supports a multi-model functionality that enable users to set up a model as a set of (spatially non-overlapping) submodels,

where each submodel is tightly connected to other submodels at matrix level and has its own unique input and output files. In

cooperation with the USGS, we parallelized this submodel functionality and created a prototype version (Verkaik et al., 2018,85

2021c) that is publicly available and is planned to be part of a coming MODFLOW release. Building on our preceding research

(Verkaik et al., 2021a, b), this prototype uses the message passing interface (MPI; MPI Forum, 1994) to parallelize the

conjugate gradient linear solver within the iterative model solution package (Hughes et al., 2017), supporting the additive

Schwarz preconditioner as well as the additive coarse grid correction preconditioner (Smith et al., 1996).

90

This paper is organized as follows. In Section 2, first, the general approach for implementing the GLOBGM is given in

Section 2.1, followed by the experimental set-up in Section 2.2, the workflow description in Section 2.3 and model evaluation

methods in Section 2.4. In Section 3, the results are presented and discussed for the transient pre-processing in Section 3.1, the

transient parallel performance in Section 3.2, the model evaluation in Section 3.3, and some examples of global-scale results

are given in Section 3.4. Section 4 concludes this paper.95

2 Methods

2.1 General approach

The 5ʹ PCR-GLOBWB MODFLOW global-scale groundwater model consists of two model layers: the upper model layer

represents the confining layer and the lower model layer representing the (confined or unconfined) aquifer (de Graaf et al.,

2015, 2017). This model uses a structured Cartesian grid, representing latitude and longitude, and includes all land and sea100

cells at the global 5ʹ extent. Inherently to using a structured grid, where all model layers are required to be contiguous in space,

sea cells are used as lateral Dirichlet boundary condition (BC) of a head equal to 0 m. Furthermore, to account for the absence

of the confining layer, this model uses zero thickness (dummy) cells for the upper layer as a work-around for specifying a

lateral homogeneous Neumann BC (no-flow). In total, each model layer has 4,320 columns and 2,160 rows, hence this model

has total of ~9.3 million 5ʹ cells, where many cells are redundant. Since the Dirichlet BC is only required for connections to105

land near the coastline, this means that ~77% of the 5ʹ grid cells corresponding to sea are redundant. Furthermore, for the land

cells, ~35% of the cells in this model are dummy cells with zero thickness to account for the homogeneous Neumann BC. A

straightforward refinement of the 5ʹ grid to 30ʺ would result in ~100 times more cells, hence 1.87 billion cells (two model

layers of 43,200 columns and 21,600 rows). Creating and using such a model would heavily stress runtime, memory usage and

data storage.110

By exploiting the benefits of unstructured grids for cancelling redundant cells associated with boundary conditions, we can

significantly reduce the number of cells. Furthermore, this allows us to apply a static asynchronous parallelization approach to

maximize parallelism. First, sea cells are added to the land cells in the lateral direction by extrapolation of the 30ʺ land mask

using a 5-point stencil, hence accounting for the Dirichlet BC. Second, cells are added in the vertical direction (one or two) to115

account for the presence of a confining layer, and therefore account for the lateral homogeneous BC. This means that in the

GLOBGM two configurations are used: 1. Upper confining layer + lower (confined) aquifer (2 vertical cells); 2. Lower

(unconfined) aquifer (1 vertical cell). Although we cannot distinguish between upper and lower model layer anymore when

using unstructured grids, from here, we sometimes use “upper model layer” and “confining layer” interchangeably, as well as

“lower model layer” and “aquifer”.120
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After  decoupling  and  sorting  by  cell  count,  we  end  up  with g 9050N =  independent/disjoint unstructured grids nG ,

g1, ,n N= ¼ , having a total of ~278 million 30ʺ cells. This gives a reduction of 85% compared to a straightforward refinement

of the 5ʹ structured grid (land: 35% reduction, sea: 99.9% reduction). These grids correspond to continents and islands, with

the three largest: Afro-Eurasia (AE, 168 million 30ʺ cells), Americas (AM, 77 million 30ʺ cells) and Australia (AU, 16 million

30ʺ cells), see Figure 1. The remainder of 9047 smaller grids, together for a total of 17 million 30ʺ cells, are grouped as125

“Islands” (ISL). By doing this, we define the GLOBGM as a set of four independent models m( 4)N =  subject to parallel

solving, of which three of them are continental-scale groundwater models (CGM). It should be noted that more than four

models can be chosen, up to a maximum of 9050. However, because the Islands model has almost the same number of cells

as the Australia model, we do not feel any need for using more models than four.

130

Figure 1. The four defined model areas within the GLOBGM having a total of 278.3 million cells. When the upper model layer is plotted
this means that there is also a lower model layer present. Otherwise, only the lower model layer is present.

For evaluating the parallel performance, we solve these four groundwater models using distributed memory parallel135

computing (Rünger and Rauber, 2013). We restrict ourselves to parallelization on mainstream cluster computers since they are

often accessible to geohydrological modelers. Cluster computers typically have distributed memory (computer) nodes, where

each node consists of several multicore-CPUs (sockets) sharing memory, and each node is tightly connected to other nodes by

a fast (high-bandwidth and low-latency) interconnection network.

140

Instead of fixating on parallel speedups and scalability, which are commonly used metrics for benchmarking parallel codes

(e.g. Burstedde et al., 2018), we choose a metric for which we believe has good connection with the experience of users:

simulated-years-per-day (SYPD). This metric, simply the number of years that a model can be simulated in a single day of 24

hours, has proven to be useful for evaluating massively parallel performance in the field of atmospheric community modeling

(Zhang et al., 2020). We present a straightforward, but effective, method to obtain a desired runtime target performance in145

SYPD, tgtR , meeting user requirements. Here, we consider the typical “9 to 5” user, who likes to start a simulation at 5 PM

and get the results next working day at 9 AM. The target for our transient experiment for 1958-2015 is then to simulate 78

years (58 + 20 years spin-up) in 16 hours. Accordingly, this is 0.67 days, and therefore we set tgt 78 / 0.67 117R = =  SYPD.

We also use the metric core-hours-per-simulated-year (CHPSY), that is defined as the cumulative runtime over all processor

cores being used for simulation a single year. With CHPSY, the actual parallel runtime can be easily obtained by multiplying150

CHPSY with the number of simulated years and consecutively dividing by the number of processor cores being used.

