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Abstract. Weather and climate play an important role in shaping global wildfire regimes and geographical distributions of 

burnable area. As projected by the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6), 15 

in the near future, fire danger is likely to increase in many regions due to warmer temperatures and drier conditions. General 

Circulation Models (GCMs) are an important resource in understanding how fire danger will evolve in a changing climate but, 

to date, the development of fire risk scenarios has not fully accounted for systematic GCM errors and biases. This study 

presents a comprehensive global evaluation of the spatiotemporal representation of fire weather indicators from the Canadian 

Forest Fire Weather Index System simulated by 16 GCMs from the 6 th Coupled Model Intercomparison Project (CMIP6). 20 

While at the global scale, the ensemble mean is able to represent variability, magnitude and spatial extent of different fire 

weather indicators reasonably well when compared to the latest global fire reanalysis, there is considerable regional and 

seasonal dependence in the performance of each GCM. To support the GCM selection and application for impact studies, the 

evaluation results are combined to generate global and regional rankings of individual GCM performance. The findings 

highlight the value of GCM evaluation and selection in developing more reliable projections of future climate-driven fire 25 

danger, thereby enabling decision makers and forest managers to take targeted action and respond to future fire events. 

1 Introduction  

Wildfires burn hundreds of millions of hectares of forest each year around the world (Giglio et al., 2013; Yang et al., 2014; 

van Lierop et al., 2015; van Wees et al., 2021). Their impacts include profound effects on ecosystems, damage to infrastructure, 

high costs associated with suppression activities, and risk to human lives. In recent years, the impacts of devastating individual 30 
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events have been widely reported. For instance, the 2016 wildfire in Fort McMurray (Alberta, Canada) resulted in the 

destruction of around 2,400 buildings, the evacuation of 88,000 people and financial costs of more than $3.5 billion (Mamuji 

and Rozdilsky, 2019). In California, during the 2020 wildfire season, around 1.7 million hectares burned, causing 33 casualties 

and damaging more than 10,000 infrastructure elements (Department of Forestry and Fire Pro tection, 2021). Responding to 

present and future fire risks is of critical importance, particularly in the world’s most vulnerable regions. Given the strong 35 

influence of weather and climate on temporal and spatial patterns of wildfire occurrence (Flannigan and Wotton, 2001; 

Zumbrunnen et al., 2009; Masrur et al., 2018), a better understanding of the impact of climate change on wildfire risk, and the 

tools used to quantify this impact, is an important step in formulating such responses.  

Wildfires are associated with a multitude of drivers, including land-use, vegetation type, topography and, quite significantly, 

human activity linked to ignitions (Camia et al., 2013; Balch et al., 2017; Gaboriau et al., 2020; Fernández-Guisuraga et al., 40 

2021). In addition, wildfire occurrence, spread and impact (in terms of area burned) are highly dependent on climate and 

weather conditions (Littell et al., 2009; Abatzoglou and Kolden, 2013; San-Miguel-Ayanz et al., 2013; Harris et al., 2019; 

Mueller et al., 2020). Across the globe, long-established spatiotemporal patterns of wildfire are being altered by changing land-

use, population rise and, perhaps most importantly, changes to the climate system in a warming world (United Nations 

Environment Programme, 2022). While wildfires cannot be strictly defined as meteorological hazards, in the same way as 45 

droughts, floods and storms, fire danger is greater during periods of high temperature, minimal precipitation, low relative 

humidity and strong winds. Notably, higher temperatures are significantly related to wildfire occurrence and a large extent of 

burned areas (Westerling et al. 2006; Littell et al. 2009; Koutsias et al. 2013; Cardil et al. 2015). The same positive relationship 

between drought and wildfires has also been documented (Littell et al., 2016). Similarly, lower precipitation and increased dry 

days intensify wildfire activity (Flannigan and Harrington, 1988; Holden et al., 2018).  50 

Disentangling the respective contribution of different meteorological variables to fire risks is challenging, particularly in a 

changing climate. It is understood that the intensity and frequency of hot extremes (e.g. heat waves) are an expected 

consequence of a warmer world, and changes in mean precipitation will vary geographically (IPCC, 2021a). On a global scale, 

weather conditions may become more favourable to wildfire activity (Jolly et al., 2015; de Rigo e t al., 2017; Mueller et al., 

2020) and extend over longer periods (Jolly et al., 2015). To better understand past, present and future changes, it is usual ly 55 

preferable to combine the hot, dry and windy conditions that are conducive to fire. The term fire weather was coined to describe 

the collective influence of local specific weather conditions that may lead to effective ignition and fire spread (Schroeder and 

Buck, 1970). Fire weather is typically quantified as a series of indicators, generated based on meteorological input variables 

and established empirical relationships, which can be used to estimate wildfire danger.  

