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Abstract. We analyse some of the challenges in quantifying uncertainty when using geohazard models. Despite 

the availability of recently developed sophisticated ways to parameterise models, a major remaining challenge is 

constraining the many model parameters involved. Additionally, there are challenges related to the credibility of 

predictions required in the assessments, the uncertainty of input quantities, and the conditional nature of the 

quantification, making it dependent on the choices and assumptions analysts make. Addressing these challenges 10 

calls for more insightful approaches yet to be developed. However, as discussed in this paper, clarifications and 

reinterpretations of some fundamental concepts and practical simplifications may be required first. The research 

thus aims to strengthen the foundation and practice of geohazard risk assessments. 

1 Introduction 

Uncertainty quantification (UQ) helps determine the uncertainty of a system’s responses when some quantities 15 

and events in such a system are unknown. Using models, the system’s responses can be calculated analytically, 

numerically, or by random sampling (including the Monte Carlo method, rejection sampling, Monte Carlo 

sampling using Markov chains, importance sampling, and subset simulation) (Metropolis and Ulam, 1949; Brown, 

1953; Ulam, 1961; Hastings, 1970). Sampling methods are frequently used because of the high-dimensional nature 

of hazard events and associated quantities. Sampling methods result in less expensive and more tractable 20 

uncertainty quantification than analytical and numerical methods. In the sampling procedure, specified 

distributions of the input quantities and parameters are sampled, and respective outputs of the model are recorded. 

This process is repeated as many times as required to achieve the desired accuracy (Vanmarcke, 1984). Eventually, 

the distribution of the outputs can be used to calculate probability-based metrics, such as expectations or 

probabilities of critical events. Model-based uncertainty quantification using sampling is now more often used in 25 

geohazard assessments, e.g., Uzielli and Lacasse (2007), Wellmann and Regenauer-Lieb (2012), Rodríguez-Ochoa 

et al. (2015), Pakyuz-Charrier et al. (2018), Huang et al. (2021), Luo et al. (2021), Sun et al. (2021a).  

This paper considers recent advances in UQ and analyses some remaining challenges. For instance, we note 

that a major problem persists, namely constraining the many parameters involved. Only some parameters can be 

constrained in practice based solely on historical data (e.g., Albert, Callies, and von Toussaint, 2022). Another 30 

challenge is that model outputs are conditional on the choice of model parameters and the specified input 

quantities, including initial and boundary conditions. For example, a geological system model could be specified 

to include some geological boundary conditions (Juang et al., 2019). Such systems are usually time-dependent and 

spatial in nature and may involve, e.g., changing conditions (e.g., Chow, Li, and Koh, 2019). Incorporating 

uncertainties related to such conditions complicates the modelling and demands further data acquisition. Next, 35 

models could accurately reproduce data from past events but may be inadequate for unobserved outputs or 
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predictions. This might be the case when predicting, e.g., extreme velocities in marine turbidity currents, which 

are driven by emerging and little-understood soil and fluid interactions (Vanneste et al., 2019). Overlooking these 

challenges implies that the quantification will only reflect some aspects of the uncertainty involved. These 

challenges are, unfortunately, neither exhaustively nor clearly discussed in the geohazard literature. Options and 40 

clarifications addressing these challenges are underreported in the field. Analysing these challenges can be useful 

in treating uncertainties consistently and providing meaningful results in an assessment. This paper’s objective is 

to bridge the gap in the literature by providing an analysis and clarifications enabling a useful quantification of 

uncertainty.  

It should be emphasised that, in this paper, we consider uncertainty quantification in terms of probabilities. 45 

Other approaches to measure or represent uncertainty have been studied by, for example, Zadeh (1968), Shafer 

(1976), Ferson and Ginzburg (1996), Helton and Oberkampf (2004), Dubois (2006), Aven (2010), Flage et al. 

(2013), Shortridge, Aven, and Guikema (2017), Flage, Aven, and Berner (2018), and Gray et al. (2022a,b). These 

approaches will not be discussed here. The discussion about the complications in UQ related to computational 

issues generated by sampling procedures is also beyond the scope of the current work.  50 

The remainder of the paper is as follows. In Section 2, based on recent advances, we describe how uncertainty 

quantification using geohazard models can be conducted. Next, some remaining challenges in UQ are identified 

and illustrated. Options to address the challenges in UQ are discussed in Section 3. A simplified example, further 

illustrating the discussion, is found in Section 4, while the final section provides some conclusions. 

