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Abstract. Understanding the relationship between surface marine ecosystems and the export of carbon to depth by 14 
sinking organic particles is key to represent the effect of ecosystem dynamics and diversity, and their evolution under 15 
multiple stressors, on the carbon cycle and climate in models. Recent observational technologies have greatly 16 
increased the amount of data available, both for the abundance of diverse plankton groups and for the concentration 17 
and properties of particulate organic carbon in the ocean interior. Here we use synthetic model data to test the potential 18 
of using Machine Learning (ML) to reproduce concentrations of particulate organic carbon within the ocean interior 19 
based on surface ecosystem and environmental data. We test two machine learning methods that differ in their 20 
approaches to data-fitting, the Random Forest and XGBoost methods. The synthetic data is sampled from the 21 
PlankTOM12 global biogeochemical model using the time and coordinates of existing observations. We test 27 22 
different combinations of possible drivers to reconstruct small (POCS) and large (POCL) particulate organic carbon 23 
concentrations. We show that ML can successfully be used to reproduce modelled particulate organic carbon over 24 
most of the ocean based on ecosystem and modelled environmental drivers. XGBoost showed better results compared 25 
to Random Forest thanks to its gradient boosting trees architecture. The inclusion of Plankton Functional Types (PFTs) 26 
in driver sets improved the accuracy of the model reconstruction by 58% on average for POCS, and by 22% for POCL. 27 
Results were less robust over the Equatorial Pacific and some parts of the high latitudes. For POCS reconstruction, the 28 
most important drivers were the depth level, temperature, microzooplankton and PO4, while for POCL it was the depth 29 
level, temperature, mixed-layer depth, microzooplankton, phaeocystis, PO4 and chlorophyll a averaged over the 30 
mixed-layer depth. These results suggest that it will be possible to identify linkages between surface environmental 31 
and ecosystem structure and particulate organic carbon distribution within the ocean interior using real observations, 32 
and to use this knowledge to improve both our understanding of ecosystem dynamics and of their functional 33 
representation within models. 34 
 35 

1. Introduction. 36 
 37 

Progress in numerical ocean modelling over multiple decades coupled with fundamental knowledge of fluid dynamics 38 
have led to an explicit representation of ocean dynamics in Earth System Models and of most of its key features, apart 39 
from small-scale features which are parametrized. In contrast, ecosystem dynamics in ocean biogeochemical models 40 
are much more reliant on empirical data for growth and loss processes, with the theoretical basis limited to the dynamic 41 
representation of interactions among lower trophic levels (zooplankton and smaller organisms) and their influence on 42 
carbon pools and fluxes (Le Quéré et al., 2005; Hood et al., 2006). The recent advances in observational technologies 43 
including imaging data (Guidi et al., 2016), genomics (Kirchman et al., 2016), and field study (Mutshinda et al., 2017; 44 
Batten et al., 2019, Lombard et al., 2019), offer new opportunities to improve our understanding of marine ecosystem 45 
dynamics, and to better represent its influence on carbon pools and fluxes in models that are used to project future 46 
climate change and associated impacts on ecosystems.   47 
One strategy to represent lower trophic interactions in global biogeochemical models is to combine different species 48 
into Plankton Functional Types (PFTs) based on their unique influence on global biogeochemical cycles (Le Quéré et 49 
al., 2005; Hood et al., 2006). This approach enables the representation of plankton types that are unique, have an 50 
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influence on other PFTs within the ecosystem and are of quantitative importance for carbon flux and other 51 
biogeochemical fluxes. The PlankTOM12 model is among the most detailed in this category of models with its 52 
inclusion of an explicit representation of twelve PFTs: six phytoplankton, five zooplankton, and bacteria. 53 
PlankTOM12 builds on the published version PlankTOM10 (Le Quéré et al., 2016) that has been extended to include 54 
gelatinous zooplankton (Wright et al., 2021) and pteropods (Buitenhuis et al., 2019). Much effort has been put into 55 
the development of PFTs and associated representation of surface ecosystem dynamics, which has led to the 56 
demonstration that: (1) the representation of trophic levels was a key determinant of the low chlorophyll a 57 
concentration observed in the Southern Ocean summer (Le Quéré et al., 2016); (2) CaCO3 dissolution above the 58 
lysocline is needed to reproduce observations of both biomass and export of PFT calcifiers, and (3) gelatinous 59 
zooplankton plays an important role in determining surface biomass of other PFTs (Wright et al., 2021).  60 
In contrast, the transfer of organic matter resulting from surface ecosystem dynamics into carbon exported to the deep 61 
ocean via the sinking of particulate organic matter has received much less attention, so that improvements in the 62 
representation of the PFTs do not necessarily translate into improvements in sinking of particulate matter (Wright et 63 
al., 2021). The export flux of particulate organic carbon from the surface ocean to depth is around 10 PgC yr-1 64 
(Schlitzer, 2002), which is as large as the CO2 emitted to the atmosphere by human activities and nearly four times 65 
larger than the mean oceanic CO2 sink in recent decades (Friedlingstein et al., 2022). Changes in carbon exported to 66 
depth can have a large impact on air-sea CO2 fluxes and on the amount of CO2 emissions that remain in the atmosphere 67 
where they cause climate change.  68 
The growing amount of observations provides the opportunity to develop a new approach to explore the linkages 69 
between surface ecosystem dynamics and the distribution of particulate organic carbon in the ocean, and to improve 70 
the representation of particle sinking fluxes in models. However, there is a risk of over-interpreting the data by 71 
applying Machine Learning (ML) methods directly to link the observed surface environment and ecosystem structure 72 
with the observed particulate organic carbon distribution. The use of synthetic observations based on model data 73 
therefore provides a minimum test to assess the likely success and usefulness of such an approach.    74 

ML has been widely used in biogeochemical and geophysical applications and provided efficient results in 75 
reconstructions of ocean surface pCO2 (Friedrich and Oschlies, 2009; Telszewski et al., 2009; Landschützer et al., 76 
2013; Denvil-Sommer et al., 2019) and of particulate organic carbon (Sauzède et al., 2016, 2017) as well as in the 77 
analysis of driver importance (Sauzède et al., 2020).  78 

Here we use model data to verify the hypothesis that the composition of surface ecosystems and environmental 79 
conditions are indeed reflected in the abundance and size of the organic particles in the ocean interior. We reconstruct 80 
the concentration of organic particles as represented by small (POCS, particles < 256μm) and large (POCL, particles > 81 
256μm) particulate carbon in the PlankTOM12 model. Using this information alongside with modelled environmental 82 
and ecosystem conditions we develop a ML method to reproduce POCS and POCL over the global ocean and verify 83 
the hypothesis. This constitutes a necessary although not sufficient test that the approach can subsequently be used to 84 
reveal linkages using real observations and to inform model developments. 85 

