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1. Pollutant loadings  
Pollutant loadings can be either be: 1) prescribed by the user directly; or 2) calculated within the 
DynQual run by providing simple input data. When loadings are prescribed directly to the model, the 15 
user is only required to provide input files on the total (i.e. combined) pollutant loadings of TDS (in g 
day-1), BOD (in g day-1), FC (in 106 cfu day-1) and Tw (in MW). Conversely, when pollutant loadings 
are calculated within the DynQual, a variety of input data is required to reflect both pollutant 
emissions from sectoral activities and the transmission of pollution to the environment (Jones et al., 
2022). The subsequent routing of pollutants through the stream network and the calculation of in-20 
stream concentrations follows the same approach in both configurations. 

 
Figure S1. Simplified approach for pollutant routing and the calculation of in-stream concentrations. 

The following section describes the approach used and assumptions made for calculating pollutant 
loadings dynamically within a DynQual model run. DynQual considers pollutant emissions from five 25 
distinct sectors (domestic, manufacturing, livestock, irrigation and thermo-electric power generation) 
and from urban surface runoff (Figure S1). The prevalence of wastewater collection and treatment, 
combined with their associated pollutant removal efficiencies, are key factors controlling subsequent 
delivery of pollution to surface waters (Jones et al., 2022). For detailed information about the 
development of grid cell specific wastewater treatment practices and their inclusion in DynQual, we 30 
refer to the previous work (Jones et al., 2021; Jones et al., 2022). 

 

1.1 Domestic 
 

𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖,𝑛𝑛 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 ∙  𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖,𝑛𝑛 ∙  (1 − 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖,𝑛𝑛) 35 

[1] 

Pollutant loadings from the domestic sector (𝐿𝐿𝑑𝑑𝑃𝑃𝑑𝑑,𝑖𝑖,𝑛𝑛) are calculated by multiplying the population 
(𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛) in gridcell n by a regional-specific per capita excretion rate (𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖,𝑛𝑛) of pollutant i (TDS and 
BOD in g capita-1 day-1; FC in cfu capita-1 day-1) [1]. Pollutant loadings are abated based upon gridcell 
specific domestic wastewater collection and treatment practices, represented by 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖,𝑛𝑛, which 40 
depends upon the wastewater pathway(s) in gridcell n and the pathway-specific removal efficiency of 
pollutant i (Jones et al., 2021; Jones et al., 2022). 
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Gridded population data at 5 arc-minutes was obtained from ISIMIP3a (Lange and Geiger, 2020). Per 
capita pollutant loadings are prescribed per water quality constituent at the regional scale (Table S1). 
Per capita excretion rates of BOD and FC vary at the regional level due to differences in diet, climate 45 
and health status (Williams et al., 2012; UNEP, 2016). Conversely, due to a lack of more detailed 
data, an average global value for per capita excretion of TDS was used. Pollutant loadings per capita 
are based on extensive literature research conducted for previous global water quality modelling 
studies (UNEP, 2016; Van Vliet et al., 2021) and are assumed to remain constant throughout the study 
period. 50 

 

Table S1. Domestic sector total dissolved solids (TDS), biological oxygen demand (BOD) and fecal 
coliform (FC) loadings per geographic region. 

 

 55 
*as per UNEP (2016) and van Vliet et al. (2021); **as per UNEP (2016) and Williams et al., (2012); ***as per 
UNEP (2016) and Reder et al., (2015) 
 

1.2 Manufacturing 
 60 

𝐿𝐿𝑑𝑑𝑚𝑚𝑛𝑛,𝑖𝑖,𝑛𝑛 =  𝑊𝑊𝑊𝑊𝑑𝑑𝑚𝑚𝑛𝑛,𝑛𝑛 ∙ 𝐶𝐶𝑑𝑑𝑚𝑚𝑛𝑛,𝑖𝑖,𝑛𝑛 ∙ (1 − 𝑅𝑅𝑑𝑑𝑚𝑚𝑛𝑛,𝑖𝑖,𝑛𝑛) 

[2] 

