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Abstract. Systematic biases and coarse resolutions are major limitations of current precipitation datasets. Many deep learning 

(DL) based studies have been conducted for precipitation bias correction and downscaling. However, it is still challenging for 

the current approaches to handlinghandle complex features of hourly precipitation, resulting in the incapability of reproducing 

small-scalesmall scale features, such as extreme events. This study developed a customized DL model by incorporating 

customized loss functions, multitaskmultitask learning, and physically relevant covariates to bias correct and downscale hourly 15 

precipitation data. We designed six scenarios to systematically evaluate the added values of weighted loss functions, 

multitaskmulti-task learning, and atmospheric covariates compared to the regular DL and statistical approaches. The models 

was were trained and tested using the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2) 

reanalysis and the Stage IV radar observations over the northern coastal region of the Gulf of Mexico at an hourly time scale. 

We found that all the scenarios with weighted loss functions performed notably better than the other scenarios with 20 

conventional loss functions and a quantile mapping-based approach at hourly, daily, and monthly time scales as well as 

extremes. MultitaskMultitask learning showed improved performance on capturing fine features of extreme events and hourly 

precipitation climatology, aggregated precipitation at daily and monthly scales, and detailed features of extreme events, while 

the improvement is not as large as from weighted loss functions.accounting for atmospheric covariates, highly improved model 

performance at hourly and aggregated time scales , while the improvement is not as large as from weighted loss functions. 25 

Accounting for atmospheric covariates further improved the model performance for capturing extreme events. We show that 

the customized DL model can better downscale and bias correct hourly precipitation datasets and provide improved 

precipitation estimates at fine spatial and temporal resolutions where regular DL and statistical methods experiencing 

experience challenges. 

1 Introduction 30 

Precipitation is a major component of the hydrological cycle and is fundamentally important for many applications, such as 

water resources planning and management, disaster risk management, and agriculture, amongst many others. Due to the limited 

coverage of ground-based rain gauges, numerous gridded precipitation datasets have been developed over the past decades, 



2 
 

including gauge-based, satellite-based, reanalysis products, and merged products (Beck et al., 2019a; Sun et al., 2018). These 

datasets are different in terms of data sources, coverage, spatial and temporal resolution, and algorithms (see Sun et al., 2018 35 

for a review), which provide a potential source of information to regions where conventional in situ precipitation measurements 

are lacking (Sun et al., 2018).  

Gridded precipitation datasets have proven to be useful across a wide range of research fields, including climate trendstrend 

and extreme precipitation (Bhattacharyya et al., 2022; Degaetano et al., 2020; Fischer and Knutti, 2016; Kim et al., 2019; King 

et al., 2013),  droughts and floods monitoring (Aadhar and Mishra, 2017; Peng et al., 2020; Suliman et al., 2020; Zhong et al., 40 

2019), and driving hydrological models (Raimonet et al., 2017; Xu et al., 2016). However, many studies have identified that 

these gridded precipitation datasets include substantial biases in certain aspects compared to in situ observations (Aadhar and 

Mishra, 2017; Ashouri et al., 2016; Bitew and Gebremichael, 2011; Cavalcante et al., 2020; Jiang et al., 2021; Jury, 2009; 

Rivoire et al., 2021; Sun et al., 2018; Tong et al., 2014; Xu et al., 2016; Yilmaz et al., 2005). For example, Ashouri et al. (2016) 

evaluated the performance of NASA'sNASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) 45 

precipitation reanalysis dataset and found that MERRA tends to overestimate the frequency at which the 99th percentile of 

precipitation is exceeded and underestimate the magnitude of extremes, especially over the Gulf Coast regions of the United 

States. Furthermore, spatial resolution for most of these gridded precipitation datasets is relatively coarse for local scale 

applications (mostly above 0.25°, Sun et al., 2018). Therefore, the gridded precipitation datasets require bias correction and 

downscaling (Duethmann et al., 2013; Emmanouil et al., 2021; Mamalakis et al., 2017; Seyyedi et al., 2014).  50 

Bias correcting and downscaling gridded precipitation data is challenging due to its complex characteristics (e.g., highly 

skewed, unbalanced feature, and complex spatial-temporal structure). Various approaches have been developed to tackle this 

issue, including traditional quantile mapping (QM) based bias correction and downscaling methods (e.g., Cannon et al., 2015; 

Panofsky and Brier, 1968; Thrasher et al., 2012; Wood et al., 2002) and recent machine learning based approaches such as 

random forests (He et al., 2016b; Legasa et al., 2022; Long et al., 2019; Mei et al., 2020; Pour et al., 2016), support vector 55 

machines (Tripathi et al., 2006) and artificial neural networks (Schoof and Pryor, 2001; Vandal et al., 2019). Recently, 

advances in deep learning have made a significant impact on many fields and have been proven superior to traditional machine 

learning methods because of their powerful abilities to learnin learning spatiotemporal feature representation in an end-to-end 

manner (Ham et al., 2019; Reichstein et al., 2019; Shen, 2018). In particular, deep learning (DL) with convolutional neural 

network (CNN) types of approaches have achieved notable progress in modeling spatial context data (Lecun et al., 2015) and 60 

have been used for bias correcting and downscaling low spatial resolution data  (Kumar et al., 2021; Sha et al., 2020a, b; 

Vandal et al., 2018b; Wang et al., 2021; Xu et al., 2020), climate model outputs (François et al., 2021; Liu et al., 2020; Pan et 

al., 2021; Rodrigues et al., 2018; Wang and Tian, 2022), reanalysis products (Baño-Medina et al., 2020; Sun and Tang, 2020), 

and weather forecast model outputs (Harris et al., 2022; Li et al., 2022). While these studies have indicated many promising 

strengths and advantages over traditional downscaling and bias correction approaches, most of them have difficulties 65 
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capturingto capture local-, small-scale features such as extremes for an unseen dataset. For example, Baño-Medina et al. (2020) 

designed different DL configurations with a different number of plain CNN layers to bias correct and downscale daily ERA5-

Interim reanalysis from 2° spatial resolution to 0.5°, and the overall performance is still marginal compared with simple 

generalized linear regression models and highly underestimated precipitation extremes. Harris et al. (2022) developed a 

generative adversarial networks (GANs) architecture to bias correct and downscale weather forecast outputs and found that it 70 

is more challenging to account for forecast error (or bias) in a spatially-coherent manner compared to the pure downscaling 

problem (Kumar et al., 2021; Sha et al., 2020a, b; Vandal et al., 2018b; Wang et al., 2021; Xu et al., 2020). The reason for that 

may be due to the sparsity of training data on extreme events. Deep learning (DL) models, however, need large training data 

in order to obtain a better regularization model for rare events in the unseen dataset.  

Customized DL models have been proposed to generate physically consistent results and have better generalization ability for 75 

out-of-pocketout of pocket datasetsdataset in the earth and environmental science field, which include incorporating 

customized loss functions (Kashinath et al., 2021), inputs from physically relevant auxiliary predictors (i.e., covariates) (Li et 

al., 2022; Rasp and Lerch, 2018), and customized multitaskmultitask learning (Ruder, 2017). For example, Daw et al. (2017) 

indicated success in lake temperature modeling by incorporating a physics-based loss function in the DL objective compared 

to a regular loss function. Li et al. (2022) used a CNN-based approach to postprocess numerical weather prediction model 80 

output and found that the use of auxiliary predictors greatly improved model performance compared with raw precipitation 

data as the only predictor. . A multitaskmultitask model is trained to predict multiple tasks that are driven by the same 

underlying physical processes, and thus has the potential to learn to better represent the shared physical process and better 

predict the variable of interest (Ruder, 2017). Multitask models have proven effective in several applications, including natural 

language processing (Chen et al., 2014; Seltzer and Droppo, 2013), computer vision (Girshick, 2015), as well as hydrology 85 

(Sadler et al., 2022). In addition, most of the previous bias correction and downscaling studies focused on the daily time scale 

(Baño-Medina et al., 2020; François et al., 2021; Harris et al., 2022; Kumar et al., 2021; Liu et al., 2020; Pan et al., 2021; 

Rodrigues et al., 2018; Sha et al., 2020a; Vandal et al., 2018b; Wang et al., 2021). However, the distribution of hourly 

precipitation data within a day is more important than daily or monthly aggregations for impacts and risks from warming-

induced precipitation changes (Chen, 2020). Traditional DL loss functions have difficulties handlingto handle hourly 90 

precipitation data that are highly unbalanced with many zeros and highly positivelypositive skewed for nonzero components. 

Therefore, therefore, customized DL with a weighted loss function to better balance nonzero components has the potentials to 

improve the DL model performance. Besides the primary task of downscaling and bias correction task, adding a highly 

correlatedrelevant classification task has possibilitiesthe potential to improve DL model performance on the primary task. 

IncludingIncorporating covariates that are highly correlated withselected based on precipitation formation theory (cloud mass 95 

movement and thermodynamics) also have the potentials to improve DL model performance on precipitation downscaling and 
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bias correction. Customized deep learning, through incorporating customized loss functions, covariates, or customized 

multitask learning, have the potential to fundamentally improve hourly precipitation bias correction and downscaling.  

 

In this study, we will explore customized DL for precipitation bias correction and downscaling, aiming to takemake a step 100 

forward to addressaddressing the current challenges described above.  We designed a set of experiments to address this 

hypothesis using the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA2) reanalysis and 

the Stage IV radar precipitation data. The structure of this paper is organized as follows: Section 2 introducesintroduced data 

and methodologystudy area; Section 3 introducesintroduced the methodology, , including the deep learning architecture and 

experimental designs for different scenarios, and a traditional bias correction approach as a benchmark; Section 3 4 presents 105 

results; discussion and conclusions are provided in Section 4 5 and 56, respectively.  

2 Data and methodologyStudy Area 

2.1 Data and study area 

MERRA2 is a state-of-the-art global reanalysis product generated by the NASA Global Modeling and Assimilation 

Office (GMAO) using the Goddard Earth Observing System, version 5 (GEOS-5), and was introduced to replace and extend 110 

the original MERRA dataset (Reichle et al., 2017). It incorporates new satellite observations through data assimilation and 

benefits from advances in the GEOS-5 (Reichle et al., 2017).  There areare two hourly total precipitation (P) datasets available 

from the MERRA2 reanalysis product: the, the model analysedanalyzedanalysed precipitation computed from the atmospheric 

general circulation model and the observation-corrected P (Reichle et al., 2017). Both have a spatial resolution of 0.5° in 

latitude and 0.625° in longitude (~50km). MERRA2 observation-corrected precipitation hashave been used extensively in 115 

hydro-climatological analysis and modelingmodelling (Chen et al., 2021; Hamal et al., 2020; Xu et al., 2019; Xu et al., 2022). 

However, it still suffers from substantial biases (e.g., Hamal et al., 2020; Xu et al., 2019). This study will bias correct and 

downscale MERRA2 observation-corrected P using the Stage IV radar data (Lin and Mitchell, 2005) from the National Centers 

for Environmental Prediction (NCEP) as the observational reference. The Stage IV radar data has a 4 km spatial and hourly 

temporal resolution and covers the period from 2002 until the near present (2021 in this study). Stage IV radar was generated 120 

by merging data from 140 radars and about 5500 gauges over the continental United States (Lin and Mitchell, 2005; Nelson 

et al., 2016). The Stage IV provides highly accurate P estimates and has therefore been widely used as a reference for evaluating 

other P products (e.g., Aghakouchak et al., 2011; Aghakouchak et al., 2012; Beck et al., 2019b; Habib et al., 2009; Hong et 

al., 2006; Nelson et al., 2016; Zhang et al., 2018). The Stage IV dataset is a mosaic of regional analyses produced by 12by12 

River Forecast Centers (RFCs) and is thus subject to the gauge correction and quality control performed at each individual 125 

RFC (Nelson et al., 2016).  
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The bias correction and downscaling experiments were performed in the rectangle coastal area of the Gulf of Mexico 

covering the entire states of Alabama, Mississippi, and Louisiana, and parts of neighbour states in the United States, ranging 

from -94.375° to -85.0° in longitude and from 29.0° to 35.0° in latitude. The study area falls into the humid subtropical climate 

and is highly influenced by extreme P events such as convective storms and hurricanes.  130 

3 Methodology 

2.2 3.1 Customized DL approaches 

2.2.1 Overview 

This section firstfirstly presents a brief description of a DL approach, namely, Super Resolution Deep Residual Network 

(SRDRN). Then, multitaskmultitask learning, and customized loss functions are introduced based on the SRDRN architecture 135 

to construct customized DL approaches.  Finally, we designed different modeling experiments, which include different 

combinations of multitaskmultitask learning, customized loss functions, and P covariates as predictors, in order to evaluate the 

added values of each component of the customized DL approaches.   

