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Abstract. This paper introduces a mixed finite-element shallow water model on the sphere. The mixed finite-element approach

is used as it has been shown to be both accurate and highly scalable for parallel architecture. Key features of the model are

an iterated semi-implicit time stepping scheme, a finite-volume transport scheme, and the cubed sphere grid. The model is

tested on a number of standard spherical shallow water test cases. Results show that the model produces similar results to other

shallow water models in the literature.5
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1 Introduction

The dynamical core of an atmospheric model numerically approximates the solution to the governing fluid dynamics equations

that determine the evolution of the atmosphere. An operational dynamical core must be both accurate, to give confidence in

the forecast, and efficient, to produce a forecast in the desired time frame. Current supercomputer architectures focus on using

an increasing number of processors to decrease runtime, and so future dynamical cores must be suitable for massively parallel15

architecture. Key aspects of the dynamical core that will greatly affect both accuracy and parallel scalability are the type of

grid and the numerical methods used to discretise the equations.

Traditionally, atmospheric models used a latitude-longitude grid (Wood et al., 2014). However, the convergence of the

meridians at the pole leads to a computational bottleneck, and thus the latitude-longitude grid is not suitable for future super-

computers. Hence, a number of different approaches to gridding the sphere without a pole have been developed and used in20

dynamical cores, such as icosahedral grids, and the yin-yang grid (Staniforth and Thuburn, 2012). One such promising grid is

the cubed sphere, which uses quadrilateral cells on six panels that cover the sphere (Ronchi et al., 1996).

The choice of numerical methods used in a dynamical core will affect both the accuracy and the efficiency of the model.

High-order methods generally improve accuracy but increase the computational cost. There are a variety of spatial methods
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(for example, finite-difference, finite-volume, semi-Lagrangian) and temporal methods (for example explicit, semi-implicit,25

horizontally-explicit vertically-implicit) used in atmospheric models by different operational centres and modelling groups

(see Ullrich et al. (2017) and references within). The mixed finite-element method of Cotter and Shipton (2012) and Cotter

and Thuburn (2014) is a spatial method that allows high-order schemes to be defined whilst retaining good parallel properties

(Melvin et al., 2019). Mixed finite-elements retain many properties of C-grid finite-difference and finite-volume methods, such

as good numerical dispersion relations. They also have the advantage of not requiring orthogonal grids (Cotter and Shipton,30

2012), better consistency of the Coriolis (Thuburn and Cotter, 2015), and the flexibility to increase accuracy by using higher-

order elements. In practice, most current atmospheric dynamical cores aim for second-order accuracy overall (with the transport

scheme often higher-order) (Wood et al., 2014). For this reason the lowest-order mixed finite-element method will be a building

block of the model described in this article.

The shallow water equations are an important step in testing the methods used for the development of a dynamical core35

(Williamson et al., 1992). The shallow water equations contain many of the properties of the full atmospheric governing

equations, but with a reduction in complexity. In practice, if a method is not good enough (by whatever metric) for a shallow

water model, it will not be good enough for an atmospheric dynamical core. This allows the methods to be evaluated in a

simpler setting, and design decisions to be made early in development.

This document presents a novel mixed finite element discretisation, extending that of Melvin et al. (2019) for atmospheric40

dynamics in Cartesian geometry, of the rotating shallow water equations in a spherical domain. This is the natural next step

from Melvin et al. (2019) in the development of a 3D dynamical core in spherical geometry, allowing the impact of the chosen

spherical grid to be investigated in a simplified context using an evolution of the same numerics. As with the model of Melvin

et al. (2019), the shallow water discretisation presented here has been developed in the LFRic framework, see Adams et al.

(2019). Key components of the model are the semi-implicit iterated time stepping scheme and the finite-volume transport.45

The governing shallow water equations are given in Section 2. The discretisation, including the spatial and temporal aspects,

is given in Section 3, the finite-volume transport scheme is described in Section 4, and the solution procedure is outlined in

Section 5. Results from standard shallow water test suites are given in 7, with a concluding summary in Section 8.

