
Community comment: Jason Ke 

This manuscript developed a global water quality model DynQual V1.0 and interpreted its 
results for TDS, BOD, and FC. Overall this manuscript is well-written with good-quality 
figures. Model results regarding the spatial patterns of concentration and temporal trends by 
region and economic development are interesting. However, there are some concerns about 
the model evaluation.   

1) there seems no description of model calibration. How was the calibration done for the 
global water quality model? Is it a simultaneous calibration for both hydrology 
(discharge) and water quality (Tw, TDS, BOD, FC), or a two-step calibration strategy 
with discharge calibrated first followed by water quality calibration? Since the author 
mentioned that discharge was very important for model results (Supplement, Line 
295), I would assume the discharge has to be well-calibrated before modeling water 
quality. 

DynQual, in addition to the underlying model PCR-GLOBWB2 (Sutanudjaja et al., 2018) and 
the original water temperature model DynWat (Wanders et al., 2019), are uncalibrated. This 
is an important point that is currently missing, and one that we will explicitly state and justify 
in the manuscript during revisions. 

The process (physically) based nature and global scale of our model, combined with large 
data gaps in both space and time complicate meaningful calibration. For both the hydrology 
and water quality aspects, we want to avoid the creation of ‘calibration artefacts’ – whereby 
deficiencies in process descriptions are concealed by parameter estimation and there is a 
tendency to be biased towards areas/subsets where data availability is high, which could 
introduce a lack of spatial parameter consistency between different locations. This is 
especially problematic for calibrating large-scale water quality models, due to the strong 
spatial biases in the observations and the large number of parameters that need to be 
estimated. On the other hand, uncalibrated physical models can theoretically be applied in 
ungauged basins without loss of performance (Hrachowitz et al., 2013; Wanders et al., 
2019).DynQual will also be used for global change assessments with different climatic and 
socio-economic scenarios, for which we preferably work with uncalibrated models.  

All input parameter values for the global water quality modelling work are derived from 
previous (global) work (e.g. UNEP 2016, Reder et al., 2015, van Vliet et al., 2019). While 
PCR-GLOBWB2 is also parameterised on the basis of existing global datasets without 
further calibration, extensive model validation of hydrological simulations (e.g. discharge) 
have been performed using GRDC discharge data  (5,363 stations) and GRACE total water 
storage thickness, as described in more detail in Sutanudjaja et al., (2018). 

Please also note that the majority of global water quality models are currently uncalibrated, 
including QUAL (van Vliet et al., 2021), WorldQual (Voß et al., 2012) and IMAGE-GNM 
(Beusen et al., 2015) due to their process-based nature and aim of simulating water quality 
in data scare regions. 

 

 

 

 



2) The model evaluation that is very important to the model development paper seems 
underdeveloped. It is essential to evaluate the model performance before the model 
result interpretation. For example, it is ideal to evaluate model performance 
whenever data are available. For example, there are 27,238 stations with TDS data 
in the Supplement. Perhaps the author could do the following evaluation regarding 1) 
spatial pattern of mean concentration (e.g., model mean vs. data mean from the 
station with high data availability); 2) temporal dynamics regarding seasonal 
fluctuations and long-term trends (e.g., Fig 11, add data points to the temporal trend 
plots to evaluate if the model could reproduce the long-term trends) 

We agree that model evaluation is very important, and is somewhat underdeveloped in the 
current submission. Please note that some validation results are also presented in the 
Supplementary Information of Jones et al., (2022) (https://www.nature.com/articles/s43247-
022-00554-y). We will endeavor to further improve this section, both in the manuscript and 
SI, e.g. by adding global maps of time-average model evaluation statistics at locations with 
water quality observations. 