For parallelizing the GLOBGM, each of the four groundwater models is partitioned into multiple non-overlapping

submodels, where each submodel is uniquely assigned to one processor core and one MPI process. To obtain a good parallel

performance, computational work associated with the submodels should be well balanced. For this, we perform a grid155
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partitioning using METIS (Karypis and Kumar, 1998), the most commonly used graph partitioner among others like Chaco

(Hendrickson and Leland, 1995) and Scotch (Pellegrini, 2008). Input for this partitioner is an undirected graph having node

weights, edge weights, and the number of partitions. Here, we restrict our grid partitioning to lateral direction only, since the

number of lateral cells is much larger than the number of model layers (here a maximum of two). This naturally minimizes the

number of connections between the submodels and the associated point-to-point (inter-core) MPI communication times.160

For each model im , m1 i N£ £ , a set of (coupled) submodels is defined by ,i jm , m1, , ij N= ¼ , where m
iN  is the number

of submodels for model i . In our approach, each submodel is constructed by combining one or more areas ,i j
ka , ,

a1, , ,i jk N= ¼

where ,
a
i jN  is the number of areas for model i  and submodel .j  The total number of areas for a model is defined by

aa
,i j

j
iN N=È ,  and for the entire GLOBGM by aa

i
iN N= È . Here, the general approach is to assign one or more areas to a

submodel using METIS. From here, we refer to this as area-based graph partitioning. Here, two partitioning strategies are165

considered, using:

1. METIS areas that are generated by straightforwardly applying METIS to model grids for im  to obtain m
iN  parts. This

we refer to as straightforward METIS partitioning.

2. Catchment areas that are generated by rasterization and extrapolation of HydroBASINS catchments including lakes

(Lehner, 2014) for a given Pfafstetter refinement level (Verdin and Verdin, 1999). This we refer to as catchment170

partitioning.

Considering METIS areas, we restrict ourselves to assigning exactly one area to a submodel, hence ,
a 1i jN =  for all j .

Each node in the graph corresponds to a lateral cell having a node weight equal to the number of vertical cells (1 or 2), and

one or more edge weights equal to the number of inter-cell connections to neighboring cells (1 or 2). In our study, this is the

most optimal partitioning method that we apply to the GLOBGM.175

Assignment of catchment areas to a submodel, typically ,
a 1i jN >> , is done by partitioning a graph using METIS, where

each node in the graph corresponds to a catchment area having a node weight, equal to the total number of grid cells within

that catchment, and one or more edge weights, equal the total number of inter-cell connections to neighboring catchments.

Compared to straightforward METIS partitioning, catchment partitioning is less optimal since it optimizes a graph that is much

more lumped. However, catchment partitioning has several advantages. First, the graphs subject to METIS partitioning are180

generally much smaller and therefore partitioning is significantly faster. In fact, this approach makes the grid partitioning more

or less independent on the grid cell resolution and is therefore suitable for even future higher resolutions. Second, such

approach gives users flexibility for giving the lateral submodel boundaries physical meaning. For example, choosing catchment

boundaries simplifies a future parallel coupling to surface water routing modules (Vivoni et al., 2011). Third, this concept

could be easily generalized for other types of areas, e.g. countries or states following administrative boundaries. Choosing185

such areas might simplify the management and maintenance of the submodels by different stakeholders within a community

model.

Figure 2 illustrates the defined model entities for the case of four islands g( 4)N = , two models m( 2)N =  and seven

catchments areas a( 7)N = . In this example model 1m  has the largest grid 1g , and model 2m  the remaining smaller grids 2 ,g190

3g  and 4g . The denoted cell numbers in Figure 2 correspond to the numbers of model layers, where blue denotes a cell with

a Dirichlet (sea) BC. In this example, each model has exactly two submodels (hence 1 2
m m 2)N N= = . For model 1m , catchments

1,1
1a  and 1,1

2a  are assigned to submodel 1,1m , and 1,2
1a  is assigned to submodel 1,2m . For model 2m , catchment 2,1

1a  is assigned

to submodel 2,1m , and 2,2
1a , 2,2

2a  and 2,2
3a  are assigned to submodel 2,2m . For this example, the load of model 1m  is well-
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balanced since each submodel has a load of 50. However, for model 2m , the first and second submodel have load 19 and 21,195

respectively, and therefore there is a load imbalance. Note that submodel 2,2m  has three disjoint subgrids, since in this case

three islands are involved. In general, the presence of disjoint subgrids may occur for any submodel within the GLOBGM, as

a result of partitioning a continent or island with METIS. The reason is that none of the METIS solvers can guarantee

contiguous partitions. However, we here use multilevel recursive bisection, that is known to give best results in that respect.

200

Figure 2. Example where four islands are partitioned for two models, 1m  and 2m .

When evaluating the target performance tgtR , we restrict ourselves to model runtime only. Since pre- and post-processing

are very user specific and therefore associated runtimes cannot be generalized, we do include them in our analysis. However,

processing runtimes can be substantial making parallel processing inevitable, as we will illustrate for our limited pre-205

processing. To keep pre-processing runtimes feasible, we apply embarrassing parallelization (see e.g. Herlihy et al., 2020)

where processing for input data (tiles and submodels) is done independently using multiple threads simultaneously on multiple

nodes.

For achieving tgtR , we need a selection procedure for estimating the number of (processor) cores for the three CGMs and

the Islands model. Since it is common to take the number of cores per node at a fixed value CPN( )N , this means that choosing210

the number of cores is equivalent to choosing the number of nodes. Ideally, we would take CPNN  to be equal to the total

number of cores within a node and therefore maximize computer resources utilization. However, it is not always advantageous

or even impossible to use the total number of cores due to the memory access constraint. In practice, the best performance is

often obtained using a lesser number of cores. For example, the linear conjugate gradient solver that is used for solving the

groundwater flow equation, dominating runtime, is strongly memory-bound because of the required sparse matrix-vector215

multiplications (Gropp et al., 1999). This means that, starting from a certain number of cores, competition for memory

bandwidth hampers parallel performance and contention is likely to occur (Tudor et al., 2011). Typically, this directly relates

to the available memory channels within a multicore-CPU, linking the RAM and processor cores. In our approach, we first

determine CPNN  by performing a strong scaling experiment (keeping the problem size fixed) within a single node for the well-

known high performance conjugate gradients supercomputing benchmark (HPCG; Dongarra et al., 2016). By doing this, we220

assume that HPCG is representative for MODFLOW. The performance metric for this experiment is floating-point operations

per second (FLOPS), that is commonly used for quantifying numerical computing performance and processor speed. Then, by

conducting a strong scaling experiment for a single (medium-sized) model and a short simulation period while keeping CPNN

fixed, the number of nodes is selected such that tgtR  is achieved. This gives the preferred submodel size that is used to

determine the number of nodes for all other models; see section 2.1 for more details.225
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2.2 Experimental set-up

2.2.1 Description of the GLOBGM

Table 1 and Table 2 show the datasets used to parameterize the GLOBGM in this study. For details on the MODFLOW

model description and conceptualization, we refer to the preceding papers (de Graaf et al., 2019, 2017; Sutanudjaja et al., 2014,

2011). In this study, we adopted an offline coupling approach that used the PCR-GLOBWB output of Sutanudjaja et al. (2018)230

as the input to the MODFLOW groundwater model. The PCR-GLOBWB output that was used consists of monthly fields for

the period 1958-2015 for the variables groundwater recharge (i.e., net recharge obtained from deep percolation and capillary

rise), groundwater abstraction, and runoff. The latter was translated to monthly surface water discharge by accumulating it

through the 30ʺ river/drainage network of HydroSHEDS (Lehner et al., 2008). From the monthly surface water discharge

fields, we then estimated surface water levels using Manning’s equation (Manning, 1891).235

The groundwater model simulation conducted consists of two parts: a steady-state and a transient simulation. For both

simulations, default solver settings from the 5ʹ model were taken for evaluating convergence, and within the linear solver we

did not apply coarse grid correction. We started with a steady-state MODFLOW model using the average PCR-GLOBWB

runoff and groundwater recharge as the input. No groundwater abstraction was assumed for the steady-state model therefore

representing a naturalized condition, as the simulated steady-state groundwater heads will be used as the initial conditions for240

the transient simulation (i.e., assuming low pumping in ~1958). The transient MODFLOW simulation was calculated at daily

time steps with monthly stress period input of surface water levels, groundwater recharge and groundwater abstraction. Using

the steady-state estimate as the initial groundwater heads, the model was spun-up using the year 1958 input for 20 years (to

further warm-up the initial states and add small effect of pumping), before the actual transient simulation for the period 1958-

2015 started.245

Table 1. Input datasets used for the GLOBGM transient model parameters.