2 Governing Equations

The shallow water equations in a rotating domain are given in vector-invariant form by50

∂u

∂t
+ qΦu⊥+∇(K + Φ + ΦS) =0, (1)

∂Φ

∂t
+∇ · (uΦ) =0, (2)

where u = (u,v) is the velocity, Φ = gh is the geopotential (with gravity g and free surface height h), Φs is the surface

geopotential and K ≡ 1/2|u|2 is the kinetic energy. The perpendicular operator is defined by (u,v)⊥ = (−v,u).

The potential vorticity (PV) q is defined as55

q =
∇⊥ ·u+ f

Φ
, (3)
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where f is the Coriolis parameter and∇⊥· ≡ k ·∇×, and taking the curl of (1) gives a conservative transport equation for PV

∂Φq

∂t
+∇ · (uΦq) = 0. (4)

3 Discretisation

The governing equations (1) and (2) are discretised in time using a two-time level iterated implicit scheme (Section 3.1) and60

in space using a mixed finite element method (Section 3.2) for the wave-dynamic terms and a high order upwind finite volume

scheme (Section 4) for the advection terms. This process is an extension to the shallow water equations on the sphere of Melvin

et al. (2019) who presented a similar discretisation in a 3D Cartesian domain.

3.1 Temporal Discretisation

To achieve second-order temporal accuracy a time centred approach is used. The target discretisation, as in Melvin et al. (2019),65

is a two-time-level iterated implicit scheme where terms responsible for the fast wave dynamics are treated by the iterative semi-

implicit scheme and the transport terms (those involving the mass flux in (2) and the potential vorticity in (1)) are computed

using a high-order, upwind, explicit finite volume scheme. Taking equations (1) and (2) and applying this discretisation results

in

δtu+F⊥
(
qnΦn,u1/2

)
+∇(K + Φ + Φs)

α
= 0, (5)70

δtΦ +∇ ·F
(

Φn,u1/2
)

= 0 (6)

where δts≡
(
sn+1− sn

)
/∆t, sα ≡ αsn+1 +(1−α)sn and F (s,u) is the flux computed by the transport scheme of variable

s by wind field u. We use α= 1/2 to achieve the second-order centred in time scheme.

3.2 Mixed Finite-Element discretisation

The mixed finite element formulation in two spatial dimensions requires the specification of three finite element function75

spaces: V0, V1, V2 (c.f. the four function spaces Wi, i= 0...3 used in Melvin et al. (2019)). The scalar spaces are an H1 space

consisting of pointwise scalars: V0 (zero-forms), or a L2 space consisting of area integrated scalars: V2 (two-forms). There are

two choices for the vector space V1 corresponding to either VC1 : a Hcurl space of circulation vectors or VD1 : a Hdiv space of

flux vectors. Each choice has an associated discrete de-Rham complex:

V0
∇−→ VC1

k·∇×−−−→ V2, (7)80

for curl conforming vectors, and

V0
k×∇−−−→ VD1

∇·−→ V2, (8)

for div conforming vectors. For this paper only the div conforming complex (8) will be considered V1 ≡ VD1 , with u ∈ V1 and

Φ ∈ V2. This is analogous to the standard C-grid staggering (Arakawa and Lamb, 1977) where the normal components of the
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Figure 1. The finite element function spaces V0, V1, and V2, for the div conforming complex, showing the location of the velocity compo-

nents and the geopotential.

velocity vector are stored at the cell edges. The div conforming complex, with the location of the prognostic variables u, v and85

Φ, is shown in Figure 1.

The potential vorticity q ∈ V2 is colocated with Φ, and is computed diagnostically as follows. The velocity u is represented

in theHcurl space as v ∈ VC1 using a Galerkin projection, then the curl is taken to give the relative vorticity ω ≡ k·∇×v ∈ V2.

The absolute vorticity is projected into V2, then divided by the geopotential. As the lowest order space is used this gives the

potential vorticity q ∈ V2.90

Taking (5), multiplying by a test function w from the velocity space and integrating over the domain D gives∫
D

w ·
[
δtu+F⊥

(
qnΦn,u1/2

)]
−∇ ·w(K + Φ + Φs)

α
dA= 0, (9)

where, since the geopotential and kinetic energy are discontinuous between cells the third term has been integrated by parts and

the boundary term vanishes due to the continuity of the test functions w. Similarly taking (6), multiplying by a test function σ

from the geopotential space and integrating over the domain gives95 ∫
D

σ
[
δtΦ +∇ ·F

(
Φn,u1/2

)]
dA= 0, (10)

where it is assumed that the advection scheme returns fluxes F ∈ V1.

