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Abstract.

In the era of exascale computing, machines with unprecedented computing power are available. Making efficient use of these

massively parallel machines, with millions of cores, presents a new challenge. Multi-level and multi-dimensional parallelism

will be needed to meet this challenge.

Coarse-grained component concurrency provides an additional parallelism dimension, that complements typically used par-5

allelization methods such as domain-decomposition and loop level shared memory approaches. The novel aspect is that com-

ponent concurrency is a function parallel technique, it decomposes the algorithmic space, while these parallelization methods

are data parallel techniques, they decompose the data space. This additional dimension of parallelism allows us to extend scal-

ability beyond the limits set by the established parallelization techniques. It also offers a way to maintain performance (by

using more compute power) when the model complexity is increased by adding components, such as biogeochemistry or ice10

sheet models. Furthermore, concurrency allows each component to run on different hardware, and thus leveraging the usage of

heterogeneous hardware configurations.

In this work we study the characteristics of component concurrency and analyse its behaviour in a general context. The anal-

ysis shows that component concurrency increases the “parallel workload”, improving the scalability under certain conditions.

These generic considerations are complemented by an analysis of a specific case, namely the coarse-grained concurrency in15

the multi-level parallelism context of two components of the ICON modeling system: the ICON ocean model ICON-O and

the marine biogeochemistry model HAMOCC. The additional computational cost incurred by the biogeochemistry module is

about three times that of the ICON-O ocean stand alone model, and data parallelization techniques (domain decomposition and

loop-level shared memory parallelization) present a scaling limit that impedes the computational performance of the combined

ICON-O-HAMOCC model. Scaling experiments, with and without concurrency, show that component concurrency extends20

the scaling, in cases doubling the parallel efficiency. The experiments’ scaling results are in agreement with the theoretical

analysis.
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1 Introduction

Since the dawn of modern computing, numerical weather prediction and climate modeling have been among the first scientific

applications to make use of the new technology (Dalmedico (2001); Washington et al. (2009); Balaji (2013)). In the decades25

following the creation of the first atmosphere computer models the computational power has been increasing exponentially

(McGuffie and Henderson-Sellers (2001)), allowing the development of complex Earth System Models (Randall et al. (2018))

running at ever higher resolutions. A first impressive result was described by Miyamoto et al. (2013), where the atmosphere

model NICAM ran in a global sub-kilometer resolution for 12 simulated hours, dynamically resolving convection. Since then,

other groups have followed the path of reducing parameterizations by increasing the resolution, as for example in global storm30

resolving setups described in Stevens et al. (2019). We are currently viewing the perspective of constructing the Earth’s digital

twin (Voosen (2020); Bauer et al. (2021)), where much of the Earth’s system complexity will be captured by models at one

kilometer resolution.

These developments have been made possible by the availability of massively parallel computers. Since the beginning of the

21st century the focus of CPU development has switched from constructing more powerful processing units to packing more35

units into an integrated chip. In response, programmers had to turn much of their efforts from optimizing the code to efficiently

parallelizing it (Sutter (2005); Mattson et al. (2008)). The era of exascale computing is here with the construction of machines

like the Frontier at the Oak Ridge National Laboratory. While less than fifteen years ago we were facing the challenge of

petascale computing (Washington et al. (2009)), we are now facing a new level of challenge: how to efficiently parallelize our

codes for machines with millions of cores.40

The parallelization backbone of Earth system models consists of domain decomposition techniques, where the horizontal

grid is decomposed into subdomains, which are assigned to different processing units, and the Message Passing Interface (MPI,

Walker (1992); The MPI Forum (1993)) is used to communicate information between them. This approach has been designed

primarily for distributed memory parallelization. In the last years it has become apparent that domain decomposition methods

alone cannot efficiently scale when using high number of cores placed on a shared memory board. Since two decades, shared45

memory parallelization mechanisms, such as OpenMP (Mattson (2003)), have being developed. These have been increasingly

employed for providing loop-level shared memory parallelization, in order to exploit the new multi-core architectures. More

recently, GPUs have attracted a lot of attention due to the high computing power they provide through massive parallelism,

while at the same time require lower power consumption per FLOP (floating point operations per second) than traditional

CPUs. The two levels of parallelization that are currently widely used, domain decomposition with MPI for distributed memory50

parallelization, and OpenMP shared memory loop-level parallelization (or similar approaches, like OpenACC for GPUs), have

so far been successful in yielding satisfactory performance on parallel machines. They still pose though some limitations, as

their scaling efficiency typically depends on the amount of grid points available for parallelization.

The concept of concurrency goes back to before parallel computing came into practice (Lamport (2015)). It refers to al-

gorithmic dependencies and independences, and was first developed in the context of multitasking. The term has come to be55

synonymous to task parallelism, as independent tasks can run in parallel. In contrast to the domain decomposition and loop-
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level parallelization methods, concurrency is a function (or task) parallel approach. Coarse-grained component concurrency

is a special case of concurrency, where the independent components are large model modules, essentially sub-models, with

comparable computational workload. It has been used in climate modeling since decades in atmosphere-ocean coupled setups:

the two models run in parallel, and are coupled every one or more time steps. More recently, the same idea has been applied60

to the radiation component of the atmosphere (Mozdzynski and Morcrette (2014); Balaji et al. (2016)), and to the radiation

and ocean wave components (Mozdzynski (2018)). A concurrency approach by splitting the atmosphere dynamics and physics

processes is presented in Donahue and Caldwell (2020).

Increasing the grid resolution allows us to resolve smaller scales, to better approximate the physical processes, and to rely less

on parameterizing unresolved processes. This increased problem size can still be effectively parallelized using data parallelism,65

at least up to a point. On the other hand, there is interest to include more processes into Earth system models, in order to have a

more detailed representation of the Earth system. Such processes may represent the atmosphere chemistry, the cryosphere and

the ocean biogeochemistry, and can have a significant impact on the Earth’s climate and the biosphere.

Ocean biogeochemistry comprises a variety of chemical and biological processes in the water column and the sediments

of the ocean (Sarmiento and Gruber (2006)). These processes include, for example, biological activity of phytoplankton,70

zooplankton and different types of bacteria, the chemical and biological cycles of carbon or nitrogen, and the dissolution

of gases in seawater. Ocean biogeochemistry is therefore an important component for quantifying critical developments in

the Earth system, like the oceanic uptake of anthropogenic CO2 released from fossil fuels (Ciais et al. (2014)), or ocean

acidification and deoxygenation under the impact of global warming (Orr et al. (2005); Breitburg et al. (2018)). However, the

number of processes that could be included is extensive, and ocean biogeochemistry models are becoming ever more complex75

through the addition of more tracers and processes (Ilyina et al. (2013)). This results in a large computational cost, which

hinders their integration in high resolution Earth system models, especially when simulating the long time scales that are

crucial to investigate changes in the biogeochemical state of the ocean.

In contrast to increasing the grid size, the additional computational cost imposed by introducing new processes cannot be

absorbed through grid decomposing parallel methods, as these are limited by the grid size. Component concurrency offers a80

way to increase the model complexity, while maintaining reasonable performance.