Pollutant loadings from the manufacturing sector (𝐿𝐿𝑑𝑑𝑚𝑚𝑛𝑛,𝑖𝑖,𝑛𝑛) are calculated by multiplying the 
manufacturing wastewater flows (return flows) in gridcell n (𝑊𝑊𝑊𝑊𝑑𝑑𝑚𝑚𝑛𝑛,𝑛𝑛 in m3 s-1) by a mean 
manufacturing effluent concentration  (𝐶𝐶𝑑𝑑𝑚𝑚𝑛𝑛,𝑖𝑖,𝑛𝑛) for pollutant i (TDS and BOD in mg l-1; FC in cfu l-65 
1) [2]. Pollutant loadings are abated based upon gridcell-specific manufacturing wastewater collection 
and treatment practices, represented by 𝑅𝑅𝑑𝑑𝑚𝑚𝑛𝑛,𝑖𝑖,𝑛𝑛which depends upon the wastewater pathway(s) in 
gridcell n and the pathway-specific removal efficiency of pollutant i (Jones et al., 2021; Jones et al., 
2022). 

As PCR-GLOBWB2 does not distinguish explicitly between the manufacturing and thermoelectric 70 
power sectors (lumped together as the “industrial” sector), we estimate the percentage of total 
industrial flows that originate specifically from manufacturing activities and apply this to PCR-
GLOBWB2 simulated industrial return flows at the country level. To make this distinction, we 
subtract power return flows derived from an external source (Lohrmann et al., 2019) from PCR-
GLOBWB2 industrial return flows, to provide an estimate of manufacturing return flows. We further 75 

Geographic Region 

Domestic 
TDS (g day

-1
 

capita-1)* 
BOD (g day

-1
 

capita-1)* 
FC (cfu day

-1
 

capita-1)* 
North America 100 65 1.3∙10

10
 

Latin America & Caribbean 100 56 1.4∙10
10

 

Western Europe 100 60 1.3∙10
10

 

Middle East & North Africa 100 45 1.8∙10
10

 

Sub-Saharan Africa 100 37 4.7∙10
9
 

Southern Asia 100 40 1.9∙10
10

 

Eastern Europe & Central Asia 100 50 1.6∙10
10

 

East Asia & Pacific 100 50 1.6∙10
10
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cross-checked these estimated manufacturing return flows against a spatially-explicit municipal 
wastewater dataset (Jones et al., 2021). 

Lacking more detailed information regarding both the specific manufacturing processes and the 
associated effluent quality, globally consistent effluent concentrations are applied for all manufacturing 
return flows worldwide (Table S2), consistent with previous work (UNEP, 2016; Van Vliet et al., 2021). 80 
Mean effluent concentrations are derived from literature review and are assumed to remain constant 
throughout the study period. 
 

Table S2. Manufacturing sector total dissolved solids (TDS), biological oxygen demand (BOD) and 
fecal coliform (FC) effluent concentrations. 85 

 TDS (mg l-1)* BOD (mg l-1)* FC (cfu l-1)* 
Global 3000 400 3.55∙108 

*as per UNEP (2016) and van Vliet et al. (2021) 
 
 
 

1.3 Urban surface runoff 90 
 

𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢,𝑖𝑖,𝑛𝑛 =  𝑅𝑅𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈,𝑛𝑛 ∙ 𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈,𝑖𝑖,𝑛𝑛 ∙ (1 − 𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈,𝑖𝑖,𝑛𝑛) 

[3] 

Pollutant loadings from urban surface runoff (𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢,𝑖𝑖,𝑛𝑛) are calculated by multiplying urban surface 
return flows (𝑅𝑅𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈,𝑛𝑛 in m3 s-1) in gridcell n by a mean urban runoff effluent concentration (𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈,𝑖𝑖,𝑛𝑛) 95 
for pollutant i (TDS and BOD in mg l-1; FC in cfu l-1) [3]. Pollutant loadings are abated based upon 
gridcell-specific wastewater collection and treatment practices, represented by 𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈,𝑖𝑖,𝑛𝑛which depends 
upon the wastewater pathway(s) in gridcell n and the pathway-specific removal efficiency of pollutant 
i (Jones et al., 2021; Jones et al., 2022) 

Urban surface runoff flows are simulated within PCR-GLOBWB2 (Sutanudjaja et al., 2018), calculated 100 
by multiplying the fraction of the gridcell that is urban by the simulated surface runoff. Mean urban 
surface runoff pollutant concentrations are taken from existing work (UNEP, 2016), based on extensive 
literature review. TDS and BOD concentrations vary at the regional level whereas, lacking detailed 
data, FC is assumed to be constant across all regions (Table S3). Mean urban surface runoff 
concentrations are assumed to remain constant throughout the study period. 105 
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Table S3. Urban surface runoff total dissolved solids (TDS), biological oxygen demand (BOD) and 
fecal coliform (FC) mean concentrations per geographic region. 

