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Abstract 10 

Maintaining good surface water quality is crucial to protect ecosystem health and for safeguarding 

human water use activities. Yet, our quantitative understanding of surface water quality is mostly 

predicated upon observations at monitoring stations that are highly limited in space and fragmented 

across time. Physically-based models, based upon pollutant emissions and subsequent routing through 

the hydrological network, provide opportunities to overcome these shortcomings. To this end, we 15 
have developed the dynamical surface water quality model (DynQual) for simulating water 

temperature (Tw) and concentrations of total dissolved solids (TDS), biological oxygen demand 

(BOD) and fecal coliform (FC) with a daily timestep and at 5 arc-minute (~10km) spatial resolution. 

Here, we describe the main components of this new global surface water quality model and evaluate 

model performance against in-situ water quality observations. Furthermore, we describe both the 20 
spatial patterns and temporal trends in TDS, BOD and FC concentrations for the period 1980–2019, 

also attributing the dominant contributing sectors to surface water pollution. Modelled output 

indicates that multi-pollutant hotspots are especially prevalent across northern India and eastern 

China, but that surface water quality issues exist across all world regions. Trends towards water 

quality deterioration have been most profound in the developing world, particularly Sub-Saharan 25 
Africa and southern Asia. The model code is available open-source (https://github.com/UU-

Hydro/DYNQUAL) and we provide global datasets of simulated hydrology, Tw, TDS, BOD and FC 

at 5 arc-minute resolution with a monthly timestep (https://doi.org/10.5281/zenodo.7139222). This 

data has potential to inform assessments in a broad range of fields, including ecological, human health 

and water scarcity studies.  30 
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1. Introduction 

Maintaining good surface water quality is important for protecting ecosystem health and ensuring 

human access to safe water resources for a diverse range of sectoral needs (Van Vliet et al., 2021; 

Jones et al., 2022). For example, high organic pollution can reduce oxygen availability and can lead to 35 
the suffocation of aquatic organisms (Sirota et al., 2013), while pathogen pollution represents a 

potential health risk for people exposed to this water. The consumption of contaminated drinking 

water can lead to the transmission of diseases such as cholera, dysentery and polio leads, which cause 

an estimated 485,000 deaths annually (Prüss-Ustün et al., 2019). Another example is salinisation of 

water resources, which can both limit irrigation water use (Thorslund et al., 2022) and threaten 40 
freshwater biodiversity (Velasco et al., 2019) where species cannot tolerate elevated salinity 

concentrations. Similarly, increased water temperatures can disrupt energy production (Van Vliet et 

al., 2016), while also providing more favourable conditions for cyanobacterial blooms that can lead to 

hypoxia which canthat disrupt freshwater habitats (Smucker et al., 2021). 

Human activities, both directly and indirectly, cause changes in surface water quality relative to 45 
ambient (‘pristine’) conditions. Indirectly, altered precipitation patterns and the increased frequency 

of hydro-meteorological extremes that result from human-induced climate change can lead to 

fundamental changes in the hydrological regime (Wanders and Wada, 2015; Gudmundsson et al., 

2021). Lower water levels due to altered seasonality patterns or droughts reduce the stream dilution 

capacity, which can increases the proportion of streamflow originating from (polluted) point sources 50 
(Wright et al., 2014; Luthy et al., 2015; Ehalt Macedo et al., 2022). Both of these factors increase 

river water contamination, threatening both the safe usability of water and environmental health. 

Climate change is also altering the thermal regime of rivers (Van Vliet et al., 2013), with higher 

temperatures also causing dissolved oxygen depletion (Ozaki et al., 2003). 

More directly, sectoral activities generate return flows - water that is extracted for a specific purpose 55 
but is not consumed (evaporated) in the process – but which has changed in composition as a result of 

the water use activity (Sutanudjaja et al., 2018; Jones et al., 2021). For example, the composition of 

domestic wastewaters will reflect the various household water uses, including organic and fecal 

contamination from human waste (Wwap, 2017) and elevated nutrient concentrations from household 

chemicals and laundry detergents (Van Puijenbroek et al., 2019). The re-introduction of these flows 60 
back to the environment represent a significant source of pollutant loadings that degrade river water 

quality (Jones et al., 2022). Collection and treatment of these flows, before their re-introduction to the 

environment, can help to minimise the impact on surface water quality (Jones et al., 2022). Yet, these 

processes can be economically expensive to establish and operate, and hence collection and treatment 

infrastructure are not ubiquitous worldwide (Jones et al., 2021; Jones et al., 2022). 65 

Water quality is an integral part of the Sustainable Development Agenda, cross-cutting almost all 

Sustainable Development Goals (SDGs). Despite widespread recognition of its importance, water 

quality monitoring data is still severely lacking in several world regions – particularly Africa and 

Central Asia (Damania et al., 2019). Furthermore, in regions where observation data is available, data 

is often sparse in both space and time. Water quality models offer opportunities to overcome these 70 
limitations (Hofstra et al., 2013; Beusen et al., 2015; UNEP, 2016; Van Vliet et al., 2021). As opposed 

to statistical models which heavily rely on observed water quality data, physical models simulate the 

emission and transport of pollutant loadings along the river network directly based on climatic, 

hydrological and socio-economic input data. This makes physically-based model approaches 

especially advantageous when predicting simulating water quality in ungauged catchments and for 75 
projecting water quality under future (uncertain) climatic and socio-economic developments 

(Wanders et al., 2019).      

A spatially and temporally detailed assessment of multiple water quality constituents at the global 

scale is lacking. Furthermore, only a few studies have quantitatively evaluated temporal dynamics and 
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trends in water quality over extended time periods, particularly considering changes in factors that 80 
drive higher pollutant emissions (e.g. population growth, industrialisation) relative to factors that 

abate pollutant emissions (e.g. wastewater treatment). Lastly, no few studies have assessed the spatio-

temporal patterns in the specific sectoral activities that are driving patterns in surface water quality 

worldwide.  

Here, we present a high-spatiotemporal resolution surface water quality model (henceforth DynQual), 85 
which can currently be used to simulate water temperature (Tw), and concentrations of total dissolved 

solids (TDS) to represent salinity pollution, biological oxygen demand (BOD) to represent organic 

pollution and fecal coliform (FC) as a coarse indicator for pathogen pollution. All simulations are 

provided at a daily timestep with a spatial resolution of 5x5 arc-minutes (approx. 10km at the 

equator). DynQual considers a wide range of hydro-climatic and socio-economic drivers, spanning 90 
across the major contributing pollutant sources. The high spatio-temporal resolution of DynQual (i.e. 

5 arc-min and daily timestep), combined with these features, allows the model to address scientific 

questions that are not currently possible using existing surface water quality models. For example, 

while previous work has compared pollutant loads (masses) originating from different sources at 

aggregated spatial scales (i.e. basin or subbasin level), the impact on in-stream concentrations - which 95 
is also dependent upon spatio-temporal variability in dilution capacity and in-stream decay processes 

– has not been assessed. 

The objectives of this study are to: 1) introduce a new open-source global surface water quality model 

and evaluate model performance; 2) assess spatial patterns and trends in surface water quality, 

focussing on total dissolved solids (TDS), biological oxygen demand (BOD) and fecal coliform (FC) 100 
concentrations for the period 1980 – 2019; and 3) demonstrate additional model capabilities by 

assessing the sector-specific contributions towards surface water pollution across both space and time.   
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2. DynQual – mModel description 

 

2.1 General overview 105 

The newly developed DynQual model builds on the modelling framework of DynWat, a global water 

temperature model that solves the energy-water balance to simulate daily water temperature (Tw) and 

ice thickness (Van Beek et al., 2012; Wanders et al., 2019). A full model description including the 

energy balance equations and the representation of ice cover, floodplains, channel roughness and 

lakes and reservoirs within DynWat is available in published literature (Wanders et al., 2019). 110 
DynQual further includes the impact of heat dumps produced in thermo-electric powerplants (Van 

Vliet et al., 2012a; Van Vliet et al., 2021) on water temperature. In addition to water temperature, 

DynQual simulates daily in-stream concentrations of three water quality constituents, namely, total 

dissolved solids (TDS), biological organic matter (BOD) and fecal coliform (FC), which are of key 

social and environmental relevance (Van Vliet et al., 2021) (Figure 1Figure 1).  115 

 

Figure 1. Overview of the required input data for running DynQual in different model configurations. 

