20

25

30

Customized Deep Learning for Precipitation Bias Correction and
Downscaling

Fang Wang!, Di Tian'*, and Mark Carroll?

"Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
2Computational and Information Science Technology Office, NASA Goddard Space Flight Center Greenbelt, MD 20771, USA

*Correspondence to: Di Tian (tiandi@auburn.edu)

Abstract. Systematic biases and coarse resolutions are major limitations of current precipitation datasets. Many deep learning
(DL) based studies have been conducted for precipitation bias correction and downscaling. However, it is still challenging for
the current approaches to handlinghandle complex features of hourly precipitation, resulting in the incapability of reproducing
small-scalesmall-seale features, such as extreme events. This study developed a customized DL model by incorporating
customized loss functions, multitasksultitask learning; and physically relevant covariates to bias correct and downscale hourly
precipitation data. We designed six scenarios to systematically evaluate the added values of weighted loss functions,
multitasksnuiti-task learning, and atmospheric covariates compared to the regular DL and statistical approaches. The models
was-were trained and tested using the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2)
reanalysis and the Stage IV radar observations over the northern coastal region of the Gulf of Mexico at an hourly time scale.
We found that all the scenarios with weighted loss functions performed notably better than the other scenarios with

conventional loss functions and a quantile mapping-based approach at hourly, daily, and monthly time scales as well as

extremes. MultitaskMultitask learning showed improved performance on capturing fine features of extreme events and heurly

s-accounting for atmospheric covariates, highly improved model

performance at hourly and aggregated time scales-, while the improvement is not as large as from weighted loss functions.

s-We show that

the customized DL model can better downscale and bias correct hourly precipitation datasets and provide improved

precipitation estimates at fine spatial and temporal resolutions where regular DL and statistical methods experiencing

experience challenges.

1 Introduction

Precipitation is a major component of the hydrological cycle and is fundamentally important for many applications, such as
water resources planning and management, disaster risk management, and agriculture, amongst many others. Due to the limited

coverage of ground-based rain gauges, numerous gridded precipitation datasets have been developed over the past decades,
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including gauge-based, satellite-based, reanalysis products, and merged products (Beck et al., 2019a; Sun et al., 2018). These
datasets are different in terms of data sources, coverage, spatial and temporal resolution, and algorithms (see Sun et al., 2018
for a review), which provide a potential source of information to regions where conventional in situ precipitation measurements

are lacking (Sun et al., 2018).

Gridded precipitation datasets have proven to be useful across a wide range of research fields, including climate trendstrend
and extreme precipitation (Bhattacharyya et al., 2022; Degaetano et al., 2020; Fischer and Knutti, 2016; Kim et al., 2019; King
et al., 2013), droughts and floods monitoring (Aadhar and Mishra, 2017; Peng et al., 2020; Suliman et al., 2020; Zhong et al.,
2019), and driving hydrological models (Raimonet et al., 2017; Xu et al., 2016). However, many studies have identified that
these gridded precipitation datasets include substantial biases in certain aspects compared to in situ observations (Aadhar and
Mishra, 2017; Ashouri et al., 2016; Bitew and Gebremichael, 2011; Cavalcante et al., 2020; Jiang et al., 2021; Jury, 2009;
Rivoire et al., 2021; Sun et al., 2018; Tong et al., 2014; Xu et al., 2016; Yilmaz et al., 2005). For example, Ashouri et al. (2016)
evaluated the performance of NASA'sNASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA)
precipitation reanalysis dataset and found that MERRA tends to overestimate the frequency at which the 99th percentile of
precipitation is exceeded and underestimate the magnitude of extremes, especially over the Gulf Coast regions of the United
States. Furthermore, spatial resolution for most of these gridded precipitation datasets is relatively coarse for local scale
applications (mostly above 0.25°, Sun et al., 2018). Therefore, the gridded precipitation datasets require bias correction and

downscaling (Duethmann et al., 2013; Emmanouil et al., 2021; Mamalakis et al., 2017; Seyyedi et al., 2014).

Bias correcting and downscaling gridded precipitation data is challenging due to its complex characteristics (e.g., highly
skewed, unbalanced feature, and complex spatial-temporal structure). Various approaches have been developed to tackle this
issue, including traditional quantile mapping (QM) based bias correction and downscaling methods (e.g., Cannon et al., 2015;
Panofsky and Brier, 1968; Thrasher et al., 2012; Wood et al., 2002) and recent machine learning based approaches such as
random forests (He et al., 2016b; Legasa et al., 2022; Long et al., 2019; Mei et al., 2020; Pour et al., 2016), support vector
machines (Tripathi et al., 2006) and artificial neural networks (Schoof and Pryor, 2001; Vandal et al., 2019). Recently,
advances in deep learning have made a significant impact on many fields and have been proven superior to traditional machine

learning methods because of their powerful abilities to learnin-learning spatiotemporal feature representation in an end-to-end

manner (Ham et al., 2019; Reichstein et al., 2019; Shen, 2018). In particular, deep learning (DL) with convolutional neural
network (CNN) types of approaches have achieved notable progress in modeling spatial context data (Lecun et al., 2015) and
have been used for bias correcting and downscaling low spatial resolution data (Kumar et al., 2021; Sha et al., 2020a, b;
Vandal et al., 2018b; Wang et al., 2021; Xu et al., 2020), climate model outputs (Frangois et al., 2021; Liu et al., 2020; Pan et
al., 2021; Rodrigues et al., 2018; Wang and Tian, 2022), reanalysis products (Bafio-Medina et al., 2020; Sun and Tang, 2020),
and weather forecast model outputs (Harris et al., 2022; Li et al., 2022). While these studies have indicated many promising

strengths and advantages over traditional downscaling and bias correction approaches, most of them have difficulties
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capturingte-eaptare local-, small-scale features such as extremes for an unseen dataset. For example, Bailo-Medina et al. (2020)
designed different DL configurations with a different number of plain CNN layers to bias correct and downscale daily ERAS-
Interim reanalysis from 2° spatial resolution to 0.5°, and the overall performance is still marginal compared with simple
generalized linear regression models and highly underestimated precipitation extremes. Harris et al. (2022) developed a
generative adversarial networks (GANs) architecture to bias correct and downscale weather forecast outputs and found that it
is more challenging to account for forecast error (or bias) in a spatially-coherent manner compared to the pure downscaling
problem (Kumar et al., 2021; Sha et al., 2020a, b; Vandal et al., 2018b; Wang et al., 2021; Xu et al., 2020). The reason for that
may be due to the sparsity of training data on extreme events. Deep learning (DL) models, however, need large training data

in order to obtain a better regularization model for rare events in the unseen dataset.

Customized DL models have been proposed to generate physically consistent results and have better generalization ability for
out-of-pocketent—of-peeket datasetsdataset in the earth and environmental science field, which include incorporating
customized loss functions (Kashinath et al., 2021), inputs from physically relevant auxiliary predictors (i.e., covariates) (Li et
al., 2022; Rasp and Lerch, 2018), and customized multitasksultitask learning (Ruder, 2017). For example, Daw et al. (2017)
indicated success in lake temperature modeling by incorporating a physics-based loss function in the DL objective compared
to a regular loss function. Li et al. (2022) used a CNN-based approach to postprocess numerical weather prediction model
output and found that the use of auxiliary predictors greatly improved model performance compared with raw precipitation
data as the only predictor. —A multitasknultitask model is trained to predict multiple tasks that are driven by the same

underlying physical processes; and thus has the potential to learn to better represent the shared physical process and better

predict the variable of interest (Ruder, 2017). Multitask models have proven effective in several applications, including natural
language processing (Chen et al., 2014; Seltzer and Droppo, 2013), computer vision (Girshick, 2015), as well as hydrology
(Sadler et al., 2022). In addition, most of the previous bias correction and downscaling studies focused on the daily time scale
(Bafio-Medina et al., 2020; Francois et al., 2021; Harris et al., 2022; Kumar et al., 2021; Liu et al., 2020; Pan et al., 2021;
Rodrigues et al., 2018; Sha et al., 2020a; Vandal et al., 2018b; Wang et al., 2021). However, the distribution of hourly
precipitation data within a day is more important than daily or monthly aggregations for impacts and risks from warming-

induced precipitation changes (Chen, 2020). Traditional DL loss functions have difficulties handlingte—handle hourly

precipitation data that are highly unbalanced with many zeros and highly positivelypesitive skewed for nonzero components.