Item Number of grids
(fixed / monthly)

Main sources/references,
original spatial resolution/support

Remarks

Model upper layer top
elevation, DEM (digital
elevation model)

1 / - MERIT Hydro DEM (Yamazaki et al., 2017),
3ʺ resolution

We upscaled the 3ʺ MERIT DEM to 30ʺ
resolution, e.g., for the estimate of surface
elevation. Yet, we also used its original 3ʺ
values to derive several other elevation
values (at 30ʺ resolution), such as the
elevations of flood plain, river head, river
bottom, and drainage bottom. For detailed
descriptions, we refer to the preceding
papers (de Graaf et al., 2019, 2017;
Sutanudjaja et al., 2014, 2011).

Model layer thicknesses
(confining layer and
aquifer thicknesses)

2 / - de Graaf et al., 2017; Sutanudjaja et al.,
2018, 5ʹ resolution

We performed a bilinear interpolation to
bring them to 30ʺ resolution.

Hydraulic conductivities
and storativities (storage
coefficients)

6 / -
(2 for horizontal
conductivities,
2 for vertical

conductivities, and 2
for storativities)

GLHYMPS (Gleeson et al., 2014); GLiM
(Hartmann and Moosdorf, 2012) a polygon
map with the scale 1:3,750,000

We rasterize the polygon map of GLiM
(Hartmann and Moosdorf, 2012) to 30ʺ
resolution. The values assigned for each
class are based on GLHYMPS (Gleeson et
al., 2014).

Groundwater recharge - / 1 PCR-GLOBWB (Sutanudjaja et al., 2018),
5ʹ resolution

We simply resampled/mapped this map to
30ʺ (no downscaling)

Groundwater abstraction
(pumping wells)

- / 2 PCR-GLOBWB (Sutanudjaja et al., 2018),
5ʹ resolution

We simply resampled/mapped this map to
30ʺ (no downscaling)

River package - / 3 See Table 2 for the input for river and
drainage packages.

See Table 2 for the input for river and
drainage packages.

Drainage package 1 / 2 See Table 2 for the input for river and
drainage packages.

See Table 2 for the input for river and
drainage packages.

10 / 8
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Table 2. Input datasets used for the MODFLOW river and drainage packages.250

Item Main sources/references, original spatial
resolution/support

Remarks

River/drainage
network

HydroSHEDS (Lehner et al., 2008) Used as the network to accumulate local runoff for
estimating surface water discharge.

Local runoff PCR-GLOBWB 2 (Sutanudjaja et al., 2018),
5ʹ resolution

Used to derive surface water discharge and surface
water level fields.

Surface water
discharge and
surface water level

This study, 30ʺ resolution Surface water discharge was estimated by
accumulating runoff through the 30ʺ river/drainage
network of HydroSHEDS (Lehner et al., 2008).
Then, surface water level was calculated from
discharge using the Manning’s equation (Manning,
1891).

Groundwater
recession coefficient
(used to estimate
drainage
conductance)

This study, 30ʺ resolution Calculated following the drainage theory of van de
Leur Kraijenhoff (1958) based on the drainage
network density and aquifer properties. For the
drainage density, we used the estimate from van
van Beek and Bierkens (2009). The aquifer
properties were from Gleeson et al. (2014).

2.2.2 Dutch national supercomputer Snellius

All our experiments were conducted on the Dutch national supercomputer Snellius (SURFsara, 2021), a cluster computer

using multicore CPUs that is easily accessible to users from Dutch universities and Dutch research institutes. It consists of

heterogeneous distributed memory nodes (servers), where we restrict to using default worker nodes having 256 GB1 memory

(“thin” nodes), see Table 3, that are tightly connected through a fast interconnection network having a low latency and high255

bandwidth. Each node houses two 64-core AMD CPUs that connect to 256 GB of local memory through two sockets. For this

study, a storage of 50 TB and a maximum of 3.8 million files is used that is tightly connected to the nodes, enabling parallel

I/O using the Lustre parallel distributed file system. Since the Snellius supercomputer is a (more or less) mainstream cluster

built with off-the-shelf hardware components, we believe that our parallelization approach is well applicable to many other

supercomputers.260

Table 3. Configuration of the default computing nodes used on the Dutch national supercomputer Snellius (SURFsara, 2021).

Number of nodes 504

Number of sockets per node 2

Multicore-CPU per socket AMD EPYC 7H12 (2nd gen. Rome)

64 cores, 2.6 GHz, 8 memory channels

Memory (RAM) per node 256 GB, 3200 MHz, DDR4 (16 DIMMs)

Interconnection network Fat tree topology, InfiniBand HDR100

File system Lustre parallel with striping, InfiniBand HDR100

2.3 Workflow description

2.3.1 Main Workflow and Node Selection Workflow

The main workflow for pre-processing and running the four models from the GLOBGM is given by Figure 3a. The so-265

called Model Workflow uses data that are initially being generated by the process “Write Tiled Parameter Data”, that writes

the 30ʺ grids (see Table 1) using a tiled-based approach in an embarrassingly parallel way, see Section 2.3.2 for more details.

For the Model Workflow, prior to the actual partitioning and writing the model files in an embarrassingly parallel way (viz.

the process “Partition & Write Model Input”; see Section 2.3.4), a preparation step is done for the partitioning (the process

1 The abbreviations GB (gigabyte) and TB (terabyte) denote the size of the binary (base-2) memory system.
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“Prepare Model Partitioning”; see Section 2.3.3). The general idea behind this preparation step is to simplify the270

embarrassingly parallelization for generating the submodels, by storing all required mappings associated to the unstructured

grids for the continents and islands, boundary conditions, areas, connectivities, and data tiling. By doing this, we do not have

to recompute the mappings for each submodel and therefore save runtime. First, these mappings are used to assign the areas

for the catchment partitioning, therefore requiring runtime that is neglectable. Second, these mappings are used for fast direct-

access read of (tiled parameter) data required for assembling the submodels in parallel. The final step in the Model Workflow275

is to run the models on a distributed memory parallel computer (process “Run Model” in Figure 3a).