2.2.23.1.1  SRDRN model 

The SRDRN model is an advanced deep CNN-typeCNN type architecture and has been tested for downscaling daily P 140 

and temperature through synthetic experiments (Wang et al., 2021) and for bias-correctingbias correcting near-surfacenear 

surface temperature simulations from global climate models (Wang and Tian, 2022), considerably outperforming the 

conventional approaches. Furthermore, it has been proved that the SRDRN is capable of capturing much finer features than 

shallow plain CNN architecture (Wang et al., 2021). ComparedComparing with the popular U-Net architecture (Sha et al., 

2020a; Sun and Tang, 2020), the SRDRN directly extracts featuresfeature on the coarse resolution input, and thus can 145 

potentially decrease computational and memory complexity.Furthermore, it has been proved that the SRDRN is capable of 

capturing much finer features than shallow plain CNN architecture (Wang et al., 2021). Comparing with the popular U-Net 

architecture (Sha et al., 2020a; Sun and Tang, 2020) (Sha et al. 2020b; Sun and Tang 2020), the SRDRN directly extracts 

feature on the coarse resolution input, and thus can potentially decrease computational and memory complexity 

Here we provide a brief description of the SRDRN algorithm. For more details, the readers may refer to Wang et al. 150 

(2021). The SRDRN algorithm was developed based on a novel super-scalingsuper scaling deep learning approach in the 

computer vision field (Ledig et al., 2017). Basically, the SRDRN algorithm is comprised of residual blocks and upsampling 

blocks with convolutional and batch normalization layers. For feature extraction, the convolutional layers apply filters to go 

through the input data to build a local connection within nearby grids by computing the element-wise dot product between the 

filters and different patches of the input. The outcome is followed by a nonlinear activation function, here parametric ReLU 155 
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(He et al., 2015) in this study. Batch normalization is a technique to standardize the inputs to a layer for each mini-batch so 

that the learning process can be stabilized and the training of the model can be accelerated (Ioffe and Szegedy, 2015). 

With convolutional and batch normalization layers, the residual blocks are designed to extract fine spatial features while 

avoidingavoid degradation issuesissue for the very deep neural network. Compared to plain CNN architectures, residual blocks 

can improve the performance of extensively deep networks (Silver et al., 2017) without suffering from model accuracy 160 

saturation and degradation (He et al., 2016a) because residual blocks execute residual mapping and include skipping 

connections. In this study, the way that skipping connection skips layers and connects the next layers is through element-wise 

addition. AThe total number of 16 residual blocks were used in the SRDRN architecture, which makes the network very deep 

and able to extract fine spatial features. 

The upsampling blocks are applied to increase the spatial resolution for downscaling purposespurpose. The upsampling 165 

process is executed directly on the feature maps generated from the residual blocks, and each upsampling block is composed 

of one convolutional layer and one upsampling layer followed by a parametric ReLU activation function. The defaulted nearest 

neighbor interpolation was chosen in the upsampling layers to increase the spatial resolution, and the effects of different 

interpolation methods were not explored in this study. Each upsampling block sequentially and gradually increases the input 

low-resolutionlow resolution feature maps by a factor of 2 or 3. In this study, the downscaling ratio (the ratio between coarse 170 

resolution and high-resolution data) is 12, and thus we used 3 upsampling blocks with two blocks having a factor of 2 and one 

block having a factor of 3.  

2.2.33.1.2  SRDRN model with multitaskmultitask learning 

We included an additional P classification task in the SRDRN model. Besides bias correcting and downscaling 

continuous hourly P values as a primary task, we added another task to bias correct hourly P categories. Studies have indicated 175 

that a multitaskmultitask DL model could learn to better represent the shared physical processes and better predict the variable   

that we are interested inof interest (e.g., Sadler et al., 2022).  Since P categories and actual values are highly relevant, Since P 

categories are generated based on different ranges of P values, it isadding a expected that the  classification task can potentially 

improve the DL model performance onfor bias correcting and downscaling P.Since these two tasks are highly relevant to each 

other, it is expected that the classification task can improve the model performance on bias correcting and downscaling P.  180 

Specifically, for the SRDRN with multitaskmultitask learning, one convolutional layer (256 filters and 3x3 kernels) 

follows the last element-wise addition operation to summarize feature maps, then the architecture splits into two sections 

(Figure 1). The first section with two additional convolutional   layers (the first one with 64 filters and the second with 4 filters) 

followed by the Softmax activation (Goodfellow et al., 2016)  is is used for bias correcting P categories as a multiclass 

classification task, and the other section with upsampling blocks is used for the purpose of bias correcting and downscaling 185 
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hourly P. The classification task classifies the hourly P at each grid into four categories: 0-0.1mm/h as no rain, 0.1-2.5mm/h 

as light rain, 2.5-10mm/h as moderate rain, and >10mm/h as heavy rain (Tao et al., 2016). Due to radar sensors'sensors’ 

uncertainty in the very light rainfall, 0.1 mm/h is commonly used as a threshold to determine if there is rain (Tao et al., 2016). 

Since the classification task is executed on the feature maps at the coarse resolution, we aggregated Stage IV P (namely, 

coarsened Stage IV in this study) into the same spatial resolution as MERRA2 and classified the upscaled P data into the four 190 

groups as target labels.  

[Insert Figure 1] 

2.2.43.1.3 Customized loss functions 

Precipitation data is highly skewed and unbalanced, especially at an hourly time scale, which could cause the deep 

learning algorithm to focus more on no-rainno rain events andwhile ignoringignore heavy rain events withif using regular loss 195 

functions. Wang et al. (2021); (Nelson et al., 2016; Ravuri et al., 2021)Here We we developed a weighted mean absolute error 

(MAE) loss function (𝐿!"#_%&'()*&+) to balance precipitation data where weights change with precipitation values as shown 

below, 

𝐿!"#_%&'()*&+ =
∑  %!∙./"#$%0/&#'$.
(
)*!

1
                                             (1) 

where n is the total number of grids in a batch, 𝑤2is the weight for each absolute error between the model predicted value  200 

𝑦34&+ and the true value 𝑦*45&. The weight 𝑤2changes with the actual true value 𝑦*45&, 

𝑤2 = %

𝑀𝐼𝑁																								𝑦*45& ≤ 𝑀𝐼𝑁	
𝑦*45&							𝑀𝐼𝑁 < 𝑦*45& < 𝑀𝐴𝑋
𝑀𝐴𝑋																					𝑦*45& ≥ 𝑀𝐴𝑋

 

where 𝑀𝐼𝑁 is the lowest threshold and  𝑀𝐴𝑋 is the highest threshold for the weights. In other words, when the 𝑦*45&	 value is 

below (above) 𝑀𝐼𝑁 (𝑀𝐴𝑋), 𝑤2equals 𝑀𝐼𝑁 (𝑀𝐴𝑋), otherwise 𝑤2equals 𝑦*45&	itself. Thus, the loss is weighted directly by the 

P value at the grid cell scale, which has been proven more effective than weighted by P bins (Ravuri et al., 2021; Shi et al., 205 

2017). Note that all of the gridded P data, including Stage IV and MERRA-2, are logarithmically transformed [i.e., y=log(x+1)] 

in order to amplify the normality and reduce the skewness of P data (Sha et al., 2020a). In Equation 1, 𝑦*45&	 and 𝑦34&+ are 

transformed P values. 𝑀𝐼𝑁 was set to log(0.1+1) and 𝑀𝐴𝑋 was set to log(100+1), where maximum 100mm/h was chosen as 

the highest threshold before log transformation for robustness to spuriously large values in the Stage IV radar (Ravuri et al., 

2021) and 0.1 mm/h is commonly used as a threshold to determine if there is rain for radar data (Tao et al., 2016).  210 
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For the four P categories, most data fall into the no rain category (over 88% in the coarsened Stage IV), and minority 

data fall into the heavy rain category (about 0.2% in the coarsened Stage IV). Thus, handling class imbalanceclass-imbalance 

is of great importance in this situation, where the minority class for the heavy rain category is the class of most interest with 

respect to this learning task. The regular cross-entropycross entropy loss function for the classification task could result in the 

underestimation of the minority class (Fernando and Tsokos, 2021). Thus, we applied a weighted cross entropy as a loss 215 

function (𝐿%&'()*&+	748990&1*483/) for the classification task in order to penalize more towards heavy rain category as follows, 

𝐿%&'()*&+	748990&1*483/ =- ∑ ∑ 𝑤:,< ∙ 𝑝2𝑦',<3 ∙ log	(𝑞2𝑦',<3)
=
<>2

1
'>2                      (2) 

where 𝑤:,< denotes the weight for the jth class, 𝑝2𝑦',<3 represents the true distribution of the ith grid for the jth class, and 

𝑞2𝑦',<3 represents the predicted distribution. 𝑘 is the number of classes (equals to 4 in this study). 𝑤:,< was set to 1, 5, 15, and 

80 for no rain, light rain, moderate rain, and heavy rain classes, respectively, which is roughly based on the opposite percentage 220 

(i.e., 1, 5, 15, 80 are approximately from the percentages of heavy, moderate, light and no rain categories, respectively) for 

each category of the coarsened Stage IV. Since the weights for categories with rain are relatively larger than the no rain 

category, the loss 𝐿%&'()*&+	748990&1*483/	is relatively large when there are discrepancies between true and predicted categories 

with rain, resulting in guiding the training process towards to decreasing these differences with larger weights and thus better 

handling class-imbalance issuesissue. 225 

2.2.53.1.4  Experiment Design 

To comprehensively evaluate the added value of each component of customized DL models, including weighted loss 

function, multitaskmultitask learning, and adding covariates, we designed six scenarios (Scenario1 to Scenario6 in Table 1). 

Scenario1 is based on the basic SRDRN architecture with hourly P from MERRA2 as coarse-resolution input, P from Stage 

IV as high-resolution labelledlabelled data, and regular MAE as loss function, which represents regular DL. Wang et al. (2021) 230 

used regular mean squared error (MSE) as a  loss function, which works well for downscaling daily precipitation through 

synthetic experiments with no bias, since the precipitation data was first coarsened and then downscaled into the original fine 

scale. However, in this study, the coarse resolution MERRA2 has substantialsubstantially biases compared to Stage IV radar 

data, and Stage IV radar data also includes artefacts (e.g., large spuriousspurious large values) (Nelson et al., 2016). The 

previousPrevious study havehas shown that the MSE loss function is more sensitive to radar artefacts than the mean absolute 235 

error (MAE) loss function (Ravuri et al., 2021). Therefore,  and thus we chose MAE as a regular loss function in this study. 