Region 
Urban surface runoff 

TDS (mg l-1)* BOD (mg l-1)* FC (cfu l-1)* 
North America 205 12 1∙10

6
 

Latin America & Caribbean 205 12 1∙10
6
 

Western Europe 205 12 1∙10
6
 

Middle East & North Africa 212 19 1∙10
6
 

Sub-Saharan Africa 178 62 1∙10
6
 

Southern Asia 246 105 1∙10
6
 

Eastern Europe & Central Asia 246 19 1∙10
6
 

East Asia & Pacific 246 105 1∙10
6
 

*as per UNEP (2016) 110 
 

1.4 Livestock 
 
For calculating pollutant loadings from the livestock sector, the sector is sub-divided into intensive and 
extensive systems based on livestock population density. For defining intensive livestock systems, a 115 
minimum threshold density of 25 livestock units per km2 was set with one livestock unit equivalent to 
~250kg (1 bovine) (Wen et al., 2017; Vigiak et al., 2019). Average animal mass equivalent coefficients 
were taken from literature (Robinson et al., 2011; Wen et al., 2017) to convert this threshold density 
into a livestock-type specific threshold density per km2 (Wen et al., 2017; Vigiak et al., 2019). Gridcells 
exceeding this threshold density (per livestock type) were designated as intensive livestock systems, 120 
whereas gridcells below this threshold were designated as extensive livestock systems. 
 
The distinction between intensive and extensive livestock systems is made to account for the differences 
in the paths by which livestock waste (manure) enters the stream network, namely whether there is 
transportation by surface runoff (for extensive systems) or whether there is collection (and potentially 125 
subsequent treatment) of livestock waste (for intensive systems). Abation of collected livestock waste 
is all assumed to be at the same level as secondary treatment in line with Wen et al (2017) and occurs 
only in gridcells where municipal wastewater treatment is also occurring. The waste is subsequently 
assumed to be spread to land as manure and transported to surface water via surface runoff. This 
approach for calculating pollutant loadings from the livestock sector is line with previous work (Wen 130 
et al., 2017; Vigiak et al., 2019). 
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Table S4. Threshold density for designation of livestock activities as intensive systems, per livestock 
type. 

Livestock type Animal mass 
equivalent coefficient*  

Threshold density 
(stock km-2) 

Buffalo 1 25 
Chicken 0.01 2500 
Cow 1 25 
Duck 0.01 2500 
Goat 0.1 250 
Horse 1 25 
Pig 0.3 83 
Sheep 0.1 250 

* as per Robinson et al. (2011) and Wen et al. (2017) 135 
 
 
Pollutant loadings from the livestock sector are calculated as per Eq. [4], in line with the previous 
approaches for calculating pollutant loadings from intensive (Wen et al., 2017; Vigiak et al., 2019) and 
extensive (Van Vliet et al., 2021) livestock systems: 140 
 

𝐿𝐿𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖,𝑛𝑛 =  𝛴𝛴𝑦𝑦 (𝐿𝐿𝑖𝑖𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦,𝑛𝑛 ∗  𝐸𝐸𝑙𝑙𝑖𝑖𝑖𝑖,𝑦𝑦,𝑖𝑖,𝑛𝑛) ∙ (1−𝑅𝑅𝑙𝑙𝑖𝑖𝐿𝐿,𝑖𝑖,𝑛𝑛) ∙  𝑠𝑠𝑛𝑛 
 

𝐿𝐿𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖,𝑛𝑛 =  𝛴𝛴𝑦𝑦 (𝐿𝐿𝑖𝑖𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦,𝑛𝑛 ∙  𝐸𝐸𝑙𝑙𝑖𝑖𝑖𝑖,𝑦𝑦,𝑖𝑖,𝑛𝑛) ∙  𝑠𝑠𝑛𝑛  
[4] 145 