Figure 3. (a): Main Workflow for processing the GLOBGM. A red box and pink box denote embarrassingly parallel and distributed memory
parallel, respectively, see Section 2.1. (b): Node Selection workflow. Workflow symbols used: process (blue), decision (green), manual input280
(orange).

It should be noted that in our workflow we have deliberately left out the post-processing used in this study. The reason for

this is that we only perform limited post-processing and mainly focus on measuring the performance of model simulation. In

our post-processing, runtimes and data storage for transient evaluation are low since we use direct-access reading of binary

output and only generate time series for a limited number of selected well locations. However, in real-life application of the285

GLOBGM, more output data may be needing to be processed, resulting in non-neglectable runtimes. In that case, post-

processing could benefit from parallelization.

In Figure 3b the Node Selection workflow is given, that is applied for estimating the number of nodes nod
iN  to be used for

each model .i This estimation is done by conducting a strong scaling experiment, meaning that the number of cores is being

varied for a model having a fixed problem size. Input for this workflow is a selected model m1 j N£ £ , having a convenient290

grid size cell( )jN  and simulation period. Straightforward METIS partitioning is applied, see Section 2.1, as well as a

straightforward iteration scheme. Starting from nod 1jN = ,  in  each  iteration  of  this  workflow,  the  number  of  cores  (or  MPI

processes) p
jN  is chosen to be a multitude of the number of cores per node CPNN , hence p nod CPN

j jN N N= × . Then, the Model

Workflow generates the model input files for this number of cores, followed by running the model to obtain runtime

performance jR . The iteration finishes when tgt
jR R³ , and the target submodel size (number of grid cells) is determined by295

tgt cell p/j jB N N= . Using this submodel size, for each model m1, ,i N= ¼ , the number of nodes is given by nod cell tgt/i iN N Bé ù= ê ú ,

where ×é ùê ú  denotes the ceiling function. Then, the number of cores to be used for each model m1, ,i N= ¼  follows
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straightforwardly from p nod CPN
i iN N N= × . The (maximum) total number of nodes being used for the GLOBGM we denote by

nod nod
i

i
N N=å .

2.3.2 Model Workflow: Write Tiled Parameter Data300

In the offline coupling of PCR-GLOBWB to MODFLOW (see Section 2.2.1), all model parameter data required for the

MODFLOW models are written prior to simulation. For this, the PCR-GLOBWB-MODFLOW Python scripts that use

PCRaster Python modules (Karssenberg et al., 2010) are slightly modified for the MODFLOW module to process and write

30ʺ PCRaster raster files (uncompressed, 4-bytes single-precision). The processing is done for a total of 163 squared raster

tiles of 15° having 30ʺ resolution (1800 1800´  cells), enclosing the global computational grid, see Figure 4. Using tiles has305

benefits for two reasons. First, using tiles cancels a significant number of redundant sea cells (missing values), reducing the

data storage for storing one global map from 3.47 GB to 1.97 GB in our case (43% reduction). Second, using tiles allows for

(embarrassingly) parallel pre-processing to reduce runtimes. In our pre-processing, the 163 tiles are distributed proportionately

over the available nodN  nodes. It should be noted that, although the tiling approach is quite effective, still many coastal tiles

have redundant sea cells. Since missing values do not require pre-processing, one might argue that these tiles would result in310

a parallel workflow imbalance. However, the version 4.3.2 of PCRaster we used does not treat missing values differently, and

therefore choosing tiles of equal sizes seems to be appropriate. It should also be mentioned that choosing 15° tiles is arbitrary

and different tiles could be chosen.

Figure 4. Parameter data tiles having 30ʺ resolution and 15° size (1800 ´ 1800 cells). Total: 163.315

2.3.3 Model Workflow: Prepare Model Partitioning

The workflow for preparing the partitioning is given by Figure 5 in more detail. This workflow derives and writes all

necessary mappings that are being used for the process “Partitioning & Write Model Input”, see Section 2.3.4. It includes the

two options for generating areas, see Section 2.1: METIS areas and catchment areas, see processes “A” and “B” in Figure 5,320

respectively.
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Figure 5. Process “Prepare Model Partition” in detail of the workflow in Figure 3a. Abbreviations: BC = Boundary Condition; CRS =
Compressed Row Storage. Workflow symbols used: process (blue), decision (green), manual input (orange), input data (yellow).

When METIS areas are chosen to prepare for straightforward METIS partitioning, areas are derived from grids ng ,325

g1, ,n N= ¼ , that are disjoint and increasing in size corresponding to continents and islands, see Section 2.1 and process “C”

in Figure 5. For each (continental-scale) model i , m1£ <i N , exactly one grid ig  is taken, and for the remainder (islands)

model m=i N , the grids ng , m g, ,n N N= ¼  are taken. Applying METIS partitioning for these grids to obtain p
iN  partitions

is then straightforward, see Section 2.1.

When catchment areas are chosen to prepare for catchment partitioning, HydroBASINS catchments are determined at the330

global 30ʺ extent, see process “B” in  Figure 5. This is done for a given Pfafstetter level that directly relates to the number of

catchments. First, local catchment identifiers (IDs) for the HydroBASINS polygons (v1.c including lakes) are rasterized to 30ʺ

for the corresponding eight HydroBASINS regions, numbered consecutively, and merged to the global 30ʺ extent. Second,

extrapolation of the catchment IDs in lateral direction near the coastal zone is done using the (extended) global 30ʺ land-sea

mask and a 9-point stencil operator. Third, the 9-point stencil operator is used to identify independent catchments and new IDs335

are generated and assigned where necessary.

The result of creating METIS or catchment areas is stored in a global 30ʺ map with unique area IDs. This map is input for

process “D” in Figure 5, together with the grid definition, a (vector-based) definition of the data tiles with bounding boxes,

and a global 30ʺ map with the number of model layers per cell. Optionally, areas can be selected by a user defined bounding

box, by polygon or ID, allowing users to prepare a model just for a specific area of interest. However, in this study we limit340

ourselves to the global extent only and therefore this option is not being used. In process “D”, for each continent or island, all

required mappings are determined for each of the covering areas: global index cells numbers and bounding box, neighboring

areas and cell-to-cell interfaces, location of boundary conditions, the connected data tiles, and number of model layers per cell.

An undirected graph is constructed using the compressed row storage (CRS) format for efficient data storage with pointers

(counters) to the (contiguous) bulk data with mappings. In process “E” in Figure 5, these mappings are saved to binary files345

that allows for fast direct access reading of all mappings required for the partitioning and writing the model input (see process

“Partitioning & Write Model Input”, Section 2.3.4).
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2.3.4 Model Workflow: Partition & Write Model Input

The workflow for the partitioning and writing the model input files (Figure 6) consists of three processes: the “Area-Based

Graph Partitioning” (A), “Assemble & Write Submodel Input Data” (B), and “Assemble & Write Inter-Submodel350

Connections” (C). This workflow is set up in a flexible way such that it enables embarrassingly parallel computing for a given

range of models and submodels. This means that for selected models and submodels, data can be processed independently by

using fast area-based graph partitioning and using the pre-defined and stored mappings.