Scenario2 is the same as Scenario 1 except using weighted MAE loss function [Eqn. (1)]. The number of trainable parameters 

is the same for Scenario1 and Scenario2. Scenario3 includes the classification task, and the total loss is the combination of 

Eqn. (1) and Eqn. (2) with a weight 𝜆 [see Eqn. (3) below], where 𝜆 was set to 0.01 to ensure the two parts of the losses are in 

the same magnitude. The trainable parameters for Scenario3 increaseincreases by 30% compared to Scenario1 and Scenario2. 240 
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𝐿 = 𝐿!"#_%&'()*&++ 𝜆 ∙ 𝐿%&'()*&+	748990&1*483/                                  (3) 

 

[Insert Table 1] 

As described in Section 1, studies (e.g., Baño-Medina et al., 2020; Li et al., 2022; Rasp and Lerch, 2018)have indicated 

that including atmospheric covariates is helpful for estimating precipitation (e.g., Baño-Medina et al., 2020; Li et al., 2022; 245 

Rasp and Lerch, 2018). The other three scenarios also consider atmospheric covariates of P from MERRA2 as predictors, 

which include geopotential height, specific humidity, air temperature, eastward wind, and northward wind at three different 

vertical levels (250, 500, 850 hPa) (e.g., Baño-Medina et al., 2020; Rasp and Lerch, 2018) as well as vertical wind (e.g., Trinh 

et al., 2021) at 500 hPa (OMEGA500), sea level pressure and 2-meter2 meter air temperature in a single level (e.g., Panda et 

al., 2022; Rasp and Lerch, 2018) (see Table 2). We chose these variables based on precipitation formation theory (cloud mass 250 

movements and thermodynamics) and otheras well as findings from previous studies, on estimating precipitation as 

listedindicated above. SimilarComparable to a classic multiple linear regression problem, covariates are multivariable 

predictors, and hourly precipitation is the only dependent variable. For each covariate listed in Table 2, data normalization was 

executed as a data preprocessing step. Specifically, each covariate was normalized by subtracting the mean (µ) and dividing 

by the standard deviation (s). Here µ and s are scalar values that were calculated based on the flattened variable for the training 255 

dataset. During the testing period, the model prediction was made with the normalized testing dataset from MERRA2 with 

µ and s calculated from the statistics of the coarse-resolution data during the testing period to preserve nonstationary. 

Scenario4 only included atmospheric covariates without using coarse resolution P as input and used Eqn. (1) as loss function 

to test whether only covariates are sufficient for estimating hourly P. The number of trainable parameters for Scenario4 is 

about 1% more compared to Scenario1 and Scenario2. Scenario5 is the same as Scenario4 except including P as a predictor 260 

besides atmospheric covariates, and the number of trainable parameters is very close to Scenario4. Scenario6 is the same as 

Scenario5 except including the classification task with Eqn. (3) as loss function and the number of trainable parameters is 

similar to Scenario3 (31% greater than scenarios with no multitaskmultitask learning).  

[Insert Table 2] 

The Adam optimization algorithm was applied to train the six DL scenarios with a learning rate of 0.0001 and other 265 

default values. We found that the learning rate of 0.0001 worked stably in this study through a series of experiments. The batch 

size for each epoch was set to 64, and the number of epochs was set to 150 for each scenario listed in Table 1. Each scenario 

was trained forwith approximately 2.5x105 iterations. We frequently saved models and evaluated their performance with a 

validation dataset in order to choose the best model for prediction on the testing dataset. The training process was executed 

using NVIDIA V100 GPU provided by the NASA High-End Computing (HEC) Program through the NASA Center for 270 

Climate Simulation (NCCS) at the Goddard Space Flight Center (https://www.nccs.nasa.gov/systems/ADAPT/Prism).  

Field Code Changed

Field Code Changed
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At the time when we conduct this study, MERRA-2 and Stage IV hourly P data have a 20-year overlapping period from 

2002 to 2021. We used the first 14 years (2002 to 2015) as the training dataset, the middle 3 years (2016 to 2018) as the 

validation dataset, and the more recent 3 years (2019 to 2021) as the testing dataset. Figure 2 shows the hourly mean or 

climatology for MERRA-2 and Stage IV for training and testing datasets, as well as the mean differences between the testing 275 

and the training periods. We can tell that there are large climatology differences (or biases) between MERRA-2 and Stage IV 

both for training and testing datasets, especially around the coastal area. Wetter conditions are observed in most of the study 

area in the testing period (average 0.03 mm/h) than in the training period, which is due to a higher percentage of rains (with 

values greater than 0.5mm/h) during the testing period than during the training period based on analyzing the Stage IV data 

(Table S1 in Supplement).Wetter conditions are observed in most of the study area in the testing period (average 0.03 mm/h) 280 

caused by a higher percentage of rains greater than 0.5mm/h (see Table S1 in Supplement) than the training period based on 

the Stage IV dataWetter conditions are observed in most of the study area in the test period (average 0.03 mm/h) comparing 

with the training period.. This allows us to assess the extrapolation capabilities of the different methods, which is particularly 

relevant in a changing climate.  

[Insert Figure 2] 285 

2.33.2 Statistical approach 

We used a widely accepted quantile delta mapping (QDM) as a benchmark approach for P bias correction. The QDM 

method corrects systematic biases at each grid cell in quantiles of a modelled series with respect to observed values. Compared 

to the regular quantile mapping method (Panofsky and Brier, 1968; Thrasher et al., 2012; Wood et al., 2002), QDM also 

accounts applies a relative difference for the difference between historical and future climate data (here, training and testing 290 

periods). Thus,  and thus it is capable of preserving the trend of the future climate (Cannon et al., 2015), which is critical for 

this study since there are substantial differences between the precipitation during the training (2002 to 2015) and testing (2019 

to 2021) periods (see Figure 2). This approach has been widely used to bias-correctbias correct climate variables, including P, 

which indicated better performance compared to the other bias correction approaches (Cannon et al., 2015; Eden et al., 2012; 

Kim et al., 2021; Tegegne and Melesse, 2021; Tong et al., 2021). To be specific for QDM, the bias-correctedbias corrected 295 

value 𝑥=?,3(𝑡)	 for modeled data in the future projection at time t is given by applying the relative change ∆?(𝑡)  

multiplicatively to the historical bias corrected value 𝑥=8:?,):3(𝑡),  

𝑥=?,3(𝑡) = 𝑥=8:?,):3(𝑡) ∙ ∆?(𝑡)                                                 (4) 

where 𝑥=8:?,):3(𝑡) = 𝐹8,)02A𝜏?,3(𝑡)C and ∆?(𝑡) =
A+,"(*)

D+,-
.!

EF+,"(*)G
. 𝑥?,3(𝑡) represents uncorrected modeled data in the projection 

period and 𝜏?,3(𝑡) is the percentile of 𝑥?,3(𝑡)in the empirical cumulative density function (F) formulated by the modeled data 300 

in the projection period over a time window around 𝑡.  𝐹8,)02A𝜏?,3(𝑡)C means applying inverse empirical cumulative density 
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function formulated by the observed data in the historical period for 𝜏?,3(𝑡) to obtain bias-correctedbias corrected value [i.e., 

𝑥=8:?,):3(𝑡)] . Similarly, 𝐹?,)02 A𝜏?,3(𝑡)C  denotes applying inverse empirical cumulative density function formulated by the 

modeled data in the historical period for 𝜏?,3(𝑡). The time window to construct the empirical cumulative density function 

around time 𝑡 was set to be 45 days to preserve the seasonal cycle. In this study, the historical and projection periods correspond 305 

to the training and testing data periods, respectively. The modeled and observed data correspond to MERRA2 and coarsened 

Stage IV data, respectively. Details about this method are referred to Cannon et al. (2015).  

The QDM bias correction was performed at the spatial resolution of MERRA2. The QDM-biasedQDM biased corrected 

P data at the coarse resolution was then bilinear interpolated into the high resolution, the same as the spatial resolution of Stage 

IV. This process of QDM and bilinear interpolation (He et al., 2016b) is named as QDM_BI in the following sections.  310 

2.43.3 Evaluation approaches 

We evaluated model performance in different temporal scales, including hourly and aggregated (daily and monthly) time 

scales. The agreements between the observed and estimated (i.e., bias-correctedbias corrected and downscaled) P for the 

different scales and extremes were quantified using the Kling-Gupta efficiency (KGE). The KGE is an objective performance 

metric combining correlation, bias, and variability, which was introduced byin Gupta et al. (2009) and modified byin Kling et 315 

al. (2012). KGE has been widely used for evaluating different datasets with observations (e.g., Beck et al., 2019b; Beck et al., 

2019a; Wang et al., 2021)  and as the standard evaluation metric in hydrology (Beck et al., 2017; Harrigan et al., 2018; Harrigan 

et al., 2020; Lin et al., 2019). The KGE is defined as follows: 

KGE = 1 −G(𝑟 − 1)
: + (𝛽 − 1): + (𝛾 − 1):                                     (5) 

where the correlation component 𝑟 is represented by correlation coefficient, the bias component 𝛽 represented by the ratio of 320 

estimated and observed means, and the variability component 𝛾 represented by the estimated and observed coefficients of 

variation: 

𝛽 = H/
H0
									and      𝛾 = I//H/

I0/H0
                                                    (6) 

where 𝜇9and 𝜇8 denote the distribution mean for the estimates and observations, and 𝜎9 and 𝜎8 denote the standard deviation 

for the estimates and observations, respectively. Note here that the variability component 𝛾 is not the ratio of 𝜎9 and	𝜎8 to 325 

ensure that the bias and variability ratios are not cross-correlated (Kling et al., 2012).  KGE, 𝑟, 𝛽 and 𝛾  represent perfect 

agreement when they equal one. In addition to KGE, the root mean square error (RMSE) and mean absolute error (MAE) 

metrics are also reported since they were often used to evaluate model performance on bias correction and downscaling (e.g., 

Maraun et al., 2015; Rodrigues et al., 2018).   
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To understand the performance on capturing P extremes, we assessed hourly P at 99th percentile and annual maximum 330 

wet spell in hours, as well as an extreme hurricane event that occurred during the testing period. These extreme indices and 

events are highly relevant to flooding (Pierce et al., 2014) and have a great environmental impact as well as impacts on property 

and human life.  

Moreover, we evaluated P classification results from Scenario3 and Scenario6, the scenarios with multitaskmultitask 

learning for bias correcting P categories, by comparing them with the four categories from the coarsened Stage IV observations. 335 

The four categories from the coarsened Stage IV were generated manually based on the ranges of the four classes. We also 

classified the results from QDM and raw MERRA2 into the four categories and compared the results with the categories from 

the coarsened Stage IV. A widely used metric, namely, Intersection over Over Union (IoUIOU) (Li et al., 2021), is applied to 

evaluate classification performance, which is defined by: 

IoOU = KL
KLMDLMDN

∙ 100                                                                   (7) 340 

where TP represents true positives (prediction=1, truth=1), FP represents false positives (prediction=1, truth=0) and FN 

represents false negatives (prediction=0, truth=1). Taking the heavy rain category as an example, TP is an outcome where the 

model correctly predicts the heavy rain class; FP is an outcome where the model predicts it is a heavy rain class, but the true 

label is not a heavy rain class; FN is an outcome where the model predicts it is not a heavy rain category, but the true label is 

a heavy rain class. where TP represents true positives, 𝐹𝑃 represents false positives and 𝐹𝑁 represents false negatives. IoOU 345 

ranges from 0 to 100 and specifies the percentage of the amount of overlap between the predicted and ground truth bounding 

box.   

34 Results 

In this section, we present the performance of the six DL model scenarios and the benchmark approach QDM_BI on bias 

correcting and downscaling hourly P, evaluated against Stage IV precipitation data during the testing period from 2019 to 350 

2021. 