Runs coupled with PCR-GLOBWB2 require socio-economic (arrow 1)1 and climatic forcing (3,4)3,4 

forcing  data as standard, with options to either 1) calculate estimate loads based on additional socio-

economic (2)2 and simulated hydrological (6)6 data ; or 2) provide pollutant loadings directly as input 120 
data (8)7. Offline runs require both hydrological (5)5 and pollutant loadings (8)7 input data to be 

provided directly. 
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We also offer two options for running DynQual, either: 1) in a stand-alone configuration with user-

defined hydrological specific discharge (i.e. baseflow, interflow and direct runoff in m day-1)input  fed 125 
from any land surface or hydrological model, or 2) one-way coupled with the global hydrological and 

water resources model PCR-GLOBWB2 (Sutanudjaja et al., 2018). The routine for surface water (and 

pollutant) routing follows an eight-point steepest-gradient algorithm across the terrain surface (local 

drainage direction) in a convergent drainage network with the lowermost cell connected to either the 

ocean or an endorheic basin as per PCR-GLOBWB2 (Sutanudjaja et al., 2018) and DynWat (Van 130 
Beek et al., 2012; Wanders et al., 2019). Routing within DynQual uses the kinematic wave 

approximation of the Saint-Venant equations with flow described by Manning’s equation, solved 

using a time-explicit variable sub-time stepping scheme based on the minimum Courant number 

(Sutanudjaja et al., 2018). In the coupled configuration, surface waters are subject to water 

withdrawals and return flows from the domestic, industrial, livestock and irrigation sectors calculated 135 
within the water use module of PCR-GLOBWB2. A full complete model description of PCR-

GLOBWB2 including detailed information on the model structure, individual modules (meteorology, 

land surface, groundwater, surface water routing and water use) and validation of hydrological output 

is available in published literature (Sutanudjaja et al., 2018).   

In both configurations of DynQual, pollutant loadings can be prescribed directly (akin to a forcing). 140 
Alternatively, when running DynQual coupled with PCR-GLOBWB2 (or another hydrological model 

that includes water withdrawals and return flows), pollutant loadings can be simulated within the 

model runs by providing only simple input data (SI Section 1). An overview schematic forof 

DynQual, also which details specifying the required input data required for the  associated with 

different model configurations, is displayed (Figure 1Figure 1). By providing these options, we allow 145 
for flexibility – allowing pollutant loadings to be directly imposed on the model facilitates users to 

calculate estimate loadings using their preferred methodology and assumptions; whereas the option to 

calculate estimate pollutant loadings within the model run enables users to simulate water quality 

without any pre-processing requirements but still provides flexibility to use with their preferred input 

datasets. Parameter values related to pollutant emissions can be adjusted by the user, as desired. When 150 
simulating pollutant loadings within model runs, it is also possible to quantify the contribution and 

relative importance of different water use sectors to the spatial patterns and temporal trends in surface 

water quality. 

As per PCR-GLOBWB2 (Sutanudjaja et al., 2018) and DynWat (Wanders et al., 2019), DynQual is 

written in Python 3 and is run using an initialization (.ini) file in which key aspects of the model run 155 
are defined (e.g. spatial extent, simulation period, paths to parameter and forcing files). Most input 

files required and all output files are in NetCDF format. Global 5 arc-min DynQual runs that are 

coupled with PCR-GLOBWB2 have a wall-clock time of approximately 6 hours per year when run 

with parallelisation, due to the requirement to use the kinematic wave routing option for higher 

accuracy discharge and water temperature simulations. This is approximately equivalent to the PCR-160 
GLOBWB2 run times given by Sutanudjaja et al., (2018). DynQual runs performed in the stand-alone 

configuration are faster (~20%). 

 

2.2 Water quality equations 

2.2.1 Water temperature (Tw) 165 
 

Water temperature (Tw) is simulated by solving the surface water energy balance, using the DynWat 

model as basis (Van Beek et al., 2012; Wanders et al., 2019). In addition to solving the surface water 

energy balance, DynWat also accounts for surface water abstraction, reservoirs, riverine flooding and 

the formation of ice (Wanders et al., 2019). Here, we further develop DynWat to include advected heat 170 
flows from thermo-electric powerplants, as per the method described in van Vliet et al., (2012; 2016). 
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The modelling equations for Tw incorporated into DynQual are shown in Eq. [1[1] and are fully 

elaborated on in previous work (Van Beek et al., 2012; Van Vliet et al., 2012a; Van Vliet et al., 2016; 

Wanders et al., 2019). 

 175 

𝜌𝑤𝐶𝑝

𝜕(ℎ𝑇𝑤)

𝜕𝑡
=  𝜌𝑤𝐶𝑝

𝜕(𝑣𝑇𝑤)

𝜕𝑥
+ 𝐻𝑡𝑜𝑡 +  𝜌𝑤𝐶𝑝 ∫ 𝑞𝑠

𝑑𝑥

𝑥=0

𝑇𝑠 + 
𝑇𝑤𝑝𝑜𝑤𝑛

ℎ ∗ 𝑤 ∗ 𝑑𝑥
 

 

𝐻𝑡𝑜𝑡 =  𝑆𝑖𝑛(1 − 𝑎𝑤) + 𝐿𝑖𝑛 −  𝐿𝑜𝑢𝑡 − 𝐻 − 𝐿𝐸 

 

𝑇𝑤𝑝𝑜𝑤𝑛
=  𝜌

𝑤
∗  𝐶𝑝 ∗  𝑅𝐹𝑝𝑜𝑤,𝑛 ∗  𝛥𝑇𝑝𝑜𝑤_𝑟𝑓 180 

[1] 

Where t is time , x is location along the drainage network,  𝑇𝑤 is water temperature (K), 𝐶𝑝 is the specific 

heat capacity of water (4,190 J kg-1 K-1), 𝜌𝑤 is the density of fresh water (1000 kg m-3), h is the stream 

water depth (m), v is the velocity of water (m s-1), 𝐻𝑡𝑜𝑡 is the heat flux at the air-water interface, 𝑆𝑖𝑛 

is the incoming shortwave radiation (J m-2 s-1), 1 − 𝑎𝑤 is the reflected shortwave radiation (J m-2 s-1), 185 

𝐿𝑖𝑛 is the incoming longwave radiation (J m-2 s-1), 𝐿𝑜𝑢𝑡 is the outgoing longwave radiation (J m-2 s-1), 

H is the sensible heat flux (J m-2 s-1), LE is the latent heat flux (J m-2 s-1), 𝑞𝑠 are the lateral water fluxes 

from land to stream (m s-1), 𝑇𝑠 is the temperature of lateral water fluxes (K),  𝑇𝑤𝑝𝑜𝑤𝑛
 is the heat dump 

from thermo-electric powerplants (J s-1), 𝐶𝑝 is the specific heat capacity of water (4,190 J kg −

1 K − 1), 𝜌𝑤  is the density of fresh water (1000 kg m − 3), 𝑅𝐹𝑝𝑜𝑤 is the return flows of cooling 190 

water from thermo-electric powerplants (m3 s-1), 𝛥𝑇𝑝𝑜𝑤_𝑟𝑓 is the difference in water temperature 

between the return flows and ambient river water (K), w is the stream width (m) and 𝑑𝑥 is the distance 

between gridcell n and the upstream gridcell n-1 (m). 

 

2.2.2 Conservative (TDS) and non-conservative (BOD, FC) substances 195 
 

Our modelling strategy for total dissolved solids (TDS), biological oxygen demand (BOD) and fecal 

coliform (FC) is a mass balance approach assuming transport by advection only, whereby sector-

specific loadings – (i.e. masses of pollutants generated from a particular human activity in a given 

time period) – are accumulated from all contributing sectors and routed through the global stream 200 
network until outflow to the ocean or an endorheic basin (Thomann and Mueller, 1987; Chapra and 

Pelletier, 2004; Voß et al., 2012; UNEP, 2016; Van Vliet et al., 2021).  

TDS is modelled as a conservative substance, while BOD and FC are modelled as non-conservative 

substances that include first-order decay processes (Voß et al., 2012; Reder et al., 2015; UNEP, 2016; 

Van Vliet et al., 2021). Our approach for both the conservative and non-conservative substances 205 
assumes instantaneous and full mixing of all streamflow and return flows in each grid cell. As per 

most water quality models, DynQual simulates water quality per individual gridcell over a 

consecutive series of discrete time periods (Loucks and Beek, 2017). Each gridcell represents a 

volume element, which is in steady-state conditions within each time period, which also contains a 

(fully-mixed) pollutant mass (Figure 2Figure 2). In each consecutive timestep, there is an associated 210 
volume of water and mass of pollutant that flows into the gridcell from upstream and that flows out of 

the gridcell to the downstream gridcell. For non-conservative substances, there are also gridcell-

specific in-stream decay processes that influence the total mass of pollutant in each sub-time interval. 