Therefore-therefore, customized DL with a weighted loss function to better balance nonzero components has the potentials to

improve the DL model performance. Besides the primary task of downscaling and bias correction task, adding a highly

correlatedrelevant classification task has pessibilitiesthe potential to improve DL model performance on the primary task.

Ineladinglncorporating covariates thatare-highlyeorrelated-withselected based on precipitation formation theory (cloud mass

movement and thermodynamics) also have the potentials to improve Bl-medelperformanee-on-precipitation downscaling and
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100 In this study, we will explore customized DL for precipitation bias correction and downscaling, aiming to takemake a step
forward to addressaddressing the current challenges described above. We designed a set of experiments to address this
hypothesis using the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA?2) reanalysis and
the Stage IV radar precipitation data. The structure of this paper is organized as follows: Section 2 introducesintredueed data
and methodelogystudy area; Section 3 introducesintrodueed the methodology, --including the deep learning architecture and

105  experimental designs for different scenarios, and a traditional bias correction approach as a benchmark; Section 3-4 presents

results; discussion and conclusions are provided in Section 4-5 and 56, respectively.

2 Data and methedelogyStudy Area

2.1 Dataand- study-area

MERRA?2 is a state-of-the-art global reanalysis product generated by the NASA Global Modeling and Assimilation

110  Office (GMAO) using the Goddard Earth Observing System, version 5 (GEOS-5), and was introduced to replace and extend
the original MERRA dataset (Reichle et al., 2017). It incorporates new satellite observations through data assimilation and
benefits from advances in the GEOS-5 (Reichle et al., 2017). There areare two hourly total precipitation (P) datasets available

‘ from the MERRAZ2 reanalysis product: the;-the model analysedanalyzedanalysed precipitation computed from the atmospheric
general circulation model and the observation-corrected P (Reichle et al., 2017). Both have a spatial resolution of 0.5° in

115 latitude and 0.625° in longitude (~50km). MERRA2 observation-corrected precipitation hashave been used extensively in
hydro-climatological analysis and modelingmedeHing (Chen et al., 2021; Hamal et al., 2020; Xu et al., 2019; Xu et al., 2022).
However, it still suffers from substantial biases (e.g., Hamal et al., 2020; Xu et al., 2019). This study will bias correct and
downscale MERRA?2 observation-corrected P using the Stage IV radar data (Lin and Mitchell, 2005) from the National Centers

for Environmental Prediction (NCEP) as the observational reference. The Stage IV radar data has a 4 km spatial and hourly

120 temporal resolution and covers the period from 2002 until the near present (2021 in this study). Stage IV radar was generated

by merging data from 140 radars and about 5500 gauges over the continental United States (Lin and Mitchell, 2005; Nelson

| etal., 2016). The Stage IV provides highly accurate P estimates and has therefore been widely used as a reference for evaluating
other P products (e.g., Aghakouchak et al., 2011; Aghakouchak et al., 2012; Beck et al., 2019b; Habib et al., 2009; Hong et

| al., 2006; Nelson et al., 2016; Zhang et al., 2018). The Stage IV dataset is a mosaic of regional analyses produced by 12by12
125 River Forecast Centers (RFCs) and is thus subject to the gauge correction and quality control performed at each individual

RFC (Nelson et al., 2016).
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The bias correction and downscaling experiments were performed in the rectangle coastal area of the Gulf of Mexico
covering the entire states of Alabama, Mississippi, and Louisiana, and parts of neighbour states in the United States, ranging
from -94.375° to -85.0° in longitude and from 29.0° to 35.0° in latitude. The study area falls into the humid subtropical climate

and is highly influenced by extreme P events such as convective storms and hurricanes.

3 Methodology <

22 3.1 Customized DL approaches

This section firstfirstly presents a brief description of a DL approach, namely, Super Resolution Deep Residual Network
(SRDRN). Then, multitaskssultitask learning, and customized loss functions are introduced based on the SRDRN architecture
to construct customized DL approaches. Finally, we designed different modeling experiments, which include different
combinations of multitaskmultitask learning, customized loss functions, and P covariates as predictors, in order to evaluate the

added values of each component of the customized DL approaches.

2:2:23.1.1 -SRDRN model

The SRDRN model is an advanced deep CNN-typeE€NN-type architecture and has been tested for downscaling daily P
and temperature through synthetic experiments (Wang et al., 2021) and for bias-correctingbias-eorreeting near-surfacenear

surface temperature simulations from global climate models (Wang and Tian, 2022), considerably outperforming the

conventional approaches. Furthermore, it has been proved that the SRDRN is capable of capturing much finer features than
shallow plain CNN architecture (Wang et al., 2021). ComparedCemparing with the popular U-Net architecture (Sha et al.,
2020a; Sun and Tang, 2020), the SRDRN directly extracts featuresfeature on the coarse resolution input; and thus can
potentially decrease computational and memory complexity.Furthermeore;—it-has-beenproved-that-the- SRDRN-is-capable-of

H A nuch 4 an < —plain-CN Ao “arin h-the-pon
t t t OW-pia a t g 5 S a pep S

architeeture-(Sha et al., 2020a; Sun and Tang, 2020)(Sha-et-al—2020b;-Sun-and-Tang2020)-the SRDRN-directly-extraets

Here we provide a brief description of the SRDRN algorithm. For more details, the readers may refer to Wang et al.
(2021). The SRDRN algorithm was developed based on a novel super-scalingsupersealing deep learning approach in the
computer vision field (Ledig et al., 2017). Basically, the SRDRN algorithm is comprised of residual blocks and upsampling
blocks with convolutional and batch normalization layers. For feature extraction, the convolutional layers apply filters to go
through the input data to build a local connection within nearby grids by computing the element-wise dot product between the

filters and different patches of the input. The outcome is followed by a nonlinear activation function, here parametric ReLU

5
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(He et al., 2015) in this study. Batch normalization is a technique to standardize the inputs to a layer for each mini-batch so

that the learning process can be stabilized and the training of the model can be accelerated (Ioffe and Szegedy, 2015).

With convolutional and batch normalization layers, the residual blocks are designed to extract fine spatial features while

avoidingaveid degradation issuesissue for the very deep neural network. Compared to plain CNN architectures, residual blocks

can improve the performance of extensively deep networks (Silver et al., 2017) without suffering from model accuracy
saturation and degradation (He et al., 2016a) because residual blocks execute residual mapping and include skipping
connections. In this study, the way that skipping connection skips layers and connects the next layers is through element-wise
addition. AThe total number of 16 residual blocks were used in the SRDRN architecture, which makes the network very deep

and able to extract fine spatial features.