In this paper we study the impact of component concurrency on the scaling behavior of a model. We examine it in a general

abstract context, in what manner component concurrency differs from the more traditional approaches, and what its scaling

characteristics are. We consider concurrency to be part of a multi-level parallelism scheme, and we examine the cases where

it can improve performance, and when this improvement is optimal. The ICON-O-HAMOCC ocean biogeochemistry model85

offers a good test-case, as it is about four times slower than ICON-O alone. We have run two sets of experiments on two

different machines. The scaling results obtained from the experiments are in good agreement with the predictions from the

theoretical analysis.

In Section 2 we give a brief description of the ICON models. In Section 3 we examine the behavior of component concur-

rency in a general context. Section 4 describes the basic steps to engineer concurrency for ICON-O-HAMOCC. Experiments90
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and the results are presented in Section 5. A comparison of the experimental results with the theoretical analysis is given here.

In Section 6 we give an overview of the results and future work.

2 ICON model description

ICON is an Earth system model framework developed in collaboration with the German Weather Service (DWD), the Max

Planck Institute for Meteorology (MPIM), the Institute of Meteorology and Climate Research at the Karlsruhe Institute of95

Technology, and the German Climate Computing Centre (DKRZ). It consists of the numerical weather prediction model ICON-

NWP (Zängl et al. (2015)), the climate atmosphere model ICON-A (Giorgetta et al. (2018); Crueger et al. (2018)) and the land

model JSBACH (Nabel et al. (2020)), the ocean model ICON-O (Korn et al. (2022)), the atmosphere aerosol and chemistry

model ICON-ART (Rieger et al. (2015)), and the marine biogeochemistry model HAMOCC (Ilyina et al. (2013)). The ICON

Earth system model ICON-ESM consists of ICON-A, JSBACH, ICON-O and HAMOCC (Jungclaus et al. (2022)).100

The ICON horizontal grid consists of triangular cells constructed by recursively dividing the icosahedron (Tomita et al.

(2001)), and it provides near-uniform resolution on the sphere. More general non-uniform triangular grids can be used by

ICON-O (Logemann et al. (2021)).

The ICON framework provides common infrastructure to its components. It supplies the domain decomposition routines,

and model contextual high level communication interfaces to the Message Passing Interface (MPI). It also provides flexible105

interfaces for input, and automatic parallel asynchronous output mechanisms. The YAC library (Hanke et al. (2016)) serves

as a general coupler between models. Models are registered to a simple master control module through namelists. The ICON

models employ both domain decomposition and OpenMP loop level parallelism. ICON-A and JSBACH can also run on GPUs

using OpenACC directives (Giorgetta et al. (2022)).

2.1 The ICON-O ocean model110

ICON-O is the ocean general circulation model that provides the ocean component to the ICON-ESM. Its horizontal spatial

discretization is based on unstructured triangular grids, allowing a variety of setups, from idealized basins (Korn and Danilov

(2017)), to global ocean domains, where the interior land points are removed, see Fig. 1 left. In non-uniform setups it has

been tested with “telescoping” setups (Korn et al. (2022)), which can produce local grid-spacings of 600m (Hohenegger et al.

(2022)). Furthermore, a topographic and coastal adaptive local refinement (Logemann et al. (2021)) has been used for global115

coastal ocean simulations (see Fig. 1 right). This setup includes the HAMOCC biogeochemistry model (see Mathis et al.

(2021)).

ICON-O solves the oceanic hydrostatic Boussinesq equations, also referred to as the “primitive equations”. The primitive

equations are solved on the triangular ICON grid with an Arakawa C-type staggering, using a mimetic horizontal discretiza-

tion, where certain conservation properties of the continuous formulation are inherited to the discretized one. The staggering120

necessitates reconstructions to connect variables that are located at different grid positions. This is accomplished in ICON-O
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Figure 1. Left: The uniform ocean icosahedron-based grid at 160km resolution. Right: Detail from the non-uniform global coastal ocean

grid with resolution 8km–80km used in Mathis et al. (2021).

by utilizing the novel concept of Hilbert space admissible reconstructions, for details see Korn (2017), Korn and Linardakis

(2018).

The vertical coordinate axis is given by the z-coordinate, which reflects the geopotential height. The two-dimensional tri-

angles are extended by a height-based dimension, which generates three-dimensional prisms. Alternative vertical coordinates125

such as the z∗-coordinate are also available in ICON-O.

ICON-O is stepping forward in time with a semi-implicit Adams-Bashford-2 scheme. The free surface equation is solved

implicitly in time, using an iterative conjugate gradient solver. The remaining state variables are discretized explicitly. For

details we refer to Korn (2017).

The ICON sea-ice model consists of a dynamic and a thermodynamic component. The sea-ice dynamics follows on the130

elastic-viscous-plastic (EVP) rheology formulation, and is based on the sea-ice dynamics component of FESIM, see Danilov

et al. (2015). The thermodynamics of the sea-ice follow the zero-layer formulation, see Semtner (1976).

A combination of a first order upwind scheme and a second order scheme are utilized for the horizontal tracer transport. The

second order method flux calculations are based on compatible reconstructions, as described in Korn (2017). The two schemes

are combined through a Zalesak limiter (Zalesak (1979)), resulting a “flux-corrected transport”, which avoids the creation135

of new extrema (over/undershoots). This combination results in both monotonicity and low numerical diffusion, which are

essential for preserving the water density structure.

For the vertical tracer transport we use a combination of the piecewise parabolic method (PPM), see Colella and Woodward

(1984), as high-order, and upwind as low order method.
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2.2 The HAMOCC biogeochemistry model140

Figure 2. Schematic of the biogeochemical processes simulated by HAMOCC. HAMOCC needs to be coupled to an ocean model that

provides the fields of temperature, salinity and sea-ice cover, and transports the HAMOCC tracers according to the flow field. The surface

inputs can either come from a coupled atmosphere model or are prescribed. The biogeochemistry in HAMOCC can then feed back to the

ocean model via the impact of light absorption on temperature and to the atmosphere model via the uptake or release of CO2.

The Hamburg Ocean Carbon Cycle (HAMOCC) model has initially been developed in the earlier work by Maier-Reimer

(1984) and Maier-Reimer and Hasselmann (1987) to address the role of ocean processes driving the fate of carbon in the

climate system over timescales ranging from seasons to thousands of years. To achieve a consistent evolution of the ocean

biogeochemistry, the biogeochemical variables are handled as tracers on the three dimensional grid of the ocean general circu-

lation model. They are transported in the same manner, i.e. using the same numerical methods and time step, as salinity and145

temperature.

The processes simulated by HAMOCC include biogeochemistry of the water column and upper sediment, as well as interac-

tions with the atmosphere. Figure 2 shows a schematic overview of the key components of the HAMOCC model. In the water

column, the biogeochemical tracers undergo modifications by biological and chemical processes, described in detail in Ilyina

et al. (2013); Paulsen et al. (2017). At the air-sea interface, the fluxes of O2, N2 and CO2, are calculated. Furthermore, dust150

and nitrogen deposition from the atmosphere to the ocean are accounted for. The simulation of the oceanic sediment follows

the approach of Heinze et al. (1999), and biogeochemical tracers are exchanged with the upper sediment.

