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Abstract. Climate change threatens our ability to grow food for a growing population, with the greatest threats 

felt in Africa. There is a need for high-quality soil moisture predictions in under-monitored regions like Africa. 

Yet it is unclear if soil moisture processes are globally similar enough to allow our models trained on available 

in-situ data to maintain accuracy in unmonitored regions. We present a multitask long short-term memory (LSTM) 

model that learns simultaneously from global satellite-based and in-situ soil moisture data. This model is evaluated 15 

in both random spatial holdout mode and continental holdout mode (trained on some continents, tested on a 

different one). The model compared favorably to current land surface models, satellite products, and a candidate 

machine learning model, reaching a global median correlation of 0.792 for the random spatial holdout test. It 

behaved surprisingly well in Africa and Australia, showing high correlation even when we excluded their sites 

from the training set, but performed relatively poorly in Alaska where rapid changes are occurring. In all but one 20 

continent (Asia), the multitask model in the worst-case scenario test performed better than the soil moisture active 

passive (SMAP) 9-km product. Factorial analysis shows that the LSTM model’s accuracy varies with terrain 

aspect, resulting in lower performance for dry and south-facing slopes, or wet and north-facing slopes. This 

knowledge helps us apply the model while understanding its limitations. This model is being integrated into an 

operational agricultural assistance application which currently provides information to 13 million African farmers.  25 

 

500-character non-technical summary 

Under-monitored regions like Africa need high-quality soil moisture predictions to help with food production, but 

it is not clear if soil moisture processes are similar enough around the world for data-driven models to maintain 

accuracy. We present a deep-learning-based soil moisture model that learns from both in-situ data and satellite 30 

data and performs better than satellite products at the global scale. These results help us apply our model globally 

while better understanding its limitations.  
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1. Background 

Soil moisture is a critical variable that influences a number of natural disasters. As a result, widely available, high-

quality soil moisture products can be vital for regions that need aid. Too much soil moisture can prime the 35 

landscape for floods (Norbiato et al., 2008), and too little of it for too long can damage or kill crops and native 

vegetation (Narasimhan and Srinivasan, 2005; Sheffield and Wood, 2008). Moreover, many insect pests lay eggs 

in soils with certain soil moisture conditions - for example, locusts prefer to lay their eggs in sandy, wet soils 

(Hunter-Jones, 1964). In the year 2020, disastrous locust swarms terrorized large swaths of Eastern Africa and 

Southeast Asia (Baraniuk, 2020; UN WFP, 2020). The knowledge of soil moisture levels can be critical in 40 

planning pest control activities, as the immature stages are the best targets for effective control (Ellenburg et al., 

2021; Nuwer, 2021). Besides insect pests, pathogenic fungi and bacteria can be heavily influenced by soil 

moisture, resulting in crop losses. In all of these cases, soil moisture products can be highly valuable in reducing 

both current and emerging threats to crops. Finally, the current global crisis in fertilizer availability following the 

ongoing war in Europe (Bentley et al., 2022) necessitates strategies that increase the efficient use of fertilizer, for 45 

which a precise understanding of soil moisture is critical since water availability in the soil affects both plant 

uptake of fertilizer and fertilizer loss.  

 

Soil moisture is monitored globally by a number of satellite missions as well as simulated globally by multiple 

land surface hydrologic models, but these products have their respective limitations. Satellite missions like Soil 50 

Moisture Active Passive (SMAP) (Entekhabi, 2010) and Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 

2010), have limited spatial resolution and accuracy. When evaluated in comparison to in-situ data, especially on 

sparsely-instrumented sites that are outside of the missions’ core calibration/validation sites, their error can be 

high (Al-Yaari et al., 2017) (also demonstrated later in this work). Land surface models can also produce decent 

simulations with seamless spatiotemporal coverage (Albergel et al., 2018; Beaudoing et al., 2019; Yang et al., 55 

2011), but they may not be fully exploiting available information, as evidenced by the better performance 

produced by machine learning models where data are available (Liu et al., 2022; O and Orth, 2021). Both satellite 

and model products may also have a large bias compared to in-situ data. 

 

Recently, we developed a multiscale time-series deep learning (DL) model that learns simultaneously from 60 

satellite and in-situ data and can substantially outperform satellite-based products, a model trained on in-situ data 

alone, and traditional land surface model simulations (Liu et al., 2022). In a spatial cross-validation test (trained 

on some sites and tested on others), the multiscale DL model obtained a median correlation (R) of 0.901 when 

evaluated by the sparse soil moisture network over the conterminous United States (CONUS), comparing 

favorably to the SMAP 9km product’s R value of 0.762 and Noah model’s 0.761, and it had minor bias. This work 65 

suggested that many previous simulations have not fully leveraged the available information. In addition, it 

demonstrated that multiple sources of datasets may each constrain certain aspects of a network and train models 

that outperform each one of its supervising datasets, i.e., learning from two teachers can be better than one. This 

multiscale approach can overcome the limitations with each single dataset. 