Figure 6. Process “Partition & Write Model” in detail of the Model Workflow in Figure 3a. Workflow symbols used: process (blue),355
decision (green), manual input (orange), input data (yellow), iterator (purple).

The  first  step  is  to  perform  the  partitioning,  see  “A”  in  Figure  6.  The  goal  is  to  determine  the  submodel  partitions  by

optimally assigning areas to balance the parallel work load using METIS while minimizing the edge-cuts. For a model im ,

first all necessary area data (cumulative node and edge weights, connectivites) are collected from the saved mappings that are

a result of the “Prepare Model Partitioning” workflow, see 2.3.3. For each model im , m1, , 1i N= ¼ - , this is done for all areas360

belonging to grid ig ; for the remainder model mNm  this is done for all the areas belonging to grids m g, ,¼N Ng g . After

constructing the graph for model im , METIS is being called to partition the graph into user-defined p
iN  parts.

For the example of Figure 2, the graphs are depicted in Figure 7, where the nodes correspond to catchments and the edges

to the connectivities between the catchments. Since in this example the number of disjoint grids g mN N> , which is generally

the case, the associated graph for the (remainder) model 2m  is disconnected, while the graph for model 1m  is connected. The365

node weights are defined as the sum of the 30ʺ cell weights for a corresponding catchment, and the edges are defined as the

sum of shared cell faces between the catchments, see Section 2.1. Focusing on the node weights for the example graph, let iW

denote the model weight of model i  and ,i jw  the submodel weight such that ,i i j
j

W w=å . In this example, model 1m  has a

total weight of 1 100W =  divided into two submodels, each having a weight of 1,1 1,2 50w w= = . Following Karypis and Kumar

(1998), we here define the load imbalance for a model i  as the maximum submodel weight divided by the average (target)370
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weight, hence , ,max / ( / ) max /i j i i i i j i
i p pj j

I w W N N w W= = × . In this definition, the model is perfectly balanced when 1iI =  and

load imbalance occurs when 1iI > . Assuming Amdahl’s law holds (Amdahl, 1967), it follows that the speedup (and hence

parallel performance) is proportionally to 1
iI - . Defining the imbalance increase as * 100 ( 1)i iI I= × - [%], then for model 1m

the submodels are perfectly balanced *
1( 0I =  %). On the other hand, the catchments for model 2m  could not be perfectly

distributed over the two submodels since the second submodel has a larger weight, 2,2 21w = , than the first submodel,375
2,1 19w = . Therefore, the load imbalance for the second model, having a total weight 2 40W = , is *

2 5I =  %.

In general, area-based partition with catchments results in insurmountable load imbalance, depending on several factors.

The amount of imbalance depends on the (multi-level) partitioning algorithm being used, the number of catchments related to

the number of partitions, the catchment geometry, and the effect this all has on the search space. In this study, we do not try to

make any quantitative or qualitative statements on this. Moreover, we aim for the practical aspects for a given commonly used380

graph partitioner with default settings applied to a realistic set of catchments. It should be noted, as already highlighted in

Section 2.1, that load imbalance for METIS areas can be considered as optimal, since the number of nodes (equals the number

of lateral cells) is very large compared to the number of partitions, and do not vary strongly in weight. It is verified that the

obtained load imbalance never exceeds the specified maximum tolerance of 1.0001iI = .

385
Figure 7. Example of area-based graph partitioning corresponding to the example of Figure 2, where the work for each submodel is

uniquely assigned to a core of a dual-core CPU.

The  second  step  in  the  workflow  of  in  Figure  6,  see  “B”,  is  to  process  all  submodel  data.  First,  the  resulting  METIS  or

catchment areas assigned by METIS (result of process “A”) are used to assemble the unstructured grid. Then, using the tiled390

parameter data and the CRS mappings, both steady-state as well as transient model input data are written. To significantly

reduce the number of model input files for transient simulation, each submodel has exactly one binary file for storing all

necessary bulk data. This is a new functionality of our MODFLOW 6 prototype. For the third and last step in the workflow of

Figure 6, process “C”, first an inter-submodel graph is assembled for each model by the merging the inter-area graph from the

CRS mappings and the derived partitions from process “A”. Second, the submodel connections (MODFLOW exchanges) are395

written to files, as well as wrappers for running the steady-state model, the transient spin-up model and the actual transient

model.

2.4 Evaluation for the contiguous United States

Here, the GLOBGM is evaluated for the CONUS for which many head measurement data sets are publicly available. For

our study, we restrict to selected groundwater head observations from the USGS National Water Information System (NWIS)400

database (USGS, 2021). This evaluation is limited, however, since the GLOBGM v1.0 is an initial model. This means various

https://doi.org/10.5194/gmd-2022-226
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.



14

other aspects are left for further research: improving model schematization (e.g. geology), improving model parameters by

adding more (regional scale) data and calibration, and adding more global dataset for comparison. Our evaluation is mainly on

comparison to the 5ʹ PCR-GLOBWB MODFLOW model, from here briefly referred to as GGM, for which we used consistent

upscaled data.405

2.4.1 Steady-state groundwater heads

The steady-state (i.e. long-term average) evaluation is limited to the so-called natural condition, meaning that human

intervention by groundwater pumping is excluded from the model. Besides comparing the GLOBGM to the GGM, we compare

the computed steady-state groundwater heads to two other models: the global-scale inverse model (GIM) from Fan et al.,

(2017), having 30ʺ resolution and used for estimating steady-state root water-uptake depth based on observed productivity and410

atmosphere by inverse modeling, and the CONUS model from Zell and Sanford (2020), a MODFLOW 6 model developed by

the USGS for simulating the steady-state surficial groundwater system at the CONUS-extent. From here, these latter models

are referred to as GIM and CGM, respectively. Here, for the steady-state evaluation, we use the same NWIS wells as selected

by Zell and Sanford (2020). Mean groundwater head residuals are computed for HUC4 surface water boundaries from the

USGS Watershed Boundary Dataset (U.S. Geological Survey, 2021b) to get a spatially weighted distribution of the residuals415

for the CONUS.