DynQual simulates these transport and decay processes with a sub-daily interval (𝛥𝑡 in seconds), the 

length of which is determined with respect to channel characteristics and discharge (SI Section 2 & SI 215 
Eq. [9]). 
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Figure 2. Schematic overview of DynQual, including a translation of local hydrological and socio-

economic situation (a) into a local drain direction (LDD) map that includes hydrological and pollutant 

fluxes (b) and a representation of the gridcell based processes (pollutant emission calculation, routing 220 
procedure and computation of pollutant concentrations) in an individual DynQual gridcell (c). 𝐶𝑖𝑝,𝑛 is 

the concentration of pollutant i p (e.g. mg l-1), while 𝑀𝑖𝑝,𝑛 is the total mass of pollutant pi (e.g. g) and 

𝑉𝑛 is the channel storage (m3), all in gridcell n. 𝑉𝑛
𝑡=0 is the volume of channel storage from the 

previous timestep (m3), while 𝑄𝑖𝑛−1→𝑛𝑛−1→𝑛
  and 𝑄𝑛→𝑛+1𝑖𝑛→𝑛+1

 is the discharge (m3 s-1) into and out 

of gridcell n, respectively, per timestep 𝛥𝑡. 𝑀𝑖𝑝.𝑛
𝑡=0 is the mass of pollutant pi from the previous timestep, 225 

while 𝑅𝐿𝑖𝑝𝑛−1→𝑛
 and 𝑅𝐿𝑝𝑖𝑛→𝑛+1

 are the loadings of pollutant ip (e.g. g s-1) that are routed into and 

out of gridcell n, respectively, per timestep 𝛥𝑡. 𝐿𝑖𝑝,𝑛 are the combined local loadings of pollutant ip 

(e.g. g day-1) in gridcell n, which is the sum of loadings from all contributing sectors and urban 

surface runoff. 𝑘𝑖𝑝,𝑛 is represents a decay coefficient, which that depends upon pollutant pi (-). D is 

the length of a day in seconds (i.e. 86 400 s day-1), while 𝛥𝑡 is the length of the sub-timestep (s) which 230 
is linked to the internal routing regime within DynQual & PCR-GLOBWB2. 𝑃𝑛 is precipitation (m3 

day-1) and 𝐸𝑛 is evapotranspiration (m3 day-1), with these terms included as an example of gridcell-

specific hydrological fluxes. For a more detailed overview of the hydrological fluxes within a gridcell 

we refer to the PCR-GLOBWB 2 documentation (Sutanudjaja et al., 2018). 

The pollutant concentration at each subsequent time interval (𝑡 + 𝛥𝑡) is calculated following Eq. 235 

[2][2]. It should be noted that, while we simulate the terms of this equation with a sub-daily timestep 

interval, DynQual only reports concentrations in the final sub-daily interval of each day. This is due to 

the lack of sub-diurnal input data, for efficient data storage and the lack of relevance of such high-

resolution simulations with respect to our large-scale modelling approach. 

𝐶𝑖𝑝,𝑛
𝑡+𝛥𝑡 =

𝑀𝑝𝑖,𝑛
𝑡+𝛥𝑡

𝑉𝑛
𝑡+𝛥𝑡

+ 𝐵𝐺𝑖,𝑛 240 

[2] 
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Where Cip,.𝑛
t+𝛥𝑡 and Mi𝑝,𝑛

t+𝛥𝑡
 is the concentration and mass, respectively, of pollutant pi in gridcell n at the 

consecutive time interval (t +𝛥𝑡), whereas V𝑛
t+𝛥𝑡

 is the volumetric channel storage (m3) in this 

gridcell in the same interval. V𝑛
t+𝛥𝑡

 is simulated directly within PCR-GLOBWB2, accounting for the 

initial storage, discharge into and out of gridcell n over the time interval 𝛥𝑡 and gridcell specific 245 

hydrological fluxes including precipitation and evapotranspiration (Sutanudjaja et al., 2018). Mpi,n
t+𝛥𝑡

 is 

simulated by solving the mass balance equation for pollutant ip and accounting for in-stream decay 

processes following Eq. [3][3]. 𝐵𝐺𝑖𝑝,𝑛 represents the background concentration of pollutant ip in 

gridcell n. For TDS, these are calculated estimated based on minimum observed EC-converted to TDS 

observations (Walton, 1989) contained in a new global salinity dataset (Thorslund and Van Vliet, 250 
2020) and are applied as a constant background concentration. Conversely, 𝐵𝐺𝐵𝑂𝐷,𝑛 and 𝐵𝐺𝐹𝐶,𝑛 are 

assumed to be negligible, relative to the mass of pollution produced by anthropogenic activities.  

𝑀𝑖𝑝,𝑛
𝑡+𝛥𝑡 =  (𝑀𝑖𝑝,𝑛

𝑡=0 + (∑ (𝑅𝐿𝑖𝑝𝑛−1→𝑛
) − 𝑅𝐿𝑝𝑖𝑛→𝑛+1

+ 
𝐿𝑝𝑖𝑛

𝐷
) 𝛥𝑡) ∙ 𝑒−𝑘𝑖𝑝,𝑛(𝛥𝑡

𝐷
) 

[3] 

Where, at the subsequent timestep interval (𝑡 + 𝛥𝑡), each gridcell n contains the mass of pollutant ip 255 

from the previous timestep (𝑀𝑖𝑝,𝑛
𝑡=0) plus the pollutant load (mass second-1) that has been transported 

from the immediately (adjacent) upstream gridcell(s) (𝑅𝐿𝑖𝑝𝑛−1→𝑛
) and minus the pollutant load (mass 

s-1) that has been transported downstream (𝑅𝐿𝑝𝑖𝑛→𝑛+1
) in the time interval 𝛥𝑡 (s). 𝐿𝑝𝑖,𝑛 represents the 

daily influx of pollutant loadings produced into gridcell n (mass day-1), which are added to the stream 

in equal increments per sub-daily timestep 𝛥𝑡 (s) relative to the total length of a day 𝐷 in seconds (i.e. 260 
86,400 s day-1). Our approach for adding local pollutant loadings in equal increments per sub-daily 

timestep is necessary as we lack information regarding the (sub-diurnal) timing at which pollution 

enters the stream network. 

𝑘𝑝𝑖,𝑛 represents a pollutant pi and gridcell n specific decay rate (day-1). While we model TDS as a 

conservative substance (i.e. 𝑘𝑇𝐷𝑆,𝑛 = 0), we determine the first-order degradation rate of BOD 265 

(𝑘𝐵𝑂𝐷𝑛
) as a function of water temperature (Eq. [4][4]) and of FC (𝑘𝐹𝐶𝑛

) as function of water 

temperature, solar radiation and sedimentation (Eq. [5[5]). Decay is implemented directly into 

DynQual by assuming decay to occur at an equal rate over the course of a day (
𝛥𝑡

𝐷
). This assumption is 

necessary because we do not have sub-daily input data for some terms of the decay equations, such as 

water temperature (Tw) and incoming solar radiation (𝐼𝑜). 270 

𝑘𝐵𝑂𝐷,𝑛 = 𝑘(20) ∙  Θ(𝑇𝑤𝑛−20) 

 

[4] 

Where 𝑘(20) is a first-order degradation rate coefficient at 20°C (day-1) assumed at 0.35 (Van Vliet et 

al., 2021);, 𝑇𝑤𝑛 is the water temperature (OC) in gridcell n and Θ is a temperature correction assumed 275 
to be 1.047 as per previous assessments (Wen et al., 2017; Van Vliet et al., 2021). 

𝑘𝐹𝐶𝑛
= 𝑘𝑑Θ

(𝑇𝑤𝑛−20) +  𝑘𝑠

𝐼𝑜

𝑘𝑒𝐻
(1 − 𝑒−𝑘𝑒𝐻) +  

𝑣

𝐻
 

[5] 

Where 𝑘𝑑 is dark inactivation (day-1);, Θ is a temperature correction,; 𝑇𝑤𝑛 is the water temperature 

(OC) in gridcell n;, 𝑘𝑠 is sunlight inactivation (m2 W-1),; 𝐼𝑜 is the surface solar radiation (W m-2);, 𝑘𝑒 is 280 

an attenuation coefficient (m-1);, 𝐻 is stream depth (m) and 𝑣 is the settling velocity (m day-1). 

Parameter values (Table 1Table 1) and mean basin average total suspended solids (Beusen et al., 
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2005) are based off previous fecal coliform modelling studies (Reder et al., 2015). Parameter values, 

including decay coefficients, can alternatively be defined by the user directly in the source code.  