The upsampling blocks are applied to increase the spatial resolution for downscaling purposespurpese. The upsampling
process is executed directly on the feature maps generated from the residual blocks, and each upsampling block is composed
of one convolutional layer and one upsampling layer followed by a parametric ReLU activation function. The defaulted nearest

neighbor interpolation was chosen in the upsampling layers to increase the spatial resolution, and the effects of different

interpolation methods were not explored in this study. Each upsampling block sequentially and gradually increases the input
low-resolutiontew-reselution feature maps by a factor of 2 or 3. In this study, the downscaling ratio (the ratio between coarse
resolution and high-resolution data) is 12, and thus we used 3 upsampling blocks with two blocks having a factor of 2 and one

block having a factor of 3.
2.2.33.1.2 -SRDRN model with multitaskmultitask learning

We included an additional P classification task in the SRDRN model. Besides bias correcting and downscaling
continuous hourly P values as a primary task, we added another task to bias correct hourly P categories. Studies have indicated
that a multitaskmaltitask DL model could learn to better represent the shared physical processes and better predict the variable
that-we-are-interestedinof interest (e.g., Sadler et al., 2022). Since P categories and actual values are highly relevant, Sinee-P

i § i ¢ sof itisadding a-expeeted-thatthe classification task can potentially

improve the DL model performanee-onfor bias correcting and downscaling P.Sinee-these-two-tasksare-highlyrelevantto-each

Specifically, for the SRDRN with multitasksultitask learning, one convolutional layer (256 filters and 3x3 kernels)
follows the last element-wise addition operation to summarize feature maps, then the architecture splits into two sections
(Figure 1). The first section with two additional convolutional -layers (the first one with 64 filters and the second with 4 filters)
followed by the Softmax activation (Goodfellow et al., 2016)- is is-used for bias correcting P categories as a multiclass

classification task, and the other section with upsampling blocks is used for the purpose of bias correcting and downscaling

(Formatted: Font: Italic
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hourly P. The classification task classifies the hourly P at each grid into four categories: 0-0.1mm/h as no rain, 0.1-2.5mm/h
as light rain, 2.5-10mm/h as moderate rain, and >10mm/h as heavy rain (Tao et al., 2016). Due to radar sensors'sensers”
uncertainty in the very light rainfall, 0.1 mm/h is commonly used as a threshold to determine if there is rain (Tao et al., 2016).
Since the classification task is executed on the feature maps at the coarse resolution, we aggregated Stage IV P (namely,
coarsened Stage IV in this study) into the same spatial resolution as MERRA?2 and classified the upscaled P data into the four

groups as target labels.
[Insert Figure 1]
2:2:43.1.3 Customized loss functions

Precipitation data is highly skewed and unbalanced, especially at an hourly time scale, which could cause the deep

learning algorithm to focus more on no-rainne-rain events andwhile ignoringignere heavy rain events withif using regular loss

functions. Wang et al. (2021); (Nelson et al., 2016; Ravuri et al., 2021)Here We-we developed a weighted mean absolute error
(MAE) loss function (Lyag weigntea) to balance precipitation data where weights change with precipitation values as shown
below,

n
noy _
Yi=1 W1'|Ypred—Ytrue (])

LMAE,weighted = n

where 7 is the total number of grids in a batch, w;is the weight for each absolute error between the model predicted value

Yprea and the true value y;r,. The weight wychanges with the actual true value Yerqe,

MIN Verue < MIN
wy = | Yerue  MIN < Yerye < MAX
MAX Verue = MAX

where MIN is the lowest threshold and MAX is the highest threshold for the weights. In other words, when the y;,.,, value is
below (above) MIN (MAX), wyequals MIN (MAX), otherwise w, equals Y, itself. Thus, the loss is weighted directly by the
P value at the grid cell scale, which has been proven more effective than weighted by P bins (Ravuri et al., 2021; Shi et al.,
2017). Note that all of the gridded P data, including Stage IV and MERRA-2, are logarithmically transformed [i.e., y=log(x+1)]
in order to amplify the normality and reduce the skewness of P data (Sha et al., 2020a). In Equation 1, ¥y and y,,.q are
transformed P values. MIN was set to log(0.1+1) and MAX was set to log(100+1), where maximum 100mm/h was chosen as
the highest threshold before log transformation for robustness to spuriously large values in the Stage IV radar (Ravuri et al.,

2021) and 0.1 mm/h is commonly used as a threshold to determine if there is rain for radar data (Tao et al., 2016).

(Formatted: Font: Not Bold




215

220

225

230

240

For the four P categories, most data fall into the no rain category (over 88% in the coarsened Stage IV), and minority
data fall into the heavy rain category (about 0.2% in the coarsened Stage IV). Thus, handling class imbalanceelass-imbalanece
is of great importance in this situation, where the minority class for the heavy rain category is the class of most interest with
respect to this learning task. The regular cross-entropyeross-entropy loss function for the classification task could result in the
underestimation of the minority class (Fernando and Tsokos, 2021). Thus, we applied a weighted cross entropy as a loss

function (Lyeighted cross—entropy) for the classification task in order to penalize more towards heavy rain category as follows,

Lweighted Cross—entropy —- Z?:l Z?:l Waj* p(:Vi,j) -log (q(:Vi,j)) ®)]

where w, ; denotes the weight for the jth class, p(yi']-) represents the true distribution of the ith grid for the jth class, and
q(yl-, j) represents the predicted distribution. k is the number of classes (equals te-4 in this study). w, ; was set to 1, 5, 15, and
80 for no rain, light rain, moderate rain, and heavy rain classes, respectively, which is roughly based on the opposite percentage
(i.e., 1, 5, 15, 80 are approximately from the percentages of heavy, moderate, light and no rain categories, respectively) for

each category of the coarsened Stage IV. Since the weights for categories with rain are relatively larger than the no rain

category, the 10S Lyyeignted cross—entropy 18 Telatively large when there are discrepancies between true and predicted categories

with rain, resulting in guiding the training process towards te-decreasing these differences with larger weights and thus better

handling class-imbalance issuesisstie.

2.2:53.1.4 -Experiment Design

To comprehensively evaluate the added value of each component of customized DL models, including weighted loss
function, multitasksraititask learning, and adding covariates, we designed six scenarios (Scenariol to Scenario6 in Table 1).
Scenariol is based on the basic SRDRN architecture with hourly P from MERRA2 as coarse-resolution input, P from Stage
IV as high-resolution labelledabelled data, and regular MAE as loss function, which represents regular DL. Wang et al. (2021)

used regular mean squared error (MSE) as a -loss function, which works well for downscaling daily precipitation through

synthetic experiments with no bias; since the precipitation data was first coarsened and then downscaled into the original fine
scale. However, in this study, the coarse resolution MERRA?2 has substantialsubstantially biases compared to Stage IV radar
data, and Stage IV radar data also includes artefacts (e.g., large spuriousspurieustarge values) (Nelson et al., 2016). The

previousPrevieus study havehas shown that the MSE loss function is more sensitive to radar artefacts than the mean absolute

error (MAE) loss function (Ravuri et al., 2021). Therefore, -and-thus-we chose MAE as a regular loss function in this study.

Scenario? is the same as Scenario 1 except using weighted MAE loss function [Eqn. (1)]. The number of trainable parameters
is the same for Scenariol and Scenario2. Scenario3 includes the classification task, and the total loss is the combination of
Eqn. (1) and Eqn. (2) with a weight 4 [see Eqn. (3) below], where A was set to 0.01 to ensure the two parts of the losses are in

the same magnitude. The trainable parameters for Scenario3 increaseinereases by 30% compared to Scenariol and Scenario2.
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L= LMAE_weightedJr A Lweighted Cross—entropy (3)

[Insert Table 1]

As described in Section 1, studies fe-e-Bafe-Medi al—2020-Liet-al—2022-Rasp-andLereh—2048have indicated

that including atmospheric covariates is helpful for estimating precipitation (e.g., Bafio-Medina et al., 2020; Li et al., 2022;