 70 

However, it is uncertain if the robust model performance from deep networks in the data-dense CONUS can 

generalize well to other regions in the world where it is of interest due to potential natural disasters. Typically, the 
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performance of all kinds of models declines somewhat when applied to neighboring untrained sites (as in a random 

holdout test), and then declines more substantially when applied in a large region without training data (Feng et 

al., 2021; Gauch et al., 2020; Hrachowitz et al., 2013). Sequence-to-sequence deep networks like long short-term 75 

memory (LSTM) (Hochreiter and Schmidhuber, 1997) can give us high predictive performance in a range of 

hydrologic tasks (Fang et al., 2017, 2019; Feng et al., 2020; Kratzert et al., 2019; Meyal et al., 2020; Rahmani et 

al., 2021b; Shen, 2018; Zhi et al., 2021) because they do not have rigid model structures and can absorb 

information more exhaustively from big data. Their functional behaviors are completely shaped by data, and thus 

they can be exempt from many errors in previous models’ assumptions. On the flip side, in data-sparse regions, 80 

there is a chance that such a strength could potentially become a weakness. In Africa, especially, there are very 

few in-situ sites to constrain a model. Recent work has trained LSTM-based global soil moisture models 

completely on in-situ sites, for example, the SoMo.ml model (O and Orth, 2021), but this only learns from in-situ 

locations (O and Orth, 2021; Science Data Curation Team, 2021). It is not clear if optimality has been reached by 

such models, or if a multitask model learning from both satellite and in-situ data could provide further advantages. 85 

 

Regarding the potential for data-driven models in data-scarce regions, there can be two competing hypotheses. 

The optimistic hypothesis is that surface soil moisture dynamics is relatively simple to grasp (compared to the 

streamflow prediction problem), quite uniform around the world, and well described by available surface 

characterization datasets (soil texture) --- as a result, the hundreds of publicly available sites can thoroughly train 90 

a DL model that generalizes well in space. The more pessimistic hypothesis is that the quality of available inputs, 

e.g. soil texture, is low so that the number of sites in the world is far from being sufficient to train a global-scale 

DL soil moisture model. Confirming one hypothesis or the other not only influences how we choose a model, but 

may also alter our understanding about the complexity of the soil moisture prediction problem.  

 95 

Given that we would like to have a high-quality product in data-sparse regions like Africa, we ask three research 

questions regarding not only the performance of a global-scale LSTM-based soil moisture model, but also the 

nature of the soil moisture dynamics:  

1. How well can a LSTM-based soil moisture model perform on the global scale for untrained sites, in comparison 

to existing satellite-based and model-based products?  100 

2. How well can such a model generalize to highly data-sparse regions, e.g., in an entire continent without data -

- are soil moisture processes homogeneous enough to permit cross-continental model applications?  

3. What factors control the success or failure of such a model, i.e., can we predict, a priori, if this model can be 

successful?  

 105 

We developed and trained a multitask LSTM-based model that learns simultaneously from both satellite and in-

situ data. We tested the model in random hold out and cross-continental experiments to learn its strengths and 

weaknesses. We then used a stratified analysis to diagnose where the model would likely be successful or 

challenged. In the end, we produced a globally-operational surface soil moisture product that can be leveraged by 

non-profit organizations at 9-km resolution. 110 
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2. Data and Methods 

2.1. The multitask LSTM model. 

The multitask model based on the long short-term memory (LSTM) algorithm can be described succinctly as the 

following: 115 

y = LSTM(x, A) (1) 
L = RMSE(y, ys) + RMSE(y, yin) (2) 

where y represents simulated soil moisture, x represents dynamic atmospheric forcings, and A represents static 

landscape attributes. L is the loss function the model tries to minimize, which is based on root-mean-square error 

(RMSE). ys represents satellite-based soil moisture products (SMAP L3, 9 km resolution), and yin represents in-

situ data (from the International Soil Moisture Network, ISMN). This model does not use recent observations and 

is thus suitable for long-term simulations or trend predictions, but could be enhanced for short-term forecasting 120 

via data assimilation or data integration (Fang and Shen, 2020; Feng et al., 2020). This multitask loss function 

means that the simulations will attempt to respect both in-situ data and satellite data. Since LSTM has been 

described extensively in previous work (Fang et al., 2019; Feng et al., 2020; Liu et al., 2022), we omit its 

mathematical descriptions here for brevity. Here, because we are now applying it on a global scale, we chose this 

multitask scheme over our previous multiscale scheme (Liu et al., 2022) which aggregates many fine-resolution 125 

gridcells to match a coarse-resolution gridcell, to reduce computational demand. To avoid over-tuning the 

hyperparameters, we inherited most of the parameters from our multi-scale model. Our final parameters were as 

follows: a mini-batch size of 128, a hidden-state size of 256, a dropout rate of 0.5, an epoch length of 100, and a 

sequence length (rho) of 365 days.  

2.2. The input and training datasets. 130 

We used the SMAP Enhanced L3 Radiometer Global and Polar Grid Daily 9 km EASE-Grid Soil Moisture, 

Version 5 (SPL3SMP_E) product (O’Neill et al., 2021) as our satellite target, and the International Soil Moisture 

Network (ISMN) product as our in-situ target (Dorigo et al., 2011, 2013). The input data includes 18 different 

meteorological forcings and 17 different static attributes. We obtained daily leaf area index (LAI), soil 

temperature, and surface pressure, and others (Table S1 in the Supplementary Material) from the ECMWF 135 

Reanalysis v5 (ERA5) (Setchell, 2020). We tried multiple sources of precipitation data, including Multi-Source 

Weighted-Ensemble Precipitation (MSWEP) (Beck et al., 2019), Global Precipitation Measurement (GPM) 

(Huffman et al., 2019) and ERA5 precipitation data. Our preliminary results suggested that, in terms of the 

correlations of the resulting models, we had this order: MSWEP+GPM+ERA5≈MSWEP>GPM>ERA5. Thus, to 

allow the model to fully absorb the precipitation information, we include all of MSWEP, GPM, and ERA5 in the 140 

input data. Albedo data include black sky albedo and white sky albedo from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) MCD43A3 Version 6 (Schaaf,  Crystal and Wang,  Zhuosen, 2021). The Land 

Surface Temperature (LST) dataset includes LST day and LST night data from MODIS Land Surface 

Temperature/Emissivity Daily (MYD11A1) Version 6.1 (Wan,  Zhengming et al., 2021).  