Future changes in fire weather will most likely represent an increase in wildfire danger in many regions of the world (de Rigo 60 

et al., 2017; Arias et al., 2021). Understanding future meteorologically driven wildfire danger under climate change scenarios 

relies on projections from General Circulation Models (GCMs). As mathematical representations of the climate system and its 

processes, GCMs are the most important tool in understanding how the world’s climate has varied in the past and how it will 
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respond to different future scenarios associated with anthropogenic climate change. GCMs have been used frequently to 

quantify the link between wildfire activity and weather conditions (Bedia et al., 2015; Williams and Abatzoglou, 2016) and, 65 

specifically, to simulate fire weather, both in the past and under future climate change scenarios (Moritz et al., 2012; Flannigan 

et al., 2013; Bedia et al., 2015; Littell et al., 2018; Abatzoglou et al., 2019). However, all GCMs are associated with 

performance limitations that manifest as systematic biases and, ultimately, as uncertainty in GCM projections (Hawkings and 

Sutton, 2009; Lehner et al., 2020). Evaluation of model outputs, whether generated by individual GCMs or as part of a multi-

GCM ensemble, is a continuous challenge and has been the subject of numerous studies (Johns et al., 2006; Flato et al., 2013; 70 

Baker and Taylor, 2016; Kotlarski et al., 2019). It is especially important for climate impact studies to (a) use projections from 

multiple GCMs, and (b) evaluate the capacity of each individual GCM to represent characteristics of climate variables or 

phenomena that are relevant to the impact under investigation. To date, fire weather projections have frequently been based 

on single GCMs (e.g., Krawchuk et al., 2009; Amatulli et al., 2013) and, even when multiple GCMs have been used (e.g., 

Moritz et al., 2012; Dowdy et al., 2019), the capacity of each GCM to simulate realistic conditions (i.e., comparable to observed 75 

fire weather conditions) has not been thoroughly evaluated. In the absence of a comprehensive GCM evaluation, it is not 

possible to characterise and quantify the uncertainties that may affect the reliability of multi-GCM means and projections 

(Moritz et al., 2012; Bedia et al., 2015; Dowdy et al., 2019).  

This study aims to evaluate the performance of the latest generation of GCMs from the sixth phase of the Coupled Model 

Intercomparison Project (CMIP6) in simulating a range of fire weather indicators across all fire-prone regions of the world (cf. 80 

Sect. 2.4). The analysis represents the first global evaluation of GCM capacity to realistically simulate spatiotemporal 

variability in meteorologically-driven wildfire danger. Evaluation is performed at the global and regional scales, accounting 

for model performance in simulating both mean and extreme fire weather conditions. The results generated are relevant for 

wildfire risk assessment studies, and more informed decision-making and planning to respond to future fire danger. In the 

context of the ongoing global climate change, more tailored fire management strategies are key to better adapting to future fire 85 

weather conditions.  

The remainder of this paper is organised into four sections. Section 2 gives an overview of the chosen set of fire weather 

indicators, the reference data sets used as the basis for evaluation and the CMIP6 models themselves, alongside a description 

of the evaluation methodology. Section 3 presents the results of the model evaluation on both global and regional scales, 

initially for the multi-GCM mean and seasonality, and subsequently for inter-model performance. Section 4 includes synthesis 90 

and discussion of the implications of the results. Section 5 provides a set of conclusions and outlook. 
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2 Data and Methods 

2.1 Fire weather indicators 

The long-established relationship between climate and wildfire has led to the development of a range of meteorology-based 

indicators to describe fire weather (and consequently fire danger) in different parts of the world (e.g., McArthur, 1967; 95 

Deeming et al., 1972; Van Wagner, 1974). Throughout this study, indicators of fire weather are represented by the Canadian 

Fire Weather Index System (CFWIS). While originally developed for a standard pine forest in Canada (Van Wagner, 1974, 

1987; Wotton, 2009), this system has been proven to be applicable in other regions (Carvalho et al., 2008; Di Giuseppe et 

al., 2016; Bowman et al., 2017), and is being used by the European Commission for fire weather statistics in Europe (European 

Forest Fire Information System) and worldwide (Global Wildfire Information System). It is also widely used for projections 100 

of future fire weather (Bedia et al., 2015; Camia et al., 2017; Dupuy et al., 2020).  

The CFWIS consists of a set of different components, each of them calculated using a combination of daily meteorological 

variables (Van Wagner, 1987; Fig. 1): temperature, wind speed, relative humidity and precipitation. Firstly, a set of fuel 

moisture codes describe the quantity of moisture contained by fire fuels: Fine Fuel Moisture Code (FFMC) represents the 

moisture content of litter and other fine fuels, indicating the relative ease of ignition and the flammability o f fine fuel; Duff 105 

Moisture Code (DMC) represents the average moisture content of loosely compacted organic layers of moderate depth; 

Drought Code (DC) represents the average moisture content of deep, compact organic layers. The following components 

describe weather-driven fire behaviour: Initial Spread Index (ISI) represents the expected rate of fire spread, combining the 

effects of wind and FFMC on the rate of spread without the influence of variable quantities of fuel; Buildup Index (BUI) 

represents the total amount of fuel available for combustion, combining DMC and DC. Finally, two indices are calculated: 110 

Fire Weather Index (FWI) represents fire intensity, combining ISI and BUI, and is often used as the main fire danger indicator 

(Padilla and Vega-García, 2011; Bedia et al., 2015; de Rigo et al., 2017); Daily Severity Rating (DSR), an extension of the 

CFWIS, is a transformation of the daily FWI value, representing the effort required for suppression. All fire weather 

components of the system are numeric ratings, and a higher number represents a higher potential fire danger. A detailed 

description of the system and its individual components can be found in Van Wagner (1987). 115 
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Figure 1: Fire weather components of the Canadian Fire Weather Index (FWI) System. Adapted from Natural Resources Canada 

(2021). 