2. Data and Methods. 86 

In this section we describe a set of variables that will be used to test the ML method’s ability to reconstruct particulate 87 
organic carbon concentrations based on ocean model data. We create a set of synthetic data by sampling a model at 88 
the time and location of real-world observations. We discuss the availability and distribution of real-world 89 
observations and their limitations. In this section we also describe the PlankTOM12 global ocean biogeochemical 90 
model and how we use it to develop a ML method and test its ability to reconstruct small and large particulate organic 91 
carbon with a limited number of observations. To provide resemblance to the real data availability we focus on the 92 
period 2009-2013 which guarantees additional sampling of co-located biological, chemical, and environmental 93 
variables from the Tara expeditions (Sunagawa et al., 2020).  94 

Two sets of data are needed to test the Machine Learning method: a set of targets and a set of drivers. The drivers 95 
represent the input variables to the ML method (here the biological, chemical, and environmental variables). The 96 
targets represent the variables we are trying to reconstruct (here the particulate organic matter POCS and POCL). The 97 
ML will then determine the relationship between the drivers and targets, which can then be applied in regions where 98 
drivers are available to infer targets where the later data do not exist.    99 

 100 
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2.1.1. Measurements of particle size distributions and concentrations (the targets).  101 

We use observations of particle distribution in two ways. First to determine the time and location of the observations, 102 
and second to verify that the ocean model is of sufficient quality to be used in this analysis. The sampling of the 103 
particulate organic carbon concentration is based on the data from an Underwater Vision Profiler 5 (UVP5) (Gorsky 104 
et al., 2000, 1992; Picheral et al., 2010; Kiko et al., 2022). UVP5 measures particles of size from 50 μm to a few mm. 105 
For the purpose of comparing the UVP5 data with the PlankTOM12 model data, we converted measured biovolume 106 
concentration (mm3/L) of particles to carbon biomass concentrations (μmol/L) using the empirical equation from 107 
Alldredge (1998) for particulate organic carbon: 108 

BM (μg) = 0.99*BV (mm3)0.52 109 
 110 

 111 
Figure 1. Location of the observations from the UVP5 database over the period 2009-2013. Green dots correspond to Tara 112 
expeditions, and were included in the global UVP5 database.  113 

We summed size classes from 50.8 μm to 256 μm for the small particulate organic carbon (POCS) and from 256 μm 114 
to 5.16 mm for large particulate organic carbon (POCL). POCs below 100 μm are not well captured by the UVP sensor, 115 
which therefore underestimates this size-class of aggregated particles. We extrapolated the total size of particles up to 116 
0.001mm by using the size spectra theory to provide a better estimate of POC biomass concentration in line with the 117 
model. Following Guidi et al. (2008) we used the abundance of particles sized from 0.250 to 1.5 mm excluding rare 118 
particles to estimate the coefficients of logarithmic relationship between the size of particles and its abundance:  119 

𝑙𝑜𝑔(𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒) 	= 	𝑎 ∗ 	𝑙𝑜𝑔(𝑠𝑖𝑧𝑒) 	+ 	𝑏 120 

Using this equation we estimated the abundance of particles of size less than 100 μm.  121 

There are 2603 vertical profiles of UVP5 measurements during 2009-2013, including 752 profiles which are co-122 
located with the stations from the Tara expeditions that provide the environmental and ecosystem variables (Figure 1; 123 
Section 2.1.2). The measurements are sparse in time and space. There are no measurements in the Southern Ocean, 124 
Western Pacific Ocean and Eastern Indian Oceans.  125 

2.1.2. Measurements of environmental and ecosystem variables (the drivers).  126 

We use observations of environmental and ecosystem variables to determine the time and location of the observations 127 
that are colocated with the target variables. To represent the main physical and chemical drivers responsible for the 128 
concentration and variability of POCS and POCL we use measurements of ocean temperature, chlorophyll a, phosphate 129 
PO4, nitrates NO3, mixed-layer depth (MLD). These variables were measured during Tara expeditions along with the 130 
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particle size distributions and concentrations using UVP instruments onboard these cruises. However, chlorophyll a, 131 
PO4, and nitrates were not measured systematically at each depth level. Thus, their averages over MLD are tested as 132 
possible drivers as well. To represent the biological drivers, we use information on PFTs.    133 

2.1.3. The NEMO-PlankTOM12 Global biogeochemical model.  134 

We used the output from the NEMO-PlankTOM12 coupled physical–biogeochemical model of the global ocean at 135 
daily and monthly time resolution. NEMO represents physical transport processes and is used in its v3.6-ORCA2 136 
version, with a horizontal resolution 2º longitude and 0.3º to 1.5º latitude, and 31 vertical levels. It is forced by daily 137 
meteorological data from NCEP reanalysis (Kalnay et al., 1996) over the period 1948-2020, with output for 2009-138 
2013 used here. This model version is identical to that used to estimate the ocean CO2 sink in the Global Carbon 139 
Budget 2021 annual update (Friedlingstein et al. 2021).  140 

 141 
Figure 2. Schematic representation of the flow of matter in and out of the two particulate organic carbon (OC) components 142 
of the  PlankTOM12 marine ecosystem model. The various boxes represent: Phyto - phytoplankton that includes diatoms 143 
(DIA), mixed phytoplankton (MIX), coccolithophore (COC), picophytoplankton (PIC), phaeocystis (PHA) and N2-fixers 144 
(FIX); PRO - protozooplankton, PTE - pteropod, MES - mesozooplankton, MAC - macrozooplankton, GEL - gelatinous 145 
zooplankton, BAC - bacteria. 146 

PlankTOM12 represents ecosystem dynamics based on the representation of 12 PFTs: diatoms (DIA), mixed 147 
phytoplankton (MIX), coccolithophore (COC), picophytoplankton (PIC), phaeocystis (PHA), N2-fixers (FIX), micro- 148 
or protozooplankton (PRO), pteropod (PTE), mesozooplankton (MES), gelatinous zooplankton (GEL), and bacteria 149 
(BAC). PlankTOM12 keeps track of the carbon biomass (μmol/L) of these PFTs over model depth levels resulting 150 
from environmental and ecosystem processes and their interactions (Le Quéré et al. 2016).  151 



5 

PlankTOM12 represents sinking processes through the explicit representation of two organic particle of different size, 152 
with small particles sinking at a constant speed of 3 m/d, and larger particles sinking at a variable speed between 3 153 
and 150 m/d depending on the ballast effect of their mineral content (Buitenhuis et al., 2013). In addition, a dissolved 154 
organic carbon component is transported via ocean currents. Particles are generated through mass flux from the PFTs 155 
resulting from mortality and egestion and from aggregation through differential sinking or turbulent coagulation, and 156 
destroyed through grazing by zooplankton and remineralisation by bacteria and through disaggregation from shear 157 
currents. Large PFTs contribute mostly to POCL, while small PFTs contribute mostly to POCS. (Le Quéré et al. 2016; 158 
Fig. 2).  159 