Marine biology dynamics connects biogeochemical cycles and trophic levels of the marine food-web through the uptake

of nutrients and remineralization of organic matter. It is represented by the extended NPZD approach with nutrients, that is

dissolved inorganic nitrogen (N), phytoplankton (P), zooplankton (Z), and detritus (D) (sinking particulate matter), and also155

dissolved organic matter (Six and Maier-Reimer (1996)). Explicit fixation of nitrogen is performed by cyanobacteria (Paulsen
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et al. (2017)). All organic compounds have identical nutrient and oxygen composition following the Redfield ratio concept

extended by a constant ratio for carbon and the micronutrient iron. The treatment of carbon chemistry follows the guide to best

practices, as described in Dickson et al. (2007); Dickson (2010).

The transport of biogeochemical tracers presents the most expensive computational part of the HAMOCC model. The num-160

ber of advected tracers depends on the complexity of the included processes. For example, including organic matter from

riverine or terrestrial sources (Lacroix et al. (2021)), extending the nitrogen cycle by including ammonium and nitrite, simu-

lating carbon isotopes or using a more realistic sinking method for particular organic matter (M4AGO scheme: Maerz et al.

(2020)), incorporation of stable carbon isotope 13C (Liu et al. (2021)), increase the number of advected tracers from the de-

fault value of 17 and therefore increase the computational cost. Introducing concurrency enables the use of currently simulated165

processes and may allow the addition of even more tracers, necessary for including more processes, while maintaining an

acceptable throughput.

3 Coarse-grained component concurrency and multi-dimensional parallelism
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Figure 3. Left: two model components A and B running on 4 processing units using only domain decomposition parallelism. Right: the two

components run concurrently, each on 2 processing units.

In a coarse component concurrent setup two or more components of the model are run in parallel. The level of “coarseness”

is difficult to define, here we will understand it as being able to run concurrently the components throughout a whole timestep.170

The components are algorithmically independent, and may only need to receive input data from other components once in each

timestep. For example, the ocean model in a coupled setup requires the atmosphere surface fluxes at the start of each time step,

and then can proceed independently from the atmosphere model. Thus, we expect only one point of communication between

the components, where all the information is exchanged. Such components maybe the radiation, the ocean biogeochemistry,

the sea-ice, the ice-sheets, etc.175

From here on, we will use the term “concurrency”, instead of coarse-grained component concurrency, for brevity. We will

also use the term “sequential” as a synonym to “non-concurrent”, in the sense that the components run sequential to each other;

other types of parallelization though may still be present.
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A schematic of concurrency is drawn in Fig. 3. Let A and B be two components of the model. In the case of using domain

decomposition parallelism only, the domain is decomposed and the subdomains are distributed among the processing units,180

while the two modules run sequential to each other, as in Fig. 3 left. In the case of concurrency the two modules run on two

different groups of processing units, depicted in Fig. 3 right.

3.1 Levels of parallelism

We can identify three levels of parallelism:

a. High level parallelism is applied over the whole model, or over the whole concurrent components of the model. The185

most successful such technique is to decompose the horizontal grid, and use MPI for communicating between the subdomain

processes. Component concurrency falls into this category. The most well known example of concurrency in climate modeling

is running the atmosphere and the ocean models concurrently, and coupling them every one or more time steps. An important

characteristic of high level parallelization is that it is independent of the machine architecture. It can be applied across nodes

of heterogeneous machines, and can facilitate hybrid setups, by running simultaneously on different types of processing units.190

b. In the medium level of parallelism we identify parallel structures on a task or loop level. These are shared memory

parallelization techniques, such as OpenMP or OpenACC. We can consider them to be "medium or fine grained" parallelism.

In contrast to high level parallelization, the implementation of this level of parallelization may not be independent from the

type of architecture.

c. In the low level parallelism we identify techniques closer to the architecture, such as vectorization and out-of-order195

execution. These techniques depend on the particular architectures, and will not be considered in the following discussion.

Another way to characterize parallelism is by the type of decomposition that is employed. In data parallelism the data do-

main is decomposed, and the same operations are applied to each sub-domain. Examples of data parallelism are the domain

decomposition techniques, and the loop level parallelism. In the function (or task) parallelism, the algorithmic space is “decom-

posed”. Examples are OpenMP task parallelism, out-of-order execution, and also the coarse-grained component concurrency.200

So, these two types of decomposition exist across the three levels of parallelism.

Domain decomposition parallelism comes with a communication and synchronization cost, typically caused from exchang-

ing values of “halo” cells between processes. These halo cells consist of the boundary of subdomains which are replicated by

their neighbor subdomains (see Fig. 4). The total number of halo cells generally increases proportional to
√
N , where N is

the number of subdomains. In turn, the parallelization gain for halos is only proportional to
√
N , instead of N . This imposes205

a limit on how far we can use only domain decomposition as a parallel paradigm for running on massively parallel machines.

We will further examine this behavior in the experiments Section 5.1.

Another type of communication are global reduction operators, such as global sums. These are typically used in matrix

inversions, as is the case for ICON-O, and they also impose scaling limits. We will also observe this behavior in the experiments

in Section 5.2.210
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Figure 4. Left: a domain of 64 grid points. It is assumed double-periodic for illustration purposes. Right: the domain decomposed in 4

subdomains. Grid points with the same color are duplicated, with halos depicted shadowy.

OpenMP parallelization provides complimentary advantages to the domain decomposition. It offers dynamic load balancing

and no communication cost1. On the other hand, performance is restricted by overheads, memory bandwidth, and in NUMA

(non-uniform memory access) machines by data locality. This last disadvantage is alleviated in the domain decomposition

approach due to smaller memory footprint per process.

Component concurrency also comes with a cost, which depends on how it is implemented. If we keep the total MPI tasks215

constant, equal to N , we have two options. In the case of a distributed memory parallelization, we split the MPI tasks among

the two components, assigning N1 to the first, and N2 to the second, and apply shared memory parallelization inside each

component. The cost comes from communicating between the two components.

In the case of a shared memory implementation of concurrency, both components will run on N MPI tasks. In this case we

do not have a communication cost, but the synchronization cost remains. Moreover, the performance will partially depend on220

how efficiently MPI can handle concurrently multiple communicators from the same MPI task. Other aspects may also prove

to be significant, like I/O. In the case of distributed memory implementation, all infrastructure is automatically also distributed,

including output.

The other aspect of these two options is the implementation. The distributed memory case is independent of the architecture,

and can even be applied in hybrid mode. While in principal the same functionality can be achieved using shared memory225

parallelization, no such standard, to the authors’ knowledge, is currently mature enough to be implemented across multiple

architectures. Weighting the pros and cons can only be done in some context. In this work we choose to implement and study

component concurrency as a distributed memory approach, due to the high-level parallelism it offers.

1 Here by communication it is meant direct communication between the parallel tasks. The cost of it can be significant when it takes place through the

network.
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3.2 Coarse-grained component concurrency and scalability

For climate models the total computing workload is proportional to the grid size2 and the number of operations per grid point

required to solve the problem. We have WT = a · s, where WT is the total workload, s is the grid size, and a is the number

of operations per grid point. We define the parallel workload as the workload inside a parallel region, that is between two

synchronization points, assigned on one processing unit. For example, the total workload inside an OpenMP parallel loop,

divided by the number of OpenMP threads, would constitute a parallel workload. Such a parallel region contains a constant

number of operations ap per grid point3, so we have

Wp = ap · s/N.