Where: 𝐿𝐿𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖,𝑛𝑛 and 𝐿𝐿𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖,𝑛𝑛 represent the loadings of pollutant i in gridcell n from the intensive and 
extensive livestock sectors, respectively. 𝐿𝐿𝑖𝑖𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦,𝑛𝑛 is the livestock population in gridcell n per 
livestock type y, with 8 livestock types considered (buffalo, chicken, cow, duck, goat, horse, pig, sheep), 
𝐸𝐸𝑙𝑙𝑖𝑖𝑖𝑖,𝑦𝑦,𝑖𝑖,𝑛𝑛 is the per stock excretion rate of pollutant i (BOD in g stock-1 day-1; FC in cfu stock-1 day-1) of 
livestock type y and gridcell n, 𝑠𝑠𝑛𝑛 is the fraction surface runoff in gridcell n and 𝑅𝑅𝑙𝑙𝑖𝑖𝑖𝑖,𝑖𝑖,𝑛𝑛is removal 150 
fractions of pollutant i due to livestock waste management practices in gridcell n (Jones et al., 2021; 
Jones et al., 2022). 
 
Gridded livestock numbers at 5 arc-minutes are from a global dataset for the reference year of 2010 
(Gilbert et al., 2018). For the quantification of past gridded livestock numbers, a region-specific 155 
constant percentage growth in the number of animals per livestock type is applied to all grid cells based 
on data from the FAO (Thomson, 2003) (Table S5). 
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Table S5. Annual growth in livestock type (population number) between 1999 – 2030 (%), applied to 160 
gridded livestock populations for 1980 - 2015(Thomson, 2003) 

Region 
Livestock Type (annual growth %)  

Cattle & 
Buffalo 

Sheep & 
Goats Pigs Horses Chickens 

& Ducks 
North America -0.1 0.2 0.1 0 0.6 
Latin America & 
Caribbean 1 0.6 1.1 0 1.9 

Western Europe -0.1 0.2 0.1 0 0.6 
Middle East & 
North Africa 1.5 1 0 0 2.1 

Sub-Saharan Africa 1.1 1.2 1.4 0 2.2 
Southern Asia 0.3 1.1 1 0 3.6 
Eastern Europe & 
Central Asia 1.2 1.2 0.8 0 1.5 

East Asia & Pacific 1.2 1.2 0.8 0 1.5 

 
Excretion rates of BOD (Table S6) and FC (Table S7) per livestock type y and per region were 
determined through literature study, as per previous global water quality modelling studies (UNEP, 
2016; Van Vliet et al., 2021). Excretion rates of pollutants per livestock type is assumed constant 165 
throughout the study period. 
 
 
Table S6. Biological Oxygen Demand (BOD) loadings per animal per livestock type and geographic 
region (i.e. manure). 170 

Region 
  

Biological Oxygen Demand (g stock-1 day-1)* 
Buffalo Chicken Cow Duck Goat Horse Pig Sheep 

Western Europe 400 8.3 400 8.3 50 300 233 50 
Sub-Saharan 
Africa 240 8.3 240 8.3 50 300 186.4 35 
Southern Asia 200 8.3 200 8.3 50 300 233 35 
North America 400 8.3 400 8.3 50 300 233 50 
Middle East & 
North Africa 280 8.3 280 8.3 50 300 186.4 35 
Latin America & 
Caribbean 280 8.3 280 8.3 50 300 233 35 
Eastern Europe 
& Central Asia 240 8.3 240 8.3 50 300 233 35 
East Asia & 
Pacific 280 8.3 280 8.3 50 300 233 35 

* as per Robinson et al., (2011), Wen et al., (2017), Vigiak et al., (2019), van Vliet et al., (2021). 
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Table S7. Fecal coliform (FC) loadings per animal per livestock type and geographic region (i.e. 
manure). 175 