 145 

Static terrain attributes included slope, aspect, plane curvature (pcurv), elevation, and roughness from the Global 

1,5,10,100-km Topography database (Amatulli et al., 2018), and we changed their resolution from 10-km to 9-

km using the bilinear interpolation method. Aspect was determined using the aspect cosine, which is >0 for north-
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facing and <0 for south-facing slopes in the Northern Hemisphere. We further multiplied the aspect cosine in the 

Southern Hemisphere by -1 to reflect the sun’s position. Soil physiographic attributes included sand, clay, and silt 150 

fractions, and bulk density from the Harmonized World Soil Database v1.2 (HWSD) (FAO et al., 2012; Fischer 

et al., 2008). Other attributes including land cover (ESA, 2017) and Normalized Difference Vegetation Index 

(Didan, 2015) were derived from several satellite products. We averaged all NDVI data from April 1, 2015 to 

March 31, 2022 to obtain multiple years of static NDVI data, and resampled the data to 9 km using bilinear 

interpolation. To perform factorial importance analysis, we also calculated long-term averages of daily LST, 155 

Albedo, LST, and SMAP data and used them along with other static attributes as inputs in the LSTM model and 

Random Forest model (using R of the tests as the target, removed duplication). All attributes and their sources are 

listed in Table S1 in the Supplementary Material. 

 

To train the model and evaluate its performance, we used soil moisture measurements (m3m-3) from the 160 

International Soil Moisture Network (ISMN) (Table S2 in Supplementary Material).  The ISMN is an international 

collaboration where soil moisture measurements are collected from dozens of soil moisture networks across the 

world. We selected site data from ISMN with ~5cm depth and aggregated the hourly data into daily data. We used 

a total of 1317 sites, located across Africa (18), Asia (115), Europe (129), the CONUS (969), Alaska (44), and 

Australia (19). Based on the site clustering in Africa, we divided the data on Africa into North Africa and South 165 

Africa according to latitudes 1.8 to 19.3 and -38.9 to -22.0, respectively. 

2.3. The models and products for comparisons. 

We compared the results with a wealth of data products and algorithms to put the proposed method into context. 

These include the SMAP-L3 enhanced 9-km product (O’Neill et al., 2021), the SMOS-L3 product (Al Bitar et al., 

2017; Support CATDS, 2022), the LPRM_AMSR2_DS_A_SOILM3 product (Richard de Jeu and Manfred Owe, 170 

2013; Owe et al., 2008), the NOAH025 (10 cm depth) model from the Global Land Data Assimilation System 

(GLDAS) (Beaudoing et al., 2019; Rodell et al., 2004), and another machine learning model, SoMo.ml (O and 

Orth, 2021). SMAP-L3 and SMOS-L3 are the low-frequency pass microwave products that provide a composite 

of daily estimates of global land surface soil moisture retrieved by the L-band at 9-km and 25-km resolution, 

respectively. LPRM_AMSR2_DS_A_SOILM3 (denoted as AMSR2) is a high-frequency pass microwave 175 

product, and we use the X-band data to estimate global soil moisture (Richard de Jeu and Manfred Owe, 2013; 

Owe et al., 2008). GLDAS_NOAH025 integrates ground-based observation data and satellite data to drive land 

surface models to estimate hydrologic variables including soil moisture. It is to be noted that SMAP and GLDAS 

products were not optimized to match the sparse in-situ networks so this comparison is not entirely fair, but they 

were shown to provide context.  180 

Another machine learning-based model, SoMo.ml, obtained by an LSTM model trained solely on global in-situ 

networks (O and Orth, 2021), has been evaluated on global in-situ networks using the spatial cross-validation 

method. Notably, the SoMo.ml product provides soil moisture estimation from 0-10 cm depth, not 0-5cm depth. 

Its final product was obtained by retraining the model using all available sites and times rather than by using 

spatial cross-validation (spatial cross-validation is regarded as a more rigorous test, so this comparison puts our 185 

model at a disadvantage). The SoMo.ml model also differs from the multitask model as it uses different input 

data, only in-situ data in calculating the loss function, and a sequence-to-one structure. Despite these differences, 
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we still think a best effort at comparison could be useful to the community. The model performance under different 

experiments is compared with the ISMN in-situ data, while the final product input and output data are both global 

9-km grid data. All of the comparison datasets and results are listed in Table S3 and Table S4 in the Supplementary 190 

Material, respectively. We also resampled the model’s input data and the other products to retrain a new model. 

They were compared at the same resolution of 0.25 degrees. The model’s performance dropped slightly but the 

results supported the same conclusions as the 9-km resolution (Table S5).  