Let A and B be two modules of the model using the same grid (as in Fig. 3). Let WA be the total workload of module A230

and WB = λ ·WA the total workload of module B. Proportionally, let NA =N be the number of processing units that A runs

on its own, and NB = λ ·N the additional number of processing units we use when adding module B. The total number of

processing units is now NA+NB . Let us consider the parallel workload as the workload assigned to a parallel loop. In the

typical data parallel case, where the grid space is decomposed, the parallel workload of a parallel region isWABp = ap
s

NA+NB
,

independently if this parallel region belongs to to module A or B. In the concurrent case, where module A runs on NA units235

and module B on NB units, the parallel workload of this parallel region is WAp = ap
s
NA

, if it belongs to module A, and

WBp = ap
s
NB

if it belongs to B. In both cases concurrency increases the parallel workload compared to data parallelism only.

This is a main feature of concurrency compared to data parallelism, it provides another parallelism dimension, by decomposing

the function space a instead of the problem size s.

How increasing the parallel workload affects the total performance? If we ignore the scaling issues, there is no effect. In the240

non-concurrent case the time to solution is proportional to (WA+WB)/(NA+NB) = ((1+λ) ·WA)/((1+λ) ·N) =WA/N ,

while in the concurrent case is WA/N = (λ ·WA)/(λ ·N) =WB/NB . The performance is the same. Only when scaling is

taken into account, concurrency has an impact. We will examine this impact in the following discussion.

Let T (1) = r·WA = r·a·s be the time it takes to run moduleA on one processing unit, where r is a constant that characterizes

the computing power of the processing unit, and WA the workload. We will only consider the homogeneous case, where all

units have the same processing power. Let T (N) be the time for running on N processing units. The speedup is defined as

S(N) = T (1)/T (N), and the parallel efficiency as F (N) = T (1)/N/T (N) = S(N)/N . We have that

T (N) = T (1)/(F (N) ·N).

Let us now add another component B to the model A as above, that adds a workload of WB = λ ·WA, increasing the time

cost for running on one processing unit to T (1) ·(1+λ). We increase proportionally the number of processing units, from N to

N(1+λ). We will assume that our new component B has the same scaling behavior as A, so that the same efficiency function

2The total 3-dimensional grid size.
3The number of operations per horizontal grid point may vary depending on conditionals and number of active vertical levels. These differences would

create imbalance. Without loss of generality we can take the maximum workload among processes.
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F (N) applies also to B. When using data decomposition parallelization our new time cost is

Td(N · (1+λ)) =
T (1) · (1+λ)

F (N · (1+λ)) ·N · (1+λ)
=

T (1)

F (N · (1+λ)) ·N
.

When on the other hand we run component B concurrently on λ ·N nodes, with A on N nodes, then the total time cost is

Tc(N · (1+λ)) = max(TAc,TBc),

where

TAc =
T (1)

F (N) ·N
+C(N · (1+λ)),

TBc =
T (1) ·λ

F (N ·λ) ·λ ·N
+C(N · (1+λ)) =

T (1)

F (N ·λ)N
+C(N · (1+λ))

are the time costs for running components A and B concurrently, and C(N · (1+λ)) is the cost incurred by the concurrency.

We assume that the parallel efficiency is a non increasing function of N , that is F ′(N)≤ 04. Without loss of generality we245

take λ≤ 1 (in the opposite case we can just swap the modules A and B). Then F (N ·λ)≥ F (N) and Tc = TAc. Comparing

Tc with Td we have

Tc
Td

=

T (1)
F (N)·N +C(N · (1+λ))

T (1)
F (N ·(1+λ))·N

=
F (N · (1+λ))

F (N)
+
C(N · (1+λ)) ·F (N · (1+λ)) ·N

T (1)

We set

L(N,λ) =
F (N · (1+λ))

F (N)
,

termed relative efficiency. We have

Tc
Td

= L(N,λ)+
C(N · (1+λ)) ·L(N,λ) ·F (N) ·N

T (1)
.

Taking into account that T (N) = T (1)
F (N)·N , we have

Tc
Td

= L(N,λ)+L(N,λ) · C(N · (1+λ))

T (N)
= L(N,λ) ·

(
1+

C(N · (1+λ))

T (N)

)
. (1)

We seek the conditions where Tc

Td
is smaller than 1, and as small as possible. In a linear, or near-linear scaling regime, where250

the efficiency F (N) is nearly constant as a function of N , we have L(N,λ)≈ 1, and concurrency will provide little, if any,

benefits.

Let us examine the sub-linear scaling regime. Then F (N) is a strictly decreasing function of N , and L(N,λ)< 1. Moreover

L(N,λ) is a strictly decreasing function of λ; when we keep N constant, we have

∂L(N,λ)

∂λ
=

1

F (N)

∂F (N · (1+λ))

∂λ
< 0.

4 We take the liberty to consider N continuous whenever needed.
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Concurrency will provide the maximum benefits when λ is maximum, that is λ= 1 (recall that λ≤ 1), and the two modules

have the same workload. On the other hand, if λ� 1, we have L(N,λ)≈ 1, and the benefits would be significantly reduced.

In this case the bulk of the workload is beared by module A, and the additional parallelism for B provides little profits. The255

“coarse-grained” part of the concurrency does not hold, and one should consider to use fine grained parallelism.

The sub-linear scaling property is not sufficient to allow us deduce the behavior of L(N,λ) as a function of N . We will

further assume that the scaling behavior follows Amdahl’s Law (Amdahl (1967)). In this case T (N) = T (1) (1−σ)+σ·NN , where

0< σ < 1 is the part of the code that does not scale. Then S(N) = T (1)
T (N) =

N
(1−σ)+σ·N , F (N) = S(N)

N = 1
(1−σ)+σ·N , and

L(N,λ) = (1−σ)+σ·N
(1−σ)+σ·N ·(1+λ) . We have

∂L(N,λ)

∂N
=
σ[(1−σ)+σ ·N · (1+λ)]−σ · (1+λ) · [(1−σ)+σ ·N ]

[(1−σ)+σ ·N · (1+λ)]2
=

−σ ·λ · (1−σ)
[(1−σ)+σ ·N · (1+λ)]2

< 0.

L in this case is a decreasing function ofN , with a lower limit Ll = 1
1+λ , which provides yet another evidence of the optimality

of λ= 1.

Experiment results show that in the case of ICON-O-HAMOCC L is in general a decreasing function of N (see Section 5),

and concurrency is effective only after a scaling threshold has been reached. Scaling tests for the ICON-A also indicate that260

L(N,λ) is a decreasing function of N , see Giorgetta et al. (2022), Table 3.

Let us now examine the concurrency communication cost C. The load of the point to point communication is proportional to

1/N , unlike to the halo communication cost, which is proportional to 1/
√
N . So we do not expect the ratioC(N ·(1+λ))/T (N)

to change significantly as a function of N , but load imbalance, interconnect and latency costs may influence it. In some cases

concurrency may also require a halo exchange (this is the case for ICON-O-HAMOCC). Concurrency, obviously, will perform265

better when the relative cost of the communication C to the computational cost TA is small. If we take C(N ·(1+λ))/T (N) =

c, constant then Tc

Td
= L(N,λ) · (1+ c), which implies that the scaling threshold L(N,λ)< 1

1+c has to be reached before

concurrency is effective.

The case of super-linear scaling is rare but not unknown. Typically it occurs on cache-based architectures, when smaller

memory footprint allows more efficient use of the cache memory. We can still use Eq. 1 to deduce some conclusions (we can270

switch modulesA andB if necessary). In this regime we have F (N1)< F (N2) forN1 <N2, andL(N,λ)> 1; so concurrency

will result in worse performance.