Table 1. Assumed parameter values for fecal coliform modelling 285 

Variable Unit Value 

𝑘𝑑 day-1 0.82 

Θ - 1.07 

𝑘𝑠 m2 W-1 0.0068 

𝑘𝑒 m-1 0.0931TSS + 0.881 

𝑣 m day-1 1.656 

 

 

2.3 Pollutant loadings 

In both model configurations (stand-alone and or one-way coupled to PCR-GLOBWB2), user-defined 

calculated pollutant loadings can be directly imposed on the model (akin to a forcing). Users can pre-290 
calculateestimate pollutant loadings using their preferred methodology, and subsequently route these 

through the global stream network, and account for in-stream decay processes and calculate in-stream 

pollutant concentrations using the DynQual model framework in order to calculate in-stream pollutant 

concentrations. Pollutant loadings that are prescribed to DynQual directly should have a daily 

temporal resolution (e.g. g day-1 or cfu day-1). 295 

Alternatively, when running DynQual coupled with PCR-GLOBWB2, pollutant loadings (with a daily 

temporal resolution) can be simulated within the model runs, requiring only simple input data (Figure 

1Figure 1 and SI Section 1). This option is beneficial for users who do not have pre-calculated 

pollutant loadings. Furthermore, this option may be useful for those interested in scenario modelling, 

as input files related to different scenarios can be altered to reflect alternative climate and 300 
socioeconomic conditions. 

 In this set-up, DynQual calculates estimates and routes pollutant loadings individually and combined 

for the main water use sectors (domestic, manufacturing, livestock and irrigation) and from urban 

surface runoff at 5 arc-minute spatial resolution. Loadings from the domestic sector are estimated by 

multiplying the gridded population with region-specific per capita excretion rates (SI Section 1.1, 305 
Table S1). For the manufacturing sector, a mean effluent concentration is multiplied by location-

specific gridded estimates of return flows from the manufacturing sector (SI Section 1.2, Table S2). 

Urban surface return flows are approximated by multiplying surface runoff (simulated by PCR-

GLOBWB2) with the gridded urban fraction, which are multiplied by a region-specific mean urban 

surface runoff effluent concentration (SI Section 1.3; Table S3). The livestock sector is sub-divided 310 
into ‘intensive’ and ‘extensive’ production systems based on livestock densities to better account for 

differences in the paths by which waste enters the stream network (SI Section 1.4, Table S4). Gridded 

livestock numbers for buffalo, chickens, cows, ducks, goats, horses, pigs and sheep are multiplied by 

pollutant excretion rates per livestock type and by region (SI Section 1.4, Table S5 – S7). TDS 

loadings from the irrigation sector are estimated by multiplying irrigation return flows simulated by 315 
PCR-GLOBWB2 with spatially-explicit mean irrigation drainage concentrations based on salinity (as 

indicated by electrical conductivity) over the top- and sub-soil (SI Section 1.5). Thermal effluents 

(heat dumps) from thermoelectric powerplants are included as point sources of advected heat by 

considering the temperature difference between the flows and ambient surface water temperature 

conditions (SI Section 1.6). Pollutant loadings from the domestic, manufacturing and intensive 320 
livestock sectors, and from urban surface runoff, are abated based on gridcell-specific wastewater 

practices. The proportion of pollutant loadings removed by wastewater treatment practices is 
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estimated by multiplying the fraction of each treatment level occurring in a gridcell by the pollutant 

removal efficiency associated with that treatment level, as described in detail in previous work (Jones 

et al., 2021; Jones et al., 2022). 325 

  For this, gridded datasets on human population numbers, livestock population numbers and urban 

fractions are required. Additionally, estimates of per capita excretion rates of pollutants (humans, 

livestock) and mean effluent pollutant concentrations (manufacturing, urban surface runoff and 

irrigation) are required. A detailed explanation of how pollutant loadings are calculated estimated 

within DynQual is provided in SI Section 1, including the equations (SI Eqs. [1-8]), data sources and 330 
all parameter estimates (SI Table S1-S7) . 

  

3. Model demonstration 

 

3.1 Model run setup and validation 335 

DynQual is run for the time period 1980 – 2019 using W5E5 forcing data (Cucchi et al., 2020; Stefan 

et al., 2021) in the online configuration coupled with PCR-GLOBWB2, using the simplified 

kinematic wave routing option (Sutanudjaja et al., 2018). We used the standard parameterisation of 

PCR-GLOBWB2 for hydrological simulations, as described in previous work (Sutanudjaja et al., 

2018). TheWe focus of our analysismodel demonstration is on TDS, BOD and FC, as results for Tw 340 
have been displayed extensively in previous work (Wanders et al., 2019). Pollutant loadings of TDS, 

BOD and FC are calculated estimated within the model run at the daily timestep using input data 

summarised in Table 2 and as detailed in Section 2.3 and SI Section 1.  Both the meteorological 

forcing data and input data used for simulating pollutant loadings used in this study are accessible 

through links provided in the code and data availability statement. Furthermore, wWe also provide the 345 
model code and full input data required for running an example catchment (Rhine basin) in the code 

and data availability statement. 

 

 

 350 

 

 

 

 

 355 

 

 

 

 

 360 
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Table 2. Summary of key input data used for the estimation of pollutant loadings in the presented 

model application 

Sector Data Source Spatio-temporal 

resolution 

Domestic 

Population (Lange and Geiger, 2020) 5 arc-min; annual 

Excretion rates 
(UNEP, 2016; Van Vliet et al., 

2021) 
Regional; constant 

Manufacturing 

Manufacturing 

return flows 
PCR-GLOBWB2 (simulated) 5 arc-min; daily 

Effluent 

concentrations 

(UNEP, 2016; Van Vliet et al., 

2021) 
Global; constant 

Urban surface 

runoff 

Urban surface 

runoff 
PCR-GLOBWB2 (simulated) 5 arc-min; daily 

Effluent 

concentrations 
(UNEP, 2016) Regional; constant 

Livestock 

Livestock 

populations 
(Gilbert et al., 2018) 5 arc-min; annual 

Excretion rates 

(Weaver et al., 2005; Wilcock, 

2006; Robinson et al., 2011; Wen et 

al., 2017; Vigiak et al., 2019; Van 

Vliet et al., 2021) 

Regional; constant 

Irrigation 

Irrigation 

return flows 
PCR-GLOBWB2 (simulated) 5 arc-min; daily 

Effluent 

concentrations 
(Batjes, 2005) 30 arc-min; constant 

Power 

Power return 

flows 
(Lohrmann et al., 2019) 5 arc-min; annual 

ΔT (Van Vliet et al., 2012a) Global; constant 

 

As per PCR-GLOBWB2 (Sutanudjaja et al., 2018), in addition to the original water temperature 365 
model DynWat (Wanders et al., 2019), no calibration was performed. The process-based nature and 

global scale of DynQual, combined with strong spatial biases in observations (Figure S2) and the 

large number of parameters that need to be estimated, complicate meaningful calibration. In addition, 

uncalibrated physical models can theoretically be applied in ungauged basins without loss of 

performance and are more preferable for global change assessments with different climatic and socio-370 
economic scenarios (Hrachowitz et al., 2013; Wanders et al., 2019). 

 

3.2 Model evaluation 

Model simulations were compared to observations from surface water quality monitoring stations 

worldwide at daily temporal resolution. Observed data was obtained from variousa variety of state-of-375 
the-art databases (SI Section 3.1). Tw and BOD data was downloaded from the GRQA (Global River 

Water Quality Archive) (Virro et al., 2021), which combines data from various sources including 

GEMStat (Global Freshwater Quality Database) (UNEP, 2020), GLORICH (GLObal River 

Chemistry) (Hartmann et al., 2014) and WQP (Water Quality Portal) (Read et al., 2017). Electrical 

conductivity (EC) data was obtained from a global salinity database (Thorslund and Van Vliet, 2020), 380 
additionally supplemented with GEMStat data (UNEP, 2020), and converted to TDS (see SI Section 

3). FC data was obtained from GEMStat (UNEP, 2020), additionally supplemented with data from the 
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National Water Information System (NWIS) from the United States Geological Survey (USGS) (U.S. 

Geological Survey, 2016). 

Water quality monitoring data covers the entire modelled time period (1980 – 2019) and includes a far 385 
greater number of observations than in previous surface water quality modelling validation procedures 

(SI Section 3; Table S8). However, monitoring stations are unevenly distributed across space, with a 

strong bias towards North America and Western Europe for all water quality constituents (Figure S2). 

Furthermore, observations at monitoring stations are highly fragmented across time, particularly for 

BOD and FC (Figure S2). It should be noted that there is an uneven distribution in data availability, 390 
with more observations in Europe and the United States for all water quality constituents.   

