
Thank you for reviewing the paper and for your comments. I have adjusted the revised version of
the paper accordingly, and here I provide the answers (in black) to your comments (in blue).

The paper describes the effect of executing concurrently different components of an ESM in terms
of performance: ICON-O + HAMMOC. Each of the components are implemented as distributed
memory programs (MPI) with multithreaded inter-process execution (OpenMP). A mathematical
model of the execution describes the trade-offs of running the components sequentially or in
parallel, and gives an intuition on what are the constraints in the expected performance
improvements. Performance evaluation is done on two model resolutions and two computer
architectures, with an interesting analysis of the results that refers back to the model of execution.
This gives the results a conceptual link that is too often neglected in the literature. The paper
focuses on ICON-O and HAMMOC, that use the same grid. As a paper I have found it very
informative and useful. The mathematical model is not very surprising at the end, but it offers a
valuable baseline to reason about the results.

Some points for discussion:

- The abstract needs improvement in my opinion. Line 7 mention "function level parallelism". In the
computer science literature the term used is typically "task parallelism", and it is opposed to "data
parallelism".

I have rephrased the sentence to “component concurrency is a function parallel technique, it
decomposes the algorithmic space, while these parallelization methods are data parallel techniques,
they decompose the data space.”

I understand that the ‘function (or functional) parallelism’ term is a bit old-fashion, and ‘task
parallelism’ is more commonly used nowadays. Nevertheless, it is a valid term, and I prefer it for
expressing the general concept, as ‘task parallelism’ in some cases is associated with shared
memory parallelization paradigms, for example in OpenMP.

- Would it be possible to explain in few words what are the limitations to scalability mentioned in in
line 15 about "traditional parallelization techniques". I do not see the logical implication here, more
so given that ICON-O and HAMOCC use the same grid. Is it a problem with software structure?
That is, would an implementation with even less modularization (more monolithic) avoid this
problem?

This whole paragraph refers to the work done in this paper, to further underline it I start the
paragraph with “In this work we study the characteristics...”. The phrase “traditional parallelization
techniques...” indeed needs clarification: I changed this to “data parallelization techniques (domain
decomposition and loop-level shared memory parallelization)...”. The scaling limitations of these
techniques lie on the size of the grid, not the software structure. This is further analyzed in the
paper.

Software structure and engineering is another large subject, which also has implications on multi-
level parallelism implementation. This would require a study on its own, as it is rather a complex

issue.

- As my main interest is in software architecture and engineering, I think it would be very
interesting to me and useful to the community to expand on the implications that the software
restructuring has on the code base. For instance it would be interesting to mention the (qualitative)
effects of the ability to run sequentially or concurrently in terms of code maintainability and
readability.

This is a very large and complex issue. I can only offer a short comment here. In some cases, the
quick and dirty approach is much easier. For example, it’s easier to add a few lines of code in the
ICON-O surface fluxes module in order to add the HAMOCC surface fluxes, accessing both the
ocean and the HAMOCC information, instead of doing so in HAMOCC. Modular design and
interfacing is harder, but in the long run probably more robust and advantageous in code-
development. A very interesting subject which I would like to discuss in the future, this is a study
on its own.

- I find the sentence in lines 214-215, about the fact that OpenMP does not incur in communication
costs, not precise. It depends what communications we are considering. OpenMp can be quite costly
in case of data to be access by different threads for instance. Maybe the sentence should specify that
the communication cost refers to extra-node or extra-process communication.

Here I use the term communication in a strict sense as direct communication between parallel
processes. I have added a footnote: “Here by communication it is meant direct communication
between the parallel tasks. The cost of it can be significant when it takes place through the
network.” While there are cases that some communication may occur in shared memory parallel
regions (for example reduction, or memory locking) these are not the typical case in our codes.
Some communication cost occurs when for example flushing the cache after a parallel region, but I
put them under the “overhead” umbrella.

- I find the paragraph in line 227 not very convincing, since it is not clear to me what "a high-level
implementation" means here. Is it just because it focuses on MPI to transfer data between MPI
ranks?