Finally we examine the case of “flattening” scaling, the limit after which the speed-up does not increase. This can be the

case for massively multicore architectures, like GPUs, when the workload per node is not enough to occupy the computing

units, and resources are idling. Let N be the number of nodes beyond which scaling does not increase. Then, from the previous275

analysis, we see that in the concurrent case scaling can still be increased up to N · (1+λ) nodes, but not beyond this. This in

essence underlines the fact that concurrency increases the parallel workload when compared to data parallelism.
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Figure 5. Left: diagram of the sequential ICON-O-HAMOCC flow. Right: diagram of the concurrent ICON-O-HAMOCC structure. The

same interface is used for both the sequential and the concurrent mode.

4 Engineering concurrency for the ICON-O-HAMOCC model

Constructing coarse-grained component concurrency is a software engineering task. The candidate components have to present

“natural” concurrency; this in practice means that they will present one communication point between them, while the algorith-280

mic part of the components can run independently. Having identified the two components, the next steps are a. encapsulating

the components, b. creating an interface between them, and c. providing the necessary infrastructure for the two components to

run independently and to communicate. The procedure is not dissimilar to that of constructing stand-alone models, as described

for example in Eastham et al. (2018), or constructing coupled setups, as described in Long et al. (2015).

The original structure and workflow of the sequential ICON-O HAMOCC process is sketched in Fig. 5, left. The call to the285

HAMOCC biogeochemistry takes place just before the tracer transport is called (we will use the term transport for brevity).

Upon returning, the HAMOCC tracers have been updated regarding the biogeochemistry processes, and the tracer transport

routine is called. The HAMOCC tracers are transported along with the other two ICON-O tracers, temperature and salinity.

In this scheme ICON-O and HAMOCC are entangled through the memory usage and the tracer transport. The HAMOCC

tracers are part of the ICON-O tracer structure. Other HAMOCC variables, like tendencies and sediment, while exclusive to290

HAMOCC, were still created in ICON-O in order to allow the use of the ICON infrastructure, like I/O. The ICON-O-HAMOCC

interface handles the memory recasting between ICON-O and HAMOCC, as they use different memory layouts. The surface

fluxes for HAMOCC are also handled in ICON-O. On the other hand, ICON-O does not have any dependencies on HAMOCC,

except optionally the calculation of solar short wave radiation absorption ratio, which is calculated in HAMOCC based on the

chlorophylls concentration.295

While the two components are entangled, the basic prerequisites for concurrency exist: algorithmic independence, and one

point communication. There is though a point for further consideration: most of the time when running ICON-O-HAMOCC is

actually spent in the tracer transport, rather than in the HAMOCC biogeochemistry itself (see Section 5). HAMOCC transports

17 tracers, making it the most expensive part in the ICON-O-HAMOCC execution. Parallelizing only the HAMOCC biogeo-
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chemistry would result in only modest performance benefits, as the bulk of the execution would still be sequential (following300

the discussion in section 3.2).

The solution that we follow is to allow the biogeochemistry to transport its own tracers, independently of the ocean. This

requires the encapsulation of the tracer transport, so that it can be called by both ICON-O and HAMOCC. Two structures

were created as interface to the tracer transport: a. A tracer collection structure, that contains the information of the tracers

required for the transport, and b. A transport state structure, that contains all the required fluxes. The transport state can be305

communicated from ICON-O to HAMOCC, allowing it to run the transport independently of ICON-O.

The tracer transport is an “embarrassingly” parallel process with regard to the number of tracers; every tracer can be trans-

ported independently of the others. This offers another level of data-parallel, medium-level parallelism, but it also presents

some technical challenges, such as how to efficiently handle multiple communicators. We note that this approach does not

replace concurrency, as large part of the code, notably the dynamical core, still runs sequential, presenting a scaling bottleneck.310

This level of parallelization has not been implemented in this project.

The next task was to disentangle the HAMOCC memory from ICON-O. The memory management of HAMOCC was moved

into the HAMOCC component, and references to common global memory between the two components were removed. The

surface flux calculations for the biogeochemistry were also moved from the ICON-O surface module to HAMOCC.

In the next step an interfacing mechanism between ICON-O and HAMOCC was created. This mechanism passes as parame-315

ters the information required for the two models. To HAMOCC the ocean and atmosphere variables are passed as described in

Section 2.2; in addition the transport state is passed to HAMOCC to be used by the HAMOCC tracer transport. To ICON-O the

short wave penetration is passed, and in the of case a coupled setup, the CO2 fluxes, which in turn are passed to the atmosphere

through the coupler.

The final task was to provide HAMOCC with the necessary infrastructure to run autonomously. ICON provides a simple320

mechanism through namelists for registering the components that run concurrently, by defining the component, and the group

of MPI processes assigned to it. The calls to the infrastructure setup, such as domain decomposition, setting the communicators,

the I/O, and the coupler, is done in the initialization phase in each of the components. While this mechanism does not provide

the sophistication and power of more complex infrastructure frameworks, like the Earth System Modeling Framework (Hill

et al. (2004); Collins et al. (2005)), and it requires to partly duplicate the code of setting-up the infrastructure, it provides high325

level infrastructure interfaces and it is serviceable.

The final construction is presented in Fig. 5 right. Two interfaces are constructed to send and receive information between

ICON-O and HAMOCC on each side. The communication takes place just before the tracer transport for ICON-O, while

for HAMOCC at the beginning of each timestep. The information communicated form ICON-O to HAMOCC includes the

temperature, salinity and pressure, used in the chemistry processes, surface fluxes, such as the total surface water flux, the330

solar radiation flux, the CO2 concentration, and the wind stress. For the tracer transport, HAMOCC receives the fluxes and

velocities from ICON-O, as well as the sea surface height. On the other side, ICON-O receives optionally the solar radiation

absorption ratio, and in the case of a coupled setup with the atmosphere the CO2 ocean-atmosphere fluxes, which in turn are

communicated to ICON-A.
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The interfaces can serve two modes: sequential, or concurrent. Both modes are transparent, the two components are “un-335

aware” of the mode they run, as this is handled within the interfacing mechanism. This process also works in the coupled

ICON-O-HAMOCC ICON-A setup, so the three components can run concurrently.

The interfacing mechanism serves only to communicate information between the two components on the same grid, without

providing any further functionality that general couplers may provide. In the concurrent mode we use the communication li-

brary YAXT (Yet Another eXchange Tool, https://swprojects.dkrz.de/redmine/projects/yaxt) developed at DKRZ. It provides a340

flexible interface that allows to define both 2D and 3D communication patterns, and can also aggregate the communication into

one call. YAXT provides an abstraction for defining communication without any explicit MPI-message-passing calls. The com-

munication scheme is automatically derived from descriptions of locally available data on each process. Thus, very different

communication patterns, like transpositions or boundary exchanges, can be generated in a user friendly manner, independently

of the complexity of the domain decomposition. This leads to a significantly reduced and less error-prone programming effort.345

YAXT can also be used to generate the communication patterns for the redistribution of data between two sets of processes

that use different domain decompositions, but the same grid. This is an essential functionality for implementing concurrency

communication between components, that do not necessarily share the same decomposition, but they share the same grid.