The NEMO-PlankTOM12 model output was sampled at the time and location identified from the observations 160 
mentioned above to create a synthetic dataset. The model grid-coordinate closest to the real geographical position was 161 
chosen. If several measurements were co-localised at the same grid coordinate and same time step (day for daily 162 
PlankTOM12 and month for monthly PlankTOM12 outputs), it is counted as one measurement. This model sampling 163 
produced 400 positions when using the daily or monthly PlankTOM12 outputs. All drivers and targets were taken 164 
from the model output at the corresponding coordinates up to 1400 m depth. These outputs served as the reference for 165 
validation and evaluation of the ML methods and for establishing the sets of the most important drivers. 166 

2.2. Method.  167 

We tested 2 ML methods that are widely used in target’s reconstruction based on tabular data sets: the Random Forest 168 
regressor and the XGBoost (Extreme Gradient Boosting) regressor. The Random Forest (RF) regressor is an ensemble 169 
algorithm that contains a number of decision trees on various subsets of the given dataset and takes as output the 170 
average of prediction from each tree estimator. RF can run several trees at the same time allowing a use of a large 171 
number of input variables, and it is robust to overfitting (Biau, 2012). XGBoost (XGB) regressor is an effective tree-172 
based ensemble learning algorithm (Chen and Guestrin, 2016). It builds several models sequentially where each new 173 
model attempts to correct errors from the previous one. XGBoost uses the gradient descent algorithm to minimise the 174 
loss function of the model. Using RF and XGBoost we can estimate the driver importance to identify which driver has 175 
the greatest impact on the predictions. To check the driver importance, we use drop_col_feat_imp python function 176 
(https://gist.github.com/erykml/6854134220276b1a50862aa486a44192). This method estimates how the accuracy of 177 
the ML output changes if one of the drivers is dropped off from a driver set (DS) based on the training dataset. 178 

Effective ML algorithm requires sets of training, validation and test data. The training data builds up the ML model. 179 
Model evaluates training data repeatedly to learn about the relationship between inputs (driver set) and known outputs 180 
(target set) and adjusts itself to better represent the target. The purpose of validation data is to evaluate the model 181 
during its training by introducing new unseen data. It allows us to evaluate how a developed model works on a new 182 
dataset and to optimise hyperparameters. The test data evaluate the final accuracy of the ML model and confirm that 183 
the model works correctly on any unseen data. It is new data that did not participate in the training algorithm. The 184 
accuracy is worse on validation and test data compared to training data set. The difference in model performance on 185 
training and validation data can signal an overfitting, while this difference between validation and test data can 186 
demonstrate an effect of data mismatch. It is worth noting that RF does not necessarily need validation data set as they 187 
perform internal validation. During the training algorithm each tree is constructed from a random subset of original 188 
data, usually it represents two thirds of data and one third of data is used to estimate out-of bag error to assess model 189 
performance. XGB uses a validation data set to evaluate the model during training and to prevent overfitting by 190 
applying an early stopping. In the present study the available data were split into training and validation data sets (Fig. 191 
3a). Validation data is not included in RF training, however we use it to test the performance of trained RF and tune 192 
hyperparameters afterwards. The test data are taken from the regions where there are no observations (Fig. 3b): 3 193 
months for each year from the period 2009-2013 and 6 positions for each month were chosen randomly. This will 194 
allow us to identify the possible accuracy of reconstruction that can be reached in these regions when we will apply a 195 
developed method to real observations. However, when POCS and POCL will be reconstructed using only real-world 196 
observations, we will need to split all available data into training, validation and test data sets.  197 
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 198 
Figure 3. The spatial distribution of: (a) - training (blue) and validation (green) data sets; (b) - test data set; based on 199 
PlankTOM12 monthly outputs. 200 

We use RandomForestRegressor function from scikit-learn (https://scikit-201 
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html) with its default parameters and 202 
min_sample_leaf equals 20. To apply XGBoost regressor we use XGBRegressor from xgboost 203 
(https://xgboost.readthedocs.io/en/stable/python/python_intro.html). Parameters were set as follows 204 
n_estimators=2000, max_depth=7, eta=0.01, subsample=0.7, colsample_bytree=0.8, gamma=0.01 for POCL and 205 
gamma= 0.3 for POCS, early_stopping_rounds = 10.  206 

We tested 27 driver sets (DSs) that are summarised in Table 1. For each DS we identify the most important drivers 207 
that influenced the reconstruction of small (POCS) and large (POCL) particulate organic carbon concentration. The 208 
drivers include geographic variables (depth, sin(latitude), cos(longitude)), physical variables (incident light, MLD, 209 
co-located temperature), chemical variables (PO4, NO3, including co-located values and averages over the MLD), and 210 
biological variables (chlorophyll a, 12 PFTs listed above: DIA, MIX, COC, PIC, PHA, FIX, PRO, PTE, MES, GEL, 211 
BAC, including co-located values and averages over the MLD).  212 

Table 1. Compounds of driver's sets: dark grey cells correspond to the drivers present in the driver set. ‘vp’ – vertical 213 
profile, ‘mean’ – average over MLD, ‘back’ – values from previous month. 214 

               Driver set 
Drivers 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

depth                            

Sin(lat)                            

Sin(long)                            

Cos(long)                            

Incident light                            

MLD                            

Temperature vp                            

CHL vp                             

CHL mean                            

NO3 vp                            

PO4 vp                            

NO3 mean                            

PO4 mean                            

BAC vp                            

MES vp                            

PTE vp                            

DIA vp                            

COC vp                            

PIC vp                            

PHA vp                            
GEL vp                            

PRO vp                            

MAC vp                            

MIX vp                            

FIX vp                            

BAC mean                            

MES mean                            

PTE mean                            

DIA mean                            
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 215 

The driver sets can be split into 9 thematic groups which together test the role of PFTs and sub-classes within, the role 216 
of surface versus depth profiles for some variables, and the role of information from the previous month: 217 

I. No PFTs (short name (sh.n.) ‘No PFT’): Driver sets 1 and 2 do not include any PFTs and focus on the 218 
influence of temperature, MLD, chlorophyll a, NO3 and PO4 on POCS and POCL reconstruction.  219 