2.4.2 Transient groundwater heads for 1958-2015

A comparison is made between the GLOBGM and GGM model including groundwater pumping (non-natural condition),

for the simulation period of 1958-2015. Considering monthly averaged groundwater heads, the sample correlation coefficient

mor  is used for quantifying the timing error between model (“m”) and observation (“o”). Furthermore, the absolute and relative420

interquartile range error, mo m o oIQRE =|IQR -IQR |/IQR , with mIQR  and oIQR  the interquartile ranges for the model and

observations, respectively, is used to quantify the amplitude error (de Graaf et al., 2017; Sutanudjaja et al., 2011). Additionally,

the trend of the (monthly averaged) time series is computed, considering the slope yb  of yearly averaged groundwater heads

from a simple linear regression with time. We assume that a time series has a trend for y| | 0.05b >  m per year, and no trend

otherwise.425

In the transient evaluation, long-term averaged statistics including seasonality of groundwater heads are considered for

unconsolidated sedimentary systems only. Starting from ~900k well locations, time series are selected having at least one

groundwater head observation for each quarter during five consecutive years. Statistics is only computed for such contiguous

periods. Model layer selection for a given NWIS well is done as follows. When there is only one upper or lower model layer

present for this site, then we simply select the corresponding model layer. When there is both an upper and lower layer present,430

we first try to match the NWIS well depth below land surface. In case this depth is smaller than the upper model layer thickness,

we select the upper layer; otherwise we select the lower layer. When there is no well depth available for a site, we try to

correlate the NWIS head time series with a corresponding soil moisture time series from the European Space Agency Climate

Change Initiative Soil Moisture dataset, derived from the combined active and passive satellite sensors (v05.2; Gruber et al.,

2019, 2017; Dorigo et al., 2017). If there is a (lagged) correlation greater than 0.5, we take the upper layer; if not, we take the435

lower layer. If there is no soil moisture data available, we do not use the NWIS site for the evaluation. In total, the filtering

resulted in 12,342 site locations used for the transient evaluation. Results for timing, amplitude and trend for these wells are

aggregated to the same HUC4 surface water boundaries as used for the steady-state evaluation, see Section 2.4.1. However,

we declare HUC4s having lesser than five NWIS wells not spatially representative and exclude them from the presented

statistics.440
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3 Results and discussion

3.1 Pre-processing for 1958-2015

3.1.1 Node selection

Figure  8a  shows the  performance  for  a  HPCG strong scaling  experiment  (see  Section  2.1)  on  a  single  thin  node  of  the

Dutch national supercomputer Snellius (see Table 3), up to a maximum of 128 cores using two CPUs. In this figure, the ideal445

performance (dashed line) is a straightforward extrapolation of the serial performance. It can be observed that a flattening

occurs starting from 32 cores, where the competition of cores for the memory bandwidth results in saturation. From this, the

maximum number of cores per node is chosen as CPN 32N =  for the remainder of the experiments. For the node selection

procedure (see Section 2.1, Figure 3b), the Americas model is chosen ( 2)j =  considering a one-year simulation for 1958.

This model corresponds to a “medium-sized” model consisting of 2
cell 77N =  million cells. Starting with 2

nod 1N =  node, hence450

using a total of 2
p 1 32 32N = × =  processor cores, Figure 8b shows that for the third iterate the measured performance exceeds

the target performance, 2
tgt145 117R R= > = , hence 2

nod 3N =  nodes for a total of 2
p 3 32 96N = × =  cores. Therefore, the target

submodel size is 2 2
tgt cell p/ 77 / 96 0.8B N N= = =  million 30ʺ cells. Then, by computing nod cell tgt/i iN N Bé ù= ê ú  for 1, , 4i = ¼ , and

calculating back the number of nodes and cores, the Afro-Eurasia model is estimated to use seven nodes and 224 cores to meet

the target performance, the Americas model three nodes and 96 cores, the Australia and Islands model each uses a single node455

and 32 cores, see Table 4. Hence, the total maximum number of nodes in the study for the GLOBGM is nod 12N =  for a total

of 384 cores. This results in an average submodel size of 0.72 million 30ʺ cells.

Figure 8. (a): HPCG performance results in GFLOPS/s for a model having 1043 cells and a maximum runtime of 60 s, (b): Performance
estimation for the Americas model considering a transient simulation for 1958.460
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Table 4. Configuration of nodes and cores resulting from the node selection procedure.

Model i
Number of
Cells (M)

Submodel
Size (M)

Number of
Nodes

Number
of Cores

Afro-Eurasia 1 167.51 0.75 7 224

Americas 2 77.13 0.80 3 96

Australia 3 16.34 0.51 1 32

Islands 4 17.35 0.54 1 32

278.33 0.72 12 384

3.1.2 Tiled parameters and model input

The parameter pre-processing for the 163 data tiles (see Section 2.3.2) is distributed over the 12 available nodes, such that

the first 11 nodes do the pre-processing for 14 tiles, and the last node for 9 tiles. For each tile, the average runtime for pre-465

processing 1958-2015 (696 stress-periods) is 3 hours 25 minutes. In serial, this would require 558.7 core hours in total or ~23

days of runtime accordingly. This results in 5,578 PCRaster files (10 696 8 5,578+ × = ; see Table 1) for each tile, requiring 68

GB of storage. Hence, in total 909,214 files are written in parallel, amounting to 10.8 TB storage. Using data tiles therefore

saves storing ~8 TB of redundant data (43% reduction; see Section 2.3.2).

Table 5 shows the pre-processing runtimes for each submodel to generate the transient MODFLOW input data in parallel470

using the node configuration as in Table 4, considering straightforward METIS partitioning, see Section 2.1. On average, it

takes up to half an hour to do the pre-processing for each Afro-Eurasia, Americas and Australia model. As can be observed,

clearly not all submodels require the same runtime and there is a spread in distribution. Looking at the standard deviation (STD

in Table 5), this is significantly largest for the Islands model, measuring about 2.5 hours. We believe this is inherent to our

chosen partitioning for the Islands model, allowing submodels to have grids cells of many scattered islands that are scattered475

across  the  world,  see  e.g.  Figure  9  for  the  slowest  submodel.  By  this,  it  is  likely  that  random  data-access  of  scattered

unstructured grid cells to the tiled parameter grids occurs, slowing down the data reading after the submodel assembly.

Although pre-processing is not a focus in this study, we might improve this in the future by incorporating a clustering constraint

in the partition strategy. For the Afro-Eurasia, Americas and Australia models, the STD is comparably small varying from 3

to 9 minutes. For the total parallel pre-processing to generate model input, a total of 222 core hours was required or ~9 days480

of serial runtime accordingly.

Table 5. Pre-processing runtimes for process “Assemble & Write Submodel Input Data”, see “B” in Figure 6. STD = standard deviation.

Model Average Min. Max. STD Core hours
Afro-Eurasia 00:27:13 00:20:44 00:46:50 00:05:04 101.6

Americas 00:28:42 00:22:41 01:40:47 00:09:06 45.9

Australia 00:20:08 00:16:54 00:27:10 00:03:20 10.7

Islands 01:59:52 00:26:48 15:00:46 02:25:40 63.9

222.2
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Figure 9. Location of unstructured grid cells (red) for a submodel of the Islands model, showing scattering, and requiring
large pre-processing run-time for writing the submodel input data.

3.2 Parallel performance for 1958-2015

Figure 10 shows the main parallel performance results for the GLOBGM, considering simulation of 1958-2015 including485

a 20-year spin-up using the node/core configuration as in Table 4, and applying straightforward METIS partitioning (see

Section 2.1). This figure shows that the target performance of 117 SYPD (16 hours of runtime) was achieved for all models

(green bars), showing a significant increase in performance compared to the serial case (red bars). For the largest Afro-Eurasia

model, the serial runtime could be reduced significantly from ~87 days (0.9 SYPD) to 0.63 days (or ~15 hours; 123.6 SYPD)

using 224 cores. This corresponds to a speedup factor is 138.3 with a parallel efficiency of 62%. In general, for all four models,490

the parallel efficiency is ~60%.