The new ICON-O-HAMOCC implementation gives bit identical results with the original one, both in the sequential and

concurrent mode, when the HAMOCC feedbacks (the ocean solar radiation absorption ratio and the ocean-atmosphere CO2350

fluxes) are disabled. Bit identical results cannot be obtained in the case these feedbacks are activated in the concurrent mode,

due the the different workflow from the sequential mode. It has been technically checked though for correctness when running

with these feedbacks activated. The impact of concurrency on the results in this case still needs to be evaluated.

A final step was taken to introduce OpenMP directives in HAMOCC. While this is not directly related to coarse grained

concurrency, it provides the shared memory level of parallelization. The memory layout currently used in ICON is suboptimal355

regarding the performance on CPUs, due to poor data locality (especially for stencil operators). This has also a negative impact

on the OpenMP scaling, and thus the results do not represent the true potential of OpenMP parallelization.

A first study on the impact of the memory layout on performance and direct vs indirect (unstructured grid) indexing is

presented in MacDonald et al. (2011), but without a discussion on its impact on shared memory parallelization and scaling.

5 Experiments and performance results360

We have performed two sets of experiments, one at a low horizontal resolution of 160km on a 36 cores-per-node machine, and

another at a medium resolution of 40km on a 128 cores-per-node machine. The two setups were measured for strong scaling,

both in sequential and concurrent mode. Each of the runs was repeated three times, and the best of the three, in terms of the

total time, was selected for the analysis.

We study the behavior of the combined MPI, OpenMP parallelization and the coarse-grained concurrency. Most of the ICON-365

O code is OpenMP parallelized, but not all. In particular, the sea-ice dynamics is not OpenMP parallelized, and it was disabled

in order not to distort the scaling behavior. The Gent-McWilliams and the Redi parameterizations have not yet been included in
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the concurrent version, and they were also disabled. As we focus on the scaling behavior, with and without concurrency, rather

than the performance itself, these two modules would not change our conclusions on the effect of the concurrency5. All output

was disabled in these runs. The time measures do not include the initialization phase of the models, as this is a one-time cost,370

and would distort the scaling analysis for short runs.

In fine-tuning a setup for performance we would typically calculate the number of OpenMP threads, the vector size, and the

MPI tasks, so that shared memory parallelization is balanced. No such effort was taken in these setups. We did examine though

the effect of different vector sizes on the low resolution experiment.

A discussion on scaling bottlenecks for a similar ocean-biogeochemistry setup is presented in Epicoco et al. (2016).375

5.1 Low resolution experiment, 160km

The 160km grid consists of 14298 horizontal ocean cells, and 40 vertical levels. This setup was run on the Mistral compute2

partition at DKRZ. Each node is equipped with two Intel Broadwell cpus, providing a total of 36 cores. The experiments ran

for five simulated years.

Figure 6. The 160km grid decomposed into 12 subdomains. .

For the domain decomposition a recursive weighted medial decomposition is employed. Each subdomain is assigned the380

number of total further “cuts”, and is bisected in a weighted manner across the longest axis of weighted longitudes or latitudes.

For example, if a subdomain is to be decomposed into 5 subdomains, the longest axis is found, and is bisected with weights 2

and 3. The two child subdomains are assigned 2 and 3 cuts respectively, and the process continues recursively. An example of

the domain decomposition is given at Fig. 6.

First, we examine the behavior of the sequential experiments. In the case that the domain decomposition would produce385

perfectly balanced square subdomains, the number of halo cells per subdomain would be proportional to 4
√
A/N , where A

is the total number of grid cells and N the number of subdomains. The total number of halo cells would be proportional to

4
√
N ·A. In Fig. 7 left, the ratio of halo cells to the grid cells is depicted, as well as the ratio of 4

√
N ·A to A. The actual

5 In fact, we expect that concurrency would be improved by including these two modules, as λ would get closer to 1 (see also Table 1).
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Figure 7. Left: the ratio of halo to non-halo cells. Right: scaling results from the 160km experiment, and scaling computed from formula 2.
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halo ratio is significantly larger than the ideally calculated one, due to the imperfect decomposition with regard to the number

of halo points. The relative cost of the halo communication is also depicted, which only partly reflects the increase of halos.390

In ICON, whenever possible, halo values are computed, instead of communicated, unless the computation is expensive. So the

total computation cost is increased as well.

We can further approximate the scaling behavior of the experiment by considering three types of workload: a sequential part

Ws, a purely parallel part Wp and a halo part Wh. We have for the total workload Wt =Ws+Wp+Wh, where we measure it

in terms of time cost. The time cost when running on N MPI processes (i.e. subdomains) is395

TN =Ws+Wp/N +Wh/
√
N. (2)
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We estimated the workloads based on the sequential runs on 2, 16 and 80 nodes as: Ws = 243 secs, Wp = 101535 secs and

Wh = 774 secs. In Fig. 7 right, the scaling results from the experiments and the above formula are shown. The formula captures

well the scaling behavior of the experiments, highlighting the importance of the non-scaling parts of the code.
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Figure 9. Left: relative cost ratio of the ICON-O-HAMOCC components in the sequential 160km setup. Right: run time of the components.

For this experiment we tested the scaling for 1, 2, 3, 6 and 9 OpenMP threads. More than 3 threads performed worse, and we400

do not include them in the results. We also checked the impact of a vector length 8 and 4 to the scaling behavior. The results

are presented in Fig. 8. The OpenMP parallelization becomes more important for higher number of nodes. The vector length

of 4 provides finer granularity and better balancing in higher number of nodes, and so it improves performance. We note that

even as the number of halo cells exceeds the number of the original grid cells, we still get some scaling. As discussed above,

the theoretical scaling in the case of the halo computation being dominant would still be proportional to
√
N .405

Next we will only consider the best of the runs from Fig. 8 (that is the ones with the smallest total time). The relative costs

and the times for the major components of the model are presented in Fig. 9. The highest cost comes from the HAMOCC

tracer transport, while HAMOCC itself incurs relatively small cost. The halo communication cost imposes the most important

restriction to scaling. This also includes load imbalancing costs, which increase with the number of subdomains. The dycore

(dynamical core) process consists of the calculation of the horizontal velocities and the sea surface height. ICON-O uses the410

iterative conjugate gradient method (CG) for inverting the matrix required by the implicit sea surface height calculation. In

each iteration the computation of a global sum is required for calculating the magnitude of the residual. The time cost for the

global sum used by the CG solver remains constant6, imposing a sequential scaling limit, as described by Amdahl’s law. Its

relative cost though remains small in these runs due to the large cost of the tracer transport.

In the concurrent setup we kept the number of OpenMP threads constant, equal to 2. The vector length was set to 8, except415

for the experiments on 80 and 96 nodes, where it was set to 4. The MPI tasks are organized into two contiguous groups, the
6 This cost is included in the dycore cost.
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Figure 10. Scaling (solid line) and parallel efficiency (dashed line) for the 160km sequential and concurrent setups. The 0.5 efficiency line

is marked.
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Figure 11. Left: relative costs of the ICON-O components in the concurrent 160km setup. Right: run times of the ICON-O components.

first containing the ICON-O tasks and the second the HAMOCC tasks. The scaling behavior of both the concurrent and the

sequential case is depicted in Fig. 10. The performance is improved only after the sequential parallel efficiency has gone down

to about 60%. The limit of 50% efficiency is reached in the sequential case at about 24 nodes, while in the concurrent at about

40 nodes.420

In Fig. 11 and 12 the relative costs and timers for the components of ICON-O and HAMOCC respectively are given for the

concurrent experiments.