II. Introduction of PFTs (sh.n. ‘PFT introduction’): DSs 3, 4 and 5 are dedicated to the investigation of the 220 
introduction of PFTs in the reconstruction. In DS 3 we introduced 12 PFTs vertical profiles, even though this 221 
information will be challenging to reproduce with observations due to the lack of data. Nevertheless, it is 222 
important to test the capacity of ML if all 12 PFTs were available over the depth. DS 4 includes the vertical 223 
profiles of 6 heterotrophs (zooplanktons and bacteria) because they contribute to influencing the vertical 224 
distribution of POCS and POCL, and 6 phytoplankton averaged over MLD because they  are responsible for 225 
primary production. In DS 5 we added averages over MLD of the 6 heterotrophs that were not included in 226 
DS 4.  227 

III. Big zooplankton (sh.n. ‘Zooplankton combined’): In DSs 6 and 7 we tested the influence of big zooplanktons 228 
summed into one variable to account for their combined effect rather than the distinctions among PFTs. The 229 
big zooplankton is represented by the sum of mesozooplankton, gelatinous zooplankton and 230 
macrozooplankton in DS 6, with the addition of pteropod in DS 7.  231 

IV. Exclusion of bacteria (sh.n. ‘No vertical BAC’): DS  8 does not have a bacteria (BAC) vertical profile 232 
compared to set 5.  233 

V. Individual zooplankton types (sh.n. ‘Individual PFT’): DSs 9, 10, 11, 12, 13 and 14 test the influence of 234 
individual types of heterotrophs, bacteria (BAC), microzooplankton (PRO), pteropod (PTE), 235 
mesozooplankton (MES), gelatinous zooplankton (GEL), microzooplankton (MAC), respectively.  236 

VI. Geographical position and seasons (sh.n. ‘Lat-Long’ and ‘Incident light’): DS 15 is based on DS 5 (which 237 
showed the most promising results) and includes geographical coordinates as additional drivers in the form 238 
of sin(lat), sin(long), cos(long). DS 16 includes in addition to the DS 5 the role of incident light.  239 

VII. Use of only PFTs and chlorophyll a (sh.n. ‘PFT only + CHL’): DS 17 is based on only the 12 PFTs, while 240 
DS 18 is formed from DS 17 plus information on chlorophyll a averaged over the MLD. DSs 19 and 20 are 241 
based on DS 6. To form the DS 19 we exclude temperature, NO3 and PO4 from the list of drivers in DS 6. 242 
DS 20 is an extended version of DS 19 with all 12 PFTs concentration averaged over the MLD.  243 

VIII. Chlorophyll a and chemical variables (sh.n. ‘Biochemical variables’): DSs 21, 22, 23, 24 are based on DS 5 244 
and test the individual influence of chlorophyll a (DS 21), NO3 (DS 22), PO4 (DS 23) vertical profiles and 245 
its ensemble (DS 24).  246 

IX. Previous time step (sh.n. ‘Month - 1’): DSs, 25, 26 and 27 investigate the role of chlorophyll a (DS 27) and 247 
some zooplanktons from the previous time step: gelatinous zooplankton and microzooplankton (DS26); 248 
gelatinous zooplankton, micro- and macrozooplankton, averaged over MLD chlorophyll a and 249 
coccolithophore (DS25).  250 

The evaluation of the method is based on the mean correlation coefficient, total root-mean square errors (RMSE), and 251 
total absolute bias between the ML outputs and PlankTOM12 POCS and POCL components. Moreover, we provide 252 
the global maps of correlation coefficient and RMSE to vertical profiles of POCS and POCL at each grid point. Global 253 
maps help to identify zones where the large errors can be hidden in the mean diagnostics due to the error compensation.  254 

3. Results. 255 
 256 

COC mean                            

PIC mean                            

PHA mean                            

GEL mean                            

PRO mean                            

MAC mean                            

MIX mean                            

FIX mean                            

Big Zoopl                            

Big Zoopl2                            

CHL back vp                            

CHL back mean                            

GEL back vp                            

PRO back vp                            

MAC back vp                            

COC back mean                            
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3.1. Data analysis. 257 

In this study we test the capacity to reconstruct particulate organic carbon from sparse observations by using ML and 258 
a synthetic data set based on the PlankTOM12 model output. We compare observations and the output of the ocean 259 
model to provide a minimum of validation for the model data and to help explain differences in ML results when 260 
applied to real observations in the future.  261 

Figure 4 shows the vertical profile of small (POCS) (Fig.4a) and large (POCL) particulate organic carbon (Fig.4b) 262 
based on the median from observations (green) and from daily PlankTOM12 model output (blue). Shading 263 
corresponds to values between 0.25 and 0.75 percentiles.  264 

 265 
Figure 4. Comparison of the vertical distribution of particulate organic carbon concentrations (μmol/l) from UVP5 266 
measurements (green), PlankTOM12 daily model (blue) and extrapolated UVP5 measurements (red): (a) - small particulate 267 
organic carbon concentrations; (b) - large particulate organic carbon concentrations. The median is shown in dark and the 268 
shading corresponds to values between the 0.25 and 0.75 percentiles. The size of the particles does not correspond 269 
completely between the observations and the model, for POCL the UVP particle range is chosen as 0.256-5.16 mm that 270 
corresponds approximately to the POCL in the model.  271 

PlankTOM12 overestimates POCS up to 3 μmol/L in the first 200m (Fig.4a, green and blue curves). UVP5 does not 272 
capture all small particles that is why we extrapolated the size range of UVP measurements (red curve, see details in 273 
2.1.1). The extrapolated measurements show an increase in POCS in the first 100m, however this increase still results 274 
in the lower concentration compared with PlankTOM12. These results indicate that PlankTOM12 overestimates the 275 
concentration of small particulate organic carbon. PlankkTOM12 also overestimates POCL by up to 0.08 μmol/L in 276 
the first 200m and does not catch the increase in POCL between 300 and 500m. Observations show an increase in 277 
POCL concentration in the first 50m while PlankTOM12 reproduces it lower, at 100m. The RMSE between modelled 278 
and observed POCS is 0.33 μmol/L, with correlation coefficient equals 0.083. RMSE equals 0.23 μmol/L with 279 
correlation coefficient 0.061 for POCL. The exclusion of isolated large values of POCL (>2 μmol/L) from the 280 
observation data set reduces the RMSE of POCL to 0.062 μmol/L with correlation 0.18. We believe that these 281 
differences result from differences in space and time resolution of observations and ocean model outputs. In-situ 282 
measurements are obtained at a particular time of the day and a particular latitude-longitude position while the model 283 
provides estimations over the day (or month) and on the model grid (2º longitude and mean 1.1º latitude resolution).  284 

We concluded that observed and modelled POCS and POCL have a common tendency in their vertical distributions. 285 
However, among other things, differences in amplitudes may affect our findings in this work when we develop a ML 286 
method based on observations only. 287 

Due to the constraint in data availability further we use monthly PlankTOM12. 288 