2.2 Fire danger reanalysis 

As an observational reference for fire weather, we used CFWIS data from the Global ECMWF Fire Forecast model (hereafter 120 

GEFF-ERA5) (Vitolo et al., 2020). Produced by the European Forest Fire Information System of the Copernicus Emergency 

Management Service, GEFF-ERA5 offers daily continuous fire weather data of the different CFWIS components at a spatial 

resolution of 0.25 degrees throughout the world’s land area. GEFF-ERA5 is driven by input fields from the ERA5 Reanalysis 

(ERA5; Hersbach et al., 2020) from 1979 to present, and replaces the previous global fire danger reanalysis driven by ERA-

Interim (Vitolo et al., 2019). In general, ERA5 provides a realistic and temporally coherent  approximation of real-world 125 

weather states, with higher spatial and temporal resolutions and better estimates of meteorological variables compared to ERA-

Interim (Dee et al., 2011; Hersbach et al., 2019), reducing biases and increasing correlation with observations (Graham et al., 

2019; Gleixner et al., 2020; Tarek et al., 2020). GEFF-ERA5 and other reanalysis-derived fire weather indicators have been 

shown to well represent fire danger. For instance, McElhinny et al. (2020) found a generally good agreement between FWI 

values and station observations in Canada. Similarly, Vitolo et al. (2020) identified links between trends in fire weather indices 130 

and fire events. 
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2.3 CMIP6 models 

During recent decades, the development and dissemination of a growing number of GCMs from numerous modelling centres 

around the world have been coordinated by CMIP (Meehl et al., 2000, 2007; Taylor et al., 2012; Eyring et al., 2016). CMIP 

supports climate change assessments at national and international levels and brings about climate model improvements. CMIP 135 

results have been consequently used to prepare the IPCC Assessment Reports (IPCC, 2021b). CMIP’s sixth and current phase 

(CMIP6) (Eyring et al., 2016) includes the participation of more institutions (and model versions) in comparison to the project’s 

fifth phase (CMIP5). 

We calculated the CFWIS components using the R package cffdrs (Wang et al., 2017). The CFWIS typically requires 

observations of temperature, relative humidity and wind speed taken at noon local time, in addition to 24-hour accumulated 140 

precipitation. For a consistent approach to the global analysis, daily values for maximum temperature, mean wind speed, 

minimum relative humidity and total precipitation were used as proxies for noon conditions. This approach is similar to that 

taken by Jolly et al. (2015) and Calheiros et al. (2021). At the time of analysis, the required input fields were available f or 16 

CMIP6 models. Given the disparity in ensemble size among the available models, our analysis is limited to a single ensemble 

member for each model. The full set of models, developed by a total of 13 institutions, is detailed in Table 1.  145 

Table 1. List of the 16 models used to simulate CFWIS components, and their original resolutions.  

Institution Model Resolution (lon x lat) 
CSIRO-ARCCSS ACCESS-CM2  1.875° x 1.25° 

CSIRO ACCESS-ESM1-5 1.875° x 1.25° 

CCCma CanESM5 2.8° x 2.8° 

CMCC CMCC-ESM2 1.25° x 0.9° 

  CNRM-CERFACS 
CNRM-CM6-1 1.4° x 1.4° 

CNRM-ESM2-1 1.4° x 1.4° 

NOAA-GFDL GFDL-CM4 1.25° x 1° 

     INM 
INM-CM4-8 2° x 1.5° 

INM-CM5-0 2° x 1.5° 

IPSL IPSL-CM6A-LR 2.5° x 1.3° 

NIMS-KMA KACE-1-0-G 1.875° x 1.25° 

KIOST KIOST-ESM 1.875° x 1.875° 

HAMMOZ-Consortium MPI-ESM-1-2-HAM 1.875° x 1.875° 

     MPI-M 
 MPI-ESM1-2-HR 0.94° x 0.94° 

MPI-ESM1-2-LR 1.9° x 1.9° 
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MRI MRI-ESM2-0 1.125° x 1.125° 

 

Following the calculation of CFWIS components, to permit comparison between CMIP6 models and the GEFF-ERA5 

reference data, all data were re-gridded to a 2° x 2° resolution, using bilinear interpolation.  

2.4 Model evaluation 150 

Model evaluation is limited to the areas of the world considered vulnerable to fire activity. Such ‘fire-prone’ areas of the world 

are here defined according to the historical evidence of fire activity, determined using burned area data from version 4 of t he 

Global Fire Emissions Database (GFED4) (Giglio et al., 2013; Poulter et al., 2015; Mezuman et al., 2020). GFED4 burned 

area data are available for the 1996-2016 period. All grid points within a 50 km radius of a record of burned area are identified 

as ‘fire-prone’, to account for the spatial randomness of fire activity and the relatively short record of the GFED4 data.  155 

To understand the overall model representation of all CFWIS components (Fig. 1), simulations from each GCM are then 

compared to corresponding GEFF-ERA5 fields between 1980 and 2014. Model performance is then quantified through the 

ability of GCMs to simulate monthly mean and 90th percentile statistics (to account for extreme fire weather) with GEFF-

