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Abstract. Systematic biases and coarse resolutions are major limitations of current precipitation datasets. Many deep learning 

(DL) based studies have been conducted for precipitation bias correction and downscaling. However, it is still challenging for 

the current approaches to handling complex features of hourly precipitation, resulting in the incapability of reproducing small-

scale features, such as extreme events. This study developed a customized DL model by incorporating customized loss 

functions, multitask learning and physically relevant covariates to bias correct and downscale hourly precipitation data. We 15 

designed six scenarios to systematically evaluate the added values of weighted loss functions, multitask learning, and 

atmospheric covariates compared to the regular DL and statistical approaches. The models were trained and tested using the 

Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2) reanalysis and the Stage IV radar 

observations over the northern coastal region of the Gulf of Mexico at an hourly time scale. We found that all the scenarios 

with weighted loss functions performed notably better than the other scenarios with conventional loss functions and a quantile 20 

mapping-based approach at hourly, daily, and monthly time scales as well as extremes. Multitask learning showed improved 

performance on capturing fine features of extreme events and accounting for atmospheric covariates, highly improved model 

performance at hourly and aggregated time scales, while the improvement is not as large as from weighted loss functions. We 

show that the customized DL model can better downscale and bias correct hourly precipitation datasets and provide improved 

precipitation estimates at fine spatial and temporal resolutions where regular DL and statistical methods experience challenges. 25 

1 Introduction 

Precipitation is a major component of the hydrological cycle and is fundamentally important for many applications, such as 

water resources planning and management, disaster risk management, and agriculture, amongst many others. Due to the limited 

coverage of ground-based rain gauges, numerous gridded precipitation datasets have been developed over the past decades, 

including gauge-based, satellite-based, reanalysis products, and merged products (Beck et al., 2019a; Sun et al., 2018). These 30 

datasets are different in terms of data sources, coverage, spatial and temporal resolution, and algorithms (see Sun et al., 2018 
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for a review), which provide a potential source of information to regions where conventional in situ precipitation measurements 

are lacking (Sun et al., 2018).  

Gridded precipitation datasets have proven to be useful across a wide range of research fields, including climate trends and 

extreme precipitation (Bhattacharyya et al., 2022; Degaetano et al., 2020; Fischer and Knutti, 2016; Kim et al., 2019; King et 35 

al., 2013),  droughts and floods monitoring (Aadhar and Mishra, 2017; Peng et al., 2020; Suliman et al., 2020; Zhong et al., 

2019), and driving hydrological models (Raimonet et al., 2017; Xu et al., 2016). However, many studies have identified that 

these gridded precipitation datasets include substantial biases in certain aspects compared to in situ observations (Aadhar and 

Mishra, 2017; Ashouri et al., 2016; Bitew and Gebremichael, 2011; Cavalcante et al., 2020; Jiang et al., 2021; Jury, 2009; 

Rivoire et al., 2021; Sun et al., 2018; Tong et al., 2014; Xu et al., 2016; Yilmaz et al., 2005). For example, Ashouri et al. (2016) 40 

evaluated the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) 

precipitation reanalysis dataset and found that MERRA tends to overestimate the frequency at which the 99th percentile of 

precipitation is exceeded and underestimate the magnitude of extremes, especially over the Gulf Coast regions of the United 

States. Furthermore, spatial resolution for most of these gridded precipitation datasets is relatively coarse for local scale 

applications (mostly above 0.25°, Sun et al., 2018). Therefore, the gridded precipitation datasets require bias correction and 45 

downscaling (Duethmann et al., 2013; Emmanouil et al., 2021; Mamalakis et al., 2017; Seyyedi et al., 2014).  

Bias correcting and downscaling gridded precipitation data is challenging due to its complex characteristics (e.g., highly 

skewed, unbalanced feature, and complex spatial-temporal structure). Various approaches have been developed to tackle this 

issue, including traditional quantile mapping (QM) based bias correction and downscaling methods (e.g., Cannon et al., 2015; 

Panofsky and Brier, 1968; Thrasher et al., 2012; Wood et al., 2002) and recent machine learning based approaches such as 50 

random forests (He et al., 2016b; Legasa et al., 2022; Long et al., 2019; Mei et al., 2020; Pour et al., 2016), support vector 

machines (Tripathi et al., 2006) and artificial neural networks (Schoof and Pryor, 2001; Vandal et al., 2019). Recently, 

advances in deep learning have made a significant impact on many fields and have been proven superior to traditional machine 

learning methods because of their powerful abilities to learn spatiotemporal feature representation in an end-to-end manner 

(Ham et al., 2019; Reichstein et al., 2019; Shen, 2018). In particular, deep learning (DL) with convolutional neural network 55 

(CNN) types of approaches have achieved notable progress in modeling spatial context data (Lecun et al., 2015) and have been 

used for bias correcting and downscaling low spatial resolution data  (Kumar et al., 2021; Sha et al., 2020a, b; Vandal et al., 

2018b; Wang et al., 2021; Xu et al., 2020), climate model outputs (François et al., 2021; Liu et al., 2020; Pan et al., 2021; 

Rodrigues et al., 2018; Wang and Tian, 2022), reanalysis products (Baño-Medina et al., 2020; Sun and Tang, 2020), and 

weather forecast model outputs (Harris et al., 2022; Li et al., 2022). While these studies have indicated many promising 60 

strengths and advantages over traditional downscaling and bias correction approaches, most of them have difficulties capturing 

local-, small-scale features such as extremes for an unseen dataset. For example, Baño-Medina et al. (2020) designed different 

DL configurations with a different number of plain CNN layers to bias correct and downscale daily ERA5-Interim reanalysis 
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from 2° spatial resolution to 0.5°, and the overall performance is still marginal compared with simple generalized linear 

regression models and highly underestimated precipitation extremes. Harris et al. (2022) developed a generative adversarial 65 

networks (GANs) architecture to bias correct and downscale weather forecast outputs and found that it is more challenging to 

account for forecast error (or bias) in a spatially-coherent manner compared to the pure downscaling problem (Kumar et al., 

2021; Sha et al., 2020a, b; Vandal et al., 2018b; Wang et al., 2021; Xu et al., 2020). The reason for that may be due to the 

sparsity of training data on extreme events. Deep learning (DL) models, however, need large training data in order to obtain a 

better regularization model for rare events in the unseen dataset.  70 

Customized DL models have been proposed to generate physically consistent results and have better generalization ability for 

out-of-pocket datasets in the earth and environmental science field, which include incorporating customized loss functions 

(Kashinath et al., 2021), inputs from physically relevant auxiliary predictors (i.e., covariates) (Li et al., 2022; Rasp and Lerch, 

2018), and customized multitask learning (Ruder, 2017). For example, Daw et al. (2017) indicated success in lake temperature 

modeling by incorporating a physics-based loss function in the DL objective compared to a regular loss function. Li et al. 75 

(2022) used a CNN-based approach to postprocess numerical weather prediction model output and found that the use of 

auxiliary predictors greatly improved model performance compared with raw precipitation data as the only predictor. A 

multitask model is trained to predict multiple tasks that are driven by the same underlying physical processes and thus has the 

potential to learn to better represent the shared physical process and better predict the variable of interest (Ruder, 2017). 

Multitask models have proven effective in several applications, including natural language processing (Chen et al., 2014; 80 

Seltzer and Droppo, 2013), computer vision (Girshick, 2015), as well as hydrology (Sadler et al., 2022). In addition, most of 

the previous bias correction and downscaling studies focused on the daily time scale (Baño-Medina et al., 2020; François et 

al., 2021; Harris et al., 2022; Kumar et al., 2021; Liu et al., 2020; Pan et al., 2021; Rodrigues et al., 2018; Sha et al., 2020a; 

Vandal et al., 2018b; Wang et al., 2021). However, the distribution of hourly precipitation data within a day is more important 

than daily or monthly aggregations for impacts and risks from warming-induced precipitation changes (Chen, 2020). 85 

Traditional DL loss functions have difficulties handling hourly precipitation data that are highly unbalanced with many zeros 

and highly positively skewed for nonzero components. Therefore, customized DL with a weighted loss function to better 

balance nonzero components has the potential to improve the DL model performance. Besides the primary task of downscaling 

and bias correction task, adding a highly relevant classification task has the potential to improve DL model performance on 

the primary task. Incorporating covariates selected based on precipitation formation theory (cloud mass movement and 90 

thermodynamics) also have the potential to improve precipitation downscaling and bias correction.  