Before developing a ML method, we investigate the interactions between targets and drivers in the model. Table 2 289 
shows the correlation coefficients between the POCS and POCL and corresponding drivers that can influence POCS 290 
and POCL variability. Correlation between drivers could also provide valuable information to minimise the number of 291 
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driver but they are not shown here where the focus is on discovering the effect of a large set of drivers on POC 292 
distribution, and because driver correlations could also result from the physics as well as from the model construction. 293 
POCS correlates with gelatinous zooplankton (GEL, r=0.66), microzooplankton (PRO, r=0.63), coccolithophore 294 
(COC, r=0.56), as well as with their values from previous time step (GEL, r=0.67; PRO, r=0.51; COC, r=0.59). 295 
Coccolithophore is one of the most abundant phytoplankton types in this version of the PlankTOM model (similar to 296 
Wright et al., 2021). The growth of phytoplankton transfers dissolved inorganic carbon into dissolved organic carbon 297 
which further aggregates into POCS and POCL. Also, POCS is generated from microzooplankton egestion and 298 
excretion (Fig. 2). In addition to the mentioned above PFTs, POCS shows a correlation 0.44 with temperature vertical 299 
profile at both the considered time step and at the previous time step. POCS has a negative correlation with NO3 (r=-300 
0.46) and PO4 (r=-0.41).    301 

POCL does not show a high correlation with any of the proposed drivers individually and is therefore most likely the 302 
result of multiple processes and/or multiple drivers, including for its production and destruction. The ML approach 303 
should be able to identify combinations of drivers beyond straight correlations that are investigated directly here. 304 
POCL has the highest correlation with chlorophyll a (r=0.42), gelatinous zooplankton at the considered time step 305 
(r=0.37), and at previous time step (r=0.36). Gelatinous zooplankton contribute to POCL formation through egestion 306 
and excretion mainly from mucus (Fig. 2). As explained in Wright et al. (2021), mucus forms a large low-density mass 307 
through aggregation with other particles. It can explain a correlation of gelatinous zooplankton with POCL in 308 
PlankTOM12.  309 

Table 2. Correlation coefficient between small (POCS) and large (POCL) particulate organic carbon concentration and 310 
possible drivers. Estimation is based on monthly PlankTOM12 output at the position of real-world observations from Fig. 311 
1. ‘vp’ – vertical profile, ‘mean’ – average over MLD, ‘back’ – values from previous month. 312 
 313 

Driver              POCS POCL Driver           POCS POCL Driver              POCS POCL 
POC  1.00  0.33 BAC vp -0.14 0.15 BAC back vp -0.10  0.09 
GOC  0.33  1.00 MES vp -0.09 0.07 MES back vp -0.09 -0.07 
Depth -0.32 -0.24 PTE vp -0.07 0.17 PTE back vp -0.08  0.08 
Temperature vp  0.44  0.17 DIA vp -0.04 0.15 DIA back vp -0.03  0.09 
Temp back vp  0.44  0.17 COC vp  0.56 0.31 COC back vp  0.60  0.31 
MLD -0.01 -0.07 PIC vp  0.00 0.07 PIC back vp  0.06  0.06 
NO3 vp -0.46  0.01 PHA vp  0.27 0.15 PHA back vp  0.30  0.17 
PO4 vp -0.41  0.04 GEL vp  0.66 0.37 GEL back vp  0.68  0.36 
NO3 back vp -0.46  0.03 PRO vp  0.63 0.16 PRO back vp  0.51  0.14 
PO4 back vp -0.41  0.05 MAC vp  0.07 0.14 MAC back vp  0.08  0.13 
CHL vp  0.18  0.42 MIX vp  0.07 0.17 MIX back vp  0.03  0.05 
CHL back vp  0.11  0.22 FIX vp -0.00 0.23 FIX back vp -0.00  0.23 

 314 

3.2.  Development of the Machine Learning method.  315 
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 316 
Figure 5. Comparison of the performance of the Random Forest (RF) and XGBoost methods and their fit to data for small 317 
(POCS) particulate organic carbon concentration; (a, b, c) - RMSE in μmol/l, (d, e, f) - absolute bias in μmol/, (g, h, i) - 318 
correlation coefficient; (a, d, g) -  training data set, (b, e, h) - the validation data set, (e, f, i) - the test data set. Results 319 
compare data from the original (sampled) PlankTOM12 model output and POCS reconstructed using RF (blue) and XGB 320 
(orange). The low RMSE and absolute biases indicate better performance of the ML method.  321 

We tested 27 sets of drivers (Table 1) and two ML methods, Random Forest (RF) and XGBoost regression (XGB).  322 

Figure 5 shows the statistics of POCS reconstruction using RF and XGB. XGB (orange) generally overperforms RF 323 
(blue). The statistics are slightly worse for the validation and test data sets, as expected. For reconstructions using 324 
XGB, the RMSE and absolute bias are about 0.05 μmol/L and 0.03 μmol/L on the training data set and vary around 325 
0.1 μmol/L and 0.05 μmol/L, on the validation and test data, respectively. Correlation coefficients (Fig. 5g, h, i) have 326 
high values on all datasets showing that the vertical profiles of POCS have a correct shape. These results show that the 327 
available spatial and temporal coverage of in situ observations can be sufficient to reconstruct POCS with an 328 
appropriate accuracy over the global ocean. The analysis of global maps (shown below) will help to identify areas 329 
with low accuracy and their differences with training regions.  330 

The worse results (highest RMSE, highest absolute bias, lowest correlation) are produced when there are no PFTs in 331 
the driver set (DS1 and DS2; Figure 5): for XBoost, RMSEs are 0.24 μmol/L, absolute biases equal to 0.12 μmol/L 332 
with correlation coefficient 0.67 on the test data sets. Poor results are also obtained for DS9, 11, 12, 13 and 14: these 333 
5 driver sets do not have any information on microzooplankton (PRO) and show high RMSEs and absolute biases, 334 
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around 0.16 μmol/L and 0.074 μmol/L, with low correlation, 0.83, compared with other driver sets which include 335 
PRO. These results indicate that microzooplankton plays an important role in POCS variability in the PlankTOM12 336 
model.   337 

 338 
Figure 6. Comparison of the performance of the Random Forest (RF) and XGBoost methods and their fit to data for large 339 
(POCL) particulate organic carbon concentration; (a, b, c) - RMSE in μmol/l, (d, e, f) - absolute bias in μmol/l, (g, h, i) - 340 
correlation coefficient; (a, d, g) -  training data set, (b, e, h) - the validation data set, (e, f, i) - the test data set. Results 341 
compare data from the original (sampled) PlankTOM12 model output and POCL reconstructed using RF (blue) and XGB 342 
(orange). The low RMSE and absolute biases indicate better performance of the ML method.  343 