3.3 Transforms

As in Melvin et al. (2019), the equations are transformed from a physical cell C to a reference cell Ĉ using the mapping

φ : Ĉ→ C. The physical cell, on the cubed sphere, has coordinates χ and the reference cell, a unit square, has coordinates100

χ̂, and the transform is such that χ = φ(χ̂). Transforming the equations to a single reference cell provides a number of

computational efficiencies such as a single set of basis functions and quadrature points (Rognes et al., 2009). The Jacobian of

this transformation is defined as J≡ ∂φ(χ̂)/∂χ̂, and is used in transforming variables between the physical and reference

cells. The transformations used for spaces V1 and V2 are designed to preserve fluxes through an edge (V1) and area integrated
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values (V2) respectively. The transformation for V1 is v (χ)≡ v (φ [χ̂]) = Jv̂ (χ̂)/detJ. Following Melvin et al. (2019),105

for the V2 transformation rehabilitation (Bochev and Ridzal, 2010) is used so that the V2 mapping is modified to σ (χ)≡
σ (φ [χ̂]) = σ̂(χ̂). Applying these to (9) and (10) gives∫
D

Jŵ

detJ
·
[
δtJû+JF̂

⊥(
qnΦn,u1/2

)]
−∇̂ · ŵ

(
K̂ + Φ̂ + Φ̂s

)α
dÂ= 0, (11)

and∫
D

σ̂
[
δtΦ̂detJ+ ∇̂ · F̂

(
Φn,u1/2

)]
dÂ= 0. (12)110

4 Transport scheme

The transport scheme is an extension to the method of lines scheme used by Melvin et al. (2019), computing fluxes F of a

scalar field s by a wind field u

F (s,u) =

t+∆t∫
t

sudt. (13)

The flux F is obtained using a method of lines scheme where a conservative transport equation115

sn+1− sn + ∆t∇ ·F (sn,u) = 0, (14)

is solved to obtain F . The temporal aspects of this scheme are handled in the same manner as Melvin et al. (2019) using a

m-stage Runge-Kutta scheme

s(i) =sn−∆t

i−1∑
j=1

ai,j∇ ·F
(
s(j),u

)
,

i= 1, . . . ,m, (15)120

sn+1 =sn−∆t

m∑
k=1

bk∇ ·F
(
s(k),u

)
, (16)

the coefficients ai,j and bk in (15) and (16) are given by the Butcher tableau for the scheme

0

c2 a2,1

c3 a3,1 a3,2

...
...

. . .

cm am,1 . . . am,m−1

b1 b2 . . . bm−1 bm
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Here the 3-stage 3rd-order strong stability preserving (SSP3) method of Gottleib (2005) is used which has the Butcher tableau

0

1 1

1/2 1/4 1/4

1/6 1/6 4/6

125

At each stage iwe need to compute F
(
s(i),u

)
≡ š(i)u where š is a high order upwind reconstruction of s. We use a quadratic

reconstruction for š (see section 4.1), resulting in a transport scheme that is third-order in both time and space. As the model

uses the cubed sphere grid, the spatial reconstruction of Melvin et al. (2019) is extended to take into account the nonuniformity

of the mesh by using a two dimensional horizontal reconstruction. The scheme defined in this section works on order l = 0

spaces.130

4.1 Reconstruction of a scalar field

The advection scheme computes a high order upwind reconstruction š of a given scalar field s. The reconstructed field is

computed at points staggered half a grid length in all directions from the original field, so for a field s ∈ V2, which is located at

cell centres, then the reconstructed field š is computed at the centre of each cell edge. The reconstruction is computed by fitting

a polynomial through a number of cells and evaluating this polynomial at the staggered points. The reconstruction is such that135

the integral of the polynomial is equal to the integral of s within each cell. This is given an upwind bias by choosing even order

polynomials for the reconstruction which require an odd number of s points and hence can be weighted to the upwind side

of the point at which the reconstruction is needed, e.g for a one-dimensional quadratic reconstruction at a point ši+1/2 with a

positive wind field, two upwind points si−1 and si and one downwind point si+1 are used.