In this study, we will explore customized DL for precipitation bias correction and downscaling, aiming to take a step forward 

to address the current challenges described above.  We designed a set of experiments to address this hypothesis using the 

Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA2) reanalysis and the Stage IV radar 

precipitation data. The structure of this paper is organized as follows: Section 2 introduces data and study area; Section 3 95 
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introduces the methodology, including the deep learning architecture and experimental designs for different scenarios, and a 

traditional bias correction approach as a benchmark; Section 4 presents results; discussion and conclusions are provided in 

Section 5 and 6, respectively.  

2 Data and Study Area 

MERRA2 is a state-of-the-art global reanalysis product generated by the NASA Global Modeling and Assimilation 100 

Office (GMAO) using the Goddard Earth Observing System, version 5 (GEOS-5), and was introduced to replace and extend 

the original MERRA dataset (Reichle et al., 2017). It incorporates new satellite observations through data assimilation and 

benefits from advances in the GEOS-5 (Reichle et al., 2017).  There are two hourly total precipitation (P) datasets available 

from the MERRA2 reanalysis product: the model analysed precipitation computed from the atmospheric general circulation 

model and the observation-corrected P (Reichle et al., 2017). Both have a spatial resolution of 0.5° in latitude and 0.625° in 105 

longitude (~50km). MERRA2 observation-corrected precipitation has been used extensively in hydro-climatological analysis 

and modeling (Chen et al., 2021; Hamal et al., 2020; Xu et al., 2019; Xu et al., 2022). However, it still suffers from substantial 

biases (e.g., Hamal et al., 2020; Xu et al., 2019). This study will bias correct and downscale MERRA2 observation-corrected 

P using the Stage IV radar data (Lin and Mitchell, 2005) from the National Centers for Environmental Prediction (NCEP) as 

the observational reference. The Stage IV radar data has a 4 km spatial and hourly temporal resolution and covers the period 110 

from 2002 until the near present (2021 in this study). Stage IV radar was generated by merging data from 140 radars and about 

5500 gauges over the continental United States (Lin and Mitchell, 2005; Nelson et al., 2016). Stage IV provides highly accurate 

P estimates and has therefore been widely used as a reference for evaluating other P products (e.g., Aghakouchak et al., 2011; 

Aghakouchak et al., 2012; Beck et al., 2019b; Habib et al., 2009; Hong et al., 2006; Nelson et al., 2016; Zhang et al., 2018). 

The Stage IV dataset is a mosaic of regional analyses produced by 12 River Forecast Centers (RFCs) and is thus subject to the 115 

gauge correction and quality control performed at each individual RFC (Nelson et al., 2016).  

The bias correction and downscaling experiments were performed in the rectangle coastal area of the Gulf of Mexico 

covering the entire states of Alabama, Mississippi, and Louisiana, and parts of neighbour states in the United States, ranging 

from -94.375° to -85.0° in longitude and from 29.0° to 35.0° in latitude. The study area falls into the humid subtropical climate 

and is highly influenced by extreme P events such as convective storms and hurricanes.  120 

3 Methodology 

3.1 Customized DL approaches 

This section first presents a brief description of a DL approach, namely, Super Resolution Deep Residual Network 

(SRDRN). Then, multitask learning, and customized loss functions are introduced based on the SRDRN architecture to 

construct customized DL approaches.  Finally, we designed different modeling experiments, which include different 125 
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combinations of multitask learning, customized loss functions, and P covariates as predictors, in order to evaluate the added 

values of each component of the customized DL approaches.   

3.1.1 SRDRN model 

The SRDRN model is an advanced deep CNN-type architecture and has been tested for downscaling daily P and 

temperature through synthetic experiments (Wang et al., 2021) and for bias-correcting near-surface temperature simulations 130 

from global climate models (Wang and Tian, 2022), considerably outperforming the conventional approaches. Furthermore, it 

has been proved that the SRDRN is capable of capturing much finer features than shallow plain CNN architecture (Wang et 

al., 2021). Compared with the popular U-Net architecture (Sha et al., 2020a; Sun and Tang, 2020), the SRDRN directly extracts 

features on the coarse resolution input and thus can potentially decrease computational and memory complexity. 

Here we provide a brief description of the SRDRN algorithm. For more details, the readers may refer to Wang et al. 135 

(2021). The SRDRN algorithm was developed based on a novel super-scaling deep learning approach in the computer vision 

field (Ledig et al., 2017). Basically, the SRDRN algorithm is comprised of residual blocks and upsampling blocks with 

convolutional and batch normalization layers. For feature extraction, the convolutional layers apply filters to go through the 

input data to build a local connection within nearby grids by computing the element-wise dot product between the filters and 

different patches of the input. The outcome is followed by a nonlinear activation function, here parametric ReLU (He et al., 140 

2015) in this study. Batch normalization is a technique to standardize the inputs to a layer for each mini-batch so that the 

learning process can be stabilized and the training of the model can be accelerated (Ioffe and Szegedy, 2015). 

With convolutional and batch normalization layers, the residual blocks are designed to extract fine spatial features while 

avoiding degradation issues for the very deep neural network. Compared to plain CNN architectures, residual blocks can 

improve the performance of extensively deep networks (Silver et al., 2017) without suffering from model accuracy saturation 145 

and degradation (He et al., 2016a) because residual blocks execute residual mapping and include skipping connections. In this 

study, the way that skipping connection skips layers and connects the next layers is through element-wise addition. A total 

number of 16 residual blocks were used in the SRDRN architecture, which makes the network very deep and able to extract 

fine spatial features. 

The upsampling blocks are applied to increase the spatial resolution for downscaling purposes. The upsampling process 150 

is executed directly on the feature maps generated from the residual blocks, and each upsampling block is composed of one 

convolutional layer and one upsampling layer followed by a parametric ReLU activation function. The defaulted nearest 

neighbor interpolation was chosen in the upsampling layers to increase the spatial resolution, and the effects of different 

interpolation methods were not explored in this study. Each upsampling block sequentially and gradually increases the input 

low-resolution feature maps by a factor of 2 or 3. In this study, the downscaling ratio (the ratio between coarse resolution and 155 
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high-resolution data) is 12, and thus we used 3 upsampling blocks with two blocks having a factor of 2 and one block having 

a factor of 3.  

3.1.2 SRDRN model with multitask learning 

We included an additional P classification task in the SRDRN model. Besides bias correcting and downscaling 

continuous hourly P values as a primary task, we added another task to bias correct hourly P categories. Studies have indicated 160 

that a multitask DL model could learn to better represent the shared physical processes and better predict the variable of interest 

(e.g., Sadler et al., 2022).  Since P categories and actual values are highly relevant, adding a classification task can potentially 

improve the DL model for bias correcting and downscaling P.  

Specifically, for the SRDRN with multitask learning, one convolutional layer (256 filters and 3x3 kernels) follows the 

last element-wise addition operation to summarize feature maps, then the architecture splits into two sections (Figure 1). The 165 

first section with two additional convolutional layers (the first one with 64 filters and the second with 4 filters) followed by 

the Softmax activation (Goodfellow et al., 2016) is used for bias correcting P categories as a multiclass classification task, and 

the other section with upsampling blocks is used for the purpose of bias correcting and downscaling hourly P. The classification 

task classifies the hourly P at each grid into four categories: 0-0.1mm/h as no rain, 0.1-2.5mm/h as light rain, 2.5-10mm/h as 

moderate rain, and >10mm/h as heavy rain (Tao et al., 2016). Due to radar sensors' uncertainty in the very light rainfall, 0.1 170 

mm/h is commonly used as a threshold to determine if there is rain (Tao et al., 2016). Since the classification task is executed 

on the feature maps at the coarse resolution, we aggregated Stage IV P (namely, coarsened Stage IV in this study) into the 

same spatial resolution as MERRA2 and classified the upscaled P data into the four groups as target labels.  