Rasp and Lerch, 2018). The other three scenarios also consider atmospheric covariates of P from MERRA?2 as predictors,
which include geopotential height, specific humidity, air temperature, eastward wind, and northward wind at three different
vertical levels (250, 500, 850 hPa) (e.g., Baflo-Medina et al., 2020; Rasp and Lerch, 2018) as well as vertical wind (e.g., Trinh
et al., 2021) at 500 hPa (OMEGAS500), sea level pressure and 2-meter2-meter air temperature in a single level (e.g., Panda et

al., 2022; Rasp and Lerch, 2018) (see Table 2). We chose these variables based on precipitation formation theory (cloud mass

movements and thermodynamics) and—etheras well as findings from previous studies, en—estimating—preecipitation—as

listedindicated above. SimilarComparable to a classic multiple linear regression problem, covariates are multivariable

predictors, and hourly precipitation is the only dependent variable. For each covariate listed in Table 2, data normalization was

executed as a data preprocessing step. Specifically, each covariate was normalized by subtracting the mean (ut) and dividing
by the standard deviation (o). Here p and o are scalar values that were calculated based on the flattened variable for the training
dataset. During the testing period, the model prediction was made with the normalized testing dataset from MERRA2 with
pand o calculated from the statistics of the coarse-resolution data during the testing period to preserve nonstationary.
Scenario4 only included atmospheric covariates without using coarse resolution P as input and used Eqn. (1) as loss function
to test whether only covariates are sufficient for estimating hourly P. The number of trainable parameters for Scenario4 is
about 1% more compared to Scenariol and Scenario2. Scenario5 is the same as Scenario4 except including P as a predictor
besides atmospheric covariates, and the number of trainable parameters is very close to Scenario4. Scenario6 is the same as
Scenario5 except including the classification task with Eqn. (3) as loss function and the number of trainable parameters is

similar to Scenario3 (31% greater than scenarios with no multitasksnultitask learning).
[Insert Table 2]

The Adam optimization algorithm was applied to train the six DL scenarios with a learning rate of 0.0001 and other
default values. We found that the learning rate of 0.0001 worked stably in this study through a series of experiments. The batch
size for each epoch was set to 64, and the number of epochs was set to 150 for each scenario listed in Table 1. Each scenario

was trained forwith approximately 2.5x10; iterations. We frequently saved models and evaluated their performance with a

validation dataset in order to choose the best model for prediction on the testing dataset. The training process was executed
using NVIDIA V100 GPU provided by the NASA High-End Computing (HEC) Program through the NASA Center for
Climate Simulation (NCCS) at the Goddard Space Flight Center (https://www.nccs.nasa.gov/systems/ADAPT/Prism).

(Field Code Changed
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At the time when we conduct this study, MERRA-2 and Stage IV hourly P data have a 20-year overlapping period from
2002 to 2021. We used the first 14 years (2002 to 2015) as the training dataset, the middle 3 years (2016 to 2018) as the

validation dataset, and the more recent 3 years (2019 to 2021) as the testing dataset. Figure 2 shows the hourly mean or
climatology for MERRA-2 and Stage IV for training and testing datasets, as well as the mean differences between the testing
and the training periods. We can tell that there are large climatology differences (or biases) between MERRA-2 and Stage IV

both for training and testing datasets, especially around the coastal area. Wetter conditions are observed in most of the study

area in the testing period (average 0.03 mm/h) than in the training period, which is due to a higher percentage of rains (with

values greater than 0.5mm/h) during the testing period than during the training period based on analyzing the Stage IV data

(Table S1 in Supplement). Wetter conditions-are-observed-in-most-of the study-area-in-the testing period-(average 0:03-mm/h)

caused-bv-a hisher 1. £ ras aate o o o the-trainine pertod-based-on
causeavy-anigner-perecent £ = Hre-tratinRg pertoa—o:
. . . L 0 .

with-the-training period.- This allows us to assess the extrapolation capabilities of the different methods, which is particularly

relevant in a changing climate.

[Insert Figure 2]

2.33.2  Statistical approach A

We used a widely accepted quantile delta mapping (QDM) as a benchmark approach for P bias correction. The QDM
method corrects systematic biases at each grid cell in quantiles of a modelled series with respect to observed values. Compared

to the regular quantile mapping method (Panofsky and Brier, 1968; Thrasher et al., 2012; Wood et al., 2002), QDM also

aeeeunts-applies a relative difference for-the-difference-between historical and future climate data (here, training and testing

periods). Thus:—aned-thus it is capable of preserving the trend of the future climate (Cannon et al., 2015), which is critical for
this study since there are substantial differences between the precipitation during the training (2002 to 2015) and testing (2019
to 2021) periods (see Figure 2). This approach has been widely used to bias-correctbias-eerreet climate variables, including P,
which indicated better performance compared to the other bias correction approaches (Cannon et al., 2015; Eden et al., 2012;
Kim et al., 2021; Tegegne and Melesse, 2021; Tong et al., 2021). To be specific for QDM, the bias-correctedbias-eorrected
value x,,, ® for modeled data in the future projection at time ¢ is given by applying the relative change A, G

multiplicatively to the historical bias corrected value %o.n,n.p (%)

Fm.p (t) = Xom,h:p (t) . Am(t) @)

Xmp(t)

where o np (¢) = Fyi [Tma(D)] and Ay ty = m.

Xim,p (L) TEpresents uncorrected modeled data in the projection

period and T, , (t) is the percentile of x,,, ,, (£)in the empirical cumulative density function (F) formulated by the modeled data

in the projection period over a time window around t. F,j; [rm,p(t)] means applying inverse empirical cumulative density

10
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function formulated by the observed data in the historical period for 7,, ,, O to obtain bias-correctedbias-eorrected value [i.e.,
xmm'h:p(t)]. Similarly, F,;ylh [Tm’p (t)] denotes applying inverse empirical cumulative density function formulated by the
modeled data in the historical period for 7, (t). The time window to construct the empirical cumulative density function
around time t was set to be 45 days to preserve the seasonal cycle. In this study, the historical and projection periods correspond
to the training and testing data periods, respectively. The modeled and observed data correspond to MERRA?2 and coarsened

Stage IV data, respectively. Details about this method are referred to Cannon et al. (2015).

The QDM bias correction was performed at the spatial resolution of MERRA2. The QDM-biasedQPM-biased corrected

P data at the coarse resolution was then bilinear interpolated into the high resolution, the same as the spatial resolution of Stage

IV. This process of QDM and bilinear interpolation (He et al., 2016b) is named as-QDM_BI in the following sections.

2:43.3  Evaluation approaches <

We evaluated model performance in different temporal scales, including hourly and aggregated (daily and monthly) time
scales. The agreements between the observed and estimated (i.e., bias-correctedbias—cerrected and downscaled) P for the
different scales and extremes were quantified using the Kling-Gupta efficiency (KGE). The KGE is an objective performance
metric combining correlation, bias, and variability, which was introduced byin Gupta et al. (2009) and modified byin Kling et
al. (2012). KGE has been widely used for evaluating different datasets with observations (e.g., Beck et al., 2019b; Beck et al.,
2019a; Wang et al., 2021) and as the standard evaluation metric in hydrology (Beck et al., 2017; Harrigan et al., 2018; Harrigan
etal., 2020; Lin et al., 2019). The KGE is defined as follows:

KGE=1—\/(r—1)2+(/3—1)2+(y—1)2 ®)

where the correlation component r is represented by correlation coefficient, the bias component 8 represented by the ratio of
estimated and observed means, and the variability component y represented by the estimated and observed coefficients of

variation:

— ks — Ts/ks
b=t 2olhe ©)

where ugand p, denote the distribution mean for the estimates and observations, and o5 and g, denote the standard deviation

for the estimates and observations, respectively. Note here that the variability component y is not the ratio of o, and g, to

ensure, that the bias and variability ratios are not cross-correlated (Kling et al., 2012), KGE, r, f and y represent perfect

agreement when they equal one. In addition to KGE, the root mean square error (RMSE) and mean absolute error (MAE)
metrics are also reported since they were often used to evaluate model performance on bias correction and downscaling (e.g.,

Maraun et al., 2015; Rodrigues et al., 2018).
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330 To understand the performance on capturing P extremes, we assessed hourly P at 99" percentile and annual maximum
wet spell in hours, as well as an extreme hurricane event that occurred during the testing period. These extreme indices and
events are highly relevant to flooding (Pierce et al., 2014) and have a great environmental impact as well as impacts on property

and human life.