2.4. The experiments. 

To understand the model’s performance for short-distance spatial interpolation, we ran random K-fold cross-195 

validation for random spatial tests. To understand performance for long-distance spatial extrapolation, we slightly 

modified this procedure and ran cross-continental tests. We also ran a 7-fold cross validation experiment. 

However, there was no significant difference in their results. To save computational resources, we showed the 

results from the 5-fold experiments. We randomly separated the in-situ and satellite data into 5 groups. In each 

round, we used 4 of the 5 groups to train the multitask model, and used the remaining one for testing. We repeated 200 

this for 5 rounds, so that each point was tested. In the cross-continental test, we divided the global data into 7 large 

regions. In each round, we kept one region’s data as the test set and used the rest as the training data set. We 

repeated this process 7 times, so that each region was treated as the test region once. Both the spatial training and 

test periods were from 01 April 2015 to 31 December 2020. We also ran temporal tests, for which the training 

period was from 01 April 2016 to 31 December 2020, and the test period was from 01 April 2015 to 31 March 205 

2016. 

2.5. Analysis of controls of model performance. 

We used a stratified analysis to explain which variables may have had control over the model’s performance. We 

first trained a random forest model from the scikit-learn library (Pedregosa et al., 2011) in order to identify the 

first few important factors influencing correlation (R) of the LSTM model in these experiments. A Random Forest 210 

(RF) model is a classification/regression algorithm consisting of many decision trees that use bagging and 

randomness of features to create a series of decision trees. It is suitable for non-linear data and reduces the risk of 

over-fitting. Briefly, RF uses a collection of decision trees to predict the R values. At the nodes of each tree, the 

data is split into two bins to minimize the variance of the bins after the split. Therefore we could calculate the 

average contribution of each factor to the reduction of variance and then obtain the ranking of importance. Note 215 

that the importance ranking is not about “is factor A important for predicting soil moisture?”, but rather “are there 

certain ranges of a factor, or joint ranges of multiple factors, where the model behaves more poorly than other 

ranges?”. From the importance results, we chose two importance factors and plotted R as a function of these 

factors to explore and interpret how they controlled model performance. The goal was to gain a physical 

interpretation of why the model sometimes produced lower-quality outputs, and offer some possible guidance 220 

about when to be more cautious in relying on model results.  

2.6. Evaluation Metrics. 

The metrics used to evaluate the Multitask model’s performance include Pearson’s correlation coefficient (Corr), 

bias, root-mean-square error (RMSE), and unbiased RMSE (ubRMSE), in which RMSE is calculated after bias is 
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removed. These metrics are the median value of all satellite grids and in-situ. When we calculate these metrics, 225 

we remove the observed and predicted data when there is a nan value (not a number; an error) in the observation. 

3. Results and Discussion 

3.1. Error types and temporal tests. 

Before we dive into the results, we first need to discuss several error types so it is easier to interpret the results. 

We can roughly separate soil moisture modeling errors into multiple components: (A) climatic forcing errors; (B) 230 

training data limitations and nonstationarity (e.g., the model being unable to learn the correct response to drastic 

changes that have never been seen before); (C) errors due to uncaptured spatial heterogeneity in soil properties; 

and (D) model training errors (i.e., overfitting or underfitting to the training data resulting in mismatches for the 

testing data). Among these, A and B are likely to manifest as errors in the temporal tests. B especially appears as 

large temporal test errors when compared to the spatial test errors, which would indicate strong nonstationarity. 235 

Both B and C can be reduced when there are more numerous or more accurate training data. C appears as a large 

error in the spatial test, indicating that either the available soil property data are not accurate or diverse enough to 

reflect the impacts of soil texture, or there are local hydrologic processes, e.g,. riverine inundation or irrigation, 

that are unknown to the LSTM (not contained in the inputs). C will also modestly decrease as data density 

increases (as training sites inherently become closer together), but typically cannot be removed entirely. D appears 240 

as a large difference between training and testing metrics. It is worthwhile to note that due to a “data synergy” 

effect (Fang et al., 2022), LSTM models typically (although not always) perform better on each site when given 

data from more numerous or more diverse sites. 

 

The temporal tests (trained on some sites in one time period and tested on the same sites in another time period), 245 

which are used to establish a reference performance level, showed a strong ability for LSTM to capture soil 

moisture dynamics around the world, posting a global median correlation (R) of 0.837 (Table 1a & the sky blue, 

second box from the right in Figures 1 & 2). Because LSTM has learned from the history of the sites, these test 

region-aggregated temporal test metrics are normally higher than spatial tests (except for Alaska, which is to be 

discussed below), and reflect the inherent and geographically-varying difficulties of soil moisture modeling in 250 

different regions. The temporal test R values for different regions follow this order: Africa_North>Australia> 

Asia>CONUS>Europe>Africa_South~=Alaska. One immediately apparent observation is that this order is not 

related to the number of sites in each region, nor the density of sites. For example, the highest-ranking (in terms 

of R) regions are Africa_North, Australia, and Asia, which all are among the regions with the lowest counts of 

sites. Alaska has a relatively high site density, but had the lowest median R, which could be attributed to the 255 

unique difficulties associated with frozen soil and thawing permafrost. This observation suggests that more 

training sites on these continents may not result in significantly better temporal test results at existing sites. 