[Insert Figure 1] 

3.1.3 Customized loss functions 175 

Precipitation data is highly skewed and unbalanced, especially at an hourly time scale, which could cause the deep 

learning algorithm to focus more on no-rain events while ignoring heavy rain events if using regular loss functions. Here we 

developed a weighted mean absolute error (MAE) loss function (𝐿𝑀𝐴𝐸_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 ) to balance precipitation data where weights 

change with precipitation values as shown below, 

𝐿𝑀𝐴𝐸_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
∑  𝑤1∙|𝑦𝑝𝑟𝑒𝑑−𝑦𝑡𝑟𝑢𝑒|𝑛

𝑖=1

𝑛
                                             (1) 180 

where n is the total number of grids in a batch, 𝑤1is the weight for each absolute error between the model predicted value 

𝑦𝑝𝑟𝑒𝑑 and the true value 𝑦𝑡𝑟𝑢𝑒. The weight 𝑤1changes with the actual true value 𝑦𝑡𝑟𝑢𝑒, 
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𝑤1 = {

𝑀𝐼𝑁                        𝑦𝑡𝑟𝑢𝑒 ≤ 𝑀𝐼𝑁 
𝑦𝑡𝑟𝑢𝑒       𝑀𝐼𝑁 < 𝑦𝑡𝑟𝑢𝑒 < 𝑀𝐴𝑋
𝑀𝐴𝑋                     𝑦𝑡𝑟𝑢𝑒 ≥ 𝑀𝐴𝑋

 

where 𝑀𝐼𝑁 is the lowest threshold and  𝑀𝐴𝑋 is the highest threshold for the weights. In other words, when the 𝑦𝑡𝑟𝑢𝑒  value is 

below (above) 𝑀𝐼𝑁 (𝑀𝐴𝑋), 𝑤1equals 𝑀𝐼𝑁 (𝑀𝐴𝑋), otherwise 𝑤1equals 𝑦𝑡𝑟𝑢𝑒 itself. Thus, the loss is weighted directly by the 185 

P value at the grid cell scale, which has been proven more effective than weighted by P bins (Ravuri et al., 2021; Shi et al., 

2017). Note that all of the gridded P data, including Stage IV and MERRA-2, are logarithmically transformed [i.e., y=log(x+1)] 

in order to amplify the normality and reduce the skewness of P data (Sha et al., 2020a). In Equation 1, 𝑦𝑡𝑟𝑢𝑒  and 𝑦𝑝𝑟𝑒𝑑 are 

transformed P values. 𝑀𝐼𝑁 was set to log(0.1+1) and 𝑀𝐴𝑋 was set to log(100+1), where maximum 100mm/h was chosen as 

the highest threshold before log transformation for robustness to spuriously large values in the Stage IV radar (Ravuri et al., 190 

2021) and 0.1 mm/h is commonly used as a threshold to determine if there is rain for radar data (Tao et al., 2016).  

For the four P categories, most data fall into the no rain category (over 88% in the coarsened Stage IV), and minority 

data fall into the heavy rain category (about 0.2% in the coarsened Stage IV). Thus, handling class imbalance is of great 

importance in this situation, where the minority class for the heavy rain category is the class of most interest with respect to 

this learning task. The regular cross-entropy loss function for the classification task could result in the underestimation of the 195 

minority class (Fernando and Tsokos, 2021). Thus, we applied a weighted cross entropy as a loss function 

(𝐿𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐶𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦) for the classification task in order to penalize more towards heavy rain category as follows, 

𝐿𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐶𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =- ∑ ∑ 𝑤2,𝑗 ∙ 𝑝(𝑦𝑖,𝑗) ∙ log (𝑞(𝑦𝑖,𝑗))𝑘
𝑗=1

𝑛
𝑖=1                      (2) 

where 𝑤2,𝑗 denotes the weight for the jth class, 𝑝(𝑦𝑖,𝑗) represents the true distribution of the ith grid for the jth class, and 

𝑞(𝑦𝑖,𝑗) represents the predicted distribution. 𝑘 is the number of classes (equals 4 in this study). 𝑤2,𝑗 was set to 1, 5, 15, and 80 200 

for no rain, light rain, moderate rain, and heavy rain classes, respectively, which is roughly based on the opposite percentage 

(i.e., 1, 5, 15, 80 are approximately from the percentages of heavy, moderate, light and no rain categories, respectively) for 

each category of the coarsened Stage IV. Since the weights for categories with rain are relatively larger than the no rain 

category, the loss 𝐿𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐶𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦  is relatively large when there are discrepancies between true and predicted categories 

with rain, resulting in guiding the training process towards decreasing these differences with larger weights and thus better 205 

handling class-imbalance issues. 

3.1.4 Experiment Design 

To comprehensively evaluate the added value of each component of customized DL models, including weighted loss 

function, multitask learning, and adding covariates, we designed six scenarios (Scenario1 to Scenario6 in Table 1). Scenario1 
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is based on the basic SRDRN architecture with hourly P from MERRA2 as coarse-resolution input, P from Stage IV as high-210 

resolution labelled data, and regular MAE as loss function, which represents regular DL. Wang et al. (2021) used regular mean 

squared error (MSE) as a loss function, which works well for downscaling daily precipitation through synthetic experiments 

with no bias since the precipitation data was first coarsened and then downscaled into the original fine scale. However, in this 

study, the coarse resolution MERRA2 has substantial biases compared to Stage IV radar data, and Stage IV radar data also 

includes artefacts (e.g., large spurious values) (Nelson et al., 2016). The previous study has shown that the MSE loss function 215 

is more sensitive to radar artefacts than the mean absolute error (MAE) loss function (Ravuri et al., 2021). Therefore, we chose 

MAE as a regular loss function in this study. Scenario2 is the same as Scenario 1 except using weighted MAE loss function 

[Eqn. (1)]. The number of trainable parameters is the same for Scenario1 and Scenario2. Scenario3 includes the classification 

task, and the total loss is the combination of Eqn. (1) and Eqn. (2) with a weight 𝜆 [see Eqn. (3) below], where 𝜆 was set to 

0.01 to ensure the two parts of the losses are in the same magnitude. The trainable parameters for Scenario3 increase by 30% 220 

compared to Scenario1 and Scenario2. 

𝐿 = 𝐿𝑀𝐴𝐸_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑+ 𝜆 ∙ 𝐿𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐶𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦                                   (3) 

 

[Insert Table 1] 

As described in Section 1, studies have indicated that including atmospheric covariates is helpful for estimating 225 

precipitation (e.g., Baño-Medina et al., 2020; Li et al., 2022; Rasp and Lerch, 2018). The other three scenarios also consider 

atmospheric covariates of P from MERRA2 as predictors, which include geopotential height, specific humidity, air 

temperature, eastward wind, and northward wind at three different vertical levels (250, 500, 850 hPa) (e.g., Baño-Medina et 

al., 2020; Rasp and Lerch, 2018) as well as vertical wind (e.g., Trinh et al., 2021) at 500 hPa (OMEGA500), sea level pressure 

and 2-meter air temperature in a single level (e.g., Panda et al., 2022; Rasp and Lerch, 2018) (see Table 2). We chose these 230 

variables based on precipitation formation theory (cloud mass movements and thermodynamics) as well as findings from 

previous studies, as indicated above. Comparable to a classic multiple linear regression problem, covariates are multivariable 

predictors, and hourly precipitation is the only dependent variable. For each covariate listed in Table 2, data normalization was 

executed as a data preprocessing step. Specifically, each covariate was normalized by subtracting the mean () and dividing 

by the standard deviation (). Here  and  are scalar values that were calculated based on the flattened variable for the training 235 

dataset. During the testing period, the model prediction was made with the normalized testing dataset from MERRA2 with 

 and  calculated from the statistics of the coarse-resolution data during the testing period to preserve nonstationary. 