Region 
  

Fecal coliform (cfu stock
-1

 day
-1

)* 
Buffalo Chicken Cow Duck Goat Horse Pig Sheep 

Western 
Europe 1.01∙10

11
 1.36∙10

8
 1.01∙10

11
 2.43∙10

9
 1.20∙10

9
 1.40∙10

9
 1.08∙10

10
 1.12∙10

9
 

Sub-Saharan 
Africa 6.06∙10

10
 1.36∙10

8
 6.06∙10

10
 2.43∙10

9
 1.20∙10

9
 1.40∙10

9
 8.64∙10

9
 7.84∙10

8
 

Southern Asia 5.05∙10
10

 1.36∙10
8
 5.05∙10

10
 2.43∙10

9
 1.20∙10

9
 1.40∙10

9
 1.08∙10

10
 7.84∙10

8
 

North America 1.01∙10
11

 1.36∙10
8
 1.01∙10

11
 2.43∙10

9
 1.20∙10

9
 1.40∙10

9
 1.08∙10

10
 1.12∙10

9
 

Middle East & 
North Africa 7.07∙10

10
 1.36∙10

8
 7.07∙10

10
 2.43∙10

9
 1.20∙10

9
 1.40∙10

9
 8.64∙10

9
 7.84∙10

8
 

Latin America 
& Caribbean 7.07∙10

10
 1.36∙10

8
 7.07∙10

10
 2.43∙10

9
 1.20∙10

9
 1.40∙10

9
 1.08∙10

10
 7.84∙10

8
 

Eastern Europe 
& Central Asia 6.06∙10

10
 1.36∙10

8
 6.06∙10

10
 2.43∙10

09
 1.20∙10

9
 1.40∙10

9
 1.08∙10

10
 7.84∙10

8
 

East Asia & 
Pacific 7.07∙10

10
 1.36∙10

8
 7.07∙10

10
 2.43∙10

9
 1.20∙10

9
 1.40∙10

9
 1.08∙10

10
 7.84∙10

8
 

* as per Weaver et al., (2005) and Wilcock et al., (2006) 
 
 

1.5 Irrigation 
 180 

𝐿𝐿𝑖𝑖𝑢𝑢𝑢𝑢,𝑖𝑖,𝑛𝑛 =  𝑅𝑅𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢,𝑖𝑖,𝑛𝑛 ∙ 𝐶𝐶𝑖𝑖𝑢𝑢𝑢𝑢,𝑖𝑖,𝑛𝑛 

[5] 

The only pollutant considered from the irrigation sector in DynQual is TDS. To calculate TDS from the 
irrigation sector, the return flows from the irrigation sector in gridcell n (𝑅𝑅𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢,𝑛𝑛 in m3 s-1) is multiplied 
by a mean irrigation drainage concentration (𝐶𝐶𝑖𝑖𝑢𝑢𝑢𝑢,𝑖𝑖,𝑛𝑛) for pollutant i, which for TDS is in mg l-1 [5]. As 185 
irrigation runoff is rarely collected or treated (Wwap, 2017), no abation due to wastewater management 
practices occurs. 
 
Irrigation return flows are simulated by PCR-GLOBWB 2, under the assumption that withdrawn water 
that is not consumed (via plant transpiration and open water or soil evaporation) is lost via percolation 190 
and contributes to groundwater recharge (Sutanudjaja et al., 2018). Mean irrigation drainage 
concentrations are derived from the electrical conductivity (dS m-1) averaged over the topsoil (0-30cm) 
and subsoil (30-100cm) at 0.50 resolution from the ISRIC-WISE global soil database (Batjes, 2005), as 
per VIC-QUAL (Van Vliet et al., 2021). Electrical conductivity (EC) is converted to TDS using a 
TDS/EC ratio for freshwater of 0.65 (Walton, 1989). Mean irrigation drainage concentration is assumed 195 
to be constant throughout the study period.   
 
 

1.6 Thermoelectric power 
 200 
The only pollutant considered from the thermoelectric power sector is water temperature (Tw). Thermal 
pollution (heat dumps) from the power sector [6] is calculated based on a spatially-explicit powerplant 
database containing 13,506 powerplants with detailed information on fuel type and cooling type, 
representing an estimated 87% of the global thermoelectric capacity in 2015 (Lohrmann et al., 2019). 
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 205 
𝐿𝐿𝑝𝑝𝑑𝑑𝑝𝑝,𝑖𝑖,𝑛𝑛 =  𝜌𝜌𝑤𝑤 ∙  𝐶𝐶𝑃𝑃 ∙  𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑤𝑤,𝑛𝑛 ∙  𝛥𝛥𝛥𝛥𝑃𝑃𝑃𝑃𝑤𝑤_𝑟𝑟𝑟𝑟 