Africa_South was more difficult than Africa_North, presumably because more sites are located in arid 

environments (LSTM has previously shown lower performance in such regions in the CONUS, as discussed in 

Feng et al. (2020)). While these results show that there are some regions in the world that are more difficult to 260 

capture than others for the prediction of soil moisture, the overall results are encouraging. The model’s 
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performance over these regions indicates that the quality of the forcing (MSWEP+GPM+ERA5 precipitation) and 

soil characterization data is globally consistent. 

 

Apart from Alaska, there were no particularly strong spatial patterns in either R or RMSE in the random spatial 265 

(cross-validation) tests (Figure 3). Over the CONUS, there was a mild concentration of poor performing sites in 

the northwest. In Europe, we found poor-performing sites in the central region, e.g., Hungary and Romania. Other 

than that, poorly performing sites were interspersed among the well-performing sites, suggesting that most of the 

causes of poor performance are local rather than climatic effects, which we will explore in Section 3.3. The cross-

continental tests led to a widespread decrease in R, in comparison to the random spatial tests (Figure 4). While 270 

some African sites, like those immediately south of the Sahara desert (Figure 4c), had noticeably deteriorated 

performance, some other sites in fact improved, like the most southern three sites in Africa_South (Figure 4f). 

3.2. Randomly-sampled spatial cross-validation 

The random spatial (randomly-sampled cross-validation tests), which examined the effect of spatial interpolation, 

showed record-breaking results despite their slight performance decline compared to the temporal tests. The global 275 

median R was 0.792, ubRMSE was 0.056, and RMSE was 0.075, all of which were slightly better than the CONUS 

median values (Table 1b & the wheat-colored, third box from the right in Figures 1 & 2). In contrast, the SMAP 

9-km product and GLDAS had global median R values of 0.621 and 0.608, respectively. It should be noted that 

the numbers are not entirely comparable: SMAP 9-km and GLDAS were not calibrated fully on the sparse in-situ 

sites. As expected, at the global scale, the training metrics were slightly better and had a smaller spread than that 280 

for the temporal and spatial tests. The LSTM-based SoMo.ml model obtained a median R of ~0.6 for spatial cross-

validation (Figure 7 in O & Orth, 2021), while the downloadable SoMo.ml product (0.805 as shown in Figures 1 

& 2) was obtained based on training on all the sites and time periods and thus should in fact be compared to the 

our training period results (the rightmost box in each panel, R=0.853). It should be noted that SoMo.ml has soil 

moisture for multiple depths but we only explored the 5cm product here. The closest model to the multitask LSTM 285 

is the one from Beck et al. (2021) (we do not have the data to plot their results), which was calibrated on 177 of 

the soil moisture sites and tested on the others. Their MSWEP+HBV model obtained a median R value of 0.78. 

Their performance is competitive and quite impressive for a process-based model, but unfortunately the HBV 

model only outputs a water storage value (in mm) that can be correlated to the fluctuation of observed soil 

moisture, not the soil moisture itself, and thus other metrics like bias cannot be calculated (additional linear 290 

transformations are required to obtain soil moisture, which introduces uncertainty). It would be interesting to 

explore how HBV or similar models would react to the cross-continental test below, where it may show some 

advantages.  

 

In general, the difference between the training and temporal test is small so we regard the model training error to 295 

be small. Switching from the temporal test to the random spatial test, most regions suffered a small decline in 

performance, suggesting the impact of spatial heterogeneity is larger than the impact of temporal nonstationarity 

for soil moisture predictions. Regions seeing noticeable declines include the CONUS (from 0.847 to 0.790), Asia 

(0.873 to 0.762), and Australia (0.877 to 0.778), which could reflect the limited quality of soil texture data as well 

as processes that cannot be described by the input attributes. Alaska stood out as the exception (temporal test 300 

https://www.zotero.org/google-docs/?broken=cDqZdi
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R=0.654, spatial test R=0.789), which is in fact consistent with our theory of errors discussed earlier and highlights 

the rapid changes facing arctic regions. Alaska is challenging because it is the frontier of rapid changes in 

permafrost thawing and months of frozen ground conditions. As a result, temporal nonstationarity in that region 

trumps spatial heterogeneity. This observation suggests that the soil moisture dynamics in Arctic regions in the 

coming years will differ materially from those in the past decades.  305 

 

Precipitation data quality exerts an important influence on the performance of the model but does not materially 

change the model comparisons. MSWEP is a high-quality global precipitation dataset (daily, 0.1° resolution) 

arising from blending multiple forcings datasets and correcting their biases (Beck et al., 2019). To support a fair 

comparison, we also ran our multitask model with the more widely used ERA5 precipitation data, which gives 310 

slightly lower-performing results. The multiscale model still outperformed reference products (Table S6 in 

Supplementary Material).  We further note that our previous CONUS results used the NLDAS forcing data, which 

is more customized toward North America, and obtained an R of 0.901 (Liu et al., 2022). We thus conclude that 

the forcing dataset used has a moderate impact on results, and needs to be the same for models to be fully 

comparable. 315 

3.3. Cross-continental tests. 

As expected, model performances dropped significantly in the cross-continental test (testing on a continent where 

no training data was provided), but even under this adverse situation, the multitask LSTM model surpassed or 

equaled the performance of SMAP in all regions except Asia (Table 1c, Table S4, Figures 1 & 2). When the 

CONUS was included as a training region, the R value in all regions except Alaska stayed above 0.64. When both 320 

the CONUS and Europe were included (again, except for Alaska), there seemed to be a baseline performance level 

(R=0.70) which the model would not fall below, despite there being no training data from the test continent. For 

Africa and Australia, the advantages of the multitask model (multitask_exclude in Figure 2) over SMAP or 

GLDAS are prominent. This suggests even in the no-data scenario, we could consider the multitask LSTM model 

to be a viable product. 325 

 

Interestingly, the fewer sites a region had, the less impact there was by switching from the random spatial to the 

cross-continental test (Table 1c & third box from the left in Figures 1 & 2). For Africa_North, Africa_South, and 

Australia, there was no decline from the random spatial test (Table 1b) to the cross-continental test (Table 1c). 