3.2 4.1  Overall agreement 

The overall agreement between the observed and estimated P was quantified with KGE [Eq. (5)] as well as each 

component of KGE, which were calculated on an hourly basis for the entire testing period (2019 to 2021) and for all the grid 

cells over the study region. Table 3 shows that Scenario2 to Scenario6 have much higher KGE than Scenario1, indicating that 355 

the weighted loss function improved model performance through rebalancing hourly P data. Scenario1, however, highly 

overestimated the variability (i.e., 𝛾 is much greater than 1) and underestimated the mean (i.e., 𝛽 is much smaller than 1), 

resulting in a negative KGE value. This indicates that using a regular loss function (i.e., MAE) tends to underestimate hourly 
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P (relatively larger training loss than other scenarios during training, see Figure S1 in the Supplement). The KGE values are 

comparable for all the scenarios using the weighted loss function. The best KGE is obtained by Scenario5, with Scenario4 and 360 

Scenario6 performing consistently well in terms of KGE, which indicates that including atmospheric covariates as predictors 

further improved the model performance. However, the DL and benchmark approaches performed considerably worse in terms 

of the correlation component 𝑟 of KGE than the other components (i.e., 𝛽 and 𝛾). The reason is thatbecause the correlation 

component 𝑟, was estimated based on all the hour-to-hourhour to hour P data, while the other two components (i.e., 𝛽 and 𝛾 ) 

waswere calculated based on suggesting that long-term climatological P statistics and were relatively easier to be estimated 365 

(Beck et al., 2019b) are relatively easier to capture than hour to hour P dynamics (i.e., 𝑟). The benchmark, QDM_BI, also 

highly overestimated the variability, and has a lower KGE score than Scenario4, Scenario5, and Scenario6 of the DL 

approaches.   

[Insert Table 3] 

Table 3 also reports the results of RMSE and MAE, which are widely used to evaluate model performance on bias 370 

correction and downscaling. However, these two metrics are inadequate for pixel-wise comparison, particularly when 

comparing two datasets with spatial biases, due to the well-known "“double penalty problem"” (Harris et al., 2022; Rossa et 

al., 2008). Specifically, for using RMSE or MAE metrics, the model estimates that correctly capture the right amounts of rain 

in slightly incorrect locations often score worse than estimates of no rain at all. For example, Scenario1 has the lowest RMSE 

and MAE, but it highly underestimated the average observed mean (i.e., b is much lower than 1), while it is the worst one in 375 

all the scenarios, including QDM_BI in terms of KGE scores.  This illustrates the limitations of the grid point-based errorserror 

like RMSE and MAE as evaluation metrics.  

3.34.2 Hourly Climatology 

Due to climate variability and change, the climatology of hourly P over the testing period (2019 to 2021) is much higher 

than the training period (2002 to 2015) (Figure 2). We evaluated the long-term mean (i.e., climatology) during the testing 380 

period (Figure 3 and Figure 4a), which allows us to examine how well the methods could capture the P climatology but also 

the nonstationary changes of long-term P. Again, Scenario1 notably underestimated the climatology of observations (by 71% 

on average) (Figure 3 and Figure 4a), due to the use of MAE as a loss function. In general, all other DL scenarios and QDM_BI 

provide satisfactory results inon capturing hourly P climatology. Scenario4 also slightly underestimated the climatology of 

Stage IV (12% on average, Figure 4a). This scenario only includes atmospheric covariates as model inputs without using the 385 

corrected P of MERRA-2, indicating the information from covariates only isare not sufficient to estimate hourly P. The 

climatology of Scenario3, Scenario5, and Scenario6 appearsappear well matching with Stage IV in space, better than QDM_BI. 

Relative differences of climatology averaged over the study area between estimated and Stage IV are 1.5%, 1.8% and 0.38% 

for Scenario3, Scenario5, and Scenario6, respectively, while it is 2.5% for QDM_BI. Compared to Scenario3 and Scenario5, 
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the Scenario2 underestimated the climatology, particularly around the coastal area (Figure 3), which indicates the added value 390 

from multitask learning (Scenario3) and atmospheric covariates (Scenario5). Figure 4a shows that QDM_BI has a relative 

larger variance and its KGE value is lower than the ones for Scenario 2, Scenario3, Scenario5, and Scenario6. Note that all the 

DL estimates appearappears to be blurrier than Stage IV, similar toas what has been found in previous studies (e.g., Ravuri et 

al., 2021), while the QDM_BI estimates are even blurrier than the DL estimates.  

[Insert Figure 3] 395 

[Insert Figure 4] 

3.44.3  Daily and Monthly P estimates 

We aggregated the hourly P estimates into daily and monthly time scales to evaluate the performance of daily total P and 

monthly mean of hourly P. Overall, the KGE values for the daily total P are considerably greater than those for the hourly P 

(Table 3), which suggests temporal aggregation denoised the hourly precipitation data, leading to considerably higher 400 

correlation coefficient (r in Table 3), mainly contributing to higher KGE. Similarly, The KGE value for Scenario1 is the lowest 

since it highly underestimated the mean of daily total P (lower b), overestimated the variability (higher g), and the correlation 

r is also lower compared to the other scenarios. The Scenario5 and Scenario6 have relativelyrelative higher KGE scores than 

other DL scenarios and QDM_BI for daily total P. Daily total P from QDM_BI has a comparable KGE score with the DL 

models, while overestimatingoverestimated the variability (higher g) compared to most of the DL scenarios.  405 

Figure 5 shows the daily total P time series for each year during the testing period for the Stage IV, six DL scenarios, 

and QDM_BI, averaged over the study area. The results show that the daily total P time series from the DL models closely 

matched with the daily total P time series from Stage IV except Scenario1. Again, Scenario1 highly underestimated the daily 

total P with the lowest KGE value, suggesting the difficulties of MAE in handling the highly unbalance feature of P. The daily 

total P from all the other five DL scenarios isare much close to Stage IV with larger KGE values (close to or larger than 0.9) 410 

than QDM_BI. For these five DL scenarios (Scenario2 to Scenario6), Scenario5 and Scenario6 perform better than the other 

scenarioss including QDM_BI, indicating incorporating covariates and corrected coarse resolution P and/or multitask learning 

further improved daily total P estimates. The bias-correctedbias corrected and downscaled daily total P from QDM_BI, 

however, highly overestimated the daily total P of Stage IV for almost all the large precipitation events, because the bias 

correction process for QDM_BI was executed individually at each grid cell and did not consider spatial dependencies and 415 

nonlinear relationships between covariates and observations, resulting in nonstable estimations (Wang and Tian, 2022).  

[Insert Figure 5] 

Table 3 also summarizessummarized the statistics of the monthly mean of hourly P.  The KGE values for the monthly 

mean of hourly P are greatly increased, higher than the daily total P. Except Scenario1, the KGE values for the monthly mean 
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are very close to each other, with Scenario4 slightly lower than others including QDM_BI. The monthlyMonthly mean from 420 

QDM_BI had a relatively higher g�, indicating overestimations of variability. Figure 6 presents the monthly mean time series 

of hourly precipitation for each month during the testing period for Stage IV, the six DL models,model and QDM_BI, averaged 

over the study area. Similar to the daily total P time series, the monthly mean P from all the DL models closely matched with 

the monthly mean time series from Stage IV (KGE value greater than 0.9) except Scenario1, which highly underestimated the 

observations. . Scenario4 has the lowest KGE value and slightly underestimated the monthly mean, but all the scenarios 425 

(Scenario2 to Scenario6) The Scenario6 has the highest KGE score, followed by Scenario3, Scenario5, Scenario2 and 

Scenario4, which are consistently better than the KGE score from QDM_BI. These results indicate that incorporating the 

weighted loss function (Scenario2 to Scenario6 compared to Scenario1)), multitask learning (Scenario3 and Scenario6) and 

atmospheric covariates (Scneario4 to Scenario6) improved monthly mean estimation, and the effects of the other customized 

components are not obvious at the monthly time scale. Similarly, the monthly mean from QDM_BI estimates hashave a 430 

relatively larger variability than Stage IV, resulting in a lower KGE value. 

[Insert Figure 6] 

3.54.4  Extremes 

Table 4 summarizessummarized the statistics of hourly P at 99th percentile and the annual maximum wet spell. The results 

show that Scenario1 highly underestimated hourly P at 99th percentile (lower b than 1) and overestimated variability (higher 435 

g than 1), resulting in a negative KGE score, suggesting the inadequacy of using regular MAE loss function. Scenario2 has the 

highest KGE score with a higher correlation coefficient (higher r) than the other scenarios. This is probably because the number 

of trainable parameters for Scenario2 is the lowest, leading to a better regularization ability with limited data for extremes. The 

KGE values are similar for Scenario3, Scenario5, and Scenario6, and relatively higher lower for for Scenario4, suggesting the 

importance of incorporating observation-correctedobservation corrected P from coarse resolution as an input. The benchmark 440 

approach QDM_BI highly overestimated the variability of hourly P at 99th percentile compared to Stage IV, resulting in a 

lower KGE valuea lower KGE values than most of the DL scenarios except Scenario1.  

Figure 4b shows the boxplots of the relative difference between hourly P estimates and Stage IV observations at the 99th 

percentile. On average, Scenario1 underestimated the 99th percentile hourly P by over 60%, while other DL scenarios 

underestimated by about 20%, with Scenario5 and Scenerio6 much closer to Stage IV. The 99th percentile estimated by 445 

QDM_BI has a much higher variance (as indicated by the distance between high 90% and low 10% bars in the boxplot, as well 

as high g in Table 4) compared to DL models, while has a lower mean difference (underestimated by about 10%) due to bias 

correction through an explicit adjustment at each percentile.  Figure 7 shows the spatial distribution of the hourly P at the 99th 

percentile for MERRA2, Stage IV, QDM_BI, and six DL models. We can see that the 99th percentile of MERRA-2 hourly P 

greatly underestimated Stage IV by 40% (spatial average 2.9mm for MERRA2 versus 4.8mm for Stage IV). While the hourly 450 
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P at the 99th percentile from QDM_BI (area average 4.3mm) appears to be close to Stage IV, its spatial variability looks very 

different from Stage IV, probably due to QDM_BI correcting biases on a grid point basis. The spatial average P at 99th 

percentile for the sixScenario4 highly underestimated P values at the 99th percentile compared with other scenarios except 

Scenario1, indicating excluding coarse resolution P as an input is not reasonable deep learning models is 1.7mm, 3.9mm, 

4.0mm, 3.7mm, 4.2mm and 4.1mm for Scenario1 to Scenario6, respectively, indicating that increasing model complexity 455 

decreased hourly P mean biases (i.e., b in Table 4) at 99th percentile.  

[Insert Figure 7] 

The DL models treated each hourly P spatial data as a 2D image and did not explicitly account for temporal dependence 

between images. We assumed that the DL models could potentially preserve the temporal dependence of observations if the 

DL models were well bias-correctedbias corrected and downscaled each 2D imageThe DL models treated hourly spatial P data 460 

independently and did not explicitly account for temporal dependence. However, the DL models could potentially well reduce 

temporal biases if spatial P data for each hour can be well corrected and downscaled. The annual maximum wet spell is a 

widely used extreme index foron evaluating temporal dependence (e.g., Maraun et al., 2015). The wetness threshold for 

calculating the annual maximum wet spell index was set to 0.1mm/h, which is commonly used for hourly radarradar hourly 

data (e.g., Tao et al., 2016).  Table 4 shows that Scenario2 and Scenario3 have relativelyrelative higher KGE scores for the 465 

annual maximum wet spell extreme index than the other DL scenarios, suggesting the usefulness of more parsimonious models 

with weighted loss function but without including atmospheric covariates as additional inputs. Further incorporating 

multitaskmultitask learning (Scenario3 and Scenario6), however, slightly decreased the model performance compared to no 

multitaskmultitask learning scenarios (Scenario2 and Scenario5), probably due to the increased parameters and decreased 

regularization ability. While scenario1 has the lowest KGE score than the other DL scenarios, it is still much higher than 470 

QDM_BI, which highly overestimated the mean of annual maximum wet spell for Stage IV observations (much higher b than 

1). Boxplots in Figure 4c show the difference between model estimates and Stage IV observations for the annual maximum 

wet spell in hours during the testing period. Scenario1 highly underestimated the annual maximum wet spell by about 10 hours. 