Moreover, we evaluated P classification results from Scenario3 and Scenario6, the scenarios with multitaskmultitask

335 learning for bias correcting P categories, by comparing them with the four categories from the coarsened Stage IV observations.
The four categories from the coarsened Stage IV were generated manually based on the ranges of the four classes. We also
classified the results from QDM and raw MERRAZ2 into the-four categories and compared the results with the categories from

the coarsened Stage IV. A widely used metric, namely, Intersection ever-Over Union (}eJ10U) (Li et al., 2021), is applied to

evaluate classification performance, which is defined by:

P

)
340 [60U = ———- 100 7)
TP+FP+FN
where TP represents true positives (prediction=1, truth=1), FP represents false positives (prediction=1, truth=0) and FN ) (Formatted: Font: Italic
represents false negatives (prediction=0, truth=1). Taking the heavy rain category as an example, 7P is an outcome where the (Formatted: Font: Italic

model correctly predicts the heavy rain class; FP is an outcome where the model predicts it is a heavy rain class, but the true (Formatted: Font: Italic

. . . P . . (' Formatted: Font: Italic
label is not a heavy rain class; FN is an outcome where the model predicts it is not a heavy rain category, but the true label is ( " !

‘ (Formatted: Font: Italic

345 aheavy rain class. w ‘N-representsfalse-negatives—loeOU
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ranges from 0 to 100 and specifies the percentage of the amount of overlap between the predicted and ground truth bounding

box.
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In this section, we present the performance of the six DL model scenarios and the benchmark approach QDM _BI on bias 0" + Tnient ate 0.25"

350 correcting and downscaling hourly P, evaluated against Stage IV precipitation data during the testing period from 2019 to
2021.

32 4.1 -Overall agreement « ( Formatted: Normal, No bullets or numbering

The overall agreement between the observed and estimated P was quantified with KGE [Eq. (5)] as well as each
component of KGE, which were calculated on an hourly basis for the entire testing period (2019 to 2021) and for all the grid

355  cells over the study region. Table 3 shows that Scenario2 to Scenario6 have much higher KGE than Scenariol, indicating that
the weighted loss function improved model performance through rebalancing hourly P data. Scenariol, however, highly
overestimated the variability (i.e., y is much greater than 1) and underestimated the mean (i.e., § is much smaller than 1),
resulting in a negative KGE value. This indicates that using a regular loss function (i.e., MAE) tends to underestimate hourly
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P (relatively larger training loss than other scenarios during training, see Figure S1 in the Supplement). The KGE values are

comparable for all the scenarios using the weighted loss function. The best KGE is obtained by Scenario5, with Scenario4 and
Scenario6 performing consistently well in terms of KGE, which indicates that including atmospheric covariates as predictors
further improved the model performance. However, the DL and benchmark approaches performed considerably worse in terms

of the correlation component r of KGE than the other components (i.e., § and y). The reason is thatbeeause the correlation

component r; was estimated based on all the hour-to-hourheurte-heur P data, while the other two components (i.e., f and y )

waswere calculated based on suggesting-that-long-term climatological P statistics and were relatively easier to be-estimatee
(Beck et al., 2019b)-are-relative sie 2 = amies(i-e5+). The benchmark, QDM_BI, also
highly overestimated the variability; and has a lower KGE score than Scenario4, Scenario5. and Scenario6 of the DL

approaches.
[Insert Table 3]

Table 3 also reports the results of RMSE and MAE, which are widely used to evaluate model performance on bias
correction and downscaling. However, these two metrics are inadequate for pixel-wise comparison, particularly when
comparing two datasets with spatial biases, due to the well-known "“double penalty problem"” (Harris et al., 2022; Rossa et
al., 2008). Specifically, for using RMSE or MAE metrics, the model estimates that correctly capture the right amounts of rain
in slightly incorrect locations often score worse than estimates of no rain at all. For example, Scenariol has the lowest RMSE
and MAE, but it highly underestimated the average-observed mean (i.e., B is much lower than 1), while it is the worst one in
all the scenarios, including QDM_BI in terms of KGE scores. This illustrates the limitations of the-grid point-based errorserror

like RMSE and MAE as evaluation metrics.
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3:34.2 _Hourly Climatology “ [Formatted: Outline numbered + Level: 2 + Numbering

Due to climate variability and change, the climatology of hourly P over the testing period (2019 to 2021) is much higher
than the training period (2002 to 2015) (Figure 2). We evaluated the long-term mean (i.e., climatology) during the testing
period (Figure 3 and Figure 4a), which allows us to examine how well the methods could capture the P climatology but also
the nonstationary changes of long-term P. Again, Scenariol notably underestimated the climatology of observations (by 71%
on average) (Figure 3 and Figure 4a); due to the use of MAE as a loss function. In general, all other DL scenarios and QDM_BI
provide satisfactory results ines capturing hourly P climatology. Scenario4 also slightly underestimated the climatology of
Stage IV (12% on average, Figure 4a). This scenario only includes atmospheric covariates as model inputs without using the
corrected P of MERRA-2, indicating the information from covariates only isare not sufficient to estimate hourly P. The
climatology of Scenario3, Scenario5, and Scenario6 appearsappear well matching with Stage IV in space, better than QDM_BI.
Relative differences of climatology averaged over the study area between estimated and Stage IV are 1.5%, 1.8% and 0.38%

for Scenario3, Scenario5, and Scenario6, respectively, while it is 2.5% for QDM_BI. Compared to Scenario3 and ScenarioS5,
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the-Scenario2 underestimated the climatology, particularly around the coastal area (Figure 3);-which-indicates-the-added-value
i i i io3 spherie riates—(Seenarios). Figure 4a shows that QDM _BI has a relative
larger variance and its KGE value is lower than the ones for Scenario 2, Scenario3, Scenario5, and Scenario6. Note that all the
DL estimates appearappears to be blurrier than Stage IV, similar toas what has been found in previous studies (e.g., Ravuri et

al., 2021), while the QDM_BI estimates are even blurrier than the DL estimates.

[Insert Figure 3]
[Insert Figure 4]
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3:44.3 _ Daily and Monthly P estimates « [Formatted: Outline numbered + Level: 2 + Numbering

We aggregated the hourly P estimates into daily and monthly time scales to evaluate the performance of daily total P and
monthly mean of hourly P. Overall, the KGE values for the daily total P are considerably greater than those for the hourly P
(Table 3), which suggests temporal aggregation denoised the hourly precipitation data, leading to considerably higher
correlation coefficient (» in Table 3), mainly contributing to higher KGE. Similarly, The KGE value for Scenariol is the lowest
since it highly underestimated the mean of daily total P (lower 3), overestimated the variability (higher y), and the correlation
r is also lower compared to the other scenarios. The Scenario5 and Scenario6 have relativelyrelative higher KGE scores than
other DL scenarios and QDM_BI for daily total P. Daily total P from QDM_BI has a comparable KGE score with the DL
models; while overestimatingeverestimated the variability (higher y) compared to most of the DL scenarios.

Figure 5 shows the daily total P time series for each year during the testing period for the Stage IV, six DL scenarios,
and QDM_BI; averaged over the study area. The results show that the daily total P time series from the DL models closely
matched with the daily total P time series from Stage IV except Scenariol. Again, Scenariol highly underestimated the daily
total P with the lowest KGE value, suggesting the difficulties of MAE in handling the highly unbalance feature of P. The daily
total P from all the other five DL scenarios isare much close to Stage IV with larger KGE values (close to or larger than 0.9)
than-QDM-BI. For-these-five Dl-scenarios{Secenario2-to-Seenariob)-Scenario5 and Scenario6 perform better than the other
scenarioss including QDM_BI, indicating incorporating covariates and corrected coarse resolution P and/ormultitask-learning
further improved daily total P estimates. The bias-correctedbias—cerreeted and downscaled daily total P from QDM_BI,

however, highly overestimated the daily total P of Stage IV for almost all the large precipitation events; because the bias
correction process for QDM_BI was executed individually at each grid cell and did not consider spatial dependencies and

nonlinear relationships between covariates and observations, resulting in nonstable estimations (Wang and Tian, 2022).