2 Quantifying uncertainty using geohazard models 55 

In this section, we make explicit critical steps in uncertainty quantification (UQ). We describe a general 

approach to UQ that considers uncertainty as the analysts’ incomplete knowledge about quantities or events. The 

UQ approach described is restricted to probabilistic analysis. Emphasis is made on the choices and assumptions 

usually made by analysts.  

A geohazard model can be described as follows. We consider a system (e.g., debris flow) with a set of specified 60 

input quantities X (e.g., sediment concentration, entrainment rate) whose relationships to the model output Y (e.g., 

runout volume, velocity, or height of flow) can be expressed by a set of models Ɱ. Analysts identify or specify X, 

Y, and Ɱ. A vector Θɱ (including, e.g., friction, viscosity, turbulence coefficients) parameterises a model ɱ in Ɱ. 

The parameters Θɱ determine specific functions among a family of potential functions modelling the system. 

Accordingly, a model ɱ can be described as a multi-output function with, e.g., Y = {runout volume, velocity, 65 

height of flow}. Based on Lu and Lermusiaux (2021), we can write:  

ɱ: Xs,t˟ Θɱ→Ys,t           (1) 

ɱ ≡ (Eɱ, SGɱ, BCɱ, ICɱ)           (2) 

Realisations of Y are the model responses y when elements in X take the values x at a spatial location s ∈ S and 

a specific time t ∈ T, and parameters θɱ ∈ Θɱ are used. In Eq. (1), X⊂ℝ𝑑𝑿  is the set of specified input quantities, 70 

T⊂ℝ𝑑𝑻  is the time domain, S⊂ℝ𝑑𝑺  is the spatial domain, Θɱ⊂ℝ
𝑑𝜣ɱ  corresponds to a parameter vector, and 

Y⊂ℝ𝑑𝒀  is the set of model outputs. To consider different dimensions, d = {1, 2, or 3}. The system is fully described 

if ɱ is specified in terms of a set of equations Eɱ (e.g., conservation equations), the spatial domain geometry SGɱ 
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(e.g., extension, soil structure), the boundary conditions BCɱ (e.g., downstream flow), and the initial conditions 

ICɱ (e.g., flow at t = t0), see expression (2). 75 

Probabilities reflecting analysts’ uncertainty about input quantities are specified in uncertainty quantification. 

Such distributions are then sampled many times, and the distribution of the produced outputs can be calculated. 

The output probability distribution for a model ɱ can be denoted as f(y|x,θɱ,ɱ), for realisations y, x, θɱ, ɱ of Y, X, 

Θɱ, and Ɱ, respectively.  

Betz (2017) has suggested that the parameter set is fully described by a parameter vector Θ, Eq. (3): 80 

Θ={Θɱ,ΘX,Θε,Θo}          (3) 

in which, Θɱ refers to parameters of the model ɱ, ΘX are parameters linked to the input X, Θε is the vector of the 

output-prediction error ε, and Θo is the vector associated with observation/measurement errors. More explicitly, to 

compute an overall joint probability distribution, we may have the following distributions:  

• f(y|x,θɱ,ɱ) is the distribution of Y when X takes the values x, and parameters θɱ ∈ Θɱ and a model ɱ ∈ 85 

Ɱ are used to compute y;   

• f(x|θX,ɱ) is the conditional distribution of X given the parameters θX  ∈ ΘX and the model ɱ. Note that 

each ɱ defines which elements in X are to be considered in the analysis;  

• f(x|x̂,θo) is a distribution of X given the observed values X̂ = x̂ and the observation/measurement error 

parameters θo ∈ Θo; 90 

• additionally, one can consider f(y*|y,θε,ɱ), which is a distribution of Y*, the future system’s response, 

conditioned on the model output y and the output-prediction error vector θε ∈ Θε. The output-prediction 

error ε is the mismatch between the model predictions and non-observed system responses y*. ε is used 

to correct the imperfect model output y (Betz, 2017; Juang et al., 2019).  