Scenario2 and Scenario3 have the lowest differences with Stage IV in terms of the mean and variance of the annual maximum 

wet spells. On average, Scenario4, Scenario 5, and Scenario6 overestimated the annual maximum wet spell by about 10 hours, 475 

with Scenario4 and Scenario6 showing a relativelyrelative larger variance. The benchmark approach QDM_BI has the largest 

difference (on average over 22 hours) and much larger variance compared to Stage IV, resulting in a negative KGE score. This 

is probably because QDM_BI corrected biases on a grid basis, which failed to account for the spatial and temporal dependence.  

Figure 8 shows an extreme event occurred from 19:00 to 20:00 on 29 August 2021 in Universal Time Coordinated (UTC) 

time zone when Hurricane Ida landed at the Louisiana State in the United States from MERRA2, Stage IV, QDM_BI and the 480 

six DL scenarios. We can see that MERRA2 highly underestimated this extreme event and did not capture detailed features of 
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Stage IV. While QDM_BI estimates slightly enhanced the hourly P values, theyit still failed to capture detailed features. The 

Scenario1 to Scenario3 gradually enhanced hourly P, but these three models had difficulties capturingto capture the center of 

the hurricane. By including atmospheric covariates, Scenario4 to Scenario6 roughly captured the center of the hurricane, and 

Scenario6 also reproduced the cyclones surrounding the center. These results suggest the importance of incorporating weighted 485 

loss function, multitask learning, and atmospheric covariatesthe customized components improve the model performance on 

for bias correcting and downscaling specific extreme events.   

[Insert Figure 8] 

3.64.5  P categories 

Figure 9 shows that Scenario3 and Scenario6, the scenarios with multitaskmultitask learning for bias correcting P 490 

categories, have larger IoU IOU values (e.g., 19.63% for Scenario3 and 19.91% for Scenario6 for moderate rain 2.5-10mm) 

than QDM method (but 15.30% for moderate rain) particularly for the three categories with rain, indicating that the two DL 

models results well better matched with the wet categories of the coarsened Stage IV observations, better than the QDM 

method. Furthermore, Scenario6 has relativelyrelative larger IoU IOU scores than Scenario3, indicating incorporating 

atmospheric covariates improved classification accuracy. For example, there is 8.15% of the heavy rain category matched the 495 

coarsened Stage IV observations for Scenario3, while, for Scenario6, 11.07% of the heavy rain category matched the coarsened 

Stage IV observations. These results suggest that, with anthe auxiliary classification task,  incorporated in the Scenario3 and 

Scenario6 of the DL model can well better estimate the four categories of hourly P during the testing period than the traditional 

bias correction method QDM.   

[Insert Figure 9] 500 

45 Discussion 

This study explored customized DL for bias correcting and downscaling hourly P through a set of experiments with or 

without customized loss functions, multitaskmultitask learning, and inputs from atmospheric covariates of precipitation. 

Scenario1, which used regular MAE as a loss function, highly underestimated P for all the temporal scales as well as extremes, 

showing the lowest performance. Since most of hourly P are no rain, the regular loss function very likely leads the model to 505 

learn no rain events while neglecting rainy events. Regular MAE has been used for downscaling daily precipitation data with 

limited biases in previous studies  (e.g., Sha et al., 2020a), but to our knowledge, there are no successful cases using regular 

MAE for downscaling hourly precipitation data with large biases. However, the scenarios with customized loss 

functionsfunction with weighted MAE (Scenario2 to Scenario6) consistently showed much better performance than Scenario1. 

This result suggests that penalizing more towards heavy P on a grid basis makes the optimization algorithm focus more on the 510 

grids where rainfalls occurred and, therefore, inherently rebalance the hourly P for model training. While this study explored 

bias correcting and downscaling hourly precipitation from climate reanalysis data, this algorithm with customized loss function 
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can be potentially integrated with precipitation data from the Global Precipitation Measurement (GPM) mission to generate 

more accurate operational precipitation data at a finer resolution.  

(e.g., Sha et al., 2020a) 515 

The scenarios with multitaskmultitask learning indicateindicates limited added values perform generally better than the 

other scenarios in terms of hourly climatology (Figure 4a), and daily and monthly assessments (Figure 5 and Figure 6). 

Multitask learning model with covariates can enhance extreme events and is the best model for application of bias correcting 

and downscaling P extreme events. Their added values, however, are limited and performed worse than other scenarios without 

multitaskmultitask learning (Scenario2 and Scenario5) in terms of extreme indices (see Figure 4b, 4c and Table 4). The reason 520 

for that is probably because adding multitaskmultitask learning increased 30% trainable parameters with limited extreme data 

decreased the model regularization ability. Baño-Medina et al. (2020) designed a series of DL models with plain CNN 

architecture and different model complexity (i.e., increasing the number of trainable modelmodel trainable parameters) to 

downscale daily ERA5 reanalysis dataset and found that increasing model complexity makesmake model performance worse, 

particularly for extreme indices (98th percentile and annual maximum wet spell), which is consistent with our study. 525 

Traditional methods (e.g., QDM_BI) mainly use coarse resolution P data as the only predictor for downscaling and bias 

correction, which cannot fully utilize nonlinear relationships between covariates and observations (Rasp and Lerch, 2018) 

during the bias correction and downscaling process. DL models with covariates as auxiliary variables, however, have indicated 

success inon improving model performance for postprocessingpostprocessing temperature and precipitation forecasts due to 

the capability of learning nonlinear relationships between covariates and response variable automatically (Li et al., 2022; Rasp 530 

and Lerch, 2018). Scenario4 to Scenario6 incorporated physically relevant covariates of precipitation, with only Scenario4 

excluding the coarse resolution P as Baño-Medina et al. (2020) did for downscaling daily precipitation. The results indicate 

that incorporating auxiliary predictors of atmosphere circulations and moisture conditions can help improve P bias correcting 

and downscaling skillsskill (see Figure 3 to Figure 8). However, only using covariates without coarse resolution P (Scenario4) 

is not sufficient to well estimate hourly P, while using coarse resolution P as additional input (Scenario5 and Scenario6) shows 535 

improved performance. This result is consistent with a recent study focusing on CNN-based postprocessingpostprocessing of 

P forecasts from numerical weather prediction models, showing total precipitation itself is the most important predictor (Li et 

al., 2022). Note that we did not explore the importance of rank among these covariates in improving the model performance 

in this study, which could be a potential avenue for future work. Furthermore, static variables, such as elevations, long-termlong 

term climatology (Sha et al., 2020a), soil texture, and land cover, could be helpful for resolving local details. However, our 540 

study region has little topographic variations, and therefore including elevation data cannot add any additional information to 

the model. 
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Moreover, we compared the customized DL scenarios with a traditional method QDM_BI and found that most of the all 

DL experiments remarkably outperform QDM_BI in all the temporal scales as well as extremes. QDM_BI executed bias 545 

correction at each grid point without considering spatial dependencies and only used coarse resolution P as a predictor, and 

thus does not have the capability of capturing spatial features (e.g., detailed spatial features for the hurricane Ida in Figure 9) 

and accounting for the atmosphere and moisture covariates of precipitation. Furthermore, the proposed customized DL models 

are fully convolutional, and the trained models can potentiallypotentially can be easily used to estimate hourly P in other places 

through transfer learning where high-resolutionhigh resolution data are not available [e.g., Stage IV radar coverage is limited 550 

in the western United States as a result of the scarcity of the radar network and blockage from the mountains (Nelson et al., 

2016)]. There are many questions that need to be explored under this topic about transferability under various climate zones 

and the impact of spatial distance, which The performance of transfer learning under various climate zones with different types 

of P events deserves a separate study. The trained models also have the potential to generate high-resolutionhigh resolution 

hourly P estimates beyond the time range covered by Stage IV radars (e.g., before 2002). Furthermore, the SRDRN architecture 555 

can be further customized to downscale different gridded precipitation, including downscaling precipitation from GCM 

projections, which can be a future study.   

Due to the stochastic nature of DL models, we ran each DL scenario for additional three times (four times in total) to 

evaluate the effects of stochasticity comparedcomparing with the added value of each customized component of DL models 

(see Table S2 and Table S3 in the Supplement). The results show that KGE values for each scenario are significantly different 560 

at the p-value of 0.05 at the hourly time scale, which indicates that the added value of each customized component is not 

caused by model stochasticity. Scenario1 is significantly worse than other scenarios, including QDM_BI at hourly and 

aggregated time scales as well as extreme indices, emphasizing the added value of the weighted loss function. Scenario5 and 

Scenario 6 are significantly better than other scenarios, including QDM_BI, in terms of KGE values at hourly and aggregated 

time scales, and Scenario4 is significantly worse at the monthly time scale.  For the 99th percentile extreme index, Scenario4 565 

is significantly worse than Scenario3, Sceanrio5, and Scenario6. For the annual maximum wet spell index, Scenario2 and 

Scenario3 are significantly better than other scenarios. All these stochastic significance evaluation results are consistent with 

the findings in Section 4. Due to computational demand (20 to 22 hours for running each scenario once) and resource limits, 

we ran limited times for each scenario to consider the stochasticity of DL models, and incorporating DL models with Bayesian 

inference is a potential way to quantify systematic uncertainty caused by model itself as indicated by Vandal et al. (2018a). 570 

 

56 Conclusions 

Various gridded precipitation (P) data at different spatiotemporal scales have been developed to address the limitations 

of ground-based P observations. These gridded P data products, however, suffer from systematic biases and spatial resolutions 
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are mostly too coarse to be used in local scale studies. Many studies based on DL approaches have been conducted to bias 575 

correct and downscale coarse resolution P data. However, it is still challenging for traditional approaches, as well as current 

DL approaches to capture small-scalesmall scale features, especially for P extremes, due to the complexity of P data (e.g., 

highly unbalanced and skewed), particularly at fine temporal scale (e.g., hourly). To address these challenges, this study 

developed customized DL models by incorporating customized loss functions, multitaskmultitask learning, and 

physicallyphysical relevant atmospheric covariates. We designed a set of model scenarios to evaluate the added values of each 580 

component of the customized DL models. Our results show that customized loss functions greatly improved model 

performance compared to the model scenario with regular loss function in all the temporal scales as well as extremes (on 

average, improved by over 70% for climatology and over 50% at the 99th percentile). The scenarios with multitask learning 

performed generally better than other scenarios on hourly climatology and aggregated time scales (daily and monthly), while 

the improvement is not as large as incorporating weighted loss function. While multitaskmultitask learning greatly improved 585 

model performance on capturing detailed features of extreme events (e.g., hurricane Ida), the scenarios with multitaskmultitask 

learning performed worse than other scenarios in terms of extreme indices potentially due to the increased number of trainable 

parameters. The added value of incorporating atmospheric covariates is remarkable, likely because these scenarios took full 

advantageadvantages of nonlinear relationships between large-scale covariates, precipitation, and fine-scale observations.  The 

results also indicated that the role of coarse resolution P as a predictor is very important for improving model performance 590 

despite the added values from the covariates. The DL scenarios with customized loss function and coarse resolution P as the 

only predictor are the best models at places where no covariate data are available. Moreover, all themost of the DL scenarios 

with customized loss functionsfunction performed much better in all the temporal scales as well as extremes than the 

benchmark approach QDM_BI, which is not able to account for spatial dependence and nonlinear relationships. These results 

highlight the advantages of the customized DL model compared with regular DL models as well as traditional approaches, 595 

which provideprovides a promising tool to fundamentally improve precipitation bias correction and downscaling and better 

estimate P at high resolutions.  
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Table 1. Deep Learning (DL) Experimental Design 