It should be noted that the serial performance was only evaluated for a single year, i.e. 1958. The reason for this is that

serial runtime for the entire simulation period was too long (e.g. ~27 CHPSY for Afro-Eurasia, hence 27 78 2,106× =  hours

or 87 days runtime) and it would exceed the maximum allowed runtime of 5 days on a single Snellius node. For each parallel

run, however, the performance is evaluated for 78 years (20 times 1958 + 1958-2015). Furthermore, in our experiments each495

serial/parallel run is only evaluated twice, taking average performance values for two runs only. We therefore did not account

for any statistic (hardware related) runtime variation on the Snellius supercomputer. The reason for this was the limited total

number of available core hours, where one full GLOBGM run requires ~24,000 core hours.

500
Figure 10. Parallel performance results for the models of the GLOBGM, considering straightforward METIS partitioning. Left vertical
axis: SYPD (bars); right vertical axis: core-hours-per-simulated-year CHPSY (crosses). Serial performance is computed for 1958 only.
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Figure 10 shows that there is a performance difference between the models. The slowest model is the Afro-Eurasia model,

followed by the Americas model, the Australia model and Islands model. This holds for both the serial and for the parallel505

case. For the serial performance it obvious that het main difference in performance is caused by the difference in model sizes.

The serial performance difference between the largest Afro-Eurasia model having 168 M cells and the smallest Australia model

having 16 M cells, that is 10 times smaller, can be directly related to lesser FLOPS and I/O.

However, also the difference in total number of iterations (linear + non-linear) contributes to this: considering 1958, the

serial Afro-Eurasia model required 1.47 times more iterations to converge than the Australia model. The difference in iterations510

is likely related to the problem size and the number of the Dirichlet boundary conditions effecting the matrix stiffness. For the

parallel case, this effect is enhanced, since the parallel linear solver has different convergence behavior and generally requires

more iterations to converge when using more submodels, inherent to applying the additive Schwarz preconditioner. In general,

for the parallel performance considering METIS partitioning, the increase in the total number of iterations is in the range of

34% to 58%. That directly relates to a significant performance loss. Although we found that the parallel performance is515

adequate to reach our performance goal, reducing the total number of iteration is therefore something to consider for further

research. We might improve the number of iterations by tuning the solver settings or applying a more sophisticated paralleled

preconditioner. However, in general, users do not spend time on tuning solvers settings and we therefore take them as they are.

Furthermore, as a first attempt to reduce iterations, we did not see any improvement by using the additive coarse grid correction

preconditioner.520

Moreover, the difference in parallel performance could be explained by the differences in submodel (block) sizes (see

Table 4). Due to rounding the number of cores to the number of cores per node, the block sizes for the Australia and Islands

models are ~1.5 smaller than the block sizes for the Afro-Eurasia and Americas models, which directly results in an increasing

performance.

Besides the increase of in iterations, memory contention contributes to the loss of parallel performance (see Section 2.1),525

even when using 32 cores per node out of 128 cores. From the HPCG test, see Figure 8a, the parallel efficiency using 32 cores

per node is 63%, which is likely to be a representative value for the MODFLOW linear solver. For MODFLOW, however,

this value is likely to be slightly larger because of non-memory bandwidth dependent components. Comparing to a 1958 run

for the Americas model, and using one core per node, we estimate the maximum efficiency to be 77%. Extrapolating this to

the Afro-Eurasia model, this means that ~172 cores could be used efficiently, increasing the efficiency to 80%. This value is530

more in range with we expect from preceding research using MODFLOW (Verkaik et al., 2021b).

In Figure 11a, the performance results are given for catchment partitioning considering HydroBASINS Pfafstetter levels

8, 6 and 5 (see Section 2.1) chosen for illustration. Level 7 was excluded deliberately in the search for finding a significant

performance decrease and minimizing the allocated budgets on the Snellius supercomputer. In general, for the Australia and535

Islands model, the target performance is exceeded for all HydroBASINS levels. For the Afro-Eurasia and Americas models,

level 8 is sufficient to reach the target and level 6 results in performance slightly below the target. For these models, level 5

results in about three quarters of the target performance. In general, using HydroBASINS catchments up to Pfafstetter level 6

seems to give adequate results. Except for the Australia model, performance decreases when the Pfafstetter level decreases.

The reason why this doesn’t apply to the Australia model is because of the slight iteration increase for level 8. In Figure 11b,540

the performance for catchment partitioning (Figure 11a) is normalized with the performance using straightforward METIS

partitioning (Figure 10) and the associated total iteration count. Clearly, the performance slope is correlated to the inverse of

the load imbalance determined by METIS, see Section 2.3.4. Since many factors may contribute to load imbalance, like the

specific multilevel heuristics being used, specified solver settings, characteristics of the graph subject to partitioning,

limitations of the specific software library, an in-depth analysis is beyond the scope of this study. Here, we simply assume that545
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this imbalance is a direct result of the coarsening associated to decreasing Pfafstetter levels for a fixed number of submodels,

reducing the METIS graph-partitioning search space.

550

Figure 11. (a): Performance results for the GLOBGM, considering catchment partitioning using HydroBASINS catchment areas for
Pfafstetter level 8, 6 and 5. Left vertical axis: SYPD (bars); right vertical axis: CHPSY (crosses). Serial performance is computed for 1958
only. (b): Relative performance to performance using straightforward METIS partitioning, normalized with the corresponding total number

of iterations (bars), and inverse of the METIS load imbalance iI  (lines).

555
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The required storage for each run is given by Table 5, where monthly computed groundwater heads were saved exclusively

during simulation. For this, one transient global run required 8.8 TB of input and 1.4 TB of output.

Table 5. Input and output of the GLOBGM for simulating 1958-2015.

Model Input (TB) Output (TB)

Afro-Eurasia 5.27 0.85

Americas 2.53 0.39

Australia 0.44 0.08

Islands 0.56 0.09

8.80 1.41

3.3 Evaluation for the contiguous United States560

3.3.1 Steady-state groundwater heads

Figure 12 shows the steady-state water table depth residuals aggregated to the HUC4 surface watershed boundaries at the

CONUS-extent, comparing the GLOBGM to the GGM, the GIM (Fan et al., 2017) and the CGM (Zell and Sanford, 2020),

see Section 2.4.2. Clearly, the GLOBGM is an improvement compared to the GGM, where the frequency distribution of the

GGM residuals shifts towards the residuals of the GLOBGM. Hence, refining from 5ʹ to 30ʺ resolution is resulting in higher565

and more accurate groundwater heads. Especially for the western CONUS this seems to have a large effect, where the

precipitation regime that can be considered as arid. However, in general the computed groundwater heads still seem rather

low. Analyzing the possible causes for this should is left for further research.

570
Figure 12. (a): Water table depth (WTD) residuals aggregated to HUC4 units for the steady-state GLOBGM compared to the GGM, the
GIM model of Fan et al. (2017) and the CGM of Zell and Sanford (2020). (b): Corresponding cumulative frequencies.