ERA5 used as a reference. Evaluation of model representation of spatial and seasonal patterns is undertaken for all CFWIS 

components at both the global and regional scales, firstly, concerning the multi-model mean (Sects. 3.1 and 3.2) and, secondly, 160 

with respect to the inter-model spread (Sect. 3.3). Multiple model performance metrics are used, including (i) spatial correlation 

to assess the representation of spatial variability; (ii) root mean squared error (RMSE) to assess the representation of mean 

states and the extent of model bias; (iii) ratio of observed standard deviation to assess the representation of variance. Taylor 

diagrams (Taylor, 2001; Grimmond et al., 2010; Abbasian et al., 2019) are used to visualise and quantify inter-model relative 

performance terms of each model’s capacity to reproduce the mean, variance and spatial variability of each CFWIS component. 165 

Regional analysis is based on 14 GFED-defined fire regions originally presented by Giglio et al. (2006) and van der Werf et 

al. (2006), and widely used in subsequent work (e.g., Giglio et al., 2010; 2013; Andela et al., 2019; Mezuman et al., 2020; Liu 

et al., 2022). To isolate model performance during periods that are most conducive to fire activity, a fire season was established 

for each GFED region, defined by those months for which the total burned area is greater than 50% of the maximum burned 

area across all months.  170 

3 Results 

3.1 Evaluation of multi-model CFWIS representation 

The GEFF-ERA5 data suggests that wildfire danger is largest in dry tropical and subtropical regions such as Australia, sub-

Saharan Africa, South America, southern Asia, the Mediterranean Basin and western North America (Fig. 2; left column). For 
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all CFWIS components, global patterns are generally similar for both the annually-averaged monthly mean (Fig. 2; centre 175 

column) and 90th percentile statistics (Fig. 3; centre column). 

The CMIP6 multi-model mean reproduces observed spatial patterns, i.e., regions where fire danger is the highest, reasonably 

well (Figs. 2-3). Nevertheless, there is a tendency for CMIP6 models to overestimate fire-prone weather conditions within the 

tropics, particularly in parts of South America, sub-Saharan Africa and Southeast Asia (Figs. 2-3). There is also a general 

tendency for the CMIP6 multi-model mean to underestimate fire danger in the western part of North America and areas of 180 

Australia and, for some of the indicators (FFMC, DC, ISI), in boreal Asia too (Fig. 2c, i, l).  

Regional contrasts are also identified in simulating the fire weather indicators. Looking at the indices describing the quant ity 

of moisture contained by fire fuels, FFMC is overestimated in wet tropical and subtropical regions, such as South America, 

Sub-Saharan Africa, and India, for both the mean (Fig. 2c) and, to a lesser extent, the 90 th percentile (Fig. 3c). Meanwhile, the 

same index is particularly underestimated in cold and temperate regions, such as Boreal North America, northern Europe and 185 

Boreal Asia. DMC is overestimated in South America, southern Africa, and Southeast Asia, while underestimations are found 

in Australia, the southwest part of North America and southwest Southern Africa (Fig. 2f and Fig. 3f). DC is generally 

underestimated in Australia, southern Africa, the East of Central Asia, the West part of northern America and eastern Brazil,  

whereas overestimation appears in areas of South America, Central America, Southeast Asia and Africa for both the mean 

(Fig. 2i) and 90th percentile (Fig. 3i). 190 

Regarding fire behaviour indices, ISI is generally well represented across the world, but the mean is overestimated in a number 

or regions, including Southeast Asia, Middle East, South Europe, Central and South America, Africa, the southern part of 

Australia and some central areas of Temperate North America (Fig. 2l). By contrast, ISI is underestimated in some areas of 

Central Asia, Temperate North America the northern part of Australia, and some areas in Brazil and southernmost South 

America and South Africa (Fig. 2l). For BUI, areas of overestimation include South America, Southeast Asia, Northern 195 

Hemisphere Africa, Southeast Asia, with underestimation apparent in Australia, the western part of Central and Temperate 

North America, and the southernmost parts of South America and South Africa (Fig. 2o). For FWI and DSR, there is a similar 

pattern as in the other CFWIS components. FWI and DSR are overestimated in southern Australia, Southeast Asia, some areas 

of Central Asia, Middle East, South Europe, Northern and Southern Hemisphere Africa, South and Central America, and the 

central area of Temperate North America (Fig. 2r, u). Meanwhile, FWI and DSR are underestimated in Northern Australia, the 200 

Western part of Central and Temperate North America, southernmost South Africa and South America, eastern Brazil, and 

some areas of Central Asia and the eastern Middle East (Fig. 2r, u).  
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Figure 2: Annual means for GEFF-ERA5 (left) and the CMIP6 multi-model mean (centre), and bias in the CMIP6 multi-model 

mean with respect to GEFF-ERA5 (right) for FFMC (a-c), DMC (d-f), DC (g-i), ISI (j-l), BUI (m-o), FWI (p-r) and DSR (s-u). Lighter 205 
yellow colour represents lower danger and darker brown represents higher danger. Meanwhile, white colour represents lower bias 

and darker blue/red higher negative/positive bias. 
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Figure 3: Annual values of the 90th percentile for GEFF-ERA5 (left) and the CMIP6 multi-model mean (centre), and bias in the 