[6] 

 

Where 𝐿𝐿𝑝𝑝𝑑𝑑𝑝𝑝,𝑖𝑖,𝑛𝑛 is the heat dump from thermo-electric powerplants [W] in gridcell n, 𝐶𝐶𝑝𝑝 is the specific 
heat capacity of water [4,190 J kg-1 K-1], 𝜌𝜌𝑝𝑝 is the density of fresh water [1000 kg m-3], 𝑅𝑅𝑅𝑅𝑝𝑝𝑑𝑑𝑝𝑝,𝑛𝑛 is the 210 
return flows of cooling water [m3 s-1] in gridcell n and 𝛥𝛥𝛥𝛥𝑝𝑝𝑑𝑑𝑝𝑝_𝑢𝑢𝑟𝑟 is the difference in water temperature 
between the return flows and ambient river water [K]. 

Water withdrawals and consumption per powerplant are from a spatially explicit powerplant dataset 
(Lohrmann et al., 2019). These estimates are quantified as a function of plant capacity, load hours and 
water use intensity, which depends primarily on fuel type and cooling system. The dataset considers 215 
five types of cooling systems (wet cooling towers, dry cooling systems, inlet cooling systems, once 
through cooling and recirculating cooling-pond systems) and four fuel types (nuclear, coal, gas and 
oil). Power return flows (𝑅𝑅𝑅𝑅𝑝𝑝𝑑𝑑𝑝𝑝) are subsequently calculated by subtracting water consumption from 
the water withdrawal.  We aggregated these power return flows at the gridcell level and delineate 
them in time based upon the construction year of the powerplant. The construction year is derived by 220 
cross-referencing powerplant coordinates with information from various other sources 
(http://GlobalEnergyObservatory.org/; https://datasets.wri.org/dataset/globalpowerplantdatabase). 
 
A range of values for 𝛥𝛥𝛥𝛥𝑝𝑝𝑑𝑑𝑝𝑝_𝑢𝑢𝑟𝑟 were found in the literature, varying from between 3 K based upon 
maximum permissible limits for powerplants in the US as per the Clean Water Act (Van Vliet et al., 225 
2012) to 10 K from once-through systems in the USA in summer months between 2001-2005 (Madden 
et al., 2013). We selected an intermediate value of 7 K for 𝛥𝛥𝛥𝛥𝑝𝑝𝑑𝑑𝑝𝑝_𝑢𝑢𝑟𝑟, as this falls within the range of 
reported values in the literature and matches well with more recent global thermal emission rates of  
~480 GW (Raptis et al., 2016). Results of a sensitivity analysis also suggests that values for 𝛥𝛥𝛥𝛥𝑝𝑝𝑑𝑑𝑝𝑝_𝑢𝑢𝑟𝑟 
of between 3 – 7 K have relatively moderate impacts on simulated water temperature in thermally 230 
polluted basins (Van Vliet et al., 2012). 
 

1.7 Combined sectoral pollutant loadings 
 
Combined loadings per water quality constituent are calculated by aggregating loadings from all 235 
contributing sectors [7].  
 

𝐿𝐿𝑇𝑇𝑇𝑇𝑈𝑈,𝑛𝑛 = 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑,𝑇𝑇𝑇𝑇𝑈𝑈,𝑛𝑛 + 𝐿𝐿𝑑𝑑𝑚𝑚𝑛𝑛,𝑇𝑇𝑇𝑇𝑈𝑈,𝑛𝑛 + 𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢,𝑇𝑇𝑇𝑇𝑈𝑈,𝑛𝑛 + 𝐿𝐿𝑖𝑖𝑢𝑢𝑢𝑢,𝑇𝑇𝑇𝑇𝑈𝑈,𝑛𝑛 