The overarching purpose and applications of a model, including large-scale water quality models 

(Beusen et al., 2015; UNEP, 2016), must be considered both for determining suitable metrics for 

model evaluation and for judging model performance. Given the approximations in the model, 

uncertainties in input data and the overall complexity in the drivers of pollutant loadings, the purpose 395 
of global water quality models is not to compute daily concentrations exactly (UNEP, 2016). The 

modelling strategy is thus to focus on the main spatial and temporal drivers of pollution in river 

networks globally to facilitate first-order approximations of in-stream concentrations. A key reason 

for implementing DynQual at 5 arc-minute spatial resolution is due to the marked improvement of the 

performance of both PCR-GLOBWB2 (e.g. discharge) (Sutanudjaja et al., 2018) and DynWat (e.g. 400 
water temperature) (Wanders et al., 2019) at finer spatial extents. These two factors have an important 

influence on simulated in-stream concentrations due to dilution and in-stream decay processes, 

respectively. 

Given these factors, combined with limitations in the observational records of surface water quality 

(SI Section 3.1), global water quality models have typically not been evaluated with metrics 405 
commonly used for hydrological modelling such as coefficients of determination, Nash-Sutcliffe 

efficiency (NSE) and Kling-Gupta efficiency (KGE) (Voß et al., 2012; Beusen et al., 2015; UNEP, 

2016; Wen et al., 2017; Van Vliet et al., 2021), with the exception of water temperature simulations 

(Van Vliet et al., 2012b; Wanders et al., 2019). The model evaluation approach adopted for DynQual 

combines methods applied for the evaluation of other global water quality modelling efforts. 410 
Simulated TDS, BOD and FC concentrations are evaluated with respect to pollutant classes linked to 

key sectoral water quality thresholds (UNEP, 2016; Wen et al., 2017) (SI Section 3.1.2; Table S9) and 

statistically using normalised root mean square error (nRMSE) (Beusen et al., 2015; Van Vliet et al., 

2021) (SI Section 3.2.2; SI Eq. [11]). This provides an indication of prediction errors across the 

different water quality constituents comparable with previous large-scale water quality assessments. 415 
Conversely, the quality of water temperature simulations is evaluated using KGE (SI Section 3.2.2; SI 

Eq. [10]). All four water quality constituents are also evaluated by considering long-term time-series 

and multi-year annual cycles at individual monitoring stations (SI Section 3.2.3), which we present for 

the station with the most data availability across all four constituents (see Figure 5 for a station in the 

Mattaponi river in the USA) and for a selection of additional monitoring stations per water quality 420 
constituent (Figures S5- S8). 

Overall, a strong correspondence between simulated and observed concentrations classes is found, 

indicating that the model is (largely) able to simulate concentrations within the correct concentration 

range (Figure 3). The simulated concentration class matches the observed concentration class exactly 

in 69%, 51% and 44% of instances for TDS, BOD and FC, respectively. When considering ± 1 425 
pollutant class, these percentages rise to 92%, 79% and 79%. Of the mismatches in simulated and 

observed concentration classes, DynQual tends to underestimate TDS and BOD concentrations 

relative to observed in-stream concentrations (i.e. difference in classification level >=1). This occurs 

for 75% of mismatches in simulated TDS classes and 69% of mismatches in BOD classes. 
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Conversely, FC mismatches occur both for under-estimates (57% of cases) and over-estimates (43% 430 
of cases) in more equal proportions.  

  

 

Figure 3. Differences in observed vs simulated pollutant classes for a) total dissolved solids (TDS), b) 

biological oxygen demand (BOD) and c) fecal coliform (FC). Pollutant classes are defined based on 435 
water use and ecological limitations, as stated by governmental and international organisations. A 

difference in classification level of “0” indicates the simulated pollutant class matches the observed 

pollutant class, while negative differences indicate that observed concentrations exceeded simulated 

concentrations, and vice-versa for positive differences.  

Statistical evaluation of the water temperature simulations using the KGE coefficient demonstrates the 440 
strong performance of DynQual (Figure 4a) across all world regions (Figure S3). Across all 

observation stations, a median KGE of 0.72 is found (25th percentile = 0.52, 75th percentile = 0.83), 

with 32% of stations with KGE > 0.8, 83% of stations with KGE > 0.4 and 99% of stations with KGE 

values exceeding the performance threshold of > -0.41 (Knoben et al., 2019). Detailed time-series of 

individual rivers also demonstrate the ability of DynQual to closely replicate observed water 445 
temperature at the daily timestep, in addition to seasonal patterns, across different world regions 

(Figure 5, Figure S5). A detailed evaluation of water temperature simulations is available in previous 

work (Wanders et al., 2019).  

  



14 
 

 450 

Figure 4. Evaluation of model performance using the Kling-Gupta efficiency (KGE) coefficient for a) 

water temperature (Tw); and normalised root mean square error (nRMSE) for b) total dissolved solids 

(TDS), c) biological oxygen demand (BOD) and d) fecal coliform (FC) simulations. Spatial patterns 

in KGE for Tw (Figure S3) and nRMSE for TDS, BOD and FC (Figure S4) are displayed in SI 

Section 3.2.2. 455 

The distribution of nRMSE values, sub-divided by annual average river discharge, for TDS, BOD and 

FC is displayed in Figure 4b-d. Statistical evaluation of the simulations using nRMSE shows mixed 

results. A median nRMSE value of 0.76 is found for TDS across all observation stations, with 25th 

percentile of 0.79 and a 75th percentile of 1.83 (Figure 4b). For BOD simulations, a median nRMSE 

of 0.98, 25th percentile of 0.76 and 75th percentile of 1.25 is found (Figure 4c). A large spread is 460 
found for nRMSE values for FC simulations, with a median of 1.89, a 25th percentile of 1.16 and a 

75th percentile of 3.53. Simulated TDS concentrations are typically lower than observations in many 

locations that are proximate to the coastline, presumably due to a combination of background TDS 

concentrations based upon minimum observations (and applied constantly) and DynQual not 

accounting for the influence of saltwater intrusion. This may somewhat explain the long tail (nRMSE 465 
> 10) in the histogram for TDS (Figure 4b) and the disproportionate tendency of DynQual to simulate 

TDS concentrations that are lower than observed concentrations (Figure 3). Overall, no strong spatial 

patterns are found in the distribution of nRMSE values of BOD (Figure S4b) and FC (Figure S4c). 

Across For theseall water quality constituents, model simulations tend to represent the observed data 

better in larger streams (>100 m3 s-1), particularly for BOD and FC. This is likely due to the influence 470 
of spatial mismatches between monitoring station locations and model simulations beingis especially 

important in smaller streams, where concentrations are more sensitive to natural dilution capacity (i.e. 

water availability) and variabilities in pollutant source contributions.  
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Figure 5. Time-series (left) and average annual cycles (right) of observed versus simulated surface 475 
water quality as indicated by a) water temperature (Tw; oC); b) total dissolved solids (TDS; mg l-1) 

concentrations; c) biological oxygen demand (BOD; mg l-1) concentrations; and d) fecal coliform (FC; 

cfu 100ml-1) concentrations at an example water quality monitoring station. In the time-series plots, 

observations are indicated by blue crosses, daily simulations by grey lines and 30 day running 

averages by red lines. In the average annual cycles plots, blue and red lines indicated the median 480 
observed and simulated values, respectively, while the shading represents the range in values as 

indicated by the 10th and 90th percentiles. More examples for Tw (Figure S5), TDS (Figure S6), 

BOD (Figure S7) and FC (Figure S8) across different world regions are displayed in SI Section 3.2.3. 

Long-term time-series and average annual cycle plots for TDS (Figure 5b; Figure S6), BOD (Figure 

5c; Figure S7) and FC (Figure 5d; Figure S8) show that DynQual can generally simulate in-stream 485 
concentrations within the correct range (e.g. min-max daily concentrations, 10th and 90th percentile 

average annual cycles). Simulated concentrations at the example monitoring station (Figure 5) display 

that TDS, BOD and FC concentrations are largely simulated within plausible limits with strong 

overlaps in the average annual cycles, but the exact correspondence between observed and simulated 

concentrations at the daily timestep is relatively poor. For this observation station, simulated peaks in 490 
daily TDS, BOD and FC concentrations tend to exceed those in the observational record. However, 

given the incomplete nature of the observed records, it is problematic to draw conclusions on whether 

these concentrations are plausible but unrecorded, or if DynQual is simulating unrealistic peak 

concentrations. For example, while DynQual captures some of the peaks in observed daily BOD 

concentrations, simulated BOD concentrations exceed those in the observational record while 495 
simultaneously under-predicting average annual cycles in BOD concentrations (Figure 5). This 

pattern is also observable in TDS concentrations in the Mersey River (Figure S6) and FC 

concentrations in the Exe River (Figure S8). 
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While strong seasonality is present in the Tw observations, which is also well-captured by DynQual 

(Figure 5a; Figure S5), and in TDS concentrations to a lesser extent (e.g. Mersey & Komati rivers in 500 
Figure S6), there is an overall lack of strong seasonal patterns in the observed records of BOD and FC 

concentrations. This, combined with large variability in the observed concentrations, results in large 

uncertainty in average annual cycles of observed concentrations across all months, as indicated by 10th 

and 90th percentiles (Figure 5c-d; Figure S7 – S8). Annual average cycles in observed and simulated 

concentrations tend to strongly overlap for both BOD and FC. However, seasonal patterns are more 505 
evident in BOD simulations than observations (e.g. Mersey, Periyar in Figure S7) and the large 

variability in observed FC concentrations is not replicated by DynQual daily simulations (e.g. 