CMIP6 multi-model mean with respect to GEFF-ERA5 (right) for FFMC (a-c), DMC (d-f), DC (g-i), ISI (j-l), BUI (m-o), FWI (p-r) 210 
and DSR (s-u). Lighter yellow colour represents lower danger and darker brown represents higher danger. Meanwhile, white colour 

represents lower bias and darker blue/red higher negative/positive bias. 
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3.2 Seasonality in multi-model biases 

As model bias could exhibit strong seasonal and regional dependencies, we examine how CMIP6 models perform throughout 

the year for each of the 14 GFED fire regions in Fig. 4. As for Sect. 3.1, model performances are assessed by quantifying the 215 

model discrepancy with respect to GEFF-ERA5. To isolate CMIP6 performance during periods that are most conducive to fire 

activity, a fire season was established for each region based on available GFED4 burned area data. For each GFED-defined 

region, the fire season was defined by those months for which the total burned area is greater than 50% of the maximum burned 

area across all months. Throughout the year, the results support those already determined from Figs. 2-3. CMIP6-simulated 

CFWIS components generally agree with GEFF-ERA5 in Temperate North America (TENA; Fig. 4b), South Hemisphere 220 

Africa (SHAF; Fig. 4i) and Australia (AUST; Fig. 4n). However, CMIP6 overestimation is found in South America (Fig. 4d-

e), Southeast and Equatorial Asia (Fig. 4l-m) and, to a lesser extent, Northern Hemisphere Africa (Fig. 4h) and Europe (Fig. 

4f) for all CFWIS components, except for FFMC. 

There are some clear seasonal differences in model performance. In Boreal North America (BONA), several CFWIS 

components, including DMC, BUI, FWI and DSR, are underestimated during the first half of the year, and overestimated from 225 

June to December (Fig. 4a). In Boreal Asia (BOAS), the overall CMIP6 performance varies greatly during the year, with 

considerable underestimation during the first half of the year, and overestimation during the second half, and June showing 

lower negative bias (Fig. 4j); FFMC in the region shows quite low bias along the year and DC from August to December (Fig. 

4j). In the Middle East (MIDE) region, model biases are positive, however, they present lower values during the fire season 

and higher values from January to May for all indicators except for FFMC (Fig. 4g).  230 

Looking at the regions with lower bias, in Temperate North America (TENA), CFWIS components show good agreement 

overall, with moderate underestimation evident from November to June, and moderate overestimation evident from July to 

October (Fig. 4b). CMIP6 performance is strong for all CFWIS components in Southern Hemisphere Africa (SHAF), showing 

marginal underestimation for most indicators, and some slight overestimation for FFMC (Fig. 4i). In Australia (AUST), 

CMIP6-simulated CFWIS show good performances (Fig. 4n), with the lowest positive bias in FFMC, and the rest of the 235 

indicators show a low negative bias, except for November-February where biases are positive. Biases for Central America 

(CEAM) are low in all indicators, with higher positive biases in ISI, FWI and DSR from June to September (Fig. 4c). In Central 

Asia (CEAS), the CMIP6 ensemble generally agrees with GEFF-ERA5 data, but exhibits overestimation from July to October, 

representing most of the fire season (Fig. 4k).  

The rest of the regions present positive and higher bias, FFMC being the component with lower values. In Northern Hemisphere 240 

South America (NHSA), CFWIS components present a very large positive bias throughout the year, with lower values for 

FFMC, especially for the 90 th percentile (Fig. 4d). In Southern Hemisphere South America (SHSA), indicators also show 

positive biases, especially in DMC and BUI, which are, however, lower than in NHSA (Fig. 4e). In Europe (EURO), most 

simulated indices (DMC, BUI, FWI, DSR) are overestimated compared to observations especially from June to February (Fig. 
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4f). Similarly, biases in simulating CFWIS components in Northern Hemisphere Africa (NHAF) are generally positive (Fig. 245 

4h). Lastly, in both, Southeast (SEAS) and Equatorial Asia (EQAS) (Fig. 4l-m), model biases are large and positive throughout 

the year. 

  

Figure 4: Bias in monthly means in seven CFWIS components simulated by the CMIP6 multi-model mean with respect to GEFF-

ERA5 across 14 GFED fire regions: (a) Boreal North America (BONA); (b) Temperate North America(TENA); (c) Central America 250 
(CEAM); (d) Northern Hemisphere South America (NHSA); (e) Southern Hemisphere South America (SHSA); (f) Europe (EURO); 

(g) Middle East (MIDE); (h) Northern Hemisphere Africa (NHAF); (i) Southern He misphere Africa (SHAF); (j) Boreal Asia 

(BOAS); (k) Central Asia (CEAS); (l) Southeast Asia (SEAS); (m) Equatorial Asia (EQAS); (n) Australia and New Zealand (AUST). 

Results show overall model performance, with blue shading indicating underestimation and red shading overestimation. The lower 

right triangle represents the monthly mean and the upper left triangle the monthly 90 th percentile. Bar plots show the average 255 
monthly-burned area for each region, represented as a fraction of the monthly maximum. Black  bars highlight months that 

constitute the ‘fire season’, defined as those months for which the average burned area is greater than 50% of the monthly maximum. 
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3.3 Evaluation of inter-model performance 

As shown in Sects. 3.1-2, the CMIP6 multi-model ensemble shows overall good agreement with GEFF-ERA5 in terms of 

spatial patterns for both the mean and 90th percentile. In this section, the focus is thus given to the performance of each CMIP6 260 

model to simulate CFWIS components at both global and regional scales. This evaluation is again applied to simulated mean 

and 90th percentile values for all CFWIS components and is based on spatial correlation, the normalised root mean squared 

error (RMSE) and the ratio of the observed and simulated standard deviations, which are summarised using Taylor diagrams. 