Experimental 
Runs (Scenarios) Input Output Loss 

Scenario1 hourly precipitation (P) P MAE 
Scenario2 P P Weighted MAE 
Scenario3 P P + categorical P Weighted MAE +l*Weighted cross-entropy 
Scenario4 Covariates w/o P P Weighted MAE 
Scenario5 Covariates w/ P P Weighted MAE 
Scenario6 Covariates w/ P P + categorical P Weighted MAE + l*Weighted cross-entropy 
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Table 2. Selected atmospheric covariates for DL downscaling and bias correction  1090 

NO Name Description   
1 H250 Geopotential height at 250 hPa 
2 H500 Geopotential height at 500 hPa 
3 H850 Geopotential height at 850 hPa 
4 Q250 Specific humidity at 250 hPa  
5 Q500 Specific humidity at 500 hPa  
6 Q850 Specific humidity at 850 hPa  
7 T250 Air temperature at 250 hPa  
8 T500 Air temperature at 500 hPa  
9 T850 Air temperature at 850 hPa  
10 U250 Eastward wind at 250 hPa  
11 U500 Eastward wind at 500 hPa  
12 U850 Eastward wind at 850 hPa  
13 V250 Northward wind at 250 hPa  
14 V500 Northward wind at 250 hPa  
15 V850 Northward wind at 250 hPa  
16 OMEGA500 Omega (vertical wind) at 500 hPa 
17 SLP Sea level pressure   
18 T2M 2-meter air temperature   

NO Other variables Variable description Units 
1 H250 Geopotential height at 250 hPa m 
2 H500 Geopotential height at 500 hPa m 
3 H850 Geopotential height at 850 hPa m 
4 Q250 Specific humidity at 250 hPa kg/kg 
5 Q500 Specific humidity at 500 hPa kg/kg 
6 Q850 Specific humidity at 850 hPa kg/kg 
7 T250 Air temperature at 250 hPa K 
8 T500 Air temperature at 500 hPa K 
9 T850 Air temperature at 850 hPa K 
10 U250 Eastward wind at 250 hPa m/s 
11 U500 Eastward wind at 500 hPa m/s 
12 U850 Eastward wind at 850 hPa m/s 
13 V250 Northward wind at 250 hPa m/s 
14 V500 Northward wind at 250 hPa m/s 
15 V850 Northward wind at 250 hPa m/s 
16 OMEGA500 Omega (vertical wind) at 500 hPa Pa/s 
17 SLP Sea level pressure  Pa 
18 T2M 2-meter air temperature K 
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Table 3. Overall assessment for hourly, daily total, and monthly mean of hourly precipitation. KGE represents the modified 

Kling-Gupta efficiency (KGE) and it includes three components (correlation component r, bias component b and variability 

component g). The correlation component 𝑟 is represented by correlation coefficient, the bias component b is represented by 1095 

the ratio of estimated and observed means, and the variability component g is represented by the estimated and observed 

coefficients of variation. 

Temporal scales Scenarios* KGE r b g RMSE (mm) MAE (mm) 

Hourly 
precipitation 

Scenario1 -0.0584 0.267 0.288 1.28 1.20 0.189 
Scenario2 0.218 0.297 0.958 0.660 1.25 0.258 
Scenario3 0.203 0.278 1.02 0.664 1.28 0.269 
Scenario4 0.250 0.331 0.883 0.682 1.21 0.240 
Scenario5 0.283 0.358 1.02 0.682 1.22 0.248 
Scenario6 0.262 0.356 1.00 0.639 1.20 0.247 
QDM_BI 0.248 0.332 1.02 1.35 1.36 0.256 

Daily precipitation 

Scenario1 0.0935 0.615 0.288 1.409 10.19 3.54 
Scenario2 0.644 0.685 0.958 0.840 8.76 3.42 
Scenario3 0.626 0.675 1.02 0.815 8.94 3.54 
Scenario4 0.618 0.642 0.883 0.935 9.37 3.55 
Scenario5 0.688 0.701 1.02 0.914 8.89 3.40 
Scenario6 0.668 0.701 1.00 0.855 8.65 3.34 
QDM_BI 0.644 0.689 1.02 1.17 10.50 3.42 

Monthly mean of 
hourly 

precipitation 

Scenario1 0.0206 0.567 0.289 1.52 0.162 0.133 
Scenario2 0.766 0.778 0.958 0.941 0.0721 0.0512 
Scenario3 0.784 0.791 1.02 0.951 0.0713 0.0505 
Scenario4 0.690 0.712 0.883 0.991 0.0835 0.0592 
Scenario5 0.778 0.782 1.02 0.964 0.0734 0.0519 
Scenario6 0.776 0.783 1.00 0.945 0.0719 0.0511 
QDM_BI 0.717 0.777 1.02 1.17 0.0850 0.0553 

*Scenarios have different settings: Scenario1 is with a regular MAE loss function and coarse precipitation as a predictor; 
Scenario2 is with a weighted MAE loss and coarse precipitation as a predictor; Scenario3 is the same as Scenario2 except with 
a classification as an additional auxiliary task; Scenario4 is with a weighted loss function but and covariates as predictors; 1100 
Scenario5 is the same as Scenario4 except also including coarse precipitation as predictors; Scenario 6 is the same as Scenario5 
but including a classification as an additional auxiliary task.  
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Table 4. Performance of extreme indices including hourly P at 99% percentile and annual maximum wet spell in hours. KGE 

represents the modified Kling-Gupta efficiency (KGE) and it includes three components (correlation component r, bias 1105 

component b and variability component g). The correlation component 𝑟 is represented by correlation coefficient, the bias 

component b is represented by the ratio of estimated and observed means, and the variability component g is represented by 

the estimated and observed coefficients of variation. 

Extreme indices Scenarios* KGE r b g RMSE MAE 

99th percentile 
(mm) 

Scenario1 -1.306 0.352 0.358 3.12 3.150 3.101 
Scenario2 0.367 0.415 0.806 1.14 1.049 0.946 
Scenario3 0.243 0.264 0.828 1.04 0.978 0.876 
Scenario4 0.204 0.242 0.763 1.06 1.255 1.153 
Scenario5 0.255 0.284 0.863 1.15 0.858 0.744 
Scenario6 0.245 0.271 0.845 1.12 0.922 0.800 
QDM_BI 0.158 0.244 0.900 1.36 0.793 0.655 

Annual maximum 
wet spell (hours) 

Scenario1 0.153 0.275 0.621 1.22 12.2 10.3 
Scenario2 0.293 0.302 1.11 0.988 9.17 7.14 
Scenario3 0.291 0.302 1.07 1.10 9.33 7.03 
Scenario4 0.121 0.282 1.46 1.21 17.0 12.7 
Scenario5 0.193 0.335 1.44 1.11 15.8 12.2 
Scenario6 0.152 0.306 1.47 1.14 16.6 12.6 
QDM_BI -0.209 0.173 1.88 1.09 26.6 22.2 

*Scenarios have different settings: Scenario1 is with a regular MAE loss function and coarse precipitation as a predictor; 
Scenario2 is with a weighted MAE loss and coarse precipitation as a predictor; Scenario3 is the same as Scenario2 except with 1110 
a classification as an auxiliary task; Scenario4 is with a weighted loss function and covariates as predictors; Scenario5 is the 
same as Scenario4 except also including coarse precipitation as predictors; Scenario 6 is the same as Scenario5 but including 
a classification as an auxiliary task.  
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Figure 1. The modified customized SRDRN architecture with multitaskmultitask learning, which, which includesd the 

classification of P categories as an auxiliary task (Task 1) in addition to downscaling and bias correcting actual P values (Task 

2). Note that this figure is a modified version ofmodified from the SRDRN architecture shown in Wang et al. (2021). 1120 
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Figure 2. Climatology of hourly precipitation (in a unit of mm/h) from MERRA2 and Stage IV during the training period (2002 

to 2015; first row) and their differences (second row) between the testing (2019 to 2021) and training periods. 

  1125 
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Figure 3. Hourly precipitation climatology (in a unit of mm/h) during the testing period (2019 to 2021), which includes 

MERRA2, Stage IV, QDM_BI, and six DL experimental runs (Scenario1 to Scenario6).  
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 1130 
Figure 4. Boxplots showing hourly precipitation estimates minus Stage IV observations based on, (a) climatology, (b) extreme 

at 99% percentile, and (c) annual maximum wet spell in hours during the testing period (2019 to 2021). Precipitation estimates 

are produced from the QDM_BI approach and 6 DL experimental runs (Scenario1 to Scenario6).  

(a) 

(b) 

(c) 
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Figure 5. Daily total precipitation during the testing period (2019 to 2021) from Stage IV, QDM_BI, and 6 DL experimental 1135 

runs (Scenario1 to Scenario6). 
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Figure 6. Monthly mean of hourly precipitation time series during the testing period (2019 to 2021) from Stage IV, QDM_BI, 

and 6 DL experimental runs (Scenario1 to Scenario6). 1140 
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Figure 7. Spatial map of hourly precipitation extremesextreme at 99th percentile (in a unit of mm/h) from raw MERRA2, Stage 

IV, QDM_BI, and 6 DL experimental runs (Scenario1 to Scenario6). 
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Figure 8. Hourly precipitation (in a unit of mm/h) from 19:00 to 20:00 on 29 August 2021 in UTC time zone when Hurricane 

Ida landed in Louisiana, including raw MERRA2, Stage IV, QDM_BI and six DL experimental runs (Scenario1 to Scenario6). 
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Categories MERRA2 QDM Scenario3 Scenario6 

0-0.1mm 80.54 88.10 81.00 86.44 

0.1-2.5mm 27.10 23.60 25.93 27.91 

2.5-10mm 14.94 15.30 19.63 19.91 

>10mm 4.32 7.12 8.15 11.07 

 1150 

Figure 9. Heat map showing the Intersection over Over Union (IoUIOU) comparing coarsened Stage IV with raw MERRA2, 

QDM, two deep learning experiment runs with classification task (Scenario3 and Scenario6)  
 

 

Aadhar, S. and Mishra, V.: High-resolution near real-time drought monitoring in South Asia, Scientific Data, 4, 1-14, 2017. 1155 
AghaKouchak, A., Mehran, A., Norouzi, H., and Behrangi, A.: Systematic and random error components in satellite precipitation data sets, 
Geophysical Research Letters, 39, 2012. 
AghaKouchak, A., Behrangi, A., Sorooshian, S., Hsu, K., and Amitai, E.: Evaluation of satellite‐retrieved extreme precipitation rates 
across the central United States, Journal of Geophysical Research: Atmospheres, 116, 2011. 
Ashouri, H., Sorooshian, S., Hsu, K.-L., Bosilovich, M. G., Lee, J., Wehner, M. F., and Collow, A.: Evaluation of NASA’s MERRA 1160 
precipitation product in reproducing the observed trend and distribution of extreme precipitation events in the United States, Journal of 
Hydrometeorology, 17, 693-711, 2016. 
Baño-Medina, J., Manzanas, R., and Gutiérrez, J. M.: Configuration and intercomparison of deep learning neural models for statistical 
downscaling, Geoscientific Model Development, 13, 2109-2124, 2020. 
Beck, H. E., Van Dijk, A. I., De Roo, A., Dutra, E., Fink, G., Orth, R., and Schellekens, J.: Global evaluation of runoff from 10 state-of-1165 
the-art hydrological models, Hydrology and Earth System Sciences, 21, 2881-2903, 2017. 
Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Van Dijk, A. I., McVicar, T. R., and Adler, R. F.: MSWEP V2 global 3-
hourly 0.1 precipitation: methodology and quantitative assessment, Bulletin of the American Meteorological Society, 100, 473-500, 2019a. 
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., Van Dijk, A. I., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily 
evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, Hydrology and Earth System Sciences, 23, 207-1170 
224, 2019b. 
Bhattacharyya, S., Sreekesh, S., and King, A.: Characteristics of extreme rainfall in different gridded datasets over India during 1983–
2015, Atmospheric Research, 267, 105930, 2022. 
Bitew, M. M. and Gebremichael, M.: Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed 
hydrologic model, Water Resources Research, 47, 2011. 1175 