Overall, and as argued in other global water quality modelling work (e.g. Beusen et al., 2015; 
UNEP 2016) we believe that the overarching purpose and applications of the model must be 
considered when evaluating the performance. DynQual is ambitious in its aims to model 
surface water quality 1) using a consistent approach at the global scale; 2) dynamically; 3) 
considering multiple water quality constituents (multipollutant approach); and 4) at a high 
spatiotemporal resolution. We believe the presented approach is appropriate for 
investigating key research questions that only large-scale modelling efforts can help to 
answer, for example, those related to: global hotspot identification (Figure 4-6), the relative 
importance of different sectors across the globe (Figure 7) and meta-trends in water quality 
dynamics (e.g. Figure 10-11). For these analyses, we find it important to use globally 
consistent input data for DynQual runs made at the global scale (as per this paper), in order 
to facilitate meaningful comparisons across different world regions. Yet, this necessitates a 
simplified approach (see #8). 

With these considerations, we choose to evaluate the global output from DynQual using 
metrics that focus on the residuals (i.e. prediction errors) using the normalized root mean 
squared error (nRMSE) (Figure 3, Figures S2a-5a); and by evaluating the ability of DynQual 
to simulate concentrations within a concentration range (Figure S6). This follows the 
evaluation approach adopted by global water quality models that are comparable to ours 
(e.g. Beusen et al., 2015; UNEP, 2016; van Vliet et al., 2021). Thanks for the good 
suggestion to add spatial patterns comparing the mean observed vs. modelled 
concentrations, these will supplement the existing evaluation approach nicely and so we will 
add these to the SI.  

 

 

 

 

 

 



3) what is a good nRMSE value? It would be beneficiary to add the Nash–Sutcliffe 
model efficiency coefficient (NSE) which is a widely used dimensionless metric in 
hydrology and water quality literature. 

Model evaluation spatial patterns presented in van Vliet et al. (2021) suggest acceptable 
performance below 100% (1.00) for total dissolved solids and biological oxygen demand.  
For large rivers (e.g. Rhine, Mississippi), Beusen et al., (2015) consider normalised RMSE 
(nRMSE) values of 50% (0.5) acceptable for nitrogen and phosphorus, in the view of the 
global scale of the model. Their model evaluation results including all rivers found a nRMSE 
of 124% (1.24) for N and 184% (1.84) for P, based on average annual concentrations, which 
they consider acceptable.  

As also expressed in #4, the water quality parameter of interest is especially important to 
also consider here. For example, Reder et al., (2015) argue that as NSE and RMSE are 
sensitive to high extreme values (Moriasi et al., 2007), they need to be applied with caution 
in bacteria modelling where in-stream concentrations can vary across several order of 
magnitudes. The applicability of these metrics for model evaluation are also considered in 
the initial validation of DynQual in Jones et al., (2022), where it is shown for fecal coliform 
(FC) concentrations in some example stations (Figure 1) that while the model is generally 
capable of simulating concentrations within the correct concentration ranges, the magnitude 
of variability in the measured timeseries (also occurring over short time periods) is severely 
underestimated. High variability in observed FC concentrations is common across almost all 
monitoring stations, with 88% of stations reporting FC concentrations that range over three 
or more orders of magnitude (Jones et al., 2022). 

We will further reflect on these points in the manuscript, supplemented with more 
comparisons to other global water quality models (as per #4). 

 



 

Figure 1. Selected time series of observed vs. simulated fecal coliform (FC) concentrations 
(cfu/ 100mL). Black (daily) and red (rolling 30-day average) lines indicated simulated FC 
concentrations; whereas blue crosses are observed concentrations. As displayed in Jones et 
al., (2022). 

 

 

 

 

 

 

 



4) this manuscript in general lack literature discussion or comparison in terms of model 
performance (e.g., Figure 3), for example, what is other water quality model 
performance in terms of nRMSE? There might be few global scale water quality 
models. But I guess it could be useful to add a few comparisons with other 
watershed-scale water quality models. 

Our comparisons to other global water quality models regarding performance are currently 
done in the discussion section (lines 508 – 526). We agree that more comparisons to other 
global water quality models regarding performance can be added – both of terms of the 
comparisons made to the other global water quality models we already discuss (e.g. van 
Vliet et al., 2021; UNEP 2016; Wen et al., 2017), and also to other global water quality 
models (e.g. Beusen et al., 2015). This will be added to the revised manuscript. When 
comparing global water quality models (including model performance), inherent differences 
between model set-ups must also be acknowledged. With regards to this, areas that are 
especially important to consider related to the model are the: 1) spatial extent (e.g. lumped 
vs. distributed models); 2) temporal resolution (e.g. daily vs. monthly vs. annual vs. decadal); 
and 3) water quality constituent of interest (also see #3). We will also reflect on these points 
in detail in the discussion section.  