If, for example, the parameters Θɱ are poorly known, a prior distribution π(θɱ|ɱ) weighing each parameter 95 

value θɱ for a model ɱ is usually specified. A prior is a subjective probability distribution quantified by expert 

judgement representing uncertainty about the quantities prior to considering data (Raices-Cruz, Troffaes, and 

Sahlin, 2022). When some measurements ɗ = {Ŷ = ŷ, X̂ = x̂} are available, such parameter values θɱ, or their 

distributions π(θɱ|ɱ), can be constrained by back-analysis methods. Note that measurements ɗ form part of 

different sources of data Ɗ, i.e., ɗ ∈ Ɗ. Back analysis methods include matching experimental measurements ŷ 100 

and calculated model outputs y using different assumed values 𝜃ɱ
′ . Values for θɱ can be calculated as follows 

(based on Liu et al., 2022): 

θɱ = argmin[ŷ-y(x̂,𝜃ɱ
′ )]            (4) 

The revision or updating of the prior π(θɱ|ɱ) with measurements ɗ to obtain a posterior distribution denoted 

π(θɱ|ɗ,ɱ) is also an option in back analysis. The updating can be calculated as follows (based on Juang et al., 105 

2019; Liu et al., 2022):  

𝜋(𝜃𝒎|ɗ, ɱ) =  
𝓛(𝜃𝒎|ɗ)𝜋(𝜃𝒎|ɱ)

ʃ 𝓛(𝜃𝒎|ɗ)𝜋(𝜃𝒎|ɱ)d𝜃𝒎

 
(5) 

 

where ℒ(θm|ɗ) = f(ɗ|θm) is a likelihood function, i.e., a distribution that weighs ɗ given θɱ.  

Similarly, we can constrain any of the distributions above, e.g., f(y|x,θɱ,ɱ), or f(x|θX,ɱ) to obtain f(y|x,θɱ,ɗ,ɱ) 

and f(x|θX,ɗ,ɱ), respectively.  110 
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For a geohazard problem, it is often possible to specify several competing models, e.g., distinct geological 

models with diverse boundary conditions, see Eq. 2. If the available knowledge is insufficient to determine the 

best model, different models ɱ can be considered. The respective overall output probability distribution is 

computed as (Betz, 2017; Juang et al., 2019): 

f(y|x,Θ,Ɗ,Ɱ) = ∑ f(y|x,θ,ɗ,ɱ)ω(ɱ|Ɗ,Ɱ)         (6) 115 

f(y|x,θ,ɗ,ɱ) = ʃ f(y|x,θ,ɱ)π(θ|ɗ,ɱ)dθ             (7) 

In Eq. (6), ω(ɱ|Ɗ,Ɱ) is a distribution weighing each model ɱ in Ɱ.   

The various models Ɱ, their inputs X, parameters Θ, outputs Y, and experimental data ɗ can be coupled all 

together through a Bayesian network, as has been suggested by Sankararaman and Mahadevan (2015) or Betz 

(2017). One possible configuration of a network coupling some elements in Ɱ, X, Θ, Y, Y* is illustrated in Figure 120 

1. 

  

Figure 1: A configuration of a network coupling some elements in Ɱ, X, Θ, Y, Y* 

The previous description of a general approach to UQ considers uncertainty as that reflected in the analysts’ 

incomplete knowledge about quantities or events. In UQ, to measure or describe uncertainty, subjective 

probabilities can be used and constrained using observations ɗ. It is also explicitly shown that model outputs are 

conditional on observations ɗ made available and models Ɱ chosen by analysts. Analysts might also select several 125 

parameters Θ and initial and boundary conditions, BCɱ and ICɱ. Based on the above description, in the following, 

we analyse some of the challenges that arise when conducting UQ.  

As mentioned, back-analysis methods help constrain some elements in Θ. However, given the considerable 

number of parameters (see expressions 1-3) and data scarcity, constraining Θ is often only achieved in a limited 

fashion. Back-analysis is further challenged by the potential dependency among Θ or Ɱ and between Θ and SGɱ, 130 

BCɱ, ICɱ. We also note that back analysis, or, more specifically, inverse analysis, faces problems regarding non-

identifiability, non-uniqueness, and instability. Non-identifiability occurs when some parameters do not drive 

changes in the inferred quantities. Non-uniqueness arises because more than one set of fitted or updated parameters 

may adequately reproduce observations. Instability in the solution arises from errors in observations and the non-

linearity of models (Carrera and Neuman, 1986). Alternatively, in specifying a joint distribution f(x,θ) to be 135 

sampled, analysts may consider the use of, e.g., Bayesian networks (Albert, Callies, and von Toussaint 2022). 

However, under the usual circumstance of a lack of information, establishing such a joint distribution is 

challenging and requires that analysts encode many additional assumptions (e.