The horizontal spatial reconstruction is based on that used in Thuburn et al. (2014), which uses a similar method to Baldauf140

(2008) and Skamarock and Menchaca (2010). To summarise, a series of polynomials Pk of a given order n in a local Cartesian

coordinate system (x,y) is defined over a stencil of ns cells. The polynomial is required to fit (in a least squares sense) the

discrete field being reconstructed. The integral along the cell edge of the reconstructed field š is approximated by Gaussian

quadrature and given by∫
šdS ≡

∫ ns∑
k=1

Pk (x,y)skdS ≈
nq∑
j=1

ns∑
k=1

wjPk (xj ,yj)sk, (17)145

where (xj ,yj) are the integration points and wj the weights of the Gaussian quadrature. In practice nq = 2 point quadrature is

used and this is found to give a small improvement over single point quadrature.

The weights Pk (xr,yr) that multiply each value sk in the stencil are obtained by evaluating a polynomial

Pk (x,y) =

n∑
i=0

n−i∑
j=0

aki,jx
iyj , (18)
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at (xr,yr). The coefficients aki,j of Pk are determined by minimising the residual rk150

rk =

ns∑
j=1

∫
j

Pk − δjkdAj

2

, (19)

so that the integral of Pk = 1 in cell k and Pk = 0 otherwise.

For an order n reconstruction there are nm ≡ (n+1)(n+2)/2 coefficients aki,j and so to avoid an under-determined problem

this requires at least nm cells in the stencil. Additionally the stencil should be symmetric about the central cell. To ensure these

properties hold, the stencils are generated in the same manner as Thuburn et al. (2014), to summarise the following algorithm155

is used:

1. Add the central cell to the stencil (if n= 0, stop).

2. Loop until number of cells in the stencil ns is at least the number of monomials nm.

3. Find the set S of all neighbouring cells of cells currently in the stencil.

4. Either add all cells in S that are not already in the stencil and are neighbours of 2 cells already in the stencil, or if no cell160

in S is a neighbour of two cells in the stencil then add all cells in S that aren’t already in the stencil.

An example of the type of stencil this generates around a corner of the cubed sphere is shown in Figure 2.

For example with a quadratic reconstruction n= 2 there are nm = 6 monomials and the stencil algorithm will generate a

stencil with ns = 9 cells in general and ns = 8 cells near the corners of the cubed sphere. As in Thuburn et al. (2014) the

central cell (k = 1) in the stencil is fitted exactly (r1 = 0 in (19)) and the others are fitted in a least squares sense.165

The local Cartesian coordinates (x,y) are computed as in Thuburn et al. (2014), the origin of the coordinate system x0 is

taken to be the centre of the cell in the centre of the stencil and the direction of the x−axis is then taken as the direction from

x0 to an arbitrary neighbour. Then it is straightforward to reconstruct any point xi ≡ (Xi,Yi,Zi) in the stencil in terms of the

local coordinates (xi,yi), see Thuburn et al. (2014) for more details.

4.2 Flux computation170

Once the scalar field s has been reconstructed at the locations of the V1 degrees of freedom to give š, the flux of that field on a

cell face is obtained by multiplying the reconstructed scalar by the normal component of the velocity field at that point

F̂ = ûš, (20)

where š is the vector containing all š at cell edges.

4.3 Predictors175

The temporal discretisation is designed to mimic a semi-implicit semi-Lagrangian discretisation such as that used in Wood et al.

(2014). For the transport scheme this includes advecting predictors (Φp, qp) for the geopotential and potential vorticity fields
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Figure 2. Stencil for a quadratic reconstruction of a field around the corner of a cubed-sphere. Numbers indicate which iteration of the stencil

generation the cell is added at, lightly shaded cells indicate cells used for the reconstruction that are fitted in a least squares manner and the

darkly shaded cell indicates the central cell which is fitted exactly.

instead of the values at the start of the timestep (Φn, qn). This is motivated by considering a semi-Lagrangian discretisation of

a prototypical equation

Ds

Dt
+G(s) = 0, (21)180

with D/Dt≡ ∂/∂t+u · ∇. Discretising across a trajectory from xD at time level n to xA at time level n+ 1 gives