[Insert Figure 5]

Table 3 also summarizessummarized the statistics of the monthly mean of hourly P. The KGE values for the monthly
mean of hourly P are greatly increased, higher than the daily total P. Except Scenariol, the KGE values for the monthly mean
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are very close to each other, with Scenario4 slightly lower than others including QDM_BI. The monthlyMenthly mean from
QDM_BI had arelatively higher y—, indicating overestimations of variability. Figure 6 presents the monthly mean time series
of hourly precipitation for each month during the testing period for Stage IV, the six DL models.medel and QDM_BI, averaged
over the study area. Similar to the daily total P time series, the monthly mean P from all the DL models closely matched with
the monthly mean time series from Stage IV (KGE value greater than 0.9) except Scenariol, which highly underestimated the
observations—. Scenario4 has the lowest KGE value and slightly underestimated the monthly mean, but all the scenarios

Scenario2 to Scenario6)
Seenario4;—which-are consistently better than the KGE score from QDM_BI. These results indicate that incorporating the

weighted loss function (Scenario2 to Scenario6 compared to Scenariol )); askJlearning

improved monthly mean estimation, and the effects of the other customized

components are not obvious at the monthly time scale. Similarly, the monthly mean from QDM_BI estimates hashave a

relatively larger variability than Stage IV, resulting in a lower KGE value.

[Insert Figure 6]
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Table 4 summarizessummarized the statistics of hourly P at 99™ percentile and the annual maximum wet spell. The results
show that Scenariol highly underestimated hourly P at 99* percentile (lower B than 1) and overestimated variability (higher
v than 1), resulting in a negative KGE score, suggesting the inadequacy of using regular MAE loss function. Scenario2 has the
highest KGE score with a higher correlation coefficient (higher ) than the other scenarios. This is probably because the number
of trainable parameters for Scenario2 is the lowest, leading to a better regularization ability with limited data for extremes. The
KGE values are similar for Scenario3, Scenario3, and Scenario6, and relatively higherlower forfor Scenario4, suggesting the
importance of incorporating observation-correctedebservation-correeted P from coarse resolution as an input. The benchmark
approach QDM_BI highly overestimated the variability of hourly P at 99" percentile compared to Stage IV, resulting in a
lower KGE valueatewer lGE-values than most of the DL scenarios except Scenariol.

Figure 4b shows the boxplots of the relative difference between hourly P estimates and Stage IV observations at the 99™
percentile. On average, Scenariol underestimated the 99" percentile hourly P by over 60%, while other DL scenarios
underestimated by about 20%, with Scenario5 and Scenerio6 much closer to Stage IV. The 99" percentile estimated by
QDM_BI has a much higher variance (as indicated by the distance between high 90% and low 10% bars in the boxplot, as well
as high y in Table 4) compared to DL models, while has a lower mean difference (underestimated by about 10%) due to bias
correction through an explicit adjustment at each percentile. Figure 7 shows the spatial distribution of the hourly P at the 99*
percentile for MERRA2, Stage IV, QDM_BI, and six DL models. We can see that the 99™ percentile of MERRA-2 hourly P
greatly underestimated Stage IV by 40% (spatial average 2.9mm for MERRA?2 versus 4.8mm for Stage IV). While the hourly
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P at the 99" percentile from QDM_BI (area average 4.3mm) appears to be close to Stage IV, its spatial variability looks very
different from Stage IV, probably due to QDM_BI correcting biases on a grid point basis. The-spatial-average P-at-99%
pereentilefor-the-sixScenario4 highly underestimated P values at the 99" percentile compared with other scenarios except

Scenariol, indicating excluding coarse resolution P as an input is not reasonable-deeplearning-meodels—ist-7mm;3-9mm;

g
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decreased-hourly Pmean-biases(i-eB-inTable 4)-at 99" percentile.
[Insert Figure 7]

The DL models treated each hourly P spatial data as a 2D image and did not explicitly account for temporal dependence

between images. We assumed that the DL models could potentially preserve the temporal dependence of observations if the

DL models were well bias-correctedbias-correeted and downscaled each 2D imageThe PE-medels-treated-hourly-spatial P-data

. The annual maximum wet spell is a

widely used extreme index foren evaluating temporal dependence (e.g., Maraun et al., 2015). The wetness threshold for
calculating the annual maximum wet spell index was set to 0.1mm/h, which is commonly used for hourly radarradar-heurly
data (e.g., Tao et al., 2016). Table 4 shows that Scenario2 and Scenario3 have relativelyrelative higher KGE scores for the
annual maximum wet spell extreme index than the other DL scenarios, suggesting the usefulness of more parsimonious models
with weighted loss function but without including atmospheric covariates as additional inputs. Further incorporating
multitasksrattitask learning (Scenario3 and Scenario6), however, slightly decreased the model performance compared to no
multitasksultitask learning scenarios (Scenario2 and Scenario5), probably due to the increased parameters and decreased
regularization ability. While scenariol has the lowest KGE score than the other DL scenarios, it is still much higher than
QDM _BI, which highly overestimated the mean of annual maximum wet spell for Stage IV observations (much higher  than
1). Boxplots in Figure 4c show the difference between model estimates and Stage IV observations for the annual maximum
wet spell in hours during the testing period. Scenariol highly underestimated the annual maximum wet spell by about 10 hours.
Scenario2 and Scenario3 have the lowest differences with Stage IV in terms of the mean and variance of the annual maximum
wet spells. On average, Scenario4, Scenario 5, and Scenario6 overestimated the annual maximum wet spell by about 10 hours,
with Scenario4 and Scenario6 showing a relativelyrelative larger variance. The benchmark approach QDM_BI has the largest
difference (on average over 22 hours) and much larger variance compared to Stage IV, resulting in a negative KGE score. This

is probably because QDM_BI corrected biases on a grid basis, which failed to account for the spatial and temporal dependence.

Figure 8 shows an extreme event occurred from 19:00 to 20:00 on 29 August 2021 in Universal Time Coordinated (UTC)
time zone when Hurricane Ida landed at the Louisiana State in the United States from MERRA2, Stage IV, QDM_BI and the
six DL scenarios. We can see that MERRAZ2 highly underestimated this extreme event and did not capture detailed features of
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Stage IV. While QDM_BI estimates slightly enhanced the hourly P values, theyit still failed to capture detailed features. Fhe
Scenariol to Scenario3 gradually enhanced hourly P, but these three models had difficulties capturingte-capture the center of
the hurricane. By including atmospheric covariates, Scenario4 to Scenario6 roughly captured the center of the hurricane, and
Scenario6 also reproduced the cyclones surrounding the center. These results suggest the-impertance-of incorperating-weighted

sthe customized components improve the model performance on

forbias correcting and downscaling specific extreme events.

[Insert Figure 8]

3.64.5 P categories «

Figure 9 shows that Scenario3 and Scenario6, the scenarios with multitaskrltitask learning for bias correcting P

categories, have larger }ot-10U values (e.g.. 19.63% for Scenario3 and 19.91% for Scenario6 for moderate rain 2.5-10mm)

than QDM method (but 15.30% for moderate rain) particularly for the three categories with rain, indicating that the two DL

models results well-better matched with the wet categories of the coarsened Stage IV observations;-better than the QDM
method. Furthermore, Scenario6 has relativelyrelative larger }oU-IOU scores than Scenario3, indicating incorporating

atmospheric covariates improved classification accuracy. For example, there is 8.15% of the heavy rain category matched the

coarsened Stage IV observations for Scenario3, while, for Scenario6, 11.07% of the heavy rain category matched the coarsened

Stage IV observations. These results suggest that; with-anthe auxiliary classification tasks- incorporated in the Scenario3 and
Scenario6 of the DL model can well-better estimate the four categories of hourly P during the testing period than the traditional

bias correction method QDM.