Figure 6 shows the statistics of POCL reconstruction using RF and XGB. XGBoost again slightly overperforms RF on 344 
most driver sets. Results for driver sets with PFTs show lower RMSEs and absolute biases, and higher correlation 345 
coefficients. Except for the effect of PFTs on the POCL reconstruction, we did not observe a clear influence of one 346 
driver or group of drivers. Using XGBoost the reconstruction of POCL shows the RMSE in DS1 is high at 0.03 μmol/L, 347 
while it is in the range of 0.021-0.026 μmol/L in DS3-DS27, with absolute bias in DS1 of 0.02 μmol/L and 0.015-348 
0.018 μmol/L for DS3-DS27 based on test data (Fig. 6c, f). Likewise, a correlation coefficient of 0.56 for DS1, and 349 
between 0.7 and 0.77 for DS3-DS27 based on the training data set (Fig. 6g).  350 

We estimated the ranking of importance for each driver averaged over 27 driver sets (Table 1) for RF and XGB (Fig. 351 
7). Both, RF and XGB, show that microzooplankton (PRO), depth level, temperature, NO3 and PO4 play a dominant 352 
role in reconstruction of POCS. The absence of gelatinous zooplankton (GEL) can slightly improve the reconstruction. 353 
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Also, latitude and longitude do not affect POCS reconstruction. The depth level, temperature, MLD, microzooplankton 354 
(PRO) and phaeocystis (PHA), PO4, and chlorophyll a averaged over MLD play a dominant role in POCL 355 
reconstruction. 356 

The sinus of latitude is in the top ten drivers that most affect POCL using XGBoost method: POCL distribution has a 357 
lot of meridional variability that results in the sinus of latitude being in the top 10 drivers. As for POCS, gelatinous 358 
zooplankton (GEL) shows a negative rank of driver importance and its removal from the list of drivers can improve 359 
the statistics of reconstruction. Also, chlorophyll a concentration from the previous month shows a similar effect on 360 
POCL (Fig. 7c, d).  361 

It is worth noting that any driver that shows negative importance in the reconstruction has only a small influence on 362 
the accuracy (Fig. 5 and 6). Thus, its removal does not improve the reconstruction significantly.  363 

Based on Figures 5, 6 and 7 we have chosen 10 driver sets with low RMSEs and absolute biases, and high correlation 364 
coefficients (based on test data set) for POCS and POCL to provide global maps of these statistics and to see their 365 
regional distributions. DS 5, 15, 16, 21, 22, 23, 24, 25, 26, 27 were chosen for further investigation of POCS 366 
reconstruction; DS 5, 8, 15, 16, 17, 21, 23, 25, 26, 27 – for POCL reconstruction. Common for POCS and POCL driver 367 
sets 5, 15, 16, 21, 23, 25, 26, 27 include all PFTs and their average over MLD, geographical positions and incident 368 
light as well as chlorophyll a, PO4, and gelatinous zooplankton and microzooplankton from the previous time step 369 
(Table 1). Also, we found that POCS reconstructions rest on biochemical conditions (DSs 21 and 24), while POCL 370 
reconstruction mostly depends on the composition of the PFTs in the driver set (DSs 8 and 17). Additionally, we keep 371 
DS1 to demonstrate a global effect of PFTs on reconstruction.  372 
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 373 
Figure 7. Ranking of importance for each driver averaged over 27 driver sets: (a) - Random Forest (RF) for reconstruction 374 
of small (POCS) particulate organic carbon concentration; (b) - XGBoost (XGB) for small (POCS) particulate organic 375 
carbon concentration; (c) - RF for POCL concentration; (d) - XGB for POCL concentration. ‘vp’ – vertical profile, ‘mean’ 376 
– average over MLD, ‘back’ – values from previous month. 377 

3.3.  POCS and POCL vertical profile reconstruction over the global ocean 378 

In the previous section we showed that XGBoost provides the best results for the reconstructions of POCS and POCL. 379 
Further we use this ML method. Here we will discuss the regional results of DS1 without PFTs and 10 best driver sets 380 
chosen for each target separately. 381 
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 382 
Figure 8. Total averaged over the depth and period 2009-2013 small (POCS) and large (POCL) particulate organic carbon 383 
concentration: (a) – PlankTOM12 POCS, (b) – PlankTOM12 POCL, (c) – reconstruction of POCS based on DS1 (NoPFT) 384 
using XGBoost, (d) – reconstruction of POCL based on DS1 using XGBoos, (e) - reconstruction of POCS based on DS25 385 
(vertical profiles of zooplanktons, and zooplankton and phytoplankton averaged over MLD) using XGBoost, (f) - 386 
reconstruction of POCL based on DS25 using XGBoost.  387 

Figure 8 shows POCS and POCL concentration averaged over the depth and period 2009-2013 for PlankTOM12 (Fig. 388 
8a, b), XGboost reconstruction based on DS1 (Fig. 8c, d) and XGBoost reconstruction based on DS25 (Fig.8 e, f). 389 
XGBoost captures well the spatial patterns: the high concentration of POCS in the Equatorial Eastern Pacific and its 390 
low concentration at high latitudes, as well as the high concentration of POCL in the Equatorial Eastern Pacific and in 391 
the North of the Indian Ocean and its low concentration in the Subtropical North and South Atlantic and in the 392 
Subtropical North Pacific. The presence of PFTs in driver sets (Fig. 8e, f) improves the reconstruction: the spatial 393 
patterns and its amplitude are visually close to ones from PlankTOM12 (Fig. 8a, b). The high concentration of POCS 394 
in the Equatorial Eastern Pacific is represented better using DS25 compared with DS1 where the concentration in the 395 
latitude band 0ºS-20ºS along the Peru is overestimated. Also, small decreases of POCS in the Subtropical North and 396 
South Atlantic are captured better when we use DS25. Similar for POCS, the high concentration in the Equatorial 397 
Eastern Pacific is represented better using DS25 compared with DS1 where the concentration misses the small 398 
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decrease between 20ºN and 0ºN. Also, small decreases of POCL in the Subtropical North and South Atlantic as well 399 
as in the Subtropical North Pacific are pronounced better with DS25.    400 