50 
 

Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of GCM precipitation by quantile mapping: how well do methods 
preserve changes in quantiles and extremes?, Journal of Climate, 28, 6938-6959, 2015. 
Cavalcante, R. B. L., da Silva Ferreira, D. B., Pontes, P. R. M., Tedeschi, R. G., da Costa, C. P. W., and de Souza, E. B.: Evaluation of 
extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian Amazonia, Atmospheric Research, 238, 104879, 2020. 
Chen, D., Mak, B., Leung, C.-C., and Sivadas, S.: Joint acoustic modeling of triphones and trigraphemes by multi-task learning deep 1180 
neural networks for low-resource speech recognition, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), 5592-5596,  
Chen, Y.: Increasingly uneven intra-seasonal distribution of daily and hourly precipitation over Eastern China, Environmental Research 
Letters, 15, 104068, 2020. 
Chen, Y., Sharma, S., Zhou, X., Yang, K., Li, X., Niu, X., Hu, X., and Khadka, N.: Spatial performance of multiple reanalysis 1185 
precipitation datasets on the southern slope of central Himalaya, Atmospheric Research, 250, 105365, 2021. 
Daw, A., Karpatne, A., Watkins, W., Read, J., and Kumar, V.: Physics-guided neural networks (pgnn): An application in lake temperature 
modeling, arXiv preprint arXiv:1710.11431, 2017. 
DeGaetano, A. T., Mooers, G., and Favata, T.: Temporal Changes in the Areal Coverage of Daily Extreme Precipitation in the 
Northeastern United States Using High-Resolution Gridded Data, Journal of Applied Meteorology and Climatology, 59, 551-565, 2020. 1190 
Duethmann, D., Zimmer, J., Gafurov, A., Güntner, A., Kriegel, D., Merz, B., and Vorogushyn, S.: Evaluation of areal precipitation 
estimates based on downscaled reanalysis and station data by hydrological modelling, Hydrology and Earth System Sciences, 17, 2415-
2434, 2013. 
Eden, J. M., Widmann, M., Grawe, D., and Rast, S.: Skill, correction, and downscaling of GCM-simulated precipitation, Journal of 
Climate, 25, 3970-3984, 2012. 1195 
Emmanouil, S., Langousis, A., Nikolopoulos, E. I., and Anagnostou, E. N.: An ERA‐5 Derived CONUS‐Wide High‐Resolution 
Precipitation Dataset Based on a Refined Parametric Statistical Downscaling Framework, Water Resources Research, 57, 
e2020WR029548, 2021. 
Fernando, K. R. M. and Tsokos, C. P.: Dynamically weighted balanced loss: class imbalanced learning and confidence calibration of deep 
neural networks, IEEE Transactions on Neural Networks and Learning Systems, 2021. 1200 
Fischer, E. M. and Knutti, R.: Observed heavy precipitation increase confirms theory and early models, Nature Climate Change, 6, 986-
991, 2016. 
François, B., Thao, S., and Vrac, M.: Adjusting spatial dependence of climate model outputs with cycle-consistent adversarial networks, 
Climate Dynamics, 57, 3323-3353, 2021. 
Girshick, R.: Fast r-cnn, Proceedings of the IEEE international conference on computer vision, 1440-1448,  1205 
Goodfellow, I., Bengio, Y., and Courville, A.: Deep learning, MIT press2016. 
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: 
Implications for improving hydrological modelling, Journal of hydrology, 377, 80-91, 2009. 
Habib, E., Henschke, A., and Adler, R. F.: Evaluation of TMPA satellite-based research and real-time rainfall estimates during six 
tropical-related heavy rainfall events over Louisiana, USA, Atmospheric Research, 94, 373-388, 2009. 1210 
Ham, Y.-G., Kim, J.-H., and Luo, J.-J.: Deep learning for multi-year ENSO forecasts, Nature, 573, 568-572, 2019. 
Hamal, K., Sharma, S., Khadka, N., Baniya, B., Ali, M., Shrestha, M. S., Xu, T., Shrestha, D., and Dawadi, B.: Evaluation of MERRA-2 
precipitation products using gauge observation in Nepal, Hydrology, 7, 40, 2020. 
Harrigan, S., Prudhomme, C., Parry, S., Smith, K., and Tanguy, M.: Benchmarking ensemble streamflow prediction skill in the UK, 
Hydrology and Earth System Sciences, 22, 2023-2039, 2018. 1215 
Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H., and Pappenberger, F.: GloFAS-
ERA5 operational global river discharge reanalysis 1979–present, Earth System Science Data, 12, 2043-2060, 2020. 
Harris, L., McRae, A. T., Chantry, M., Dueben, P. D., and Palmer, T. N.: A Generative Deep Learning Approach to Stochastic 
Downscaling of Precipitation Forecasts, arXiv preprint arXiv:2204.02028, 2022. 
He, K., Zhang, X., Ren, S., and Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, 1220 
Proceedings of the IEEE international conference on computer vision, 1026-1034,  
He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition, Proceedings of the IEEE conference on computer 
vision and pattern recognition, 770-778,  
He, X., Chaney, N. W., Schleiss, M., and Sheffield, J.: Spatial downscaling of precipitation using adaptable random forests, Water 
Resources Research, 52, 8217-8237, 2016b. 1225 
Hong, Y., Hsu, K. l., Moradkhani, H., and Sorooshian, S.: Uncertainty quantification of satellite precipitation estimation and Monte Carlo 
assessment of the error propagation into hydrologic response, Water resources research, 42, 2006. 
Ioffe, S. and Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift, International 
conference on machine learning, 448-456,  
Jiang, Q., Li, W., Fan, Z., He, X., Sun, W., Chen, S., Wen, J., Gao, J., and Wang, J.: Evaluation of the ERA5 reanalysis precipitation 1230 
dataset over Chinese Mainland, Journal of hydrology, 595, 125660, 2021. 



51 
 

Jury, M. R.: An intercomparison of observational, reanalysis, satellite, and coupled model data on mean rainfall in the Caribbean, Journal 
of Hydrometeorology, 10, 413-430, 2009. 
Kashinath, K., Mustafa, M., Albert, A., Wu, J., Jiang, C., Esmaeilzadeh, S., Azizzadenesheli, K., Wang, R., Chattopadhyay, A., and Singh, 
A.: Physics-informed machine learning: case studies for weather and climate modelling, Philosophical Transactions of the Royal Society 1235 
A, 379, 20200093, 2021. 
Kim, I.-W., Oh, J., Woo, S., and Kripalani, R.: Evaluation of precipitation extremes over the Asian domain: observation and modelling 
studies, Climate Dynamics, 52, 1317-1342, 2019. 
Kim, S., Joo, K., Kim, H., Shin, J.-Y., and Heo, J.-H.: Regional quantile delta mapping method using regional frequency analysis for 
regional climate model precipitation, Journal of Hydrology, 596, 125685, 2021. 1240 
King, A. D., Alexander, L. V., and Donat, M. G.: The efficacy of using gridded data to examine extreme rainfall characteristics: a case 
study for Australia, International Journal of Climatology, 33, 2376-2387, 2013. 
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, Journal 
of Hydrology, 424, 264-277, 2012. 
Kumar, B., Chattopadhyay, R., Singh, M., Chaudhari, N., Kodari, K., and Barve, A.: Deep learning–based downscaling of summer 1245 
monsoon rainfall data over Indian region, Theoretical and Applied Climatology, 143, 1145-1156, 2021. 
LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, nature, 521, 436-444, 2015. 
Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., and Wang, Z.: Photo-realistic 
single image super-resolution using a generative adversarial network, Proceedings of the IEEE conference on computer vision and pattern 
recognition, 4681-4690,  1250 
Legasa, M., Manzanas, R., Calviño, A., and Gutiérrez, J.: A Posteriori Random Forests for Stochastic Downscaling of Precipitation by 
Predicting Probability Distributions, Water Resources Research, 58, e2021WR030272, 2022. 
Li, W., Pan, B., Xia, J., and Duan, Q.: Convolutional neural network-based statistical post-processing of ensemble precipitation forecasts, 
Journal of Hydrology, 605, 127301, 2022. 
Li, Z., Wen, Y., Schreier, M., Behrangi, A., Hong, Y., and Lambrigtsen, B.: Advancing satellite precipitation retrievals with data driven 1255 
approaches: Is black box model explainable?, Earth and Space Science, 8, e2020EA001423, 2021. 
Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., David, C. H., Durand, M., Pavelsky, T. M., and Allen, G. H.: Global 
reconstruction of naturalized river flows at 2.94 million reaches, Water resources research, 55, 6499-6516, 2019. 
Lin, Y. and Mitchell, K. E.: 1.2 the NCEP stage II/IV hourly precipitation analyses: Development and applications, Proceedings of the 
19th Conference Hydrology, American Meteorological Society, San Diego, CA, USA,  1260 
Liu, Y., Ganguly, A. R., and Dy, J.: Climate downscaling using YNet: A deep convolutional network with skip connections and fusion, 
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 3145-3153,  
Long, D., Bai, L., Yan, L., Zhang, C., Yang, W., Lei, H., Quan, J., Meng, X., and Shi, C.: Generation of spatially complete and daily 
continuous surface soil moisture of high spatial resolution, Remote Sensing of Environment, 233, 111364, 2019. 
Mamalakis, A., Langousis, A., Deidda, R., and Marrocu, M.: A parametric approach for simultaneous bias correction and high‐resolution 1265 
downscaling of climate model rainfall, Water Resources Research, 53, 2149-2170, 2017. 
Maraun, D., Widmann, M., Gutiérrez, J. M., Kotlarski, S., Chandler, R. E., Hertig, E., Wibig, J., Huth, R., and Wilcke, R. A.: VALUE: A 
framework to validate downscaling approaches for climate change studies, Earth's Future, 3, 1-14, 2015. 
Mei, Y., Maggioni, V., Houser, P., Xue, Y., and Rouf, T.: A nonparametric statistical technique for spatial downscaling of precipitation 
over High Mountain Asia, Water Resources Research, 56, e2020WR027472, 2020. 1270 
Nelson, B. R., Prat, O. P., Seo, D.-J., and Habib, E.: Assessment and implications of NCEP Stage IV quantitative precipitation estimates 
for product intercomparisons, Weather and Forecasting, 31, 371-394, 2016. 
Pan, B., Anderson, G. J., Goncalves, A., Lucas, D. D., Bonfils, C. J., Lee, J., Tian, Y., and Ma, H. Y.: Learning to correct climate 
projection biases, Journal of Advances in Modeling Earth Systems, 13, e2021MS002509, 2021. 
Panda, K. C., Singh, R., Thakural, L., and Sahoo, D. P.: Representative grid location-multivariate adaptive regression spline (RGL-MARS) 1275 
algorithm for downscaling dry and wet season rainfall, Journal of Hydrology, 605, 127381, 2022. 
Panofsky, H. and Brier, G.: Some applications of statistics to meteorology, Pa. State Univ., University Park, Pa, 1968. 
Peng, J., Dadson, S., Hirpa, F., Dyer, E., Lees, T., Miralles, D. G., Vicente-Serrano, S. M., and Funk, C.: A pan-African high-resolution 
drought index dataset, Earth System Science Data, 12, 753-769, 2020. 
Pierce, D. W., Cayan, D. R., and Thrasher, B. L.: Statistical downscaling using localized constructed analogs (LOCA), Journal of 1280 
Hydrometeorology, 15, 2558-2585, 2014. 
Pour, S. H., Shahid, S., and Chung, E.-S.: A hybrid model for statistical downscaling of daily rainfall, Procedia Engineering, 154, 1424-
1430, 2016. 
Raimonet, M., Oudin, L., Thieu, V., Silvestre, M., Vautard, R., Rabouille, C., and Le Moigne, P.: Evaluation of gridded meteorological 
datasets for hydrological modeling, Journal of Hydrometeorology, 18, 3027-3041, 2017. 1285 
Rasp, S. and Lerch, S.: Neural networks for postprocessing ensemble weather forecasts, Monthly Weather Review, 146, 3885-3900, 2018. 