However, we find difficulties in comparing our global water quality model output directly to 
watershed-scale water quality models, which are typically applied to investigate vastly 
different research questions and have different purposes. These models can also 
incorporate locally relevant input data which are lacking in global approaches, can be 
parameterized for local conditions and typically have observation data of good quality and 
record length for calibration and validation. However, the flexible model does allow for 
applying DynQual at different spatial scales, and with different configurations. For example, 
pollutant loadings can be calculated independently of the DynQual emissions module and 
applied as a forcing – which could be particularly beneficial where knowledge of pollutant 
emissions exceeds the globally-applicable datasets. (Calibrated) hydrological output can 
also be forced directly to DynQual, thus making use only of the routing module of PCR-
GLOBWB2/DynQual. Future work will seek to investigate the potential of DynQual to answer 
research questions at finer spatial scales (e.g. watershed, country-level). Here, comparisons 
to existing watershed-scale models will be important and relevant.    

    

5) Line 200, can the decay coefficient be specified by the user? 

Yes, as with all parameters/ coefficients in the model setup, decay coefficients could be 
specified by the user directly in the source code. We will clarify this in the manuscript. In the 
manuscript, we present the way this has currently been implemented within DynQual (based 
off existing global water quality modelling work). These are displayed in Equations 4 (BOD) 
and 5 (FC), with parameter values for FC in Table 1.  

 

 

 

 

 



6) Line 220, is it a constant background concentration or a time-varying background 
concentration through each timestep? 

We use a constant background concentration for TDS. While time-varying background 
concentrations could technically be implemented into DynQual easily, the availability of data 
(especially at the global scale) to determine time-varying background concentrations is a 
limitation. For other time-varying sources of pollutant loadings to the surface water network, 
for example those related to highly seasonal irrigation regimes, these are implemented at the 
daily timestep. We will clarify this in the manuscript. 

   

7) what was the computational time to run for 1-year simulation? 

In short, this will largely depend on: 1) model configuration (Figure 1); and 2) the target 
spatial extent. 

Global 5 arc-min DynQual runs that are coupled with PCR-GLOBWB2, as done in this work, 
have a wall-clock time of approximately 6 hours when run with parallelization, due to the 
requirement to run with the kinematic wave routing option. This is a more computational 
demand routing equation than e.g. travel-travel time characteristic routing option 
(Sutanudjaja et al., 2018), but provides greater realism which is needed for higher accuracy 
discharge and water temperature simulations. Our calculation times are more or less 
equivalent to the PCR-GLOBWB2 run times given in Sutanudjaja et al., (2018) using 
kinematic wave routing. So called “offline” global DynQual runs, which use hydrological input 
(i.e. baseflow, interflow and direct runoff) as an external forcing, are somewhat (~20%) 
quicker. 

The parallelization strategy for global PCR-GLOBWB2/DynQual involves dividing the model 
domain into 53 groups of river basins that run independently of each other as 53 separate 
processes (see Sutanudjaja et al., 2018 for more details). The length of time it takes for each 
individual process to run is dependent on the size of the land mask (i.e. the number of 
pixels). Thus, for global parallelization runs, the computational time to run for a 1-year 
simulation is equal to that of the largest land mask. Yet, PCR-GLOBWB2/DynQual does not 
necessarily need to be run at the global extent – users could alternatively select a particular 
river basin(s) or define their own land mask. The self-contained example for the Rhine basin 
that we provide (https://zenodo.org/record/7027242#.Y8fHOhfMJPY) takes approximately 45 
minutes to run for 1 year.    

 

 

 

 

 

 

 

 

 

https://zenodo.org/record/7027242#.Y8fHOhfMJPY


8) Supplement Line 295, does it mean reaction is underestimated compared to 
discharge (dilution)? 