(Figs. 5-6).  

At the global scale, the representation of DMC, DC and BUI is similar among models, which all present similar patterns, with 265 

greater inter-model variability and thus greater uncertainty, for both monthly mean (Fig. 5b, c, e) and 90 th percentile annual 

values (Fig. 6b, c, e). Inter-model variability and uncertainty are smaller for FFMC, ISI, FWI and DSR (Figs. 5-6a, d, f, g), for 

which most models reproduce spatial patterns reasonably well, with a normalised RMSE around 0.5 and a correlation ranging 

from 0.80 to 0.96.  

Looking at the different indicators individually, model performance varies greatly from one indicator to the other. For instance, 270 

the GFDL-CM4 model performs well for all CFWIS components (Fig. 5). For FFMC, the best performing models are IPSL-

CMA6-LR, INM-CM4-8 and INM-CM5-0, while the poorest performances are found in MPI-1-2-HAM and MPI-ESM1-2-

LR (Fig. 5a). The models best-representing DMC, DC and BUI are GFDL-CM4 and MRI-ESM2-0 (Fig. 5b, c, e). By contrast, 

the CNRM and CMCC models show poor performances in simulating this set of indicators. Furthermore, concerning DMC 

and BUI, the MPI-M models also exhibit poor performances (Fig. 5b,c,e). ISI and DSR are well reproduced by GFDL-CM4 275 

and MPI-ESM1-2-HR, while the models KACE-1-0-G, MRI-ESM2-0 and ACCESS-CM2 show poorer skill (Fig. 5d, g). 

Finally, for FWI, the models with the best skill are GFDL-CM4 and MPI-ESM1-2-HR and the models with poorer performance 

are KACE-1-0-G and MRI-ESM2-0 (Fig. 5f).  
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Figure 5: Taylor diagrams showing the capacity of 16 CMIP6 models to simulate annual means in the seven CFWIS indices. The 280 
correlation coefficient is plotted in relation to the polar axis, the normalised RMSE in relation to the internal circular ax is, and the 

normalised standard deviation in relation to the horizontal axis. GEFF-ERA5 is represented by an empty dot on the horizontal axis. 

Regarding the 90th percentile over the different CFWIS components (Fig. 6), patterns of models across regions are very similar 

to the fire season mean simulations (Fig. 5). 
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 285 

Figure 6: Taylor diagrams showing the capacity of 16 CMIP6 models to simulate annual 90 th percentile in the seven CFWIS indices. 

The correlation coefficient is plotted in relation to the polar axis, the normalised RMSE in relation to the internal circular axis, and 

the normalised standard deviation in relation to the horizontal axis. GEFF-ERA5 is represented by an empty dot on the horizontal 

axis. 

The CMIP6 ensemble mean results show considerable regional dependencies, and one would expect such differences to be  290 

apparent in the performance of individual models. To understand and quantify the relative performance of each model, Fig. 7 
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details the same set of spatial correlation, normalised RMSE and standard deviation ratio shown in Figs. 5 -6, this time for each 

of the 14 GFED regions. Unlike the global analysis shown in Figs. 5-6, the results in Fig. 7 only consider the corresponding 

fire season of each region based on historical burned area (as determined in Fig. 4).  

The values of the three evaluation metrics, both for the mean and 90th percentile, vary greatly from region to region and across 295 

individual models (Fig. 7). Looking at the spatial correlation (Fig. 7a), for instance, Australia and Southeast Asia are 

consistently in good agreement to observations across the different models, while for others like South America all models 

show much weaker performance. For the normalised RMSE (Fig. 7b), most models in South America show larger values, and 

Central and Southeast Asia present lower values overall. In the case of the standard deviation (Fig. 7c), there are no clear 

patterns, and the values are quite heterogeneous both among models and among regions.  300 
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Figure 7: Individual CMIP6 model (a) correlation, (b) RMSE and (c) absolute log of the ratio of standard deviation with respect to 

GEFF-ERA5 for the fire season mean and 90 th percentile across each of the seven CFWIS indices and each of the 14 GFED fire 

regions. Darker colours show higher spatial correlations, and lighter colours lower. The fire season for each region is defined as 

those months for which the average burned area is greater than 50% of the monthly maximum (see Fig. 4).  305 
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Following the approach taken by Dieppois et al. (2015) in the evaluation of CMIP5 models, all three different statistics from 

Fig. 7 are combined to rank the individual model performance. Models are ranked for each of the three spatiotemporal skill 

metrics for seasonal mean and 90 th percentile in each CFWIS component and each region, with a comprehensive ranking 

matrix shown in Fig. 8. The overall relative performance of individual models exhibits a strong degree of heterogeneity across 

the different regions but, in most cases, is consistent among the different CFWIS components (Fig. 8). There are some models 310 

(e.g., INM models, IPSL, CM6A-LR and MPI-ESM-1-2-HAM) that consistently show weaker performance in most of the 

regions (Fig. 8). The CNRM models, for instance, perform  relatively poorly in many regions but perform reasonably well in 

Australia (Fig. 8). By contrast, there are some models, such as ACCESS-CM2, GFDL-CM4 and MRI-ESM2-0, that show 

better performance in most regions, with some exceptions (Fig. 8). 