Asia saw a larger impact, with R dropping from 0.762 in the spatial test to 0.711 in the cross-continental test. We 330 

notice precipitous drops for Alaska (median R from 0.789 to 0.581 -- again suggesting soil moisture dynamics 

there are materially different from other parts of the world), Europe (0.791 to 0.646), and the CONUS (0.790 to 

0.605). We thus conclude that when a region had very few sites but high heterogeneity, these sites only played a 

minor role in training the model, and thus removing them did not materially change the model. When a region 

had a large number of sites, like the CONUS or Europe, removing them substantially reduced the training data 335 

diversity. The quality of a DL model is a strong function of its training data -- thus it would be severely weakened 

if a large part of its training data were removed.  
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It is also interesting that African, Australian, and Asian sites had good performance in this experiment. It seems 

to suggest their soil types and rainfall-moisture responses have already been covered by similar sites in the 340 

CONUS and Europe, and thus the model was already sufficient. With diverse climates and landscapes ranging 

from desert to temperate forest and from croplands to wetlands, the CONUS networks play a dominant role in 

providing training on how soil moisture responds to different forcings, as modulated by the soil and landscape 

characteristics. We cannot know for certain that the model will work well in other parts of Africa and Asia until 

we have more in-situ sites there. However, the current results at least can make us hopeful that, the model will 345 

likely produce good results in some parts of the untrained world and will likely add value beyond satellite products. 

3.4. Factorial influences on model performance 

Due to LSTM’s strong ability to fit to data, it can serve as a probe for process complexity (Liu et al., 2022; Feng 

et al., 2022, 2020; Tsai et al., 2021): those sites that LSTM cannot adequately capture may contain complicated 

processes that are not well described by the inputs. The factorial importance analysis indicates that slope aspect, 350 

average soil moisture, and surface solar radiation downwards are the top three factors that influence the multitask 

LSTM model’s R in the temporal test (Figure 5). The RF model has a test correlation of 0.6 (with 80% training 

data and 20% test data) but its only purpose here is to provide a reading on the top three factors. We have also 

tried using Gradient Boosted Decision Trees  (Friedman, 2001) which produced a test correlation of 0.77, and the 

top three important factors were slope aspect, precipitation, and surface solar radiation downwards. Therefore, 355 

this model choice does not qualitatively affect our conclusions. As a reminder, the feature importance test is based 

on training random forest (RF) models with these inputs listed in Figure 5, and R from the temporal test serves as 

the target. A high-ranking factor in Figure 5 implies that it not only has influence on soil moisture, but also on the 

predictability of soil moisture. It could be that in a certain range of this factor (the range may be conditional on 

other factors due to factorial interactions) there are not that many sites of this kind (it is a minority class that is 360 

not well represented in the training dataset), or that some latent processes become important. Nevertheless, due to 

the inherent limitations of machine learning, factorial importance is only a hypothesis rather than confirmed truth 

(Tsai et al., 2021). As a result, human interpretation of the results will be required. Because the sensitivity to 

radiation is somewhat difficult to interpret, here we focus on average soil moisture and aspect. 

 365 

The model correlation in the temporal test generally rises as soil moisture goes up, until reaching the wettest 

regime (0.48-0.6), where its variability increases (Figure 6-I-h). The sites in the middle range tend to have 

continuity in soil moisture and regular rainfall patterns, which are most ideal for LSTM. There is a clear rising 

trend in R for the temporal test, from dry to wet sites. The driest sites may be difficult to predict due to scarce but 

sudden rainfall events that quickly dry out, which reduces the usefulness of LSTM’s memory capability. When 370 

we plotted the spatial test R (Figure 6-II-h), the pattern is similar but less pronounced, which suggests the driest 

sites are also more impacted by temporal non-stationarity than spatial heterogeneity, because they have seen 

limited storm events. Toward the wettest regime, saturation often occurs, and soil moisture may be influenced by 

groundwater or flooding processes which are difficult to account for.  

 375 

Interestingly, aspect has a nonlinear effect that varies in different soil moisture regimes (Figure 6-I-i) due to its 

impact on shading and solar insolation. It is well known that aspect can have a predominant control on soil 
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moisture and plants for dry sites, as witnessed by different vegetation densities and species and microbial 

communities on south-facing and north-facing slopes (Armesto and Martίnez, 1978; Bennie et al., 2006; Xue et 

al., 2018). For the very dry sites (average SMAP<0.08), only those with mid-range aspects tended to have a decent 380 

correlation. The temporal test R (Figure 6-I-i) had a larger response to aspect than the spatial test R (Figure 6-II-

i), which suggests this difficulty is not a result of too few training sites in space, but a result of highly complex 

and nonstationary temporal trends in this combined range of average soil moisture and aspect. The north-facing 

dry slopes have a lower R perhaps because of complex vegetation-soil moisture interactions in this regime, which 

may shift from year to year. The most south-facing dry slopes also have low R, perhaps because they approach 385 

the lower limit of soil moisture and can see large changes due to individual storm events. On the other hand, for 

the wetter soil regimes, the role of aspect is reduced --- we see noticeably reduced R only for the most south-

facing slope (Figure 6-II-i). This reduced impact may be because soil moisture is no longer such a strong selector 

of vegetation species on these slopes and thus the distinction of aspect becomes less important. 