Figure 9 shows regional correlation coefficients and RMSEs between PlankTOM12 and XGBoost reconstruction over 401 
the global ocean for 2009-2013. We averaged correlation coefficient and RMSEs over 7 latitude zones: 90ºN-60ºN, 402 
60ºN-40ºN, 40ºN-20ºN, 20ºN-20ºS, 20ºS-40ºS, 40ºS-60ºS, 60ºS-90ºS. In POCS reconstruction, the DS1 shows the 403 
lowest correlation across latitude bands (between 0.22 and 0.9), and highest RMSEs (0.05-0.34 μmol/L; Fig.9a, b). 404 
DSs 25 and 26 show the highest correlations in the range of 0.68 (in region 60ºS-90ºS) and 0.97 (in region 20ºN-20ºS) 405 
and the lowest RMSEs in the range of 0.021 (in region 60ºS-90ºS) and 0.14 μmol/L (in region 90ºN-60ºN). DS25 406 
contains information on the previous-month distribution for micro-, macrozooplankton and gelatinous zooplankton 407 
vertical profiles as well as coccolithophores and chlorophyll a averaged over the MLD. DS26 is like DS25 but the 408 
drivers which bring information from the previous month are microzooplankton and gelatinous zooplankton vertical 409 
profiles.  410 

10 driver sets (excluding DS1) show their highest RMSEs in POCS reconstruction in the region 90ºN-60ºN, with 411 
values up to 0.14 μmol/L in DS27 (Fig. 9b). Figure 10 shows maps of RMSEs (a, b) and correlation coefficients (c, 412 
d) between PlankTOM12 and reconstructed small particulate organic carbon (POCS) by XGBoost using driver sets 1 413 
(a, c) and 25 (b, d). The region 90ºN-60ºN shows improvement in RMSEs and absolute biases in DS25 compared with 414 
DS1, with RMSEs decreasing from 0.2 μmol/L to 0.03 μmol/L in Norwegian Sea, Baffin Bay, and the Arctic Ocean. 415 
However, errors stay high in the coastal regions, Northwestern passage and Hudson Bay that contribute to the high 416 
total RMSEs in this region. Results are similar for the region 60ºN-40ºN, where correlation coefficients increased 417 
from 0.3 to 0.87 on average over these zones (Fig. 10c, d). The tropical region 20ºN-20ºS shows correlation coefficient 418 
up to 0.97 for all driver sets except DS1. However, RMSEs are high in the tropical region, about 0.11μmol/L on 419 
average (Fig. 9b), with RMSEs values of 0.2 μmol/L in the Tropical Eastern Pacific and Bay of Bengal in DS25 (Fig. 420 
10b). The high RMSEs in the Tropical Eastern Pacific can indicate insufficient data in a region of high interannual 421 
variability to correctly reconstruct POCS distribution. The region of the Southern Ocean (>60ºS) shows the lowest 422 
correlation coefficients (in the range of 0.64-0.69) and RMSEs (in the range 0.023-0.044 μmol/L) for POCS (Fig. 9a, 423 
b). The inclusion of PFTs in the driver set significantly improves the RMSE in the region around 40ºS for small 424 
(POCS) particulate organic carbon. The statistics are improved by about 75% in the region 40ºS-60ºS with RMSE 425 
decreasing from 0.18 (DS1) to 0.03 (DS25) and the correlation coefficient increasing from 0.22 (DS1) to 0.84 (DS25), 426 
on average (Fig. 9a, b; Fig. 10). The improvements in the Southern region are related to the role of zooplankton in the 427 
carbon flux in this area (Le Quéré et al., 2016; Wright et al., 2021). 428 
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 429 
Figure 9. Correlations and RMSE averaged over latitude zones between PlankTOM12 and XGBoost reconstruction over 430 
the global ocean for 2009-2013: (a, c) - correlation coefficient,  (b, d) - RMSE in μmol/l (b, d);. (a, b) - small particulate 431 
organic carbon (POCS), (c, d) - large particulate organic carbon (POCL).  432 

In POCL reconstruction, DS1 also shows the lowest correlation coefficients (0.35-0.75) and the highest RMSEs (0.027-433 
0.47 μmol/L) (Fig. 9c, d). DS25 shows the best results on average, with the correlation coefficient varying between 434 
0.43 (in the region 60ºS-90ºS) and 0.84 (in the region 20ºN-20ºS), and RMSE varying between 0.021 (in the region 435 
20ºS-40ºS) and 0.046 (in the region 90ºN-60ºN) μmol/L. POCL are reconstructed better in subtropical and tropical 436 
regions compared to high latitude zones (Fig. 9c, d).  437 

As for POCS, 10 driver sets (excluding DS1) show their highest RMSEs in POCL reconstruction in the region 90ºN-438 
60ºN, with values up to 0.05 μmol/L in DS27 (Fig. 9d). Figure 11 shows maps of RMSEs (a, b) and correlation 439 
coefficients (c, d) between PlankTOM12 and reconstructed large particulate organic carbon (POCL) by XGBoost using 440 
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driver sets 1 (a, c) and 25 (b, d). Contrast to POCS reconstruction, the region 90ºN-60ºN does not show improvement 441 
in RMSEs for POCL reconstruction (Fig. 11b) in DS25 compared with DS1, with still high RMSEs in Norwegian Sea, 442 
Baffin Bay, and the Arctic Ocean, and additionally for POCL in Greenland Sea, where the algorithm did not have data 443 
for training. Similar to POCS, errors stay high in the coastal regions, Northwestern passage and Hudson Bay that 444 
contribute to the high total RMSEs in this region. 445 

Global maps of statistics suggest that the most sensible region to driver set’s composition for POCL is the Southern 446 
Ocean, as for POCS (Fig. 11). In the 40ºS-60ºS region, RMSE is reduced from 0.037 μmol/L in DS1 to 0.024 μmol/L 447 
in DS25 (Fig. 9d), and the correlation coefficient is increased from 0.42 to 0.66 (Fig. 9c) on average, respectively. In 448 
the Southern region 60ºS-90ºS, RMSE is reduced from 0.047 μmol/L in DS1 to 0.033 μmol/L in DS25, and the 449 
correlation coefficient is increased from 0.33 to 0.42 (Fig. 9c) on average, respectively. The average correlation 450 
coefficients in this zone were found to be less than 0.5 in all tests with the highest value 0.5 in DS21. DS21 contains 451 
all PFTs and chlorophyll a vertical profile as drivers. The RMSE for DS21 in this region is close to the one of DS25, 452 
0.34 μmol/L and 0.33 μmol/L, respectively. It identifies the importance of chlorophyll a in the Southern Ocean as 453 
driver of POCL variability.  454 

 455 
Figure 10. RMSE and correlation between monthly PlankTOM12 and results of POCS reconstruction using XGBoost over 456 
the period 2009-2013 for POCS.  (a, b) – RMSEs, (c, d) – correlation coefficients; (a, c) – reconstruction based on DS1 457 
(NoPFT); (b, d) – reconstruction based on DS25 (vertical profiles of zooplanktons, and zooplankton and phytoplankton 458 
averaged over MLD).   459 
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 460 
Figure 11. RMSE and correlation between monthly PlankTOM12 and results of POCL reconstruction using XGBoost 461 
over the period 2009-2013 for POCL.  (a, b) – RMSEs, (c, d) – correlation coefficients; (a, c) – reconstruction based on 462 
DS1 (NoPFT); (b, d) – reconstruction based on DS25 (vertical profiles of zooplanktons, and zooplankton and 463 
phytoplankton averaged over MLD).    464 