 315 
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Figure 8: CMIP6 inter-model ranking for 14 GFED regions, 7 CFWIS components and 3 x 2 skill metrics (correlation, RMSE, and 

ratio of standard deviation for the mean and 90 th percentile). For a given region and CFWIS component, models are ranked from 1 

(the strongest) to 16 (the weakest) accordingly to a given skill metric. Blue (red) shading is thus indicative of strong (weak) mo del 

performance.  

4 Synthesis and discussion 320 

To support applications that seek to justify the selection of one or more models on which to base an impact study, we generated 

a set of rankings inspired by those produced for the evaluation of the EURO-CORDEX ensemble by Vautard et al. (2021). All 

16 models were ranked according to two different measurements: (1) the count of the number of times for which each model 

falls into the upper tercile in terms of all three spatiotemporal skill metrics (i.e., correlation, normalised RMSE and the r atio 

of standard deviation) for the seasonal mean and 90 th percentile in each of the seven CFWIS components and across each of 325 

the 14 GFED fire regions (Fig. 9a); and (2) the count of the number of times in which a model falls into the lower tercile, 

indicating which models exhibit poorer performance more frequently (Fig. 9b).  

Only three models appear in the upper tercile more than 50% of the time: ACCESS-CM2, GFDL-CM4 and MRI-ESM2-0 

(Fig. 9a). ACCESS-CM2 features in the upper tercile at least 35 out of 42 times in Europe (EURO) and Central America 

(CEAM) regions. GFDL-CM4 is also a strong performer in Europe, as well as in Equatorial (EQAS) and Southeast Asia 330 

(SEAS), but is far weaker in the Americas (BONA, CEAM, NHSA and SHSA). In Boreal North America (BONA), the 

standout models are MPI-ESM1-2-HR and CANESM5. In Australia (AUST), GFDL-CM4 and CNRM-CM6-1 perform best 

overall. Overall, the two MPI-ESM models and the two INM models feature in the upper tercile on less than 20% of occasions 

and there are no individual regions where these models are shown to perform well. MPI-ESM-1-2-HAM and the two INM 

models also appear in the lower tercile category more than 250 times (Fig. 9b). GFDL-CM4 and ACCESS-CM2 are the 335 

strongest performers in this respect, falling in the lower tercile fewer than 100 times.  
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Figure 9: (a) Counts of the number of times that each CMIP6 model is ranked in the upper tercile (top 5) across all 7 CFWIS 

components and 3 x 2 skill metrics (correlation, RMSE, and ratio of standard deviation for the mean and 90 th percentile). The grid 

(left) shows the breakdown of total counts for each of the 14 GFED regions. The bars (right) indicate the total count across all 340 
regions. (b) As (a) but for the lower tercile (bottom 5). 

In addition, models perform well in simulating some variables, but not others. The individual model performance also exhibits  

a strong regional dependence. For several models, performance was found to be strong across some regions and poorer in 

others. It is difficult to identify systematic reasons for the inter-model differences based on spatial resolution or shared 

pathways of model development, otherwise referred to as model genealogy (Masson and Knutti, 2011). Performance is similar 345 

among the INM and CNRM model families, but there are considerable differences between the three MPI models. MPI-ESM1-

2-HR consistently performs better than its companion lower resolution models (MPI-ESM1-2-LR and MPI-ESM-1-2-HAM). 

However, there is little evidence for a model’s original spatial resolution as an important factor in its performance. The 

CanESM5 model has the lowest resolution (2.8° x 2.8°) but performs strongly in several regions and reasonably well across 

the world.  350 

The models performing better across a wider set of regions are ACCESS-CM2, GFDL-CM4 and MRI-ESM2-0 when assessing 

model performance region-by-region, and for each region’s fire season (Fig. 8). ACCESS-ESM1-5 shows good skill annually 

and at a global scale (except for FFMC), and it is one of the models performing well in the highest number of regions (Figs. 

8-9). The models that show the poorest skill in most regions are INM-CM4-8, INM-CM5-0 and MPI-ESM-1-2-HAM, and are 
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also found often in the lower part of the global ranking distribution (lower tercile, Fig. 9). It is advisable not to include  models 355 

consistently performing poorly, both when simulating CFWIS components at global and regional scales, in a multi-model 

study unless for specific regions where they present better skill. Careful consideration to model selection should be given 

taking into account the study area and the studied fire weather indicators. 

5 Conclusions and outlook 

Changes in the intensity and spatial distribution of wildfires are a likely consequence of a changing global climate. Producing 360 

reliable projections of meteorologically-driven wildfire danger is crucial for establishing forest management and restoration 

strategies that will remain resilient in future decades. We presented a comprehensive evaluation of CMIP6 performance in 

simulating spatiotemporal variability in fire weather across all parts of the world currently vulnerable to wildfire. A set o f fire 

weather indicators, defined by the CFWIS, were generated for 16 different CMIP6 models and compared with corresponding 

fields from the GEFF-ERA5 fire danger reanalysis for the period 1979-2014. Models were analysed collectively as part of an 365 

ensemble mean and in terms of their individual performance on both global and regional scales according to a set of 

performance criteria. At the global scale, the ensemble mean was found to simulate well the set of CFWIS components, 

reproducing similar spatial patterns to the GEFF-ERA5 reference dataset. This is broadly encouraging for the use of the CMIP6 

ensemble as a tool for understanding future changes in fire weather associated with a changing climate. At the regional scale, 

model results showed seasonal and regional variability, with some regions exhibiting very little model bias (e.g., Australia or 370 

Southern Hemisphere Africa), and vice-versa in other regions (e.g., Northern Hemisphere South America or Southeast Asia).  