Cauvery, Rhine in Figure S8). In the case of FC concentrations, for example, this could suggest that 

DynQual misses or under-represents the importance of pulse disturbances (e.g. high rainfall events 

causing sewer overflows) on the transport of pollutants to surface waters. 510 

 

3.23.3 Spatial patterns 

The spatial patterns in TDS (Figure 6Figure 4), BOD (Figure 7Figure 5) and FC (Figure 8Figure 6) 

concentrations show substantial variations both within and across world regions, driven by different 

sectoral activities (Figure 9Figure 7). The dilution capacity of rivers is also a major determinant of in-515 
stream concentrations. Averaged at the annual time-scale this is particularly evident for BOD and FC 

where the large dilution capacity of some major rivers is sufficient to dilute concentrations to 

relatively low levels, despite often being fed by more polluted tributaries. However, it should also be 

noted that both river discharges and in-stream concentrations can exhibit substantial intra-annual 

variability (Figure 8), thus pollutant hotspots and the magnitude of pollutant levels must also be 520 
considered at finer temporal scales than presented here. Intra-annual variability can occur in the model 

due temporal variations in: 1) pollutant loadings; 2) water availability (i.e. dilution capacity) and 3) 

in-stream decay processes.     
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Figure 64. Annual average total dissolved solids (TDS) concentrations for the period 2010 – 2019. 525 
Plotted for rivers with > 10 m3 s-1 annual average discharge. 

 

TDS concentrations show strongly regional patterns, with key hotspots of salinity pollution located in 

southern-east Asia (Pakistan and northern India) and eastern China, and to a lesser degree across the 

United States and Europe (Figure 6Figure 4). High TDS concentrations in south-east Asia are 530 
predominantly driven by the irrigation sector and the presence of saline soils (Figure 9Figure 7a). 

While Tthe irrigation sector is also an important driver of TDS pollution in eastern China, where the 

contribution from manufacturing activities are is also substantialsignificant (Figure 9Figure 7a). The 

manufacturing sector is the dominant contributor of TDS pollution across most of North America and 

Western Europe, accounting for >75% of in-stream pollutant loadings in almost all major river 535 
segments in these regions (Figure 9Figure 7a). Aside from the lower Nile, where salinity pollution is 

predominantly from the manufacturing sector, the domestic sector is the key source of (non-natural) 

TDS loadings in Africa. However it should be noted that, aside from in the lower Nile, TDS 

concentrations are simulated to be generally quiterelatively low across most of Africa (Figure 6Figure 

4; Figure 7a).  540 
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Figure 75. Annual average biological oxygen demand (BOD) concentrations for the period 2010 – 

2019. Plotted for rivers with > 10 m3 s-1 annual average discharge. 545 

 

While BOD concentrations show considerable diversity across the major world regions, a substantial 

proportion of river segments across populated areas of all continents experience moderate-to-high 

organic pollution (Figure 7Figure 5). There are clear spatial patterns in the dominant sectoral activities 

contributing BOD loadings worldwide, and it also evident that BOD pollution in most world regions 550 
is driven by a combination of multiple sectors opposed to from an individual dominant activity 

(Figure 9Figure 7b). Across Europe in particular, which sector is dominant varies both spatially and 

temporally and the contribution from the dominant sector is typically <50% (Figure 9Figure 7b). The 

manufacturing sector is the most significant source of BOD pollution across rivers in the United 

States, however the relative contribution commonly falls in the 20 – 50% or 50 – 75% categories 555 
(Figure 9Figure 7b). In the most polluted world regions, south and south-east Asia, typically the 

domestic sector is dominant. However, there are also significant contributions from manufacturing 

and extensive livestock activities (Figure 7Figure 5; Figure 9Figure 7b). Lastly, while its influence is 

highly localized, urban surface runoff can also represent an important source of BOD pollution in 

heavily urbanised gridcells across all world regions.    560 
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Figure 86. Annual average fecal coliform (FC) concentrations for the period 2010 – 2019. Plotted for 

rivers with > 10 m3 s-1 annual average discharge. 

 

FC pollution is particularly high across south and south-east Asia, with more localised hotspots found 565 
in parts of western Latin America, southern Europe, Middle East and eastern Africa (Figure 8Figure 

6). Similar to BOD pollution, a large proportion of stream segments in south and south-east Asia are 

heavily polluted, with typically only rivers with extremely high dilution capacities appearing in the 

lower concentration classes. In this region, the domestic sector is predominantly responsible for FC 

pollution (commonly > 75%), attributed to large urban populations coupled with a large proportion of 570 
domestic wastewater being inadequately treated (Figure 9Figure 7c). In countries with high municipal 

wastewater collection and treatment rates, such as in Europe, the relative influence of livestock 

activities tends to be larger. While manufacturing activities remain the dominant source of FC 

pollution in North America, despite relatively high wastewater treatment rates, the percentage 

contribution is typically <50% and livestock activities also represent an important source of FC 575 
loadings (Figure 9Figure 7c). Despite variable municipal wastewater collection and treatment rates 

across Latin America, livestock activities appear to dominate FC loadings outside of the Amazon 

basin (Figure 9Figure 7c). This can be attributed to very high livestock numbers (particularly cattle), 

combined with the fact that the most of the large urban settlements (and thus domestic FC pollutant 

loadings) in South America are located in the coastal zone. As such, pollution from the domestic and 580 
manufacturing sectors typically enter the river network at downstream locations causing localised 

pollution before outflow to the ocean.   
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Figure 97. Dominant sectoral activity contributing towards a) total dissolved solids (TDS), b) 585 
biological oxygen demand (BOD) and c) fecal coliform (FC) pollution averaged over 2010 – 2019. 

Plotted for rivers with > 10 m3 s-1 annual average discharge. 

In addition to the significant spatial variability in surface water concentrations of TDS, BOD and FC, 

there is also substantial intra-annual variability (Figure 8). In the model, intra-annual variability can 

occur due temporal variations in: 1) pollutant loadings; 2) water availability (i.e. dilution capacity) 590 
and 3) in-stream decay processes. As TDS concentrations are modelled using a conservative 

approach, fluctuations in concentrations throughout the year occur due to variability in pollutant 

loadings and water availability only. In regions where sectoral emissions of TDS are very low, such as 

in the high-latitudes and Amazon basin, intra-annual fluctuations in TDS concentrations are very low 

as well, reflecting background concentration levels (Figure 8a). Conversely, the largest fluctuations 595 
occur in regions with large variations in streamflow (i.e. dilution capacity) and/or where sectoral 

water use and hence TDS emissions are strongly seasonal. This is particularly evident in the Indian 

subcontinent (India, Pakistan, Bangladesh) where there is both large fluctuations in streamflow 

coupled with highly seasonal irrigation water demands. In regions where TDS loadings are dominated 

by sectors that contribute more constant pollutant loadings throughout the year, most notably the 600 
domestic (Africa) and manufacturing (North America, Western Europe) sectors, intra-annual 

variations in TDS concentrations are more reflective of hydrological variability. 

For non-conservative constituents (BOD and FC), additional variation in intra-annual concentrations 

also occurs as a result of decay rates, which are a function of water temperature (BOD and FC), 

sedimentation (FC only) and solar radiation (FC only). As the dominant sectors generating BOD 605 
(domestic and manufacturing) and FC loadings (domestic) in most world regions show relatively 

stable emissions to the stream network throughout the year, intra-annual variability in concentrations 

are mostly resulting from variations in streamflow and/or decay rates. Compared to TDS (Figure 8a), 

average annual fluctuations in BOD (Figure 8b) and FC (Figure 8c) tend to occur to a greater extent 

and are more widespread in space. Regions that display the largest intra-annual variations in water 610 
temperature coincide with those areas where fluctuations in both BOD and FC are much greater than 

for TDS, most notably in the United States and Eastern China.  
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 615 

Figure 8. Average annual fluctuations in a) total dissolved solids (TDS), b) biological oxygen 

demand (BOD) and c) fecal coliform (FC) concentrations for the period 2010 – 2019. Fluctuations are 

computed as the coefficient of variation, and are expressed as an average percentage per year. Plotted 

for rivers with > 10 m3 s-1 annual average discharge.  