Scenario4 only included atmospheric covariates without using coarse resolution P as input and used Eqn. (1) as loss function 

to test whether only covariates are sufficient for estimating hourly P. The number of trainable parameters for Scenario4 is 

about 1% more compared to Scenario1 and Scenario2. Scenario5 is the same as Scenario4 except including P as a predictor 240 

besides atmospheric covariates, and the number of trainable parameters is very close to Scenario4. Scenario6 is the same as 
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Scenario5 except including the classification task with Eqn. (3) as loss function and the number of trainable parameters is 

similar to Scenario3 (31% greater than scenarios with no multitask learning).  

[Insert Table 2] 

The Adam optimization algorithm was applied to train the six DL scenarios with a learning rate of 0.0001 and other 245 

default values. We found that the learning rate of 0.0001 worked stably in this study through a series of experiments. The batch 

size for each epoch was set to 64, and the number of epochs was set to 150 for each scenario listed in Table 1. Each scenario 

was trained with approximately 2.5x105 iterations. We frequently saved models and evaluated their performance with a 

validation dataset in order to choose the best model for prediction on the testing dataset. The training process was executed 

using NVIDIA V100 GPU provided by the NASA High-End Computing (HEC) Program through the NASA Center for 250 

Climate Simulation (NCCS) at the Goddard Space Flight Center (https://www.nccs.nasa.gov/systems/ADAPT/Prism).  

At the time when we conduct this study, MERRA-2 and Stage IV hourly P data have a 20-year overlapping period from 

2002 to 2021. We used the first 14 years (2002 to 2015) as the training dataset, the middle 3 years (2016 to 2018) as the 

validation dataset, and the more recent 3 years (2019 to 2021) as the testing dataset. Figure 2 shows the hourly mean or 

climatology for MERRA-2 and Stage IV for training and testing datasets, as well as the mean differences between the testing 255 

and the training periods. We can tell that there are large climatology differences (or biases) between MERRA-2 and Stage IV 

both for training and testing datasets, especially around the coastal area. Wetter conditions are observed in most of the study 

area in the testing period (average 0.03 mm/h) than in the training period, which is due to a higher percentage of rains (with 

values greater than 0.5mm/h) during the testing period than during the training period based on analyzing the Stage IV data 

(Table S1 in Supplement).. This allows us to assess the extrapolation capabilities of the different methods, which is particularly 260 

relevant in a changing climate.  

[Insert Figure 2] 

3.2 Statistical approach 

We used a widely accepted quantile delta mapping (QDM) as a benchmark approach for P bias correction. The QDM 

method corrects systematic biases at each grid cell in quantiles of a modelled series with respect to observed values. Compared 265 

to the regular quantile mapping method (Panofsky and Brier, 1968; Thrasher et al., 2012; Wood et al., 2002), QDM also applies 

a relative difference between historical and future climate data (here, training and testing periods). Thus it is capable of 

preserving the trend of the future climate (Cannon et al., 2015), which is critical for this study since there are substantial 

differences between the precipitation during the training (2002 to 2015) and testing (2019 to 2021) periods (see Figure 2). This 

approach has been widely used to bias-correct climate variables, including P, which indicated better performance compared 270 

to the other bias correction approaches (Cannon et al., 2015; Eden et al., 2012; Kim et al., 2021; Tegegne and Melesse, 2021; 

https://www.nccs.nasa.gov/systems/ADAPT/Prism
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Tong et al., 2021). To be specific for QDM, the bias-corrected value 𝑥̂𝑚,𝑝(𝑡) for modeled data in the future projection at time 

t is given by applying the relative change ∆𝑚(𝑡)  multiplicatively to the historical bias corrected value 𝑥̂𝑜:𝑚,ℎ:𝑝(𝑡),  

𝑥̂𝑚,𝑝(𝑡) = 𝑥̂𝑜:𝑚,ℎ:𝑝(𝑡) ∙ ∆𝑚(𝑡)                                                 (4) 

where 𝑥̂𝑜:𝑚,ℎ:𝑝(𝑡) = 𝐹𝑜,ℎ
−1[𝜏𝑚,𝑝(𝑡)] and ∆𝑚(𝑡) =

𝑥𝑚,𝑝(𝑡)

𝐹𝑚,ℎ
−1 [𝜏𝑚,𝑝(𝑡)]

. 𝑥𝑚,𝑝(𝑡) represents uncorrected modeled data in the projection 275 

period and 𝜏𝑚,𝑝(𝑡) is the percentile of 𝑥𝑚,𝑝(𝑡)in the empirical cumulative density function (F) formulated by the modeled data 

in the projection period over a time window around 𝑡.  𝐹𝑜,ℎ
−1[𝜏𝑚,𝑝(𝑡)] means applying inverse empirical cumulative density 

function formulated by the observed data in the historical period for 𝜏𝑚,𝑝(𝑡) to obtain bias-corrected value [i.e., 𝑥̂𝑜:𝑚,ℎ:𝑝(𝑡)]. 

Similarly, 𝐹𝑚,ℎ
−1 [𝜏𝑚,𝑝(𝑡)] denotes applying inverse empirical cumulative density function formulated by the modeled data in 

the historical period for 𝜏𝑚,𝑝(𝑡). The time window to construct the empirical cumulative density function around time 𝑡 was 280 

set to be 45 days to preserve the seasonal cycle. In this study, the historical and projection periods correspond to the training 

and testing data periods, respectively. The modeled and observed data correspond to MERRA2 and coarsened Stage IV data, 

respectively. Details about this method are referred to Cannon et al. (2015).  

The QDM bias correction was performed at the spatial resolution of MERRA2. The QDM-biased corrected P data at the 

coarse resolution was then bilinear interpolated into the high resolution, the same as the spatial resolution of Stage IV. This 285 

process of QDM and bilinear interpolation (He et al., 2016b) is named QDM_BI in the following sections.  

3.3 Evaluation approaches 

We evaluated model performance in different temporal scales, including hourly and aggregated (daily and monthly) time 

scales. The agreements between the observed and estimated (i.e., bias-corrected and downscaled) P for the different scales and 

extremes were quantified using the Kling-Gupta efficiency (KGE). The KGE is an objective performance metric combining 290 

correlation, bias, and variability, which was introduced by Gupta et al. (2009) and modified by Kling et al. (2012). KGE has 

been widely used for evaluating different datasets with observations (e.g., Beck et al., 2019b; Beck et al., 2019a; Wang et al., 

2021)  and as the standard evaluation metric in hydrology (Beck et al., 2017; Harrigan et al., 2018; Harrigan et al., 2020; Lin 

et al., 2019). The KGE is defined as follows: 

KGE = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2                                     (5) 295 

where the correlation component 𝑟 is represented by correlation coefficient, the bias component 𝛽 represented by the ratio of 

estimated and observed means, and the variability component 𝛾 represented by the estimated and observed coefficients of 

variation: 
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𝛽 =
𝜇𝑠

𝜇𝑜
         and      𝛾 =

𝜎𝑠/𝜇𝑠

𝜎𝑜/𝜇𝑜
                                                    (6) 

where 𝜇𝑠and 𝜇𝑜 denote the distribution mean for the estimates and observations, and 𝜎𝑠 and 𝜎𝑜 denote the standard deviation 300 

for the estimates and observations, respectively. Note here that the variability component 𝛾 is not the ratio of 𝜎𝑠 and 𝜎𝑜 to 

ensure that the bias and variability ratios are not cross-correlated (Kling et al., 2012).  KGE, 𝑟, 𝛽 and 𝛾  represent perfect 

agreement when they equal one. In addition to KGE, the root mean square error (RMSE) and mean absolute error (MAE) 

metrics are also reported since they were often used to evaluate model performance on bias correction and downscaling (e.g., 

Maraun et al., 2015; Rodrigues et al., 2018).   305 

To understand the performance on capturing P extremes, we assessed hourly P at 99th percentile and annual maximum 

wet spell in hours, as well as an extreme hurricane event that occurred during the testing period. These extreme indices and 

events are highly relevant to flooding (Pierce et al., 2014) and have a great environmental impact as well as impacts on property 

and human life.  