𝐿𝐿𝐵𝐵𝐵𝐵𝑇𝑇,𝑛𝑛 = 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵𝐵𝐵𝑇𝑇,𝑛𝑛 + 𝐿𝐿𝑑𝑑𝑚𝑚𝑛𝑛,𝐵𝐵𝐵𝐵𝑇𝑇,𝑛𝑛 + 𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢,𝐵𝐵𝐵𝐵𝑇𝑇,𝑛𝑛 + 𝐿𝐿𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝐵𝐵𝑇𝑇,𝑛𝑛 + 𝐿𝐿𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝐵𝐵𝑇𝑇,𝑛𝑛 

𝐿𝐿𝐹𝐹𝐹𝐹,𝑛𝑛 = 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑,𝐹𝐹𝐹𝐹,𝑛𝑛 + 𝐿𝐿𝑑𝑑𝑚𝑚𝑛𝑛,𝐹𝐹𝐹𝐹,𝑛𝑛 + 𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢,𝐹𝐹𝐹𝐹,𝑛𝑛 + 𝐿𝐿𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹,𝑛𝑛 + 𝐿𝐿𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹,𝑛𝑛 240 

𝐿𝐿𝑇𝑇𝑝𝑝,𝑛𝑛 = 𝐿𝐿𝑝𝑝𝑑𝑑𝑝𝑝,𝑇𝑇𝑝𝑝,𝑛𝑛 

[7] 

Where, in each gridcell n, 𝐿𝐿𝑇𝑇𝑝𝑝,𝑛𝑛 is the local Tw load [MW], 𝐿𝐿𝑇𝑇𝑇𝑇𝑈𝑈,𝑛𝑛  is the local TDS load [g day-1], 
𝐿𝐿𝐵𝐵𝐵𝐵𝑇𝑇,𝑛𝑛   is the local BOD load [g day-1] and𝐿𝐿𝐹𝐹𝐹𝐹,𝑛𝑛   is the local FC load [cfu day-1]. 

 245 
 
  

http://globalenergyobservatory.org/
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2. Implementation of water quality equations 
DynQual uses a numerical scheme (time-explicit fine differences) to simulate the routing of both 
water and pollutants through the surface water network (based on a local drain direction map), 250 
including in-stream processes, with a sub-daily timestep. 

The length of the time interval (𝛥𝛥𝛥𝛥𝑛𝑛 in seconds) is estimated with respect to both channel storage and 
discharge [8]. This ensures that the length of the time interval is small enough to ensure that flow 
from gridcell n only flows into the immediately downstream gridcell n+1, and not further (i.e. 𝛥𝛥𝛥𝛥𝑛𝑛 >
𝛥𝛥𝑛𝑛, where 𝛥𝛥𝑛𝑛 represents the residence time of gridcell n).  255 

𝛥𝛥𝛥𝛥𝑛𝑛 =  
ℎ𝑛𝑛 ∙ 𝐴𝐴𝑛𝑛 ∙ �

𝑤𝑤𝑛𝑛 ∙  𝑙𝑙𝑛𝑛
𝐴𝐴𝑛𝑛

�

𝑄𝑄𝑛𝑛
 

[8] 

Where ℎ𝑛𝑛 is the water height (m), 𝐴𝐴𝑛𝑛 is the gridcell area (m2), 𝑤𝑤𝑛𝑛 is the channel width (m), 𝑙𝑙𝑛𝑛 is the 
channel length (m) and 𝑄𝑄𝑛𝑛 is the discharge (m3 s-1) simulated at the sub-daily timestep using the 
simplified kinematic wave routing, all in gridcell n.  260 

While 𝛥𝛥𝛥𝛥𝑛𝑛 is initially determined per individual gridcell, the shortest calculated interval is used 
consistently for all gridcells within the simulation extent (𝛥𝛥𝛥𝛥). We also set a maximum time-interval 
(𝛥𝛥𝛥𝛥) of 720s (i.e. to ensure routing procedure happens at least once every 12 minutes). While we could 
further increase the numerical accuracy of our simulations by introducing shorter time intervals, this 
also increases computational times, and thus a balance must be struck (Loucks and Beek, 2017). More 265 
information on the implementation of water quality equations within DynQual is available in the 
open-access model code (https://github.com/UU-Hydro/DYNQUAL). 