[Insert Figure 9]

45 Discussion «

This study explored customized DL for bias correcting and downscaling hourly P through a set of experiments with or
without customized loss functions, multitasksulttitask learning, and inputs from atmospheric covariates of precipitation.
Scenariol, which used regular MAE as a loss function, highly underestimated P for all the temporal scales as well as extremes,
showing the lowest performance. Since most ef-hourly P are no rain, the regular loss function very likely leads the model to

learn no rain events while neglecting rainy events. Regular MAE has been used for downscaling daily precipitation data with

limited biases in previous studies (e.g., Sha et al., 2020a), but to our knowledge, there are no successful cases using regular

MAE for downscaling hourly precipitation data with large biases. However, the scenarios with customized loss

functionsfunetion with weighted MAE (Scenario2 to Scenario6) consistently showed much better performance than Scenariol.
This result suggests that penalizing more towards heavy P on a grid basis makes the optimization algorithm focus more on the

grids where rainfalls occurred and, therefore, inherently rebalance the hourly P for model training. While this study explored

bias correcting and downscaling hourly precipitation from climate reanalysis data, this algorithm with customized loss function
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can be potentially integrated with precipitation data from the Global Precipitation Measurement (GPM) mission to generate

more accurate operational precipitation data at a finer resolution.

(e.g., Sha et al., 2020a)

The scenarios with multitasksuttitask learning indicateindieates limited added values perform-generally better than-the

- and performed worse than other scenarios without
multitasksultitask learning (Se 02 ro5+in terms of extreme indices<{see Figure 4b,4e-and Fable4). The reason

for that is probably because adding multitaskmultitask learning increased 30% trainable parameters with limited extreme data

decreased the model regularization ability. Bafio-Medina et al. (2020) designed a series of DL models with plain CNN
architecture and different model complexity (i.e., increasing the number of trainable modelmedel-trainable parameters) to
downscale daily ERAS5 reanalysis dataset and found that increasing model complexity makesmake model performance worse,

particularly for extreme indices (98" percentile and annual maximum wet spell), which is consistent with our study.

Traditional methods (e.g., QDM_BI) mainly use coarse resolution P data as the only predictor for downscaling and bias
correction, which cannot fully utilize nonlinear relationships between covariates and observations (Rasp and Lerch, 2018)
during the bias correction and downscaling process. DL models with covariates as auxiliary variables, however, have indicated
success inen improving model performance for postprocessingpestprocessing temperature and precipitation forecasts due to
the capability of learning nonlinear relationships between covariates and response variable automatically (Li et al., 2022; Rasp
and Lerch, 2018). Scenario4 to Scenario6 incorporated physically relevant covariates of precipitation, with only Scenario4

excluding the coarse resolution P as Bafio-Medina et al. (2020), did for downscaling daily precipitation. The results indicate

that incorporating auxiliary predictors of atmosphere circulations and moisture conditions can help improve P bias correcting
and downscaling skillsskit (see Figure 3 to Figure 8). However, only using covariates without coarse resolution P (Scenario4)
is not sufficient to well estimate hourly P, while using coarse resolution P as additional input (Scenario5 and Scenario6) shows
improved performance. This result is consistent with a recent study focusing on CNN-based postprocessingpestprocessing of
P forecasts from numerical weather prediction models, showing total precipitation itself is the most important predictor (Li et

al., 2022). Note that we did not explore the importance of rank among these covariates in improving the model performance

in this study, which could be a potential avenue for future work. Furthermore, static variables, such as elevations, long-termleng

term climatology (Sha et al., 2020a), soil texture, and land cover, could be helpful for resolving local details. However, our

study region has little topographic variations, and therefore including elevation data cannot add any additional information to

the model.
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Moreover, we compared the customized DL scenarios with a traditional method QDM_BI and found that most of the att

545 DL experiments remarkably outperform QDM _BI in all the temporal scales as well as extremes. QDM_BI executed bias
correction at each grid point without considering spatial dependencies and only used coarse resolution P as a predictor, and

thus does not have the capability of capturing spatial features (e.g., detailed spatial features for the hurricane Ida in Figure 9)

and accounting for the atmosphere and moisture covariates of precipitation. Furthermore, the proposed customized DL models

are fully convolutional, and the trained models can potentiallypetentially-ean be easily used to estimate hourly P in other places

550 through transfer learning where high-resolutionhighreselution data are not available [e.g., Stage IV radar coverage is limited
in the western United States as a result of the scarcity of the radar network and blockage from the mountains (Nelson et al.,
2016)]. There are many questions that need to be explored under this topic about transferability under various climate zones

and the impact of spatial distance, which Fhe-performanee-of transferlearning-under-various-climate zones-with-different types

of P-events-deserves a separate study. The trained models also have the potential to generate high-resolutionhigh-reselution

555 hourly P estimates beyond the time range covered by Stage IV radars (e.g., before 2002). Furthermore, the SRDRN architecture

can be further customized to downscale different gridded precipitation, including downscaling precipitation from GCM

projections, which can be a future study.

Due to the stochastic nature of DL models, we ran each DL scenario for additional three times (four times in total) to

evaluate the effects of stochasticity comparedeemparing with the added value of each customized component of DL models

560 (see Table S2 and Table S3 in the Supplement). The results show that KGE values for each scenario are significantly different

at the p-value of 0.05 at the hourly time scale, which indicates that the added value of each customized component is not

caused by model stochasticity. Scenariol is significantly worse than other scenarios, including QDM BI at hourly and

aggregated time scales as well as extreme indices, emphasizing the added value of the weighted loss function. Scenario5 and

Scenario 6 are significantly better than other scenarios, including QDM_BI, in terms of KGE values at hourly and aggregated

565 time scales, and Scenario4 is significantly worse at the monthly time scale. For the 99™ percentile extreme index, Scenario4

is significantly worse than Scenario3, Sceanrio5, and Scenario6. For the annual maximum wet spell index, Scenario2 and

Scenario3 are significantly better than other scenarios. All these stochastic significance evaluation results are consistent with

the findings in Section 4. Due to computational demand (20 to 22 hours for running each scenario once) and resource limits

we ran limited times for each scenario to consider the stochasticity of DL models, and incorporating DL models with Bayesian

570 inference is a potential way to quantify systematic uncertainty caused by model itself as indicated by Vandal et al. (2018a).
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Various gridded precipitation (P) data at different spatiotemporal scales have been developed to address the limitations

of ground-based P observations. These gridded P data products, however, suffer from systematic biases and spatial resolutions
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are mostly too coarse to be used in local scale studies. Many studies based on DL approaches have been conducted to bias
correct and downscale coarse resolution P data. However, it is still challenging for traditional approaches. as well as current
DL approaches to capture small-scalesmall-seale features, especially for P extremes. due to the complexity of P data (e.g.,
highly unbalanced and skewed). particularly at fine temporal scale (e.g., hourly). To address these challenges, this study
developed customized DL models by incorporating customized loss functions, multitasksultitask learning, and
physicallyphysieal relevant atmospheric covariates. We designed a set of model scenarios to evaluate the added values of each
component of the customized DL models. Our results show that customized loss functions greatly improved model
performance compared to the model scenario with regular loss function in all the temporal scales as well as extremes (on
average, improved by over 70% for climatology and over 50% at the 99™ percentile). Theseenarios-with-multitask-learning

the-improvement-is-not-aslarge-as-ineorporating-weighted-Joss-fanetion—While multitasksmultitask learning greatly-improved
model performance on capturing detailed features of extreme events (e.g., hurricane Ida), the scenarios with multitaskmultitask
learning performed worse than other scenarios in terms of extreme indices potentially due to the increased number of trainable
parameters. The added value of incorporating atmospheric covariates is remarkable, likely because these scenarios took full
advantageadvantages of nonlinear relationships between large-scale covariates, precipitation, and fine-scale observations. The
results also indicated that the role of coarse resolution P as a predictor is very important for improving model performance
despite the added values from the covariates. The DL scenarios with customized loss function and coarse resolution P as the
only predictor are the best models at places where no covariate data are available. Moreover, all-themost of the DL scenarios
with customized loss functionsfunetion performed much better in all the temporal scales as well as extremes than the
benchmark approach QDM_BI, which is not able to account for spatial dependence and nonlinear relationships. These results
highlight the advantages of the customized DL model compared with regular DL models as well as traditional approaches,
which provideprevides a promising tool to fundamentally improve precipitation bias correction and downscaling and better

estimate P at high resolutions.
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Table 1. Deep Learning (DL) Experimental Design