Moreover, we evaluated P classification results from Scenario3 and Scenario6, the scenarios with multitask learning for 310 

bias correcting P categories, by comparing them with the four categories from the coarsened Stage IV observations. The four 

categories from the coarsened Stage IV were generated manually based on the ranges of the four classes. We also classified 

the results from QDM and raw MERRA2 into four categories and compared the results with the categories from the coarsened 

Stage IV. A widely used metric, namely, Intersection Over Union (IOU) (Li et al., 2021), is applied to evaluate classification 

performance, which is defined by: 315 

IOU =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
∙ 100                                                                   (7) 

where TP represents true positives (prediction=1, truth=1), FP represents false positives (prediction=1, truth=0) and FN 

represents false negatives (prediction=0, truth=1). Taking the heavy rain category as an example, TP is an outcome where the 

model correctly predicts the heavy rain class; FP is an outcome where the model predicts it is a heavy rain class, but the true 

label is not a heavy rain class; FN is an outcome where the model predicts it is not a heavy rain category, but the true label is 320 

a heavy rain class. IOU ranges from 0 to 100 and specifies the percentage of the amount of overlap between the predicted and 

ground truth bounding box.   

4 Results 

In this section, we present the performance of the six DL model scenarios and the benchmark approach QDM_BI on bias 

correcting and downscaling hourly P, evaluated against Stage IV precipitation data during the testing period from 2019 to 325 

2021. 
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4.1 Overall agreement 

The overall agreement between the observed and estimated P was quantified with KGE [Eq. (5)] as well as each 

component of KGE, which were calculated on an hourly basis for the entire testing period (2019 to 2021) and for all the grid 

cells over the study region. Table 3 shows that Scenario2 to Scenario6 have much higher KGE than Scenario1, indicating that 330 

the weighted loss function improved model performance through rebalancing hourly P data. Scenario1, however, highly 

overestimated the variability (i.e., 𝛾 is much greater than 1) and underestimated the mean (i.e., 𝛽 is much smaller than 1), 

resulting in a negative KGE value. This indicates that using a regular loss function (i.e., MAE) tends to underestimate hourly 

P (relatively larger training loss than other scenarios during training, see Figure S1 in the Supplement). The KGE values are 

comparable for all the scenarios using the weighted loss function. The best KGE is obtained by Scenario5, with Scenario4 and 335 

Scenario6 performing consistently well in terms of KGE, which indicates that including atmospheric covariates as predictors 

further improved the model performance. However, the DL and benchmark approaches performed considerably worse in terms 

of the correlation component 𝑟 of KGE than the other components (i.e., 𝛽 and 𝛾). The reason is that the correlation component 

𝑟 was estimated based on all the hour-to-hour P data, while the other two components (i.e., 𝛽 and 𝛾 ) were calculated based 

on long-term climatological P statistics and were relatively easier to estimate (Beck et al., 2019b). The benchmark, QDM_BI, 340 

also highly overestimated the variability and has a lower KGE score than Scenario4, Scenario5, and Scenario6 of the DL 

approaches.   

[Insert Table 3] 

Table 3 also reports the results of RMSE and MAE, which are widely used to evaluate model performance on bias 

correction and downscaling. However, these two metrics are inadequate for pixel-wise comparison, particularly when 345 

comparing two datasets with spatial biases, due to the well-known "double penalty problem" (Harris et al., 2022; Rossa et al., 

2008). Specifically, for using RMSE or MAE metrics, the model estimates that correctly capture the right amounts of rain in 

slightly incorrect locations often score worse than estimates of no rain at all. For example, Scenario1 has the lowest RMSE 

and MAE, but it highly underestimated the observed mean (i.e.,  is much lower than 1) while it is the worst one in all the 

scenarios, including QDM_BI in terms of KGE scores.  This illustrates the limitations of grid point-based errors like RMSE 350 

and MAE as evaluation metrics.  

4.2 Hourly Climatology 

Due to climate variability and change, the climatology of hourly P over the testing period (2019 to 2021) is much higher 

than the training period (2002 to 2015) (Figure 2). We evaluated the long-term mean (i.e., climatology) during the testing 

period (Figure 3 and Figure 4a), which allows us to examine how well the methods could capture the P climatology but also 355 

the nonstationary changes of long-term P. Again, Scenario1 notably underestimated the climatology of observations (by 71% 
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on average) (Figure 3 and Figure 4a) due to the use of MAE as a loss function. In general, all other DL scenarios and QDM_BI 

provide satisfactory results in capturing hourly P climatology. Scenario4 also slightly underestimated the climatology of Stage 

IV (12% on average, Figure 4a). This scenario only includes atmospheric covariates as model inputs without using the 

corrected P of MERRA-2, indicating the information from covariates only is not sufficient to estimate hourly P. The 360 

climatology of Scenario3, Scenario5, and Scenario6 appears well matching with Stage IV in space, better than QDM_BI. 

Relative differences of climatology averaged over the study area between estimated and Stage IV are 1.5%, 1.8% and 0.38% 

for Scenario3, Scenario5, and Scenario6, respectively, while it is 2.5% for QDM_BI. Compared to Scenario3 and Scenario5, 

Scenario2 underestimated the climatology, particularly around the coastal area (Figure 3). Figure 4a shows that QDM_BI has 

a relative larger variance and its KGE value is lower than the ones for Scenario 2, Scenario3, Scenario5, and Scenario6. Note 365 

that all the DL estimates appear to be blurrier than Stage IV, similar to what has been found in previous studies (e.g., Ravuri 

et al., 2021), while the QDM_BI estimates are even blurrier than the DL estimates.  

[Insert Figure 3] 

[Insert Figure 4] 

4.3  Daily and Monthly P estimates 370 

We aggregated the hourly P estimates into daily and monthly time scales to evaluate the performance of daily total P and 

monthly mean of hourly P. Overall, the KGE values for the daily total P are considerably greater than those for the hourly P 

(Table 3), which suggests temporal aggregation denoised the hourly precipitation data, leading to considerably higher 

correlation coefficient (r in Table 3), mainly contributing to higher KGE. Similarly, The KGE value for Scenario1 is the lowest 

since it highly underestimated the mean of daily total P (lower ), overestimated the variability (higher ), and the correlation 375 

r is also lower compared to the other scenarios. The Scenario5 and Scenario6 have relatively higher KGE scores than other 

DL scenarios and QDM_BI for daily total P. Daily total P from QDM_BI has a comparable KGE score with the DL models 

while overestimating the variability (higher ) compared to most of the DL scenarios.  

Figure 5 shows the daily total P time series for each year during the testing period for the Stage IV, six DL scenarios, 

and QDM_BI averaged over the study area. The results show that the daily total P time series from the DL models closely 380 

matched with the daily total P time series from Stage IV except Scenario1. Again, Scenario1 highly underestimated the daily 

total P with the lowest KGE value, suggesting the difficulties of MAE in handling the highly unbalance feature of P. The daily 

total P from all the other five DL scenarios is much close to Stage IV with large KGE values (close to or larger than 0.9). 

Scenario5 and Scenario6 perform better than the other scenarios including QDM_BI, indicating incorporating covariates and 

corrected coarse resolution P further improved daily total P estimates. The bias-corrected and downscaled daily total P from 385 

QDM_BI, however, highly overestimated the daily total P of Stage IV for almost all the large precipitation events because the 

bias correction process for QDM_BI was executed individually at each grid cell and did not consider spatial dependencies and 

nonlinear relationships between covariates and observations, resulting in nonstable estimations (Wang and Tian, 2022).  
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[Insert Figure 5] 

Table 3 also summarizes the statistics of the monthly mean of hourly P.  The KGE values for the monthly mean of hourly 390 

P are greatly increased, higher than the daily total P. Except Scenario1, the KGE values for the monthly mean are very close 

to each other, with Scenario4 slightly lower than others including QDM_BI. The monthly mean from QDM_BI had relatively 

higher , indicating overestimations of variability. Figure 6 presents the monthly mean time series of hourly precipitation for 

each month during the testing period for Stage IV, the six DL models, and QDM_BI, averaged over the study area. Similar to 

the daily total P time series, the monthly mean P from all the DL models closely matched with the monthly mean time series 395 

from Stage IV (KGE value greater than 0.9) except Scenario1, which highly underestimated the observations. Scenario4 has 

the lowest KGE value and slightly underestimated the monthly mean, but all the scenarios (Scenario2 to Scenario6) are 

consistently better than the KGE score from QDM_BI. These results indicate that incorporating the weighted loss function 

(Scenario2 to Scenario6 compared to Scenario1) improved monthly mean estimation, and the effects of the other customized 

components are not obvious at the monthly time scale. Similarly, the monthly mean from QDM_BI estimates has a relatively 400 

larger variability than Stage IV, resulting in a lower KGE value. 