[s+α∆tG(s)]
n+1
A = [s− (1−α)∆tG(s)]

n
D (22)

with subscripts A and D denoting evaluation at arrival xA and departure xD points respectively. Evaluation of a function F at

a departure point can be expressed as

FnD = FnA −Asl
(
Fn,u1/2

)
(23)185
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where Asl is the operation of the semi-Lagrangian advection operator. Applying this approximation to (21) gives

[s+α∆tG(s)]
n+1

= sp−Asl
[
sp,u1/2

]
, (24)

sp ≡ [s− (1−α)∆tG(s)]
n (25)

where the subscript A has been dropped for convenience. Applying this idea to (2) the geopotential predictor to be advected is

then190

Φp ≡ [Φ− (1−α)∆tΦ∇ ·u]
n
. (26)

This can also be applied to potential vorticity using (4). These predictors come from considering the continuity and PV equa-

tions in advective form Ds/Dt+ s∇ ·u = 0 where s= Φ or qΦ as would be used in a semi-Lagrangian model.

5 Solution Procedure

The procedure for the solution of the shallow water equations is as follows. The semi-implicit governing equation, (5) and (6),195

are repeated here for clarity:

δtu+F⊥
(
qnΦn,u1/2

)
+∇(K + Φ + Φs)

α
= 0, (27)

δtΦ +∇ ·F
(

Φn,u1/2
)

= 0. (28)

An iterated implicit scheme is used to solve (27) and (28). At each stage (k) of the iterative scheme the time-level n+ 1 terms

are lagged and included in the residuals such that200

Ru ≡(u+α∆t∇(K + Φ + Φs))
(k)− (u− [1−α]∆t∇(K + Φ + Φs))

n
+ ∆tF⊥

(
(qΦ)p,u1/2

)
, (29)

RΦ ≡Φ(k)−Φn + ∆t∇ ·F
(

Φp,u1/2
)
, (30)

where k is the estimate for the n+ 1 terms after k iterations of the iterative scheme. Increments u′ ≡ u(k+1)−u(k) and

Φ′ ≡ Φ(k+1)−Φ(k) to (29)-(30) are sought such that the fast wave terms are handled implicitly

u′+ τf(u′)⊥+ τ∆t∇Φ′ = −Ru, (31)205

Φ′+ τ∆t∇ · (Φ∗u′) = −Rφ, (32)

where Φ∗ is a reference state used to obtain the linearisation and τ is a relaxation parameter (usually chosen to be τ = 1/2). In

practice, we use Φ∗ = Φn as the reference state. Applying the mixed finite element discretisation this becomes the systemM1 + τ∆tC −τ∆tD (1·)T

τ∆tD (Φ∗·) M2

u′

Φ′

=−

Ru

RΦ

 (33)
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where Ru and RΦ are the finite-element discretisations of (29) and (30) respectively given by (11) and (12). The matrices are210

defined as

M i,j
1 ≡

∫
D
Jŵi · J

detJŵjdÂ, (34)

M i,j
2 ≡

∫
D
σ̂iσ̂j detJdÂ, (35)

Ci,j ≡ f
∫

D
Jŵi · J

detJŵ
⊥
j dÂ, (36)

D (ψ)
i,j ≡

∫
D
∇̂ · ŵiψσjdÂ (37)215

At each iterate (k) the system (33) is solved using an iterative Krylov subspace method (in this case GMRES). For the tests

presented in this paper (see section 7) GMRES generally converged in 2-3 iterations to a tolerance of 10−4.

6 Mesh

An equiangular cubed sphere mesh is used to grid the sphere. We use the notation Cn to describe a cubed sphere with n×n
cells per panel. The mesh is parameterised using a finite-element representation of the sphere within a cell with polynomials220

of order m. Note therefore, that a point within a cell does not necessarily lie on the sphere, with the error depending on the

order of the elements used. For example, a linear element lies on the sphere at the vertices of the element and uses a linear

approximation to the surface of the sphere within the element. Representing the sphere with these elements removes the need

for analytical transforms to the reference grid, allowing the use of an arbitrary grid if required (in this paper we use the standard

equiangular cubed sphere). To compute the error of the mesh parameterisation, the geocentric coordinates (X,Y,Z) at a point225

in the cell are computed using the finite-element representation. The error is the difference between the true radius of the sphere

and the radius using (X2 +Y 2 +Z2)1/2.