 390 

In the vast parts of Africa or Asia where soil moisture predictions are required but not well-supported by in-situ 

measurements, the analysis above can help us to anticipate challenges. At the hillslope scale, our predictions may 

have a larger error for those north-facing slopes in the dry regime and also straight south-facing slopes for the 

Northern Hemisphere (to be reversed for the Southern Hemisphere). The results highlight the importance of aspect 

controls on soil moisture and suggest that future models will need to well represent its effect before they can be 395 

accurate. 

3.5. Further discussion 

Our correlation is modestly higher than the previous state-of-the-art model, the well-calibrated conceptual 

hydrologic model, HBV. Even though that model does not simulate the physical quantity of soil moisture, it could 

be modified to have a module that does. However, to obtain suitable parameters on the global scale and improve 400 

the physical processes, we think adding differentiable programming to the model will give it the adaptive 

capability to learn from big data (Feng et al., 2022; Shen et al., 2023; Aboelyazeed et al., 2022; Bindas et al., 

2022). It is possible that such a model may generalize better than LSTM over long distances due to the imposed 

physical constraints.  

 405 

Typically, for many hydrologic applications (Fang et al., 2022; Feng et al., 2021; Liu et al., 2022; Rahmani et al., 

2021a), a spatial test is a tougher test than a temporal test for fully data-driven models, showing the strong impacts 

of spatial heterogeneity. This could either mean the inputs of the model do not completely describe the problem, 

or there are not enough sites in space with different combinations of input attributes for the model to fully resolve 

their impacts. Typically, spatial error can be gradually reduced if there are more training sites in space. However, 410 

in both Alaska (Figure 1) and north-facing dry slopes around the world (Figure 6-II-i), temporal errors have 

exceeded spatial errors. Consistently, when we ran K-fold experiments with a higher K, it also did not result in 

noticeably different performances for the models (data not shown). These observations not only highlight the 

unique challenges of these places (rapid climate-driven changes and strong nonstationarity), but also suggest that 

the number of training sites is not a predominant issue for limiting the accuracy of soil moisture predictions. 415 
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While our product, under the most stringent test (cross-continental), did not surpass SMAP by a large margin, it 

is suitable as a long-term simulation tool, as it does not require near-real-time observations. Thus it can be used 

to assess future climate change impacts. It is also easy to further expand LSTM networks to enable “data 

integration” or “data assimilation”, which absorbs information from recent observations to improve future 420 

forecasts (Fang and Shen, 2020; Feng et al., 2020). Satellite observations could also be employed as the recent 

observations, as it could help to update LSTM’s hidden states. Such assimilation typically results in a significant 

boost in performance and the elimination of bias. Compared to data assimilation with traditional models, we could 

skip the bias correction procedure, as LSTM models tend to have little bias and will adaptively learn to remove 

the bias by themselves. Data assimilation only has short-term impacts, however, and the value of the information 425 

content of the data will eventually wane as the simulation proceeds. 

 

The LSTM-based SMAP modeling product is already deployed at scale via the operational agricultural advice 

application of PlantVillage, a nonprofit organization based at Penn State. We intend to put the multitask model 

into production alongside alternative estimates. This service is provided free-of-charge to farmers and extension 430 

services in Africa through the USAID Current and Emerging Threats to Crops Innovation Lab (CETC IL). 

PlantVillage currently scales out precipitation data to 13 million farmers/week in Kenya and Burkina Faso, and 

believes the ability to complement this with more accurate information on soil moisture will be of large assistance 

to farmers coping with droughts and erratic weather as a result of climate change. It is also valuable to help farmers 

optimize fertilizer application rates, which has become even more critical due to the massive increase in fertilizer 435 

prices over the last 12 months.  

4. Conclusions 

When evaluated against sparse in-situ soil moisture networks, the multitask LSTM model outperformed currently 

available satellite-based products, land surface models, and an alternative DL model, across most continents. 

Judging by the 5-fold spatial test model results, the model not only had dramatically lower bias but also the highest 440 

correlation with in-situ soil moisture networks. Learning from multiple data sources, the model can be deployed 

at large scales at a small computational cost, and can be expanded to incorporate data assimilation capabilities. 

These features make it a suitable operational tool to democratize access to information for agriculture in 

developing regions. While we wish for more measurements in Africa for model training and validation, the results 

are at least encouraging. The model can utilize satellite-estimated soil moisture as one of the learning targets while 445 

also learning from in-situ data, and thus is well-poised to provide higher-resolution outputs than the satellite-based 

products.  