Our results also have important implications for the use of CMIP6-derived simulations of past, present and future climate-

driven fire danger. It is anticipated that the evaluation presented here will serve as an important resource for users of model-

simulated fire weather, both during the CMIP6 era and beyond, in three different ways. Firstly, the extent to which any given 

model performs well is sensitive to the fire weather indicator being evaluated. Ultimately, different indicators, including t he 375 

CFWIS set evaluated here, have different meanings in meteorological terms and strong model performance for one indicator 

does not necessarily mean strong performance for another. At the global scale, FFMC, ISI, FWI and DSR tend to be reproduced 

with lower uncertainty. The results that are shown here catalogue where and for which model skill is sufficiently strong for a 

range of fire weather indicators. Secondly, model performance can vary dramatically from one region to another. The 

evaluation highlights regions where the capacity to reproduce fire weather is strong, at least in a subset of models. These 380 

differences should be fully accounted for in regional scale fire weather studies. Thirdly, the large differences in model 

performances highlight the importance of a comprehensive model selection. This could significantly affect the conclusion 

provided in previous assessments of global wildfire projections using a single model (e.g. Krawchuk et al., 2009) or using a 

multi-model mean (e.g., Moritz et al., 2012; Dowdy et al., 2019). For instance, projected trends derived from multi-model 

mean could be significantly impacted by outlier models, presenting unrealistic mean, variability and trends. Comprehensive 385 

characterisation and quantification of model uncertainties are thus ethically crucial for robust decision-making (Knutti, 2010; 
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Daron et al., 2021). The results presented here not only demonstrate the value of model selection but also provide a potential 

foundation for projections that take individual model skill and/or independence into account (e.g., Eyring et al.,  2019). 

While here we provide a robust, meaningful and useful global evaluation of CMIP6-simulated fire weather, it is necessary to 

outline potential caveats and opportunities for expansion. The availability of the input fields necessary to construct the f ull set 390 

of CFWIS components limited the evaluation to 16 CMIP6 models out of more than 50. Further study may consider additional 

models that contribute to CMIP6 for which input data may become available in the future. Furthermore, as some of the models 

only had one realisation available, we only consider here differences between single members, which could potentially affect 

the model variability on regional scales (Deser, 2020). The currently used CFWIS indicators (Van Wagner, 1987) were firstly 

defined for specific stand conditions at noon time; to update the system so it provides better fire danger information, moisture 395 

codes and behaviour indices are being reviewed to consider for peak daily burning conditions, and a new version of the system 

will be released by 2025 (Canadian Forest Service Fire Danger Group, 2021). In addition, analysis of fire weather indicators 

from other risk assessment systems would complement the results presented here. Global analysis of the CFWIS (e.g., Liu et 

al., 2022) has recommended extension to fire weather indicators from such systems as the McArthur Forest Fire Danger Index 

from the Centre for Australia Weather and Climate Research (McArthur, 1967), Keetch-Byram drought index from the US 400 

Department of Agriculture’s Forest Service (Keetch and Byram, 1968), and the Energy Release Component from the US 

National Fire Danger Rating System (Deeming et al., 1972). A final point concerns the GFED fire regions taken as the basis 

for the regional-scale analysis: while they are a useful categorisation for the purpose of this evaluation, fire regimes vary 

substantially at the intra-regional scale. It is important for studies requiring GCM-simulated fire weather data to consider that 

such intra-regional variability will likely extend to model performance.  405 

Wildfires are complex events that involve not only forest dynamics, but also climate conditions and human activity, so their 

projection under climate change is challenging. Given the predicted changes in fire regimes, their intensity and spatial 

distribution, current forest management and restoration strategies may not be effective for future conditions. This is partic ularly 

crucial as changes in wildfire activity become more evident both in fire-prone regions and in regions where wildfire danger 

was previously minimal (Mamuji and Rozdilsky, 2019; Boer et al., 2020; McCarty et al., 2020). The approach presented here 410 

aimed to characterise uncertainty in the latest generation of GCMs (CMIP6) when simulating fire weather, and to evaluate 

model fidelity in order to reduce those uncertainties when informing future projections. Evaluation and model selection will 

support more appropriate and informed decision-making, and aid forest managers in formulating strategies to respond to future 

wildfire events. 

Code and data availability 415 

The CMIP6 model data are available at https://esgf-node.llnl.gov/projects/cmip6/  
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The reanalysis data (GEFF-ERA5) are available in the Copernicus Climate Data Store at 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.0e89c522?tab=overview  

The R package used for the calculation of the components of the Canadian Forest Fire Weather Index System can be found at 

https://cran.r-project.org/web/packages/cffdrs/index.html  420 
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