Eﬁﬁzrélsr::e;::rlios) Input Output Loss

Scenariol hourly precipitation (P) P MAE

Scenario2 P P Weighted MAE

Scenario3 P P + categorical P Weighted MAE +A*Weighted cross-entropy
Scenario4 Covariates w/o P P Weighted MAE

Scenario5 Covariates w/ P P Weighted MAE

Scenario6 Covariates w/ P P + categorical P Weighted MAE + A*Weighted cross-entropy
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Table 3. Overall assessment for hourly, daily total, and monthly mean of hourly precipitation. KGE represents the modified

Kling-Gupta efficiency (KGE) and it includes three components (correlation component r, bias component 3 and variability

095 component y). The correlation component r is represented by correlation coefficient, the bias component {3 is represented by

the ratio of estimated and observed means, and the variability component y is represented by the estimated and observed

coefficients of variation, (Formatted: Font: (Default) +Headings (Times New Roman) )
Temporal scales Scenarios™ KGE r B Y RMSE (mm) MAE (mm)
Scenariol -0.0584 0.267 0.288 1.28 1.20 0.189
Scenario2 0.218 0.297 0.958 0.660 1.25 0.258
Scenario3 0.203 0.278 1.02 0.664 1.28 0.269
prelj;ﬂ{ion Scenariod 0250 0331 0883  0.682 121 0.240
Scenario5 0.283 0.358 1.02 0.682 1.22 0.248
Scenario6 0.262 0.356 1.00 0.639 1.20 0.247
QDM BI 0.248 0.332 1.02 1.35 1.36 0.256
Scenariol 0.0935 0.615 0.288 1.409 10.19 3.54
Scenario2 0.644 0.685 0.958 0.840 8.76 3.42
Scenario3 0.626 0.675 1.02 0.815 8.94 3.54
Daily precipitation Scenario4 0.618 0.642 0.883 0.935 9.37 3.55
Scenario5 0.688 0.701 1.02 0.914 8.89 3.40
Scenario6 0.668 0.701 1.00 0.855 8.65 3.34
QDM BI 0.644 0.689 1.02 1.17 10.50 3.42
Scenariol 0.0206 0.567 0.289 1.52 0.162 0.133
Scenario2 0.766 0.778 0.958 0.941 0.0721 0.0512
Monthly mean of Scenario3 0.784 0.791 1.02 0.951 0.0713 0.0505
hourly Scenario4 0.690 0.712 0.883 0.991 0.0835 0.0592
precipitation Scenarios 0.778 0.782 102 0964 00734 00519
Scenario6 0.776 0.783 1.00 0.945 0.0719 0.0511
QDM _BI 0.717 0.777 1.02 1.17 0.0850 0.0553
J¥Scenarios have different settings; Scenariol is with a regular MAE loss function and coarse precipitation as a predictor;ﬂy (Formatted: Font: 10 pt

Scenario2 is with a weighted MAE loss and coarse precipitation as a predictor; Scenario3 is the same as Scenario2 except with

. . S . . R . Formatted: Font: 10 pt
100  a classification as an additienal-auxiliary, task; Scenario4 is with a weighted loss function but-and, covariates as predictors; ( P

Scenario$5 is the same as Scenario4 except also including coarse precipitation as predictors; Scenario 6 is the same as Scenario5 . (Formatted: Line spacing: single
but including a classification as an adéditienal-auxiliary, task. ) (Formatted: Font: 10 pt

(Formatted: Font: 10 pt
(Formatted: Font: 10 pt
(Formatted: Font: 10 pt

NN AN
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Table 4. Performance of extreme indices including hourly P at 99% percentile and annual maximum wet spell in hours. KGE

represents the modified Kling-Gupta efficiency (KGE) and it includes three components (correlation component r, bias

component [ and variability component y). The correlation component 1 is represented by correlation coefficient, the bias

component f is represented by the ratio of estimated and observed means, and the variability component y is represented by

the estimated and observed coefficients of variation.

Extreme indices Scenarios* KGE T B y RMSE MAE
Scenariol 1306 0352 0358 312 3150  3.101

Scenario2 0367 0415 0806 114 1049  0.946

. Scenario3 0.243 0264 0828 104 0978 0876
99th(pnf§§§nme Scenariod 0204 0242 0763 106 1255  LIS3
Scenarios 0.255 0284 0863 115 0858 0744

Scenario6 0.245 0271 0845 112 092 0800

QDM _BI 0158 0244 0900 136 0.793 0.655

Scenariol 0.153 0275 0621 122 122 103

Scenario2 0.293 0302 L1l 0988 917 7.14

. Scenario3 0.291 0302 107 110 9.33 7.03
’:V‘L‘:‘;?eﬁﬁgﬂg Scenariod 0.121 0282 146 121 17.0 127
Scenarios 0.193 0335 144 111 158 12.2

Scenario6 0152 0306 147 114 16.6 12.6

QDM _BI 0209 0073 188 1.09 26.6 22

*Scenarios have different settings: Scenariol is with a regular MAE loss function and coarse precipitation as a predictor;
Scenario?2 is with a weighted MAE loss and coarse precipitation as a predictor; Scenario3 is the same as Scenario2 except with
a classification as an auxiliary task; Scenario4 is with a weighted loss function and covariates as predictors; Scenario5 is the
same as Scenario4 except also including coarse precipitation as predictors; Scenario 6 is the same as Scenario5 but including

a classification as an auxiliary task.
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Figure 1. The medified-customized SRDRN architecture with multitasksultitask learning, which; whieh-includeséd the

classification of P categories as an auxiliary task (Task 1) in addition to downscaling and bias correcting actual P values (Task CFormatted: Font: Italic

120 2). Note that this figure is a-medified-version-efmodified from the SRDRN architecture shown in Wang et al. (2021). CFormatted: Font: Italic
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Figure 2. Climatology of hourly precipitation (in a unit of mm/h) from MERRA?2 and Stage IV during the training period (2002
to 2015; first row) and their differences (second row) between the testing (2019 to 2021) and training periods.
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Figure 3. Hourly precipitation climatology (in a unit of mm/h) during the testing period (2019 to 2021), which includes
MERRA2, Stage IV, QDM_BI. and six DL experimental runs (Scenariol to Scenario6).
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Figure 4. Boxplots showing hourly precipitation estimates minus Stage IV observations based on; (a) climatology, (b) extreme

at 99% percentile, and (c) annual maximum wet spell in hours during the testing period (2019 to 2021). Precipitation estimates
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are produced from the QDM_BI approach and 6 DL experimental runs (Scenariol to Scenario6).
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Figure 5. Daily total precipitation during the testing period (2019 to 2021) from Stage IV, QDM_BI, and 6 DL experimental

runs (Scenariol to Scenario6).
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Months
Figure 6. Monthly mean of hourly precipitation time series during the testing period (2019 to 2021) from Stage IV, QDM_BI,

0.0
and 6 DL experimental runs (Scenariol to Scenario6).
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Figure 7. Spatial map of hourly precipitation extremesextrerse at 99th percentile (in a unit of mm/h) from raw MERRAZ2, Stage
IV, QDM_BI, and 6 DL experimental runs (Scenariol to Scenario6).
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Figure 8. Hourly precipitation (in a unit of mm/h) from 19:00 to 20:00 on 29 August 2021 in UTC time zone when Hurricane
Ida landed in Louisiana, including raw MERRA2, Stage IV, QDM_BI and six DL experimental runs (Scenariol to Scenario6).

48



Categories MERRA2 QDM  Scenario3 Scenario6

1150
Figure 9. Heat map showing the Intersection ever-Over Union (}e10U) comparing coarsened Stage IV with raw MERRA2,

QDM, two deep learning experiment runs with classification task (Scenario3 and Scenario6)
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