Figure 3 shows the error within a cell when using linear and quadratic elements on a C96 grid with the Earth’s radius. The

error for the linear element is largest at the cell centre, with a maximum error of 426.39 m. The quadratic element reduces

the error by 5 orders of magnitude, with a maximum error of 0.0018 m. The right plot of Figure 3 shows the convergence of230

the maximum error within a cell. The linear element error converges at second-order, with the quadratic element converging

at fourth-order. For this reason the quadratic element is used to create the mesh for the shallow water model. Note that the

quadratic element is for the representation of the mesh, whereas the lowest order finite-elements are used for the spatial

discretization of the model.

7 Numerical Results235

This section shows the results of the model runs using a standard set of spherical shallow water test cases. The full initial

conditions for each of the tests are given in the references under each test case.
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Figure 3. The error from linear and quadratic finite-element representations of the sphere within a cell. The left and centre plots show the

absolute error (true - FE) for the linear and quadratic basis functions respectively on the C96 cubed sphere grid. The right plot shows the

convergence of the `inf error, using C24, C48, C96 and C192 cubed sphere grids.

C24 C48 C96
ˆ̀
2(Φ) 4.86× 10−4 1.04× 10−4 2.22× 10−4

ˆ̀∞(Φ) 6.19× 10−4 1.40× 10−4 3.17× 10−4

`2(Φ) 4.21× 10−3 7.83× 10−4 5.43× 10−4

`∞(Φ) 1009.8 183.3 109.2

Table 1. The normalised `2 and `∞ geopotential errors norms for the Williamson 2 test (top) and the normalised `2 and absolute `∞

geopotential errors norms for the Williamson 5 test (bottom) at different resolutions after 15 days.

7.1 Williamson 2: Steady-State

The first test case is the steady-state test described in Williamson et al. (1992). The steady flow means that the initial conditions

are the analytical solution at any time, and thus error norms can be calculated for the runs at different resolution.240

The normalised `2 errors norms of the geopotential field at 15 days are given in the top two rows of table 1 for C24 (∆t=

3600), C48 (∆t= 1800) and C96 (∆t= 900) resolutions. The error norms can be used to determine the convergence rate and

hence the empirical order-of-accuracy of the model. The convergence rate of the `2 and `∞ error norms are approximately

second-order. This is expected as the finite-element discretisation and the timestepping scheme are both second-order methods.

The error fields after 15 days for C96 resolution are shown in Figure 4, these errors show a wave number 4 pattern coming245

from the underlying cubed sphere mesh, however the errors are large scale and are not particularly clustered around the edges

and corners of the cubed sphere indicating an acceptable level of grid imprinting.

7.2 Williamson 5: Mountain Test

The mountain test case of Williamson et al. (1992) is used to show the performance of the model when orography is present

(i.e. Φs 6= 0). The initial zonal flow is over a mountain centred at 90◦ longitude and 30◦ latitude. The same grid resolutions and250

time steps used for the Williamson 2 test are used for the mountain test.
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Figure 4. Errors after 15 days for the Williamson 2 test at C96 resolution for geopotential (left plot) and zonal wind (right plot) showing the

large scale nature of the error.

Figure 5. Results for the Williamson mountain test on the C96 grid. The left plot shows the total geopotential (Φ + Φs) after 15 days. The

right plot shows the potential vorticity (q) after 50 days.

The geopotential at day 15, shown in the left hand plot of Figure 5 for the C96 grid, is comparable to other shallow water

models at similar resolutions (see, for example Thuburn et al. (2010, 2014); Ullrich (2014)). We investigate the errors in the

total geopotential by comparing with a high-resolution solution generated using the semi-implicit semi-Lagrangian (SISL)

shallow water model of Zerroukat et al. (2009). This reference solution uses a time step of ∆t= 60 s and a high-resolution255

latitude-longitude grid of 1536× 768 points. The high-resolution solution is then interpolated, using bi-cubic interpolation, to

the corresponding cubed sphere grid where the difference is taken to produce the error plots and diagnostics.