 620 

3.33.4 Trends 

We also considered lLong-term trends in TDS, BOD and FC concentrations over the simulated period 

(1980 - 2019) are also presented (Figure 10Figure 9). TDS concentrations in most world regions are 

either relatively constant or show relatively upwards gradual trends (Figure 10a). Only small areas 

show decreasing TDS trends (Figure 9a). Typically, where TDS concentrations are increasing, the 625 
trend has been driven mainly by expansions in manufacturing or irrigation activities. Comparatively, 

trends in BOD (Figure 10Figure 9b) and FC (Figure 10Figure 9c) concentrations are larger in 

magnitude and exhibit substantially more spatial variation across the major world regions. Regionally, 

the strongest increases in BOD and FC concentrations are found in sSub-Saharan Africa, where 

wastewater treatment rates are low, and south Asia, where the rate of population growth and economic 630 
development has significantly outstripped expansions in wastewater treatment infrastructure. Strong 

increasing trends are also found across most of Latin America, where a significant proportion of 

collected wastewater does not undergo wastewater treatment (UNEP, 2016; Jones et al., 2021). BOD 

and FC concentrations across North American rivers have typically remained relatively constant, or 

exhibit small decreasing trends. Strong decreasing trends are found across Europe, including the 635 
Danube and Rhine basins. In all world regions, the influence of reservoirs on BOD and FC 

concentrations is also evident, with increased water volumes (i.e. dilution) coupled with longer 

residence times (i.e. greater decay) reducing BOD and FC concentrations at these specific locations.  
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Figure 109. Average annual percentage changes in a) total dissolved solids (TDS), b) biological 640 
oxygen demand (BOD) and c) fecal coliform (FC) concentrations for the period 1980 – 2019. Plotted 

only for rivers with > 10 m3 s-1 annual average discharge. 

Complementary to the spatial analysis, we considered the proportion of the population that inhabitsing 

gridcells exhibiting different trends in pollutant concentrations, aggregated by geographical region 

and economic classification (Figure 11Figure 10). It should be noted that trends (Figures 108 and 119) 645 
are not indicative of the degree of pollution directly, and thus should also be considered with respect 

to in-stream concentrations (Figures 6 - 83-6). Changes in TDS concentrations in the most populated 

areas worldwide are typically low, with increases of 0 – 1% most common across all geographical 

regions (Figure 11Figure 10a). Conversely, strong regional patterns are evident for BOD (Figure 

11Figure 10b) and FC (Figure 11Figure 10c) concentrations. Particularly in Sub-Saharan Africa and 650 
Ssouthern Asia, BOD and FC concentrations in populated locations have been almost exclusively 

increasing. Over half of the population of Sub-Saharan Africa live in areas where BOD and FC 

concentrations have increased (on average) by >2% per year from 1980 – 2019. Conversely, in 

Western Europe, trends in BOD and FC have been negative for areas where 60% of the population 

lives.  655 

When aggregating trends by country-specific economic classifications, trends in TDS, BOD and FC 

pollutant concentrations all display a clear correlation with level of economic development (Figure 

11Figure 10). For the water quality constituents considered, the strongest and most widespread 

decreases in pollutant concentrations have been experienced by ‘high-income’ countries, while ‘low-

income’ countries have experienced the greatest and most widespread degree of water quality 660 
degradation. These patterns are particularly clear for FC, where approximately 60% of the population 

in ‘high-income’ countries live in gridcells displaying negative trends in FC concentrations, compared 

to 50%, 25%, and 10% in ‘upper-middle’, ‘lower-middle’ and ‘low-income’ countries, respectively. 

Furthermore, in the ‘low-income’ countries, 50% of the population live in areas where FC 

concentrations have increased (on average) by 2% each year from 1980 to 2019. 665 
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Figure 1110. Average annual percentage changes in a) total dissolved solids (TDS), b) biological 

oxygen demand (BOD) and c) fecal coliform (FC) concentrations for the period 1980 – 2019. Results 

are displayed for the proportion of population (%) inhabiting gridcells exhibiting different trends in 670 
pollutant concentrations, aggregated by geographical region (left) and economic classification (right).  

 

To further illustrate both trends and temporal variations in TDS, BOD and FC, Lastly, we present 

time-series of in-stream TDS, BOD and FC concentrations delineated by sector-specific contributions 

for at three selected locations (Figure 12Figure 11) for which validation plots are also presented 675 
(Figures S6 – S9). While it is not our intention to explain the patterns in concentrations and sectoral 

drivers for the Mersey, Cauvery and Kiso rivers specifically, these plots are illustrative of the 

capabilities of DynQual. For example, these plots demonstrate the relative importance of different 

water use activities on in-stream concentrations dynamically, and also display changes over longer 

time periods. This is particularly evident in FC concentrations in the Mersey river, where decreasing 680 
loadings from the domestic and manufacturing sectors, primarily due to increases in wastewater 

treatment capacities, have driven an overall trend towards water quality improvements. Conversely, 

the manufacturing sector is simulated to have had an increasing influence on TDS concentrations in 

the Kiso river since ~2004, replacing the irrigation sector as the dominant driver of salinity pollution.          

TDS concentrations in all three locations display an increasing trend since 1980, with the 685 
manufacturing sector being the dominant source of loadings in the Danube and Hudson. Conversely, 

TDS loadings from the irrigation sector is the main determinant of salinity concentrations in the 

Karnaphuli, which also exhibits substantial intra-annual variations attributed to high seasonality. 

Average BOD and FC concentrations in the Karnaphuli river approximately doubled from 1980 to 

2019, predominantly due to increasing loadings from the domestic sector, while also exhibiting high 690 
seasonal variability. Relatively small trends in BOD and FC concentrations are simulated in the 

Hudson, mostly driven by the domestic sector but also with contributions from manufacturing 

activities and urban surface runoff. Conversely, strong reductions in BOD and FC concentrations are 

found for the Danube (Figure 11). These trends are predominantly driven by decreasing pollutant 

loadings from the domestic and manufacturing sectors, as expansions in wastewater treatment 695 
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capacities have developed. With this, the relative influence of extensive livestock rearing on BOD and 

FC concentrations in the Danube have increased.  

 

 

Figure 1211. Simulated in-stream total dissolved solids (TDS; a), biological oxygen demand (BOD; 700 
b) and fecal coliform (FC; c) concentrations in selected rivers, disaggregated by contributing water 

use sectors and including linear decadal trends.  

 

4. Discussion, conclusions and future work 

To conclude, we have developed and evaluated a new global surface water quality model for 705 
simulating TDS, BOD and FC concentrations as indicators of salinity, organic and pathogen pollution, 

respectively. Building upon the water temperature model DynWat, and utilising approaches developed 

in previous water quality model efforts developments, the open-source code is structured in a way that 

allows for flexibility in both hydrological and pollutant loading inputs. Output data from DynQual has 

potential to inform assessments in a broad range of fields, including ecological, human health and 710 
water scarcity studies. Such work is relevant not only to the hydrological and water quality modelling 

communities, but also has applications for the broader scientific community in addition to informing 

policy regarding water resources management. 

DynQual is ambitious in its aim to model global surface water quality 1) using a consistent approach; 

2) dynamically; 3) considering multiple water quality constituents; and 4) at a high spatio-temporal 715 
(i.e. 5 arc-min and daily timestep) resolution. Any model must consider the trade-offs between model 

complexity and availability of input datasets and data to parameterise process descriptions of the 

model (Weaver and Zwiers, 2000; Wen et al., 2017), and the impact of this on model scope. Being a 

global model, DynQual is inherently unable to accurately represent all aspects relevant to the local 

context. Rather, the modelling strategy is to focus on the main spatial and temporal drivers of 720 
pollution in river networks globally to facilitate first-order approximations of in-stream concentrations 

at high spatial (5 arc-min) and temporal (daily) resolution with global coverage. As such, DynQual 

allows for the investigation of research questions that only large-scale modelling efforts can address. 