 

  

https://github.com/UU-Hydro/DYNQUAL
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3. Model validation 270 

Tw and BOD data was downloaded from the Global River Water Quality Archive (GRQA) (Virro et 
al., 2021), which aggregates data from a variety of datasets including GEMStat (Global Freshwater 
Quality Database) (UNEP, 2020), GLORICH (GLObal River CHemistry) (Hartmann et al., 2014) and 
WQP (Water Quality Portal) (Read et al., 2017). Electrical conductivity (EC) data was obtained from a 
global surface water database (Thorslund and Van Vliet, 2020), which we additionally supplemented 275 
with GEMStat data (UNEP, 2020), and converted to TDS using a conversion factor of 0.7 (Walton, 
1989). FC data was obtained from GEMStat (UNEP, 2020), additionally supplemented with data from 
the National Water Information System (NWIS) from the United States Geological Survey (USGS) 
(U.S. Geological Survey, 2016). The number of water quality modelling stations and associated 
observations used for validation of DynQual is presented in Table S8. 280 
 

Table S8. Number of water quality monitoring stations and measurements used for DynQual 
validation. 

Water quality constituent 
 

Number of monitoring 
stations 

Number of 
observations 

Water Temperature (Tw) 7,516 750,112 

Total Dissolved Solids (TDS) 27,238 7,473,916 

Biological Oxygen Demand 
(BOD) 

2,710 230,444 

Fecal Coliform (FC) 2,235 210,664 

 
The spatial distribution in root mean square error normalised by the mean (nRMSE) [9], combined with 285 
two example time-series plots comparing observations with model simulations where data availability 
was high, are displayed for Tw (Figure S2), TDS (Figure S3), BOD (Figure S4) and FC (Figure S5). 
 

𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛𝐸𝐸 =  
�∑  (𝑛𝑛𝑖𝑖𝑑𝑑𝑖𝑖 −  𝑂𝑂𝑂𝑂𝑠𝑠𝑖𝑖)𝑁𝑁

𝑖𝑖=1
𝑛𝑛

𝑂𝑂𝑂𝑂𝑠𝑠
 

[9] 290 

 
Overall, calculated nRMSE values indicate reasonable mode performance. In accordance with previous 
studies, the best model performance is found for Tw, followed by TDS, BOD and FC respectively 
(UNEP, 2016; Van Vliet et al., 2021; Jones et al., 2022). In general, best model performance for all 
water quality constituents is found at monitoring stations with higher discharge, whereby model 295 
performance for hydrological variables (e.g. discharge) also tends to be higher (Sutanudjaja et al., 2018). 
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Figure S2. Spatial patterns in normalised root mean square error of water temperature (Tw) at all 
validation sites (a), with time-series displaying observed vs. simulated results at stations with high 300 
data availability (b) from 1980 - 2019. Observed Tw is indicated by blue crosses, simulated daily Tw 
by grey lines and 30-day running average Tw by red lines.  
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Figure S3. Spatial patterns in normalised root mean square error of total dissolved solids (TDS) 
concentrations at all validation sites (a), with time-series displaying observed vs. simulated results at 305 
stations with high data availability (b) from 1980 - 2019. Observed TDS is indicated by blue crosses, 
simulated daily TDS by grey lines and 30-day running average TDS by red lines. 
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Figure S4. Spatial patterns in normalised root mean square error of biological oxygen demand (BOD) 
concentrations at all validation sites (a), with time-series displaying observed vs. simulated results at 310 
stations with high data availability (b) from 1980 - 2019. Observed BOD is indicated by blue crosses, 
simulated daily BOD by grey lines and 30-day running average BOD by red lines. 
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Figure S5. Spatial patterns in normalised root mean square error of fecal coliform (FC) 315 
concentrations at all validation sites (a), with time-series displaying observed vs. simulated results at 
stations with high data availability (b) from 1980 - 2019. Observed FC is indicated by blue crosses, 
simulated daily FC by grey lines and 30-day running average FC by red lines. 
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 320 

Figure S6. Differences in observed vs simulated pollutant classes for a) total dissolved solids (TDS), 
b) biological oxygen demand (BOD) and c) fecal coliform (FC). Pollutant classes are defined based 
on water use and ecological limitations, as stated by governmental and international organisations. A 
difference in classification level of “0” indicates the simulated pollutant class matches the observed 
pollutant class, while negative differences indicate that observed concentrations exceeded simulated 325 
concentrations, and vice-versa for positive differences.  
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