 

The LSTM model served as a probe for process complexity and showed that mean soil moisture and aspects have 

important controls on soil moisture predictability, while Arctic regions are inherently more difficult due to rapid 450 

soil changes. For the dry slopes (average SMAP soil moisture <0.08) that face north, there could be complicated 

vegetation-soil moisture interactions that are difficult to predict. For the wetter slopes, the role of aspect becomes 

less prominent. Error analysis suggests that in these difficult regions, temporal errors can outweigh spatial errors, 

thus having longer data records and monitoring most recent changes can be more important than adding more 

sites. 455 
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The multitask LSTM model can generalize well into highly data-sparse regions. Even in the worst-case scenario 

(no training data on a whole continent), the model was able to surpass SMAP’s accuracy on most continents. It 

did seem to have some trouble generalizing to Alaska, where the soil dynamics are much different from other 

regions and are also experiencing rapid changes. However, it provided decent performance when tested in data-460 

sparse continents where it has not been trained, like Africa and Australia, showing that these predictions can be 

beneficial for such regions where there are not a lot of published soil moisture datasets. This modeling success is 

partially due to the strong ability of the model to generalize, but also because the soils in the known sites in Africa 

are similar to those in the training set. It is fortunate that the more intensively instrumented CONUS and Europe 

already contain a wide variety of soils and climates for training, without which the model would suffer greatly.  465 
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Figure 1. Comparison of model performances for different continents in data-rich regions. Models  from 655 

left to right are ranked from lowest to highest global correlation. We plotted results for the training period 

as well as temporal, spatial, and cross-continental tests. “Multitask_exclude” means the cross-continent 

test: the models were tested on a continent but sites from that continent were excluded from training. The 

SoMo.ml product shown here was trained on all sites in all time periods so it is most comparable to our 

“Multitask_train” product. 660 
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Figure 2. Same as Figure 1 but for data- sparse regions: Africa, Asia, Australia.  

 

 

  665 
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Figure 3. Metric distributions for the multitask model random spatial cross-validation tests. (I.) Correlation 

and (II.) RMSE of spatial cross-validation tests for (a) the CONUS, (b) Europe, (c) Africa_North, (d) 

Alaska, (e) Asia, (f) Africa_South, and (g) Australia. The training and testing period were both from April 

1, 2015 to December 31, 2020. Maps are made with Natural Earth imagery, no permission needed (Natural 670 

Earth, 2022). 
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Figure 4. Metric distributions for the multitask model continental cross-validation tests. (I.) Correlation 675 

and (II.) RMSE of continental cross-validation tests for (a) the CONUS, (b) Europe, (c) Africa_North, (d) 

Alaska, (e) Asia, (f) Africa_South, and (g) Australia. The training and testing period were both from April 

1, 2015 to December 31, 2020. Maps are made with Natural Earth imagery, no permission needed (Natural 

Earth, 2022). 
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Figure 5. The feature importance determined from a Random Forest (RF) model constructed to predict 

temporal test R using all the unduplicated category data presented in this paper as inputs. The correlation 

of this model is 0.6. Aspect, average soil moisture and downward radiation are the top three factors. A 685 

separate Gradient Boosted Decision model was also trained, given a correlation of 0.77, and the top three 

important factors were similar: slope aspect, precipitation, and downward solar radiation. 
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 690 

Figure 6. Stratified analysis of the distribution of R values from (I.) temporal and (II.) spatial tests. (a-g) 
The maps show the global distribution of test sites as a function of average SMAP soil moisture value and 
aspect. The colors on the map represent aspect cosine. The average SMAP<0.08 sites are a minority class 
and are represented by squares. (h) The SMAP boxplot shows the distribution of R under different average 
soil moisture values (SMAP). (i) The aspect boxplot shows the distribution of R in different aspect cosine 695 
bins, where the left one indicates SMAP <=0.08, and the right one indicates SMAP>0.08. The upper panels 
show temporal test R values (which characterize temporal nonstationarity) while the lower panels show 
spatial test R values, which characterize the effect of spatial heterogeneity. Maps are made with Natural 
Earth imagery, no permission needed (Natural Earth, 2022). 
 700 
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Table 1. Model's performance in three scenarios. (a) The model’s temporal testing in different regions. (b) 

The model’s spatial cross-validation testing in different regions. (c) The model’s continental cross-

validation testing in different regions. 

(a) temporal testing 

Median 
metrics 

CONUS Europe Africa_N
orth 

Alaska Asia Africa_S
outh 

Australia Global 

Bias 0.003 -0.005 -0.014 0.001 -0.007 -0.044 0.001 0.001 

RMSE 0.051 0.058 0.031 0.075 0.049 0.056 0.055 0.051 

ubRMSE 0.043 0.037 0.026 0.056 0.035 0.048 0.044 0.043 

Corr 0.847 0.808 0.881 0.654 0.873 0.656 0.877 0.837 

(b) spatial cross-validation testing 

Bias -0.004 0.004 0.029 0.007 0.011 0.021 -0.010 -0.0003 

RMSE 0.075 0.080 0.067 0.079 0.067 0.074 0.096 0.075 

ubRMSE 0.057 0.057 0.048 0.053 0.052 0.071 0.055 0.056 

Corr 0.790 0.791 0.861 0.789 0.762 0.647 0.778 0.792 

(c) continental cross-validation 

Bias -0.009 -0.016 0.041 0.039 0.052 -0.067 -0.016 -0.002 

RMSE 0.099 0.104 0.047 0.119 0.092 0.078 0.065 0.098 

ubRMSE 0.071 0.062 0.032 0.075 0.055 0.052 0.061 0.068 

Corr 0.605 0.646 0.87 0.581 0.711 0.718 0.806 0.624 
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