52 
 

Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., Athanassiadou, M., Kashem, S., and Madge, S.: 
Skilful precipitation nowcasting using deep generative models of radar, Nature, 597, 672-677, 2021. 
Reichle, R. H., Liu, Q., Koster, R. D., Draper, C. S., Mahanama, S. P., and Partyka, G. S.: Land surface precipitation in MERRA-2, 
Journal of Climate, 30, 1643-1664, 2017. 1290 
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., and Carvalhais, N.: Deep learning and process understanding for data-
driven Earth system science, Nature, 566, 195-204, 2019. 
Rivoire, P., Martius, O., and Naveau, P.: A comparison of moderate and extreme ERA‐5 daily precipitation with two observational data 
sets, Earth and Space Science, 8, e2020EA001633, 2021. 
Rodrigues, E. R., Oliveira, I., Cunha, R., and Netto, M.: DeepDownscale: a deep learning strategy for high-resolution weather forecast, 1295 
2018 IEEE 14th International Conference on e-Science (e-Science), 415-422,  
Rossa, A., Nurmi, P., and Ebert, E.: Overview of methods for the verification of quantitative precipitation forecasts, in: Precipitation: 
Advances in measurement, estimation and prediction, Springer, 419-452, 2008. 
Ruder, S.: An overview of multi-task learning in deep neural networks, arXiv preprint arXiv:1706.05098, 2017. 
Sadler, J. M., Appling, A. P., Read, J. S., Oliver, S. K., Jia, X., Zwart, J., and Kumar, V.: Multi‐Task Deep Learning of Daily Streamflow 1300 
and Water Temperature, Water Resources Research, 58, e2021WR030138, 2022. 
Schoof, J. T. and Pryor, S. C.: Downscaling temperature and precipitation: A comparison of regression‐based methods and artificial neural 
networks, International Journal of Climatology: A Journal of the Royal Meteorological Society, 21, 773-790, 2001. 
Seltzer, M. L. and Droppo, J.: Multi-task learning in deep neural networks for improved phoneme recognition, 2013 IEEE International 
Conference on Acoustics, Speech and Signal Processing, 6965-6969,  1305 
Seyyedi, H., Anagnostou, E., Beighley, E., and McCollum, J.: Satellite-driven downscaling of global reanalysis precipitation products for 
hydrological applications, Hydrology and Earth System Sciences, 18, 5077-5091, 2014. 
Sha, Y., Gagne II, D. J., West, G., and Stull, R.: Deep-learning-based gridded downscaling of surface meteorological variables in complex 
terrain. Part II: Daily precipitation, Journal of Applied Meteorology and Climatology, 59, 2075-2092, 2020a. 
Sha, Y., Gagne II, D. J., West, G., and Stull, R.: Deep-learning-based gridded downscaling of surface meteorological variables in complex 1310 
terrain. Part I: Daily maximum and minimum 2-m temperature, Journal of Applied Meteorology and Climatology, 59, 2057-2073, 2020b. 
Shen, C.: A transdisciplinary review of deep learning research and its relevance for water resources scientists, Water Resources Research, 
54, 8558-8593, 2018. 
Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.-Y., Wong, W.-k., and Woo, W.-c.: Deep learning for precipitation nowcasting: A 
benchmark and a new model, Advances in neural information processing systems, 30, 2017. 1315 
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., and Bolton, A.: Mastering 
the game of go without human knowledge, nature, 550, 354-359, 2017. 
Suliman, A. H. A., Awchi, T. A., Al-Mola, M., and Shahid, S.: Evaluation of remotely sensed precipitation sources for drought assessment 
in Semi-Arid Iraq, Atmospheric Research, 242, 105007, 2020. 
Sun, A. Y. and Tang, G.: Downscaling satellite and reanalysis precipitation products using attention-based deep convolutional neural nets, 1320 
Frontiers in Water, 2, 536743, 2020. 
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K. L.: A review of global precipitation data sets: Data sources, 
estimation, and intercomparisons, Reviews of Geophysics, 56, 79-107, 2018. 
Tao, Y., Gao, X., Ihler, A., Hsu, K., and Sorooshian, S.: Deep neural networks for precipitation estimation from remotely sensed 
information, 2016 IEEE Congress on Evolutionary Computation (CEC), 1349-1355,  1325 
Tegegne, G. and Melesse, A. M.: Comparison of Trend Preserving Statistical Downscaling Algorithms Toward an Improved Precipitation 
Extremes Projection in the Headwaters of Blue Nile River in Ethiopia, Environmental Processes, 8, 59-75, 2021. 
Thrasher, B., Maurer, E. P., McKellar, C., and Duffy, P. B.: Bias correcting climate model simulated daily temperature extremes with 
quantile mapping, Hydrology and Earth System Sciences, 16, 3309-3314, 2012. 
Tong, K., Su, F., Yang, D., and Hao, Z.: Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling 1330 
over the Tibetan Plateau, Journal of hydrology, 519, 423-437, 2014. 
Tong, Y., Gao, X., Han, Z., Xu, Y., Xu, Y., and Giorgi, F.: Bias correction of temperature and precipitation over China for RCM 
simulations using the QM and QDM methods, Climate Dynamics, 57, 1425-1443, 2021. 
Trinh, T., Do, N., Nguyen, V., and Carr, K.: Modeling high-resolution precipitation by coupling a regional climate model with a machine 
learning model: an application to Sai Gon–Dong Nai Rivers Basin in Vietnam, Climate Dynamics, 57, 2713-2735, 2021. 1335 
Tripathi, S., Srinivas, V., and Nanjundiah, R. S.: Downscaling of precipitation for climate change scenarios: a support vector machine 
approach, Journal of hydrology, 330, 621-640, 2006. 
Vandal, T., Kodra, E., and Ganguly, A. R.: Intercomparison of machine learning methods for statistical downscaling: the case of daily and 
extreme precipitation, Theoretical and Applied Climatology, 137, 557-570, 2019. 
Vandal, T., Kodra, E., Dy, J., Ganguly, S., Nemani, R., and Ganguly, A. R.: Quantifying uncertainty in discrete-continuous and skewed 1340 
data with Bayesian deep learning, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data 
Mining, 2377-2386,  



53 
 

Vandal, T., Kodra, E., Ganguly, S., Michaelis, A., Nemani, R., and Ganguly, A. R.: Generating high resolution climate change projections 
through single image super-resolution: An abridged version, International Joint Conferences on Artificial Intelligence Organization,  
Wang, F. and Tian, D.: On deep learning-based bias correction and downscaling of multiple climate models simulations, Climate 1345 
Dynamics, 1-18, 2022. 
Wang, F., Tian, D., Lowe, L., Kalin, L., and Lehrter, J.: Deep learning for daily precipitation and temperature downscaling, Water 
Resources Research, 57, e2020WR029308, 2021. 
Wood, A. W., Maurer, E. P., Kumar, A., and Lettenmaier, D. P.: Long‐range experimental hydrologic forecasting for the eastern United 
States, Journal of Geophysical Research: Atmospheres, 107, ACL 6-1-ACL 6-15, 2002. 1350 
Xu, H., Xu, C.-Y., Chen, S., and Chen, H.: Similarity and difference of global reanalysis datasets (WFD and APHRODITE) in driving 
lumped and distributed hydrological models in a humid region of China, Journal of Hydrology, 542, 343-356, 2016. 
Xu, M., Liu, Q., Sha, D., Yu, M., Duffy, D. Q., Putman, W. M., Carroll, M., Lee, T., and Yang, C.: PreciPatch: A dictionary-based 
precipitation downscaling method, Remote Sensing, 12, 1030, 2020. 
Xu, X., Frey, S. K., and Ma, D.: Hydrological performance of ERA5 and MERRA-2 precipitation products over the Great Lakes Basin, 1355 
Journal of Hydrology: Regional Studies, 39, 100982, 2022. 
Xu, X., Frey, S. K., Boluwade, A., Erler, A. R., Khader, O., Lapen, D. R., and Sudicky, E.: Evaluation of variability among different 
precipitation products in the Northern Great Plains, Journal of Hydrology: Regional Studies, 24, 100608, 2019. 
Yilmaz, K. K., Hogue, T. S., Hsu, K.-l., Sorooshian, S., Gupta, H. V., and Wagener, T.: Intercomparison of rain gauge, radar, and satellite-
based precipitation estimates with emphasis on hydrologic forecasting, Journal of Hydrometeorology, 6, 497-517, 2005. 1360 
Zhang, X., Anagnostou, E. N., and Schwartz, C. S.: NWP-based adjustment of IMERG precipitation for flood-inducing complex terrain 
storms: Evaluation over CONUS, Remote Sensing, 10, 642, 2018. 
Zhong, R., Chen, X., Lai, C., Wang, Z., Lian, Y., Yu, H., and Wu, X.: Drought monitoring utility of satellite-based precipitation products 
across mainland China, Journal of hydrology, 568, 343-359, 2019. 

 1365 



Page 37: [1] Formatted Table   Fang Wang   11/1/22 3:12:00 PM 
Formatted Table 
 

Page 37: [2] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [3] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [4] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [5] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [6] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [7] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [8] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [9] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [10] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [11] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [12] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [13] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [14] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [15] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [16] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [17] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 

Formatted

... [60]
Formatted

... [61]
Formatted

... [62]
Formatted

... [63]
Formatted

... [64]
Formatted

... [65]
Formatted

... [66]
Formatted

... [67]
Formatted

... [68]
Formatted

... [69]
Formatted

... [70]
Formatted

... [71]
Formatted

... [72]
Formatted

... [73]
Formatted

... [74]
Formatted

... [75]



 

Page 37: [18] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [19] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [20] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [21] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [22] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [23] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [24] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [25] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [26] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [27] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [28] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [29] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [30] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [31] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [32] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [33] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [34] Formatted   Fang Wang   11/1/22 3:09:00 PM 

Formatted

... [76]
Formatted

... [77]
Formatted

... [78]
Formatted

... [79]
Formatted

... [80]
Formatted

... [81]
Formatted

... [82]
Formatted

... [83]
Formatted

... [84]
Formatted

... [85]
Formatted

... [86]
Formatted

... [87]
Formatted

... [88]
Formatted

... [89]
Formatted

... [90]
Formatted

... [91]
Formatted

... [92]



Centered 
 

Page 37: [35] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [36] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [37] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [38] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [39] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [40] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [41] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [42] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [43] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [44] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [45] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [46] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [47] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [48] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [49] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [50] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Formatted

... [93]
Formatted

... [94]
Formatted

... [95]
Formatted

... [96]
Formatted

... [97]
Formatted

... [98]
Formatted

... [99]
Formatted

... [100]
Formatted

... [101]
Formatted

... [102]
Formatted

... [103]
Formatted

... [104]
Formatted

... [105]
Formatted

... [106]
Formatted

... [107]
Formatted

... [108]
Formatted

... [109]



Page 37: [51] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [52] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [53] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [54] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [55] Formatted Table   Fang Wang   11/1/22 3:12:00 PM 
Formatted Table 
 

Page 37: [56] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [57] Formatted   Fang Wang   11/1/22 3:10:00 PM 
Font: 10 pt 
 

Page 37: [58] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

Page 37: [59] Formatted   Fang Wang   11/1/22 3:09:00 PM 
Centered 
 

 

Formatted

... [110]
Formatted

... [111]
Formatted

... [112]
Formatted

... [113]
Formatted

... [114]
Formatted

... [115]
Formatted

... [116]
Formatted

... [117]
Formatted

... [118]