3.3.2 Transient groundwater heads for 1958-2015

Figure 13 shows the results for the transient evaluation for 1958-2015, see Section 2.4.2, comparing the GLOBGM to the

GGM for average timing mo( )r , average amplitude error mo(IQRE ) , and trend classification (using yb ). In general, we see that575

both models give very comparable results that could be further improved. For the average amplitude error, the GLOBGM

seems to perform slightly worse, for which we do not have a straightforward explanation. However, the GLOBGM seems

slightly better regarding trend direction and lacking model trend. Furthermore, it can been that about 40-50% of the (majority

of) obervations have a mismatch in trend. This can likely be related to incorrect well locations and pumping rates in the model,
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inherent to the applied parametrization and concepts within PCR-GLOBWB (see Table 1). This might also have effect on the580

discrepancies for the timing and amplitude errors and is therefore subject for further research.

Figure 13. Average timing (first row panels), amplitude error (second row panels) and trend (third row panels) for the GLOBGM compared
to the GGM, considering a transient run for 1958-2015. Plotted white colors for HUC4 units mean that less than five samples were found
and hence was not considered representative.585

3.4 Example of global-scale results

To provide an impression about the level of detail reached when simulating groundwater heads at 30ʺ spatial resolution,

we show the steady-state solution of water table depths in Figure 14a. The panels with blowups show the intricate details

present, which are mostly guided by surface elevation and the presence of rivers. Figure 14b shows the groundwater head

amplitude for unconsolidated sedimentary systems as represented by the interquartile range, where the amplitude size reflects590

the amplitude of groundwater recharge and the hydrogeological parameters (storage coefficient and hydraulic conductivity).

Finally, in Figure 14c we present the trends of yearly average groundwater heads for unconsolidated sedimentary systems over

the period 1958-2015. For the areas with confining layers, the trend in the heads of the lower model cells is taken. Here, the

well-known areas of groundwater depletion (Wada et al., 2010; De Graaf et al., 2017) are apparent. However, also areas with

spurious trends can be seen that may be connected to incomplete model spin-up. Furthermore, positive trends can be seen,595

which may be connected to increased precipitation related to climate change. In the supplement to this paper we provide two

animations for computed water table depths: one for monthly values and another one for yearly averaged values. To show the

dynamic behavior of the groundwater heads, we show these results relative to the heads of 1958.

600

605
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610

Figure 14. Example outputs of the GLOBGM. (a): Steady-state water table depth with detailed blow ups; (b): Water table amplitude as
represented by the interquartile range IQR. (c): Groundwater head trends for the aquifer (lower model layer).

4 Conclusions and recommendations

The PCRGLOB-MODFLOW global-scale groundwater model at 30ʺ spatial resolution (GLOBGM v1.0) was successfully615

implemented using high performance computing for simulating long transient periods. To our knowledge, this is the first

implementation of a transient global-scale groundwater model at this resolution. Our implementation uses unstructured grids

to cancel redundant sea and land cells, and effectively applies a static asynchronous parallelization to organize the global model

as a set of independent parallel models, resulting in three continental-scale models (Afro-Eurasia, Americas, and Australia)

and one remainder model for all (smaller) islands. We showed that our workflow, using parallel pre-processing and a new620

parallel distributed memory prototype version of MODFLOW 6, is effective for achieving a user-defined parallel runtime

target and to minimize data usage. This is demonstrated for an experiment on the Dutch national supercomputer Snellius,

simulating the GLOBGM for 1958-2015, considering both METIS partitioning and catchment partitioning.

With our approach, we first estimated the required node/core configuration on the Snellius supercomputer to achieve a set

target of 16 hours runtime including the 20-year spin-up (leading to 117 Simulation-Years-Per-Day; SYPD), and then we625
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conducted the parallel pre-processing and illustrated its necessity. For METIS partitioning, we showed that a maximum of 12

nodes running with 32 cores per node is required to meet the target for each of the four underlying models of the GLOBGM.

For the largest Afro-Eurasia model using seven nodes (224 cores), runtime was reduced from ~87 days to 15 hours (124

SYPD). For catchment partitioning, the first results presented here are promising. Using HydroBASINS catchments as an

example, we showed that this lesser optimal partitioning results in quite similar parallel performance down to Pfafstetter level630

6. Since our implementation is suitable for parallel systems with relatively limited hardware requirements, we believe it is well

suitable for average users that do not have exclusive access to many nodes and need to deal with queuing times. We therefore

believe that our implementation will contribute to future model improvements.

From the model evaluations for the CONUS-extent using NWIS observations, we conclude that the steady-state

groundwater heads from the GLOBGM are significantly better compared than those from the 5ʹ PCRGLOB-MODFLOW635

model, but still could be improved compared to measurements and model results from Fan et al., (2017) and Zell and Sanford

(2020). For the transient simulation, results for the GLOBGM and the 5ʹ model are comparable, both giving significant

differences compared to measurements. Although the exact reasons for the differences are kept for further research, along with

further model improvement, they are likely a result of spatial difference in resolution, lacking transient model input data, e.g.

for groundwater well abstraction, or must be found in improving the hydrogeological schematization640

Although the current parallel performance is quite satisfactory for its purpose, it could be further improved, e.g. by

improving the processor core utilization, reducing the number of model iterations, and reducing the pre-processing times. First,

multicore CPUs are likely to have more and more memory channels to be more applicable to memory-bound problems and we

expect better core utilization with next generation processors. Second, model iterations could be reduced likely by tuning the645

MODFLOW solver settings or improving the parallel preconditioners. Third, parallel pre-processing runtimes could possibly

be reduced by improving the partitioning, e.g. by clustering many smaller islands causing random access data patterns for the

Islands model.

Regarding storage, users should be aware that GLOBGM requires more than 21 TB (900k files) of data for a single run.

Since we now exclusively use uncompressed PCR-Raster files, requiring a large amount of storage, compression could be650

considered for follow-up research, as well as using more data tiles.

Applying catchment partitioning gives opportunities for further research, e.g. to realize a parallel coupling to the PCR-

GLOBWB surface water routing module with acceptable parallel performance for the groundwater model, or to apply such

grid-independent partitioning to even higher resolutions.

655

Code and data availability. The GLOBGM v1.0 is open source and distributed under the terms of GNU General Public License

v3.0, or any later version, as published by the Free Software Foundation. The model tools and data are provided through the

GitHub repository https://github.com/UU-Hydro/GLOBGM.git (Verkaik and Sutanudjaja, 2022,

https://doi.org/10.5281/zenodo.7398200), where the main model data can be accessed through https://doi.org/10.24416/UU01-

44L775. The parallel kernel of MODFLOW 6 used for the GLOBGM v1.0 is provided through660

https://github.com/verkaik/modflow6-parallel.git (Verkaik et al., 2021c, https://doi.org/10.5281/zenodo.5778658). This kernel

is open source through the CC0 1.0 Universal public domain dedication. Although development and maintenance of the official

version of the GLOBGM is conducted at the Department of Physical Geography, Utrecht University, we welcome and

encourage researchers from external parties to contribute.
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