These include, as presented in the model application section, global pollution hot- and bright- spot 

identification (Figures 6 - 8), the relative importance of different contributing sectors to water quality 725 
status across the globe (Figure 9) and meta-trends in surface water quality dynamics (Figures 10 – 

11). The dynamic nature of DynQual can also facilitate analysis of intra- and inter- annual trends in 

surface water quality, and help to further enhance the understanding of the main drivers of pollution 

via (dynamic) sectoral attribution (Figure 12). Furthermore, this approach has particular value for 
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simulating surface water quality in ungauged catchments, and our use of globally consistent input data 730 
facilitates meaningful comparisons across different world regions. Given severe limitations in 

observational records of surface water quality, both in terms of spatial coverage and the number of 

observations per water quality monitoring station (SI Section 3.1), these are key strengths of 

DynQual. However, poor data availability is simultaneously a severe limitation for both the 

development of global water quality models and their evaluation. 735 

Uncertainties in surface water quality simulations arise from a combination of uncertainties associated 

with quantifications of pollutant loadings (e.g. pollutant excretion, emission rates and sector-specific 

return flows), the quality of hydrological simulations (e.g. discharge and velocities) and the 

representation of in-stream processes (e.g. decay coefficients). These uncertainties are especially 

prevalent when modelling at large spatial extents. In-stream pollutant concentrations are sensitive to 740 
dilution capacity, thus the quality of the hydrological simulations. This issue contributes to 

uncertainties in simulated concentrations particularly in headwater streams. Fixed estimates of decay 

coefficients are assumed, which contributes to uncertainties in simulations of reactive constituents 

such as BOD and FC. In addition, the representation of lakes and reservoirs in DynQual is 

rudimentary, with total (routed) loadings instantaneously averaged over the volume of the water body 745 
assuming full mixing. 

With respect to pollutant loading quantifications, spatial mismatches between the generation of 

pollutant loadings and the location of entry to the stream network (return flows) can result in the 

simulation of unrealistic concentrations, particularly in gridcells with very low water availability (i.e. 

headwater streams). This can occur where the drivers of point-source pollutant emissions (e.g. 750 
population) do not directly coincide with the location of wastewater treatment plant outlets. A lack of 

temporally-explicit input data can hinder proper representation of sectors with strong intra- or inter-

annual variability. For instance, notable limitations for the livestock sector are the simplified 

assumptions made for livestock population numbers (assumed to be constant across days of the year), 

changes to livestock numbers across multi-year periods (applied annually and based on regional 755 
averages) and transportation pathways to the stream network (assumed to be a function of surface 

runoff excluding the representation of processes that affect pollutant retention in soils). Locally 

relevant sources of pollution may also be entirely excluded, such as the lack of information on TDS 

emissions from mining activities and road-deicing. Similarly, pulses of pollutant loadings occurring 

during extreme rainfall of flood events are also overlooked, such as those associated with sewer 760 
overflows or from inundated industrial areas.  

Despite these uncertainties, DynQual has been demonstrated to perform with a reasonable level of 

performance, especially given the approximations of the model. Water temperature simulations 

closely match observations at daily resolution as indicated by KGE coefficients (Figure 4a), which are 

high across all world regions (Figure S3). Furthermore, time-series and average annual plots (Figure 765 
5a; Figure S5) demonstrate that seasonal regimes present in observed water temperatures are well-

captured by the model. Simulated TDS, BOD and FC concentrations are largely within the correct 

concentration classes (Figure 3) with nRMSE coefficients (Figure 4b-d) deemed reasonable 

considering the challenges of comparing individual (instantaneous) observed daily TDS, BOD and FC 

concentrations against simulated daily concentrations. Long-term time-series and average annual 770 
cycle plots for TDS (Figure 5b; Figure S6), BOD (Figure 5c; Figure S7) and FC (Figure 5d; Figure 

S8) show that DynQual can generally simulate in-stream concentrations within the correct range (e.g. 

min-max daily concentrations, 10th and 90th percentile average annual cycles), but simulations of in-

stream concentrations timeseries on a daily timestep show relatively poor agreement with the 

observed timeseries. Observed data records also tend to display large variability in concentrations but 775 
little (systematic) seasonality, especially for BOD (Figure S7) and FC (Figure S8) concentrations. 

These factors have a strong influence on metrics including RMSE, but especially the other commonly-

used evaluation metrics in hydrology such as the Nash-Sutcliffe efficiency (NSE) and Kling-Gupta 
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efficiency (KGE), and hence support our decision not to evaluate model performance using these 

metrics. Challenges related to the observational records themselves should also be acknowledged. 780 
These can relate to, for example, artefacts in observational records (Figure S9a), issues related to 

instrument detection limits and/or reporting accuracies (Figure S9b) and large variability in the 

observation records (Figure S9c). Lastly, given the approximations of the model, the overall 

complexity in the drivers of pollutant loadings and input data limitations, we re-iterate that the current 

set-up of DynQual is not suited to simulate daily TDS, BOD and FC concentrations that correspond 785 
exactly with in-situ observational measurements.  

With few comparable studies in the current literature, it is difficult to quantitatively assess the 

performance of DynQual relative to other large-scale surface water quality models. Overall, our 

modelled spatial patterns in surface water quality match well with previous regional and global 

assessments – displaying multi-pollutant hotspots (e.g. TDS, BOD, FC) to be located across northern 790 
India and eastern China in particular (UNEP, 2016; Wen et al., 2017; Van Vliet et al., 2021). 

Consistent with a recent data-driven (machine learning) approach (Desbureaux et al., 2022), albeit for 

some different water quality constituents (e.g. total phosphorus), we find a general trend towards 

surface water quality improvement in development countries and deterioration in developing 

countries. The quality of wWater temperature (Tw) simulations closely match those of the global 795 
water temperature models upon which DynQual is based (Van Vliet et al., 2012b; Wanders et al., 

2019; Van Vliet et al., 2021). For total dissolved solids (TDS) and biological oxygen demand (BOD) 

concentrations, values of and spatial patterns in normalised root mean square errors (nRMSE) are 

similar to previous work (Van Vliet et al., 2021), with reasonable model performance (<1 nRMSE) 

exhibited at monitoring locations across all continents. Other large-scale surface water quality models 800 
have validated simulated concentrations with respect to concentration classes linked to sectoral water 

use and environmental health limits. Following this approach, Wen et al., (2017) reported BOD 

concentrations simulated within the same classification in 94% of instances, however this is based on 

only 760 measurements of which 91% are modelled in the lowest pollutant class (0 – 5 mg l-1). More 

comparable to our simulations, UNEP (2016) compared modelled and observed pollutant classes for 805 
TDS, BOD and fecal coliform (FC) concentrations across Latin America, Africa and Asia, achieving 

largely comparable model performance. Comparing our simulations to output from other global water 

quality models modelling Tw, BOD, TDS and FC, when available, will provide further insights into 

model performance.  

 It should be noted that while the validation data included by UNEP (2016) was derived exclusively 810 
from GEMStat, we expand our validation to include additional national datasets. While this further 

biases our validation towards countries with more extensive water quality observation networks (e.g. 

USA, Europe), this also allows for better consideration of the performance of DynQual over a wider 

range of hydrological conditions. 

Meaningful comparisons to other surface water quality models are challenging due to the high 815 
diversity in terms of: 1) spatial extent (e.g. lumped vs. distributed); 2) temporal resolution (e.g. daily 

vs. monthly vs. annual vs. decadal); and 3) water quality constituent and reporting form (e.g. loads vs. 

concentrations). Similarly, watershed-scale surface water quality models are constructed for different 

purposes than large-scale (continental to global) surface water quality models. These watershed 

models can better incorporate locally relevant input data and processes, are parameterized for local 820 
conditions and typically have data of good quality and record length for calibration and validation – 

which facilitates higher precision and accuracy in both hydrological and water quality simulations. 

However, these models are reliant upon detailed local knowledge which is severely lacking for many 

(particularly ungauged) catchments worldwide (e.g. large parts of Africa).    

Despite their limitations, process-based large-scale water quality models can facilitate first-order 825 
assessments of global water quality dynamics that are consistent across both space and time, such as 
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those demonstrated in the model application section of this study. Future applications of DynQual 

may include: 1) expanding the number of modelled water quality constituents; 2) further spatio-

temporal analysis of surface water quality, especially under hydro-meteorological extremes (droughts, 

heatwaves); and 3) investigating the impact of uncertain climatic and socio-economic change on 830 
future surface water quality.   



28 
 

5. Code and data availability 

DynQual v1.0 is open source and distributed under the terms of the GNU General Public License 

version 3, or any later version, as published by the Free Software Foundation. The full model code, 

configuration INI files and a user manual is provided through a GitHub repository: 835 
https://githubv.com/UU-Hydro/DYNQUAL. The model code presented in this manuscript is archived 

at https://doi.org/10.5281/zenodo.7398410. 

A full set-up with all required input datasets for running DynQual for the Rhine-Meuse basin is 

provided as an example (https://doi.org/10.5281/zenodo.7027242). Monthly water temperature (Tw) 

and salinity (TDS), organic (BOD) and pathogen (FC) concentrations are available directly via 840 
https://doi.org/10.5281/zenodo.7139222. Here, we also provide the output hydrological data 

(discharge and channel storage) simulated within the model run. 
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