The different scaling characteristics of the two modules create additional imbalance, some care has been taken to improve

this by reducing the number of ICON-O nodes, see Table 1. The imbalance becomes apparent in the cost of exchanging data
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Figure 12. Left: relative costs of the HAMOCC components in the concurrent 160km setup. Right: run times of the HAMOCC components.

and synchronizing ICON-O and HAMOCC. This cost in ICON-O is large, reaching more than 20%, while in HAMOCC is425

negligible. This indicates that the actual communication cost is small, while the cost of imbalance is beared by ICON-O. This

imbalance though does not affect significantly the total performance, as on a total of 96 nodes for example, 76 are used for

HAMOCC, and increasing this number by a few nodes would result little improvement.

Total Nodes ICON-O Nodes λexp Tc/Td , λ= 3 Tc/Td, λ= 2 Tc/Td, λ= 1 Tc/Td, λ= λexp Tc/Td exp.

4 1 3.10 1.07 1.11 1.07 1.07 1.17

8 2 2.82 1.01 1.01 0.93 1.01 1.04

16 3 2.51 0.97 0.94 0.83 0.96 0.94

32 6 2.14 0.94 0.91 0.78 0.92 0.79

48 9 1.81 0.92 0.90 0.74 0.86 0.76

64 10 1.75 0.94 0.87 0.74 0.84 0.77

80 14 1.77 0.98 0.83 0.74 0.81 0.77

96 20 1.63 0.95 0.82 0.71 0.78 0.73
Table 1. The first two columns describe the nodes used for the ICON-O-HAMOCC concurrent setup. Columns 4–6 describe the estimated

ratio of concurrent to the sequential time Tc/Td calculated using Equation 1, and the relative efficiency for different values of λ from the

sequential runs. In column 3 λ= λexp is computed from the sequential runs, and in column 7 the estimation of the Tc/Td ratio for this λ

through interpolation. In the last column the actual Tc/Td is computed from the runs.

In section 3.2 an analysis was provided regarding the scaling characteristics of concurrency in relation to the sequential

parallel efficiency. We expect that concurrency would be beneficial after a parallel efficiency threshold has been reached, and430

this is confirmed by the experimental results. In Table 1 we compare the values of Tc/Td, as computed by formula 1 in Section

3.2, and the ones given by the experiments. In Section 3.2 we defined the workload as the total number of operations, and λ as
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the ratio of the workload between component A and B; both of them were considered to be constant numbers, independent of

the number of nodes. We further assumed that the scaling behavior of A and B is the same. In our experiment setup though the

situation is different. The scaling behavior of the two models is different, with the ICON-O scaling being worse that HAMOCC.435

In the sequential runs, the total relative cost of HAMOCC (including the HAMOCC tracer transport) is about 80% on 2 nodes,

while on 96 nodes this cost is about 62%. The relative cost of ICON-O almost doubles in this range. In order to account for

this difference, we will consider λ not to be constant, but dependent on the number of nodes, so that it reflects the relative cost

of HAMOCC in the sequential experiments.

In the experiments case, taking ICON-O as component A and HAMOCC as component B, we have λ≥ 1. In this case we440

have L(N,λ) = F (N ·(1+λ))
F (N ·λ) , and Tc/Td = L(N,λ) · (1+C(N · (1+λ))/T (N ·λ)). We set C(N · (1+λ))/T (N ·λ) = 0.1 as

a first guess. We calculate L(N,λ) from the sequential experiments for λ= 1,2,3, and the corresponding ratio Tc/Td is given

in columns 6,5,4 respectively. We note that λ≥ 1, so we have L(N,λ) = F (N ·(1+λ))
F (N ·λ) . In column three we give an estimation

of λexp based on the sequential runs, computed as the ratio of the HAMOCC time to the ICON-O time.

In column seven the estimation of the concurrent to the sequential time ratio Tc/Td is given by linearly interpolating the445

Tc/Td values from the λ= 1,2,3 parameter to the λexp. In the last column the actual ratio Tc/Td is given from the experiments.

While formula 1 is a great simplification of the real model behavior, it still gives a reasonable approximation of the scaling

behavior of the concurrent setup, based on the behavior of the sequential one. Furthermore, by comparing columns 4, 5 and 6,

we observe that the predicted concurrency efficiency declines when λ deviates from the optimal value of one, as expected, and

the experiments Tc/Td similarly improves as λexp approaches 1.450

5.2 Medium resolution experiment, 40km
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Figure 13. Left: relative costs of the ICON-O-HAMOCC components in the sequential 40km setup. Right: run times for each component.

The 40km grid consists of 230124 horizontal ocean cells, and 64 vertical levels. The experiments ran for one simulated year.

They were run on the Levante machine at DKRZ, each node is equipped with two AMD 7763 CPUs, giving a total of 128 cores
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per node. The number of OpenMP threads is constant, equal to 4, the vector length is equal to 8. The MPI tasks are placed in

a cyclic way in groups of eight across the nodes, so that the first eight MPI tasks occupy half of the first CPU of the first node,455

the second group occupies half of the first CPU of the second node, and so on. In the concurrent case the group of eight tasks

consists of two ICON-O tasks and six HAMOCC tasks. This placement alleviates load imbalancing, as it allows improved

memory bandwidth for the slower processes.

In Fig. 13 the sequential setup time costs are presented. The picture differs from the 160km setup in the time cost of the

CG global sum, which here takes 25% of the time on 128 nodes. The total communication cost, including the global sum and460

the halo exchange, on 128 nodes exceeds 60% of the total time, while for the 160km on 96 nodes this cost is about 47%. This

underlines the communication bottlenecks when using machines equipped with powerful multicore nodes.
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Figure 14. Scaling (solid line) and parallel efficiency (dashed line) for the 40km sequential and concurrent setups. The 0.5 efficiency line is

marked.

The scaling of the sequential and the concurrent setup is shown in Fig. 14. Scaling is measured against the sequential run on

two nodes. The first thing to observe is the super-linear scaling of both the sequential and the concurrent setups when using up

to 16 nodes. This behavior typically is caused by more efficient cache usage in NUMA machines. An indication towards this465

inference is provided from the behavior of the HAMOCC tracer transport in Fig. 13 left. The tracer transport process is memory

intensive due to the large number of stencil operations, which, as we have noted, are sub-optimal due to poor data locality. Its

cost drops sharply when using up to 16 nodes, which indicates better relative memory efficiency. Another related consequence

is that the parallel efficiency in the sequential run reaches the 0.5 mark at a relatively high count of nodes, 96, while in the

concurrent case it never reaches this limits, and stays above 0.7. This is due to the poor performance on the reference number470

of nodes of two.

We note that the assumptions for formula 2 do not apply to this experiment. This is partly due to the superlinear behavior of

this setup in the low count of nodes, but also because this setup exhibits a part that its cost increases with the number of nodes,

namely the global sum (see Fig. 13 right). This cost is significant, and is not been accounted in formula 2.
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Figure 15. Left: relative costs of the ICON-O components in the concurrent 40km setup. Right: run times for each component.
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Figure 16. Left: relative costs for the HAMOCC components in the concurrent 40km setup. Right: run times for each component.