The error plots for the total geopotential are shown in Figure 6 for the C24 and C48 resolutions. The error for the C48

solution is visually similar to that of the finite-element cubed sphere model of Thuburn and Cotter (2015) (their figure 7), with

a large negative error near the mountain and the wave train error in the southern hemisphere. The errors decrease significantly260

as the resolution increases. The normalised `2 and absolute `∞ error norms, calculated from the high-resolution SISL model,

are given in the bottom of table 1.

The C48 maximum errors (given on Figure 6 and in table 1) are smaller in magnitude than those for the 13824 cell finite-

volume cubes sphere model of Thuburn et al. (2014), and have similar magnitude to the SISL model Zerroukat et al. (2009) at

160× 80 resolution (note that Thuburn et al. (2014) use total height, not total geopotential, in their results, and so their results265

need to be multiplied by gravity to give an equivalent value). The absolute `∞ error norm values converge at a rate of 1.6,

similar to those given in Thuburn et al. (2014) (note that they use a smaller time step than presented in our results).
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Figure 6. Absolute error plots for total geopotential (Φ+Φs) for the Williamson mountain test on the C24 grid (left) and the C48 grid (right)

after 15 days. Note the different scales on the colour bars.

The normalised `2 errors of the geopotential, given in the bottom of table 1, have a convergence rate of 2.42 betweenC24 and

C48. However, at higher resolution the error convergence stalls, similar to that found in Thuburn et al. (2014) for comparable

time steps, with a rate of only 0.53 between C48 and C96. Even with this stalling, the total rate between C24 and C96 is 1.48.270

To demonstrate the conservation properties of the model the mass, the total energy

E =

∫
D

1

2
h
(
|u|2 + Φ + 2Φs

)
dA, (38)

and the potential enstrophy

Z =

∫
D

1

2
Φq2dA, (39)

where the integrals are over the whole domain, are computed at each time step.275

Mass, energy and potential enstrophy are conserved in the continuous equations. As the model uses a finite-volume transport

scheme, the mass is conserved to machine precision, however energy and potential enstrophy are not conserved by the dis-

cretisation presented here and in fact, in the discrete case, potential enstrophy cascades downscale from resolved to unresolved

scales, and thus is expected to decrease with time.

The normalised total energy and potential enstrophy are plotted against time in Figure 7 for different grid resolutions (C24,280

C48, and C96) up to day 50. As the resolution increases the dissipation in the model decreases, and the total energy and

potential enstrophy curves are closer to conservation (a horizontal line). The flow is initially weakly non-linear, and so for the

first 15 days there are not significant cascades to unresolved scales. After 15 days the percentage loss in total energy is 0.0355%

for C24, 0.0062% for C48, and 0.001% for C96. For potential enstrophy the percentage loss is 0.3648% for C24, 0.076% for

C48, and 0.014% for C96. Extending to 50 days the flow becomes more non-linear, and this results in more dissipation of285

energy and potential enstrophy. The percentage losses are 0.221% for C24, 0.063% for C48, and 0.014% for C96 in the total

energy, and 3.33% for C24, 2.19% for C48, and 1.45% for C96 in the potential enstrophy.

The potential vorticity at day 50 is shown in the right hand plot of Figure 5 for the C96 resolution. As the flow has be-

come non-linear the potential vorticity contours start to wrap up. The model captures the potential vorticity filaments without

producing noise. The results for this test indicate that the model is correctly simulating flow over orography.290
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Figure 7. The normalised total energy (left) and potential enstrophy (right) against time for the Williamson mountain test.

7.3 Galewsky Instability Test

For the Galewsky instability test (Galewsky et al., 2004) a perturbation is added to a balanced jet to create a barotropic

instability. As the instability progresses many small scale potential vorticity filaments are produced.

The potential vorticity solutions at day 6 are shown in Figure 8 for the C48, C96, C192 and C384 resolution runs (with

∆t= 900, 450, 225, and 112.5 s respectively). At C48 resolution the grid imprinting from the cubed sphere is evident. A wave295

number 4 pattern appears on the jet, dominating the development of the instability. Increasing the resolution to C96, C192 or

C384 reduces the impact of the grid imprinting, however the instability has still developed more than in the reference solution

of Galewsky et al. (2004) at T341 resolution. This is consistent with the finite-element cubed sphere model of Thuburn and

Cotter (2015) which uses a similar mixed finite element discretisation to the one used here. In Thuburn and Cotter (2015) it is

stated that the grid imprinting may be exaggerated by the highly unstable initial state of this test.300

At the higher resolution many small scale features are resolved by the model without producing grid scale noise. This is due

to the implicit diffusion from the transport scheme damping grid scale features. These solutions are comparable to the results

shown in Thuburn et al. (2014) and Thuburn and Cotter (2015).