[Insert Figure 6] 

4.4  Extremes 

Table 4 summarizes the statistics of hourly P at 99th percentile and the annual maximum wet spell. The results show that 

Scenario1 highly underestimated hourly P at 99th percentile (lower  than 1) and overestimated variability (higher  than 1), 405 

resulting in a negative KGE score, suggesting the inadequacy of using regular MAE loss function. Scenario2 has the highest 

KGE score with a higher correlation coefficient (higher r) than the other scenarios. This is probably because the number of 

trainable parameters for Scenario2 is the lowest, leading to a better regularization ability with limited data for extremes. The 

KGE values are similar for Scenario3, Scenario5, and Scenario6, and relatively lower for Scenario4, suggesting the importance 

of incorporating observation-corrected P from coarse resolution as an input. The benchmark approach QDM_BI highly 410 

overestimated the variability of hourly P at 99th percentile compared to Stage IV, resulting in a lower KGE value than most of 

the DL scenarios except Scenario1.  

Figure 4b shows the boxplots of the relative difference between hourly P estimates and Stage IV observations at the 99th 

percentile. On average, Scenario1 underestimated the 99th percentile hourly P by over 60%, while other DL scenarios 

underestimated by about 20%, with Scenario5 and Scenerio6 much closer to Stage IV. The 99th percentile estimated by 415 

QDM_BI has a much higher variance (as indicated by the distance between high 90% and low 10% bars in the boxplot, as well 

as high  in Table 4) compared to DL models, while has a lower mean difference (underestimated by about 10%) due to bias 

correction through an explicit adjustment at each percentile.  Figure 7 shows the spatial distribution of the hourly P at the 99th 

percentile for MERRA2, Stage IV, QDM_BI, and six DL models. We can see that the 99th percentile of MERRA-2 hourly P 
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greatly underestimated Stage IV by 40% (spatial average 2.9mm for MERRA2 versus 4.8mm for Stage IV). While the hourly 420 

P at the 99th percentile from QDM_BI (area average 4.3mm) appears to be close to Stage IV, its spatial variability looks very 

different from Stage IV, probably due to QDM_BI correcting biases on a grid point basis. Scenario4 highly underestimated P 

values at the 99th percentile compared with other scenarios except Scenario1, indicating excluding coarse resolution P as an 

input is not reasonable.  

[Insert Figure 7] 425 

The DL models treated each hourly P spatial data as a 2D image and did not explicitly account for temporal dependence 

between images. We assumed that the DL models could potentially preserve the temporal dependence of observations if the 

DL models were well bias-corrected and downscaled each 2D image. The annual maximum wet spell is a widely used extreme 

index for evaluating temporal dependence (e.g., Maraun et al., 2015). The wetness threshold for calculating the annual 

maximum wet spell index was set to 0.1mm/h, which is commonly used for hourly radar data (e.g., Tao et al., 2016).  Table 4 430 

shows that Scenario2 and Scenario3 have relatively higher KGE scores for the annual maximum wet spell extreme index than 

the other DL scenarios, suggesting the usefulness of more parsimonious models with weighted loss function but without 

including atmospheric covariates as additional inputs. Further incorporating multitask learning (Scenario3 and Scenario6), 

however, slightly decreased the model performance compared to no multitask learning scenarios (Scenario2 and Scenario5), 

probably due to the increased parameters and decreased regularization ability. While scenario1 has the lowest KGE score than 435 

the other DL scenarios, it is still much higher than QDM_BI, which highly overestimated the mean of annual maximum wet 

spell for Stage IV observations (much higher  than 1) Boxplots in Figure 4c show the difference between model estimates 

and Stage IV observations for the annual maximum wet spell in hours during the testing period. Scenario1 highly 

underestimated the annual maximum wet spell by about 10 hours. Scenario2 and Scenario3 have the lowest differences with 

Stage IV in terms of the mean and variance of the annual maximum wet spells. On average, Scenario4, Scenario 5, and 440 

Scenario6 overestimated the annual maximum wet spell by about 10 hours, with Scenario4 and Scenario6 showing a relatively 

larger variance. The benchmark approach QDM_BI has the largest difference (on average over 22 hours) and much larger 

variance compared to Stage IV, resulting in a negative KGE score. This is probably because QDM_BI corrected biases on a 

grid basis, which failed to account for the spatial and temporal dependence.  

Figure 8 shows an extreme event occurred from 19:00 to 20:00 on 29 August 2021 in Universal Time Coordinated (UTC) 445 

time zone when Hurricane Ida landed at the Louisiana State in the United States from MERRA2, Stage IV, QDM_BI and the 

six DL scenarios. We can see that MERRA2 highly underestimated this extreme event and did not capture detailed features of 

Stage IV. While QDM_BI estimates slightly enhanced the hourly P values, they still failed to capture detailed features. 

Scenario1 to Scenario3 gradually enhanced hourly P, but these three models had difficulties capturing the center of the 

hurricane. By including atmospheric covariates, Scenario4 to Scenario6 roughly captured the center of the hurricane, and 450 
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Scenario6 also reproduced the cyclones surrounding the center. These results suggest the customized components improve the 

model performance on bias correcting and downscaling specific extreme events.   

[Insert Figure 8] 

4.5  P categories 

Figure 9 shows that Scenario3 and Scenario6, the scenarios with multitask learning for bias correcting P categories, have 455 

larger IOU values (e.g., 19.63% for Scenario3 and 19.91% for Scenario6 for moderate rain 2.5-10mm) than QDM method (but 

15.30% for moderate rain) particularly for the three categories with rain, indicating that the two DL models results better 

matched with the wet categories of the coarsened Stage IV observations than the QDM method. Furthermore, Scenario6 has 

relatively larger IOU scores than Scenario3, indicating incorporating atmospheric covariates improved classification accuracy. 

For example, there is 8.15% of the heavy rain category matched the coarsened Stage IV observations for Scenario3, while, for 460 

Scenario6, 11.07% of the heavy rain category matched the coarsened Stage IV observations. These results suggest that the 

auxiliary classification task incorporated in the Scenario3 and Scenario6 of the DL model can better estimate the four categories 

of hourly P during the testing period than the traditional bias correction method QDM.   

[Insert Figure 9] 

5 Discussion 465 

This study explored customized DL for bias correcting and downscaling hourly P through a set of experiments with or 

without customized loss functions, multitask learning, and inputs from atmospheric covariates of precipitation. Scenario1, 

which used regular MAE as a loss function, highly underestimated P for all the temporal scales as well as extremes, showing 

the lowest performance. Since most hourly P are no rain, the regular loss function very likely leads the model to learn no rain 

events while neglecting rainy events. Regular MAE has been used for downscaling daily precipitation data with limited biases 470 

in previous studies  (e.g., Sha et al., 2020a), but to our knowledge, there are no successful cases using regular MAE for 

downscaling hourly precipitation data with large biases. However, the scenarios with customized loss functions with weighted 

MAE (Scenario2 to Scenario6) consistently showed much better performance than Scenario1. This result suggests that 

penalizing more towards heavy P on a grid basis makes the optimization algorithm focus more on the grids where rainfalls 

occurred and, therefore, inherently rebalance the hourly P for model training. While this study explored bias correcting and 475 

downscaling hourly precipitation from climate reanalysis data, this algorithm with customized loss function can be potentially 

integrated with precipitation data from the Global Precipitation Measurement (GPM) mission to generate more accurate 

operational precipitation data at a finer resolution.  