Indeed, the “high-level implementation” needs further discussion. I have rephrased it as follows:
“The other aspect of these two options is the implementation. The distributed memory case is
independent of the architecture, and can even be applied in hybrid mode. While in principal the
same functionality can be achieved using shared memory parallelization, no such standard, to the
authors' knowledge, is currently mature enough to be implemented across multiple architectures.”
For example, the same concurrent implementation can be used the run ICON-O on CPUs and
HAMOCC on GPUS (which is one of our current projects).

- In Section 3.2 I think the treatment could be improved by removing the subscript "p" from "a_p"
and use instead the letters "A" or "B" to indicate to which component the value refers to. Also the
parameter lambda should be introduced more specifically, since it not immediately clear why the
same lambda is used in W_B and N_B. It can be deduced, but it becomes clear later in the text. This
could be explained earlier. Similarly, the cost of concurrency "C" could also be introduced with an
example of what it may include.

The subscript p is used here to indicate the parallel workload in a parallel region, in contrast to the
total workload. This is a bit tricky since a parallel region is defined as any parallel region (shared or
distributed) enclosed between two syncs, in any component, independently of sequential or
concurrent setup. I have added subscripts A,B,AB to identify the cases of concurrent and sequential
runs of A and B.

I attempted to clarify here why N_B = lambda N_A is taken, and to indicate the concurrency cost,
but then I would only repeat what follows. On the other hand, one of the advantages of not
including this information in this paragraph is to demonstrate that increasing the parallel workload
(and thus concurrency) is only useful in the context of scaling concerns.

- The "at most linear" scaling seems to actually mean "monotonic", since F'(N)<=0.

The sentence is rephrased as: “We assume that the parallel efficiency is a non increasing function of
N, that is F'(N) <= 0.”. This is equivalent to S'(N) <= S(N)/N, where S is the parallel speed-up. In
this sense I used the term “at most linear scaling”, which I dropped, since this is a bit of a vague
term.

- In Section 5 the Authors mention that they ran three times each experiment. It could be useful to
report on the variability of the execution times in those three runs to justify the use of such small
number. If other limiting factors were in place maybe it is worth mentioning.

The three runs were not meant to provide some statistical confidence, but to avoid accounting a
worst case run. In these worst cases the runs can be up to two times slower (due to hardware/system
malfunction), and would result a clear outlier. A few of the runs were such cases, but they did not
affect the overall results, as they were only one of the three runs.

- In Table 1 and 2 the lambdas are greater that 1, while in the mathematical analysis it is assumed to
be less than 1.

Yes, in this case L(N, lambda)=F(N(1+lambda))/F(N lambda). I have added a clarification on this
in the experiments section. I have taken lambda < 1 in the analysis because it makes it simpler. On
the other hand, I had in mind the scenario that we have a model A (ICON-O) and we add model B
(HAMOCC), so I kept this convention, resulting lambda >1 in the experiments. The conclusions do
not change.

- The paper focuses on a simulation software with two components. Could a comment be made on
the possibility, both in terms of software structure and performance benefit, of applying
concurrency within the said components (I guess in "shared memory" style (see end of Section
3.1))?

Indeed, additional coarse-grained concurrency can be implemented within ICON-O, to the sea-ice
module for example. Interestingly, this also probably would be better off with a distributed memory
implementation, since the sea-ice is a 2D model, running in an effectively smaller grid than the
ocean, but on the other hand it has a lot of global reduction operations, which incur high
communication cost for large number of MPI processes.

Shared memory task parallelization can also be further applied. For example in the tracer transport,
parallelizing over the number of tracers. In paragraph at line 306 we provide a short discussion.
Another candidate for shared-memory concurrency is the diagnostics, the cost of which could be
significant depending on the setup. Other processes, such as calculating the tides’ potential, may
provide opportunities for middle-level shared-memory task parallelism.

- Line 259: I would use "assume" instead of "accept"

Done