The statistics of POCS and POCL reconstruction do not vary significantly between driver sets in all regions except in 465 
the Southern Ocean. This region is most sensitive to the composition of driver sets for both POCS and POCL. 466 

4. Conclusion. 467 
 468 
The aim of this work was to test the potential of using Machine Learning to reproduce modelled concentrations of 469 
particulate organic carbon within the ocean using the distribution of available observations. We co-localised outputs 470 
of the PlankTOM12 global biogeochemical ocean model with the positions of observations of small (POCS) and large 471 
(POCL) particulate organic carbon concentrations. Using PlankTOM outputs as references we could identify the best 472 
ML method for POC reconstruction and estimate method’s accuracy in regions with poor observational cover. 473 

We tested two ML methods to reconstruct POCS and POCL: the XGBoost regressor and Random Forest. Both methods 474 
are algorithms based on decision trees. XGBoost overperformed Random Forest by about 9% on average for POCS 475 
reconstruction and by about 3% on average for POCL reconstruction. XGBoost regressor builds the model sequentially 476 
improving it at each iterative step. At each iteration, XGBoost regressor analyses the prediction and gives more weight 477 
to the data where the fit is still wrong. It is a good tool for an unbalanced data set, like in our case where the data of 478 
particulate organic carbon concentration are sparse in time and space.   479 

We tested the influence of a wide range of environmental and ecosystem drivers on POCS and POCL reconstruction. 480 
The introduction of Plankton Functional Types (PFTs) in the driver set greatly improves the fit and shows a linkage 481 
between surface ecosystem structure and particulate organic carbon distribution within the ocean interior. We 482 



19 

improved the accuracy of POCS reconstruction by 59% on RMSE, 63% on absolute bias and by 52% on correlation 483 
by introducing Plankton Functional Types (PFTs) in the driver sets (from the comparison of DS1 and DS25). The 484 
presence of PFTs in the driver sets also improved the accuracy of POCL reconstruction by 22% on RMSE, absolute 485 
bias and correlation (from the comparison of DS1 and DS25). POCS variability mostly depends on the depth level, 486 
vertical profiles of microzooplankton, temperature and PO4. POCL variability depends on the depth level, MLD, 487 
chlorophyll a averaged over MLD, vertical profiles of temperature, microzooplankton, phaeocystis and PO4. 488 
Additionally, we identified that chlorophyll a in driver sets improves the POCL reconstruction in the Southern Ocean.  489 

Despite the good accuracy over the global ocean on average, the statistics are worse in the coastal regions and in the 490 
Tropical Eastern Pacific. The coastal regions suffer from the lack of data to represent the coastal dynamics. Therefore 491 
the ML reconstructions assign open-ocean processes to coastal regions, leading to significant biases. The Tropical 492 
Eastern Pacific is a region of strong interannual variability and the sparse measurements in time make it harder to 493 
capture this variability correctly. Other regions with poor coverage by observations - the Eastern Indian Ocean, the 494 
Western Pacific Ocean and the Southern Ocean - show the statistics of reconstruction comparable to one from regions 495 
with a good cover - regions in the Atlantic Ocean. However, we found that the Southern Ocean is a more sensible 496 
region to the driver set’s composition. The observational data is particularly sparse in this region and our analysis 497 
suggests that identifying the drivers of importance based on real dataset will be difficult.  498 

Here we showed that the XGBoost regressor and Random Forest are suitable for this problem and can reconstruct 499 
modelled POCS and POCL with appropriate accuracy. This is evidenced from the globally averaged correlation 500 
coefficient up to 0.88 for POCS and 0.68 for POCL, and the globally averaged RMSE up to 20 % (0.08 μmol/L) of 501 
standard deviation of PlankTOM12 POCS, and 65% (0.028 μmol/L) of standard deviation of PlankTOM12 POCL. ML 502 
outputs represent well the spatial patterns of POCS and POCL distribution. However, the validity of the approach on 503 
observations is dependent on the availability of co-located information on the drivers of importance. For some drivers 504 
this should be possible (e.g. environmental conditions and chlorophyll a), while for other drivers information is more 505 
sparse (e.g. the PFTs). Our analysis suggests that additional PFT observations would help provide broader insights 506 
into the distribution of POC in the ocean. The next step of this work is to apply ML to real data using methods from 507 
the present study. Testing the present ML approach on observations will also help provide suggestions for an optimal 508 
set of drivers that can be measured specifically for POC reconstruction. For example, based on model results only, 509 
our results suggest that microzooplankton concentration is particularly important and should be measured more 510 
systematically, especially in the regions of high interannual variability. Likewise, this work provides information on 511 
the variables that are less important in POC variability, like vertical profiles of gelatinous zooplankton, or mixed 512 
phytoplankton for POCS and coccolithophore for POCL, and, thus, less important to be measured in this context. These 513 
results will need to be tested with observations before firmly confirming the validity of the drivers. The validated 514 
driver sets can help guide observational programs. In addition, recent advances in plankton imaging (Irisson et al., 515 
2022; Lombard et al., 2019; Orenstein et al., 2022) and omics (Faure et al., 2021) will soon provide a new global set 516 
of data to estimate PFT concentrations across ocean basins allowing to better identify potential biological drivers of 517 
POC variability. The new available data of PFTs will significantly facilitate the application of ML methods, such as 518 
the one developed here, to observational data.  519 

The relationships between key variables and surrounding conditions based on Machine Learning can provide a new 520 
way for establishing parameters in ocean model parameterisation. The parameters can be time and space dependent 521 
and, thus, vary from one region to another better representing the physics. Relationship between POC concentration 522 
and environmental and ecosystem conditions can help to replace parameters in parameterised sinking velocity in 523 
PlankTOM. The reconstructed POC concentration over the global ocean will contribute to the reconstruction of 524 
porosity and opacity of particles that are key variables in the sinking matter velocity. 525 

This study provides insights on the drivers that may be responsible for POCS and POCL variability and regional 526 
dependencies. However, the dependencies are simply returning the outcome of complex ecosystem processes among 527 
the drivers as represented in the PlankTOM12 model. Although these processes are based on current understanding 528 
and a broad range of observations (Le Quéré et al., 2016; Wright et al., 2021; Buitenhuis et al., 2019), they remain 529 
results from a model output. Observations could reveal different drivers that are important for POCS and POCL. 530 
Depending on data availability and its time and space resolution, the final product based on observations should 531 
provide new insights on the drivers that govern particulate organic carbon concentration in the real ocean.  532 

 533 
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