The scenarios with multitask learning indicate limited added values and performed worse than other scenarios without 

multitask learning in terms of extreme indices. The reason for that is probably because adding multitask learning increased 480 
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30% trainable parameters with limited extreme data decreased the model regularization ability. Baño-Medina et al. (2020) 

designed a series of DL models with plain CNN architecture and different model complexity (i.e., increasing the number of 

trainable model parameters) to downscale daily ERA5 reanalysis dataset and found that increasing model complexity makes 

model performance worse, particularly for extreme indices (98th percentile and annual maximum wet spell), which is consistent 

with our study. 485 

Traditional methods (e.g., QDM_BI) mainly use coarse resolution P data as the only predictor for downscaling and bias 

correction, which cannot fully utilize nonlinear relationships between covariates and observations (Rasp and Lerch, 2018) 

during the bias correction and downscaling process. DL models with covariates as auxiliary variables, however, have indicated 

success in improving model performance for postprocessing temperature and precipitation forecasts due to the capability of 

learning nonlinear relationships between covariates and response variable automatically (Li et al., 2022; Rasp and Lerch, 490 

2018). Scenario4 to Scenario6 incorporated physically relevant covariates of precipitation, with only Scenario4 excluding the 

coarse resolution P as Baño-Medina et al. (2020) did for downscaling daily precipitation. The results indicate that incorporating 

auxiliary predictors of atmosphere circulations and moisture conditions can help improve P bias correcting and downscaling 

skills (see Figure 3 to Figure 8). However, only using covariates without coarse resolution P (Scenario4) is not sufficient to 

well estimate hourly P, while using coarse resolution P as additional input (Scenario5 and Scenario6) shows improved 495 

performance. This result is consistent with a recent study focusing on CNN-based postprocessing of P forecasts from numerical 

weather prediction models, showing total precipitation itself is the most important predictor (Li et al., 2022). Note that we did 

not explore the importance of rank among these covariates in improving the model performance in this study, which could be 

a potential avenue for future work. Furthermore, static variables, such as elevations, long-term climatology (Sha et al., 2020a), 

soil texture, and land cover, could be helpful for resolving local details. However, our study region has little topographic 500 

variations, and therefore including elevation data cannot add any additional information to the model. 

Moreover, we compared the customized DL scenarios with a traditional method QDM_BI and found that most of the DL 

experiments remarkably outperform QDM_BI in all the temporal scales as well as extremes. QDM_BI executed bias correction 

at each grid point without considering spatial dependencies and only used coarse resolution P as a predictor, and thus does not 

have the capability of capturing spatial features (e.g., detailed spatial features for the hurricane Ida in Figure 9) and accounting 505 

for the atmosphere and moisture covariates of precipitation. Furthermore, the proposed customized DL models are fully 

convolutional, and the trained models can potentially be easily used to estimate hourly P in other places through transfer 

learning where high-resolution data are not available [e.g., Stage IV radar coverage is limited in the western United States as 

a result of the scarcity of the radar network and blockage from the mountains (Nelson et al., 2016)]. There are many questions 

that need to be explored under this topic about transferability under various climate zones and the impact of spatial distance, 510 

which deserves a separate study. The trained models also have the potential to generate high-resolution hourly P estimates 

beyond the time range covered by Stage IV radars (e.g., before 2002). Furthermore, the SRDRN architecture can be further 
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customized to downscale different gridded precipitation, including downscaling precipitation from GCM projections, which 

can be a future study.   

Due to the stochastic nature of DL models, we ran each DL scenario for additional three times (four times in total) to 515 

evaluate the effects of stochasticity compared with the added value of each customized component of DL models (see Table 

S2 and Table S3 in the Supplement). The results show that KGE values for each scenario are significantly different at the p-

value of 0.05 at the hourly time scale, which indicates that the added value of each customized component is not caused by 

model stochasticity. Scenario1 is significantly worse than other scenarios, including QDM_BI at hourly and aggregated time 

scales as well as extreme indices, emphasizing the added value of the weighted loss function. Scenario5 and Scenario 6 are 520 

significantly better than other scenarios, including QDM_BI, in terms of KGE values at hourly and aggregated time scales, 

and Scenario4 is significantly worse at the monthly time scale.  For the 99th percentile extreme index, Scenario4 is significantly 

worse than Scenario3, Sceanrio5, and Scenario6. For the annual maximum wet spell index, Scenario2 and Scenario3 are 

significantly better than other scenarios. All these stochastic significance evaluation results are consistent with the findings in 

Section 4. Due to computational demand (20 to 22 hours for running each scenario once) and resource limits, we ran limited 525 

times for each scenario to consider the stochasticity of DL models, and incorporating DL models with Bayesian inference is a 

potential way to quantify systematic uncertainty caused by model itself as indicated by Vandal et al. (2018a). 

6 Conclusions 

Various gridded precipitation (P) data at different spatiotemporal scales have been developed to address the limitations 

of ground-based P observations. These gridded P data products, however, suffer from systematic biases and spatial resolutions 530 

are mostly too coarse to be used in local scale studies. Many studies based on DL approaches have been conducted to bias 

correct and downscale coarse resolution P data. However, it is still challenging for traditional approaches, as well as current 

DL approaches to capture small-scale features, especially for P extremes, due to the complexity of P data (e.g., highly 

unbalanced and skewed), particularly at fine temporal scale (e.g., hourly). To address these challenges, this study developed 

customized DL models by incorporating customized loss functions, multitask learning, and physically relevant atmospheric 535 

covariates. We designed a set of model scenarios to evaluate the added values of each component of the customized DL models. 

Our results show that customized loss functions greatly improved model performance compared to the model scenario with 

regular loss function in all the temporal scales as well as extremes (on average, improved by over 70% for climatology and 

over 50% at the 99th percentile). While multitask learning improved model performance on capturing detailed features of 

extreme events (e.g., hurricane Ida), the scenarios with multitask learning performed worse than other scenarios in terms of 540 

extreme indices potentially due to the increased number of trainable parameters. The added value of incorporating atmospheric 

covariates is remarkable, likely because these scenarios took full advantage of nonlinear relationships between large-scale 

covariates, precipitation, and fine-scale observations.  The results also indicated that the role of coarse resolution P as a 

predictor is very important for improving model performance despite the added values from the covariates. The DL scenarios 
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with customized loss function and coarse resolution P as the only predictor are the best models at places where no covariate 545 

data are available. Moreover, most of the DL scenarios with customized loss functions performed much better in all the 

temporal scales as well as extremes than the benchmark approach QDM_BI, which is not able to account for spatial dependence 

and nonlinear relationships. These results highlight the advantages of the customized DL model compared with regular DL 

models as well as traditional approaches, which provide a promising tool to fundamentally improve precipitation bias 

correction and downscaling and better estimate P at high resolutions.  550 
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Table 1. Deep Learning (DL) Experimental Design 795 

Experimental 

Runs (Scenarios) 
Input Output Loss 

Scenario1 hourly precipitation (P) P MAE 

Scenario2 P P Weighted MAE 

Scenario3 P P + categorical P Weighted MAE +Weighted cross-entropy 

Scenario4 Covariates w/o P P Weighted MAE 

Scenario5 Covariates w/ P P Weighted MAE 

Scenario6 Covariates w/ P P + categorical P Weighted MAE + Weighted cross-entropy 
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Table 2. Selected atmospheric covariates for DL downscaling and bias correction  