The relative costs and times for ICON-O and HAMOCC in the concurrent setup are given in Fig. 15 and 16 respectively.475

We again see that the communication costs within each module is significant, while the coupling cost between ICON-O and

HAMOCC remains relatively small.

In Table 2 we perform the same calculations for the 40km setup, as we did in Table 1 for the 160km setup. We see a

similar picture, except for the first two rows, where both the predicted and the actual concurrency efficiency declines as a

function of N and as a function of λ. This a result of the super-linear scaling. Only after the threshold of 16 nodes concurrency480

becomes beneficial, and thereafter its efficiency, relatively to the sequential setup, increases. While the theoretical prediction

underestimates the effect of concurrency (this is due to the different scaling behavior of the two components, which is not

accounted in the formula), it still gives a reasonable estimation.
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Total Nodes λexp Tc/Td , λ= 3 Tc/Td, λ= 2 Tc/Td, λ= 1 Tc/Td, λ= λexp Tc/Td exp.

4 3.20 1.17 1.12 1.19 1.17 1.17

8 2.73 1.21 1.14 1.26 1.19 1.19

16 2.18 1.11 1.14 1.15 1.14 1.00

32 1.64 0.97 1.01 0.89 0.96 0.84

64 1.19 0.90 0.89 0.73 0.76 0.64

96 0.92 0.81 0.87 0.64 0.64 0.62

128 0.74 0.87 0.78 0.61 0.61 0.52
Table 2. As Table 1, for the 40km experiment. The ratio of the ICON-O to the HAMOCC cores is constant, 3/1, and is omitted.

We note that the concurrency efficiency is significantly better in this setup, compared to the 160km. The ratio Tc/Td reaches

0.52, while for the 160km it is 0.73. This behavior reflects the limitations of the data parallel approaches when using highly485

parallel architectures. Fig. 13 reveals the issue: the cost of communicating the halos dominates the performance at 128 nodes,

along with the solver global sum.

160km, 1152 Mistral cores 40km, 16384 Levante cores Ratio 40km/160km

1 2D cells 14298 230124 16.10

2 3D cells 481402 11960498 24,85

3 2D cells/core 12.41 14.05 1.13

4 3D cells/core 417.88 730.01 1.75

5 Timestep (min) 60 45 0.75

6 3D cells/core/sim.min. 6.97 16.22 2.33

7 Seq. time (sec), 1 SY 90.50 271.63 3.00

8 Conc. time (sec), 1 SY 71.22 140.00 1.97
Table 3. Detailed numbers for the two experiments selected from the two setups of 160km and 40km. The description is provided in the text.

1152 Mistral cores correspond to 32 nodes, while 16384 Levante cores correspond to 128 nodes.

The two setups of the 160km and the 40km present a scenario where the resolution is increased, in combination with the

transition to a more powerful and parallel machine. We examine the impact of concurrency in this scenario. Two experiments

were selected from the two setups, so that they have approximately the same number of 2D cells per core, and at the same time490

they are at similar scaling limit in the sequential case of each setup, where the parallel efficiency drops below 50%. The details

of these two experiments are given in Table 3.

In row 6 the number of 3D cells per core, normalized for one simulated minute, is given. Their ratio suggests the relative

workload per core for the two experiments: the 40km has 2.3 times more load per core7. In rows 7 and 8 the times for simulating

one year are given. In the sequential case, the 40km is 3 times slower than the 160km, a value that is above the estimated 2.3.495

7Some details are not taken into account here, such as the number of iterations the CG solver requires, which is higher for the 40km.
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On the other hand, in the concurrent case, the 40km experiment is less than 2 times slower, which provides another indication

of the increased impact of concurrency when moving to highly parallel machines.

6 Discussion and outlook

By decomposing the algorithmic space, coarse-grained component concurrency offers another parallelization dimension, in

addition to the existing data parallel approaches. It improves scalability when certain scaling limits have been reached through500

the data parallel methods. It is more effective in the regimes where the relative parallel efficiency drops. In the regimes of linear

scaling it results in little, if any, improvements. It produces higher parallel workload when compared to data parallel approaches.

This makes it suitable, and probably indispensable, for efficiently utilizing massively parallel machines. Our experiments

show that the concurrency effectiveness increased from 1.4 times improvement on a 36 cores-per-node machine to 2 times

improvement on a 128 cores-per-node machine. We also see that the “coarseness” is an important factor to this approach. It505

gives the best results when the two components incur approximately the same cost, while its effectiveness deteriorates when

moving away from this balance. Both our theoretical analysis and our experimental results concur to the above conclusions.

It is clear that coarse-grained concurrency does not make the code faster, and the more traditional code optimization and

scaling improvement procedures are still an important part of the process of getting the models to run efficiently. We expect

for example that improving data locality for ICON-O-HAMOCC would have a higher performance impact on Levante than510

concurrency. These more intricate optimization processes require a high level of expertise and in cases extensive code restruc-

turing. In comparison, engineering coarse-grained component concurrency is in general a simpler process, and requires only a

modest effort when good software engineering practices were already in place.

Coarse-grained concurrency can always be applied on top of the other optimizations, allowing us to use more, and more

efficiently, computational resources. This implies that enough parallel computational resources should be available in order515

to be practically useful. On the other hand, the new machines are massively parallel, with nodes equipped with hundreds or

thousands of cores, providing computing power that has reached the exaflop level. The most effective way to make use of this

massively parallel computing power is through multi-level and multi-dimensional parallelism. Highly parallel architectures,

like GPUs, require a minimum of parallel workload to provide the best efficiency. Experiments show that we need millions of

3D grid points per GPU to make full use of them (Leutwyler et al. (2016); Giorgetta et al. (2022)). This limits the extend that520

data parallelism can be used on such machines. We expect that coarse-grained concurrency will provide an effective leverage

for making use of these architectures.

Coarse-grained concurrency is a high level parallelization, and thus independent of architectures. This makes it applicable

on different architectures, without the need to re-implement the concurrency mechanism. Furthermore, it can be applied on

heterogeneous environments in hybrid mode, as on CPUs and GPUs, providing the potential to make use of all the resources525

of heterogeneous machines.

A positive side-effect of coarse-grained component concurrency is that it naturally bequeaths concurrency to the infrastruc-

ture attached to these components, like I/O and real-time postprocessing. Especially I/O can pose a significant performance
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bottleneck, and parallel asynchronous I/O approaches have already been developed, see for example Brown et al. (2020);

Yepes-Arbós et al. (2022); Hohenegger et al. (2022). The naturally inherited concurrency to the components’ infrastructure can530

further enhance the performance of such schemes. While these side-effects have not been the subject of this paper, we expect

them to help increase the efficiency of the existing approaches.

The applicability of coarse-grained concurrency seems plausible to other components of Earth system models. One such

component can be the sea-ice model. The coarse-grained concurrency effectiveness will depend how much “coarseness” the

components present, and how tightly they are connected, which will reflect on the coupling cost. Questions related to the535

handling of the feedbacks between the components have to be considered. We have not addressed this question regarding the

concurrent ICON-O-HAMOCC when the interactive carbon cycle is activated in a coupled setup. This would be a subject of

future work.

Code availability. The ICON code is available under licenses, see https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability.
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