7.4 Vortices Test

The final test case is the field of vortices test from Kent et al. (2016). A field of vortices (shown by the potential vorticity in the305

left hand plot of Figure 9) is set to evolve over a number of days. The vortices interact, leading to small scale vorticity filaments

and fingers as the vortices are stretched out, as well as the merger of vortices. A high resolution run (using C192 resolution,

with potential vorticity shown after 15 days in the right plot of Figure 9) is used as a reference solution.

Figure 10 shows the day 15 potential vorticity for the C24 and C96 runs (with ∆t= 1800 and 450 s respectively). The

C24 run is unable to resolve many of the features of the vortices, but the implicit diffusion from the transport scheme is310

sufficient to prevent grid scale noise. For the higher-resolution C96 run, the small scale features of the potential vorticity are
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Figure 8. The potential vorticity q after 6 days for the Galewsky instability test. The top left plot shows the C48 solution, the top right plot

shows the C96 solution, the bottom left plot shows the C192 solution, and the bottom right plot shows the C384 solution.

Figure 9. The potential vorticity q for the vortices test case. The left plot shows the initial conditions, and the right plot shows the solution

after 15 days from a high-resolution C192 simulation.

well represented, and the solution matches the reference solution well. This demonstrates the model’s ability to represent small

scale features without producing grid scale noise.

8 Conclusions

This article presents a new shallow water model on the sphere. The model is comprised of a mixed finite-element spatial315

discretisation, a high-order finite-volume transport scheme, and an iterated semi-implicit time scheme, and makes use of the

cubed sphere grid. The finite-element discretisation is chosen as it has been shown to be both accurate and scalable on many

processors (Cotter and Shipton, 2012). The lowest-order finite-element method is used to give second-order spatial accuracy,

and the finite-element spaces are such that they are analogous to a C-grid staggering. The semi-implicit time stepping provides
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Figure 10. The potential vorticity q for the vortices test case after 15 days for the C24 resolution (left) and the C96 resolution (right).

stability for the fast gravity waves along with second-order temporal accuracy. The method-of-lines advection scheme, using320

third-order Runge-Kutta time stepping with a quadratic finite-volume reconstruction, gives high accuracy and conservation for

transport.

The model achieves computational efficiency through the use of the mixed finite-element method and the cubed sphere grid.

The cubed sphere cells are more uniform in size than the traditional latitude-longitude grid, and so fewer cells are required for

the same resolution. For example, a 1◦× 1◦ resolution grid requires 360× 180 = 64800 cells on a latitude-longitude grid, but325

only 48600 cells on a C90 cubed sphere grid (with both grids having 360 cells around the equator). The cubed sphere grid also

removes the pole problem of the latitude-longitude grid, and thus is more scalable on massively parallel architecture (Staniforth

and Thuburn, 2012).

The model has been tested on a standard set of shallow water test cases. The Williamson steady state test shows that the

model converges at second-order accuracy. The mountain test demonstrates the model’s ability to capture flow over orography.330

Grid imprinting from the Galewsky instabilty test is evident at coarse spatial resolutions, but is significantly reduced at higher

resolutions in line with results from other models with similar discretisations and cubed sphere meshes. The vortex field test

highlights that the model can resolve small scale features without producing grid scale noise. The results presented from this

testing are comparable to other models in the literature. This indicates that this model has a similar level of accuracy to these

other well known shallow water models.335

This shallow water model has been developed alongside the mixed finite-element Cartesian model for atmospheric dynamics

of Melvin et al. (2019). The vector-invariant model presented here is a building block towards a mixed finite-element spherical

geometry dynamical core for the atmosphere.

Code availability. The shallow water model code, at LFRic revision r39707, can be found on Zenodo with DOI:

https://doi.org/10.5281/zenodo.7446738340

This repository includes the configuration files used for the tests in this article, and instructions for running the model. In addition, the

code at the same revision is also available on GitHub at

https://github.com/thomasmelvin/gungho-swe
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