NO Other variables Variable description Units 

1 H250 Geopotential height at 250 hPa m 

2 H500 Geopotential height at 500 hPa m 

3 H850 Geopotential height at 850 hPa m 

4 Q250 Specific humidity at 250 hPa kg/kg 

5 Q500 Specific humidity at 500 hPa kg/kg 

6 Q850 Specific humidity at 850 hPa kg/kg 

7 T250 Air temperature at 250 hPa K 

8 T500 Air temperature at 500 hPa K 

9 T850 Air temperature at 850 hPa K 

10 U250 Eastward wind at 250 hPa m/s 

11 U500 Eastward wind at 500 hPa m/s 

12 U850 Eastward wind at 850 hPa m/s 

13 V250 Northward wind at 250 hPa m/s 

14 V500 Northward wind at 250 hPa m/s 

15 V850 Northward wind at 250 hPa m/s 

16 OMEGA500 Omega (vertical wind) at 500 hPa Pa/s 

17 SLP Sea level pressure  Pa 

18 T2M 2-meter air temperature K 

  

  800 
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Table 3. Overall assessment for hourly, daily total, and monthly mean of hourly precipitation. KGE represents the modified 

Kling-Gupta efficiency (KGE) and it includes three components (correlation component r, bias component  and variability 

component ) The correlation component 𝑟 is represented by correlation coefficient, the bias component  is represented by 

the ratio of estimated and observed means, and the variability component  is represented by the estimated and observed 

coefficients of variation. 805 

Temporal scales Scenarios* KGE r   RMSE (mm) MAE (mm) 

Hourly 

precipitation 

Scenario1 -0.0584 0.267 0.288 1.28 1.20 0.189 

Scenario2 0.218 0.297 0.958 0.660 1.25 0.258 

Scenario3 0.203 0.278 1.02 0.664 1.28 0.269 

Scenario4 0.250 0.331 0.883 0.682 1.21 0.240 

Scenario5 0.283 0.358 1.02 0.682 1.22 0.248 

Scenario6 0.262 0.356 1.00 0.639 1.20 0.247 

QDM_BI 0.248 0.332 1.02 1.35 1.36 0.256 

Daily precipitation 

Scenario1 0.0935 0.615 0.288 1.409 10.19 3.54 

Scenario2 0.644 0.685 0.958 0.840 8.76 3.42 

Scenario3 0.626 0.675 1.02 0.815 8.94 3.54 

Scenario4 0.618 0.642 0.883 0.935 9.37 3.55 

Scenario5 0.688 0.701 1.02 0.914 8.89 3.40 

Scenario6 0.668 0.701 1.00 0.855 8.65 3.34 

QDM_BI 0.644 0.689 1.02 1.17 10.50 3.42 

Monthly mean of 

hourly 

precipitation 

Scenario1 0.0206 0.567 0.289 1.52 0.162 0.133 

Scenario2 0.766 0.778 0.958 0.941 0.0721 0.0512 

Scenario3 0.784 0.791 1.02 0.951 0.0713 0.0505 

Scenario4 0.690 0.712 0.883 0.991 0.0835 0.0592 

Scenario5 0.778 0.782 1.02 0.964 0.0734 0.0519 

Scenario6 0.776 0.783 1.00 0.945 0.0719 0.0511 

QDM_BI 0.717 0.777 1.02 1.17 0.0850 0.0553 

*Scenarios have different settings: Scenario1 is with a regular MAE loss function and coarse precipitation as a predictor; 

Scenario2 is with a weighted MAE loss and coarse precipitation as a predictor; Scenario3 is the same as Scenario2 except with 

a classification as an auxiliary task; Scenario4 is with a weighted loss function and covariates as predictors; Scenario5 is the 

same as Scenario4 except also including coarse precipitation as predictors; Scenario 6 is the same as Scenario5 but including 

a classification as an auxiliary task.  810 
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Table 4. Performance of extreme indices including hourly P at 99% percentile and annual maximum wet spell in hours. KGE 

represents the modified Kling-Gupta efficiency (KGE) and it includes three components (correlation component r, bias 

component  and variability component ) The correlation component 𝑟 is represented by correlation coefficient, the bias 

component  is represented by the ratio of estimated and observed means, and the variability component  is represented by 815 

the estimated and observed coefficients of variation. 

Extreme indices Scenarios* KGE r   RMSE MAE 

99th percentile 
(mm) 

Scenario1 -1.306 0.352 0.358 3.12 3.150 3.101 

Scenario2 0.367 0.415 0.806 1.14 1.049 0.946 

Scenario3 0.243 0.264 0.828 1.04 0.978 0.876 

Scenario4 0.204 0.242 0.763 1.06 1.255 1.153 

Scenario5 0.255 0.284 0.863 1.15 0.858 0.744 

Scenario6 0.245 0.271 0.845 1.12 0.922 0.800 

QDM_BI 0.158 0.244 0.900 1.36 0.793 0.655 

Annual maximum 

wet spell (hours) 

Scenario1 0.153 0.275 0.621 1.22 12.2 10.3 

Scenario2 0.293 0.302 1.11 0.988 9.17 7.14 

Scenario3 0.291 0.302 1.07 1.10 9.33 7.03 

Scenario4 0.121 0.282 1.46 1.21 17.0 12.7 

Scenario5 0.193 0.335 1.44 1.11 15.8 12.2 

Scenario6 0.152 0.306 1.47 1.14 16.6 12.6 

QDM_BI -0.209 0.173 1.88 1.09 26.6 22.2 

*Scenarios have different settings: Scenario1 is with a regular MAE loss function and coarse precipitation as a predictor; 

Scenario2 is with a weighted MAE loss and coarse precipitation as a predictor; Scenario3 is the same as Scenario2 except with 

a classification as an auxiliary task; Scenario4 is with a weighted loss function and covariates as predictors; Scenario5 is the 

same as Scenario4 except also including coarse precipitation as predictors; Scenario 6 is the same as Scenario5 but including 820 

a classification as an auxiliary task.  
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 825 

Figure 1. The customized SRDRN architecture with multitask learning, which includes the classification of P categories as an 

auxiliary task (Task 1) in addition to downscaling and bias correcting actual P values (Task 2). Note that this figure is modified 

from the SRDRN architecture shown in Wang et al. (2021). 
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 830 

Figure 2. Climatology of hourly precipitation (in a unit of mm/h) from MERRA2 and Stage IV during the training period (2002 

to 2015; first row) and their differences (second row) between the testing (2019 to 2021) and training periods. 
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Figure 3. Hourly precipitation climatology (in a unit of mm/h) during the testing period (2019 to 2021), which includes 835 

MERRA2, Stage IV, QDM_BI, and six DL experimental runs (Scenario1 to Scenario6).  
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Figure 4. Boxplots showing hourly precipitation estimates minus Stage IV observations based on (a) climatology, (b) extreme 

at 99% percentile, and (c) annual maximum wet spell in hours during the testing period (2019 to 2021). Precipitation estimates 840 

are produced from the QDM_BI approach and 6 DL experimental runs (Scenario1 to Scenario6).  

(a) 

(b) 

(c) 
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Figure 5. Daily total precipitation during the testing period (2019 to 2021) from Stage IV, QDM_BI, and 6 DL experimental 

runs (Scenario1 to Scenario6). 
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 845 

  
Figure 6. Monthly mean of hourly precipitation time series during the testing period (2019 to 2021) from Stage IV, QDM_BI, 

and 6 DL experimental runs (Scenario1 to Scenario6). 
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 850 

Figure 7. Spatial map of hourly precipitation extremes at 99th percentile (in a unit of mm/h) from raw MERRA2, Stage IV, 

QDM_BI, and 6 DL experimental runs (Scenario1 to Scenario6). 
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Figure 8. Hourly precipitation (in a unit of mm/h) from 19:00 to 20:00 on 29 August 2021 in UTC time zone when Hurricane 855 

Ida landed in Louisiana, including raw MERRA2, Stage IV, QDM_BI and six DL experimental runs (Scenario1 to Scenario6). 
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Categories MERRA2 QDM Scenario3 Scenario6 

0-0.1mm 80.54 88.10 81.00 86.44 

0.1-2.5mm 27.10 23.60 25.93 27.91 

2.5-10mm 14.94 15.30 19.63 19.91 

>10mm 4.32 7.12 8.15 11.07 

 

Figure 9. Heat map showing the Intersection Over Union (IOU) comparing coarsened Stage IV with raw MERRA2, QDM, 

two deep learning experiment runs with classification task (Scenario3 and Scenario6)  860 
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