The current model set-up for DynQual emissions module is to quantify loadings at the 
individual gridcells where the pollution activity is located (e.g. populations), with loadings 
entering the surface water network at the same location (which are subsequently routed 
through the surface water stream network based on the flow direction (routing) map; Figure 
2). This approach is advantageous in that we can use globally available datasets for 
estimating pollutant emissions (e.g. populations). The ability to use globally consistent input 
data is important for DynQual runs made at the global scale (in line with the focal point of 
this paper), whereby we want to facilitate meaningful comparisons across different world 
regions.  

This approach has the disadvantage of spatial mismatches between the generation of 
pollutant loadings and the actual locations where loadings enter the stream network occur. 
Simulated concentrations in gridcells with low water availability – i.e. headwater streams - 
are particularly sensitive to this, and concentrations in these gridcells are typically masked in 
global water quality studies. Similarly, point sources of pollution (e.g. wastewater treatment 
plants) typically discharge into higher-order streams, the location of which might not exactly 
coincide with population density. DynQual tracks the mass of pollutants (not concentrations) 
in discrete gridcells per timestep (Figure 1). Thus, these masses are transported 
downstream to higher-order streams whereby the pollutant mass will be more feasible with 
respect to the dilution capacity – hence the better model performance in gridcells with 
greater water availability.  

 

9) Supplement Line 300, what is high data availability, and how many data points during 
1980-2019? 

“High data availability” is, of course, relative. In this paper, and as per Jones et al., (2022), 
high data availability refers to >30 measurements in the target time period. We will add this 
detail to the SI. In general, water quality observations are limited in both geographical space 
and fragmented across time . There are also issues related to data access, with data 
collected by both governmental organizations and private institutions not being made 
publicly accessible. These are key motivations for conducting large-scale water quality 
modelling efforts, such as DynQual, i.e. to provide insights on water quality status in data 
scare regions such as Africa and large parts of Asia.  

 

 

 

 

 

 

 

 



10) Supplement Line 305, Figure S3 (b, c) what are the nRMSE and NSE values for 
these two rivers? It seems that the model overestimated a lot for peaks. 

For Figure S3b, the nRMSE is 0.15, with a mean observed concentration of TDS 399 mg l-1 
(349 observations) and a mean modelled concentration of TDS 388 mg l-1. For Figure S3c, 
the nRMSE is 0.24, with a mean observed concentration of TDS 25 mg l-1 (468 
observations) and a mean modelled concentration of TDS 24 mg l-1. We wanted to explicitly 
include some time-series plots in our evaluation to demonstrate the dynamic nature of the 
model simulations, and selected stations based on the high data availability and the long-
time series of observations.  

However, comparing individual (instantaneous) observed concentrations vs. simulated 
concentrations comes with challenges at large scales – particularly when it comes to min 
and max concentrations. As demonstrated in ~2007 in the Drammenselva river, observed 
TDS concentrations fluctuate by a factor of 2 over short time periods (~25 mg l-1 to 50 mg l-
1), with the peak being entirely missed in our simulations. This is difficult to attribute (and is 
beyond the scope of DynQual), given the global scale of our model and the underlying 
assumptions – perhaps it is a missing emission process (e.g. delivery of road-salts to the 
stream network) or a temporal mismatch in the simulated vs. actual hydrological conditions 
(i.e. dilution effect). Yet, max TDS concentrations in the observed and simulated time-series 
for the Drammenselva river are very similar (~50 mg l-1). Max simulated concentrations 
(~600 mg l-1) are indeed somewhat higher than observed concentrations (~500 mg l-1) in the 
Kalamazoo river. Again – difficult to attribute – this could similarly due to a bias in the dilution 
component of our model or due to an overestimation of TDS loadings originating from short-
lived processes (e.g. those from urban surface runoff). As described in #2, the overarching 
purpose of the model must be considered, and please note that we are not using DynQual to 
draw conclusions regarding extremes (min-max concentrations). 

For reasons described in #2&3, we refrain from calculating NSE values, which have not 
been used for evaluating the performance of any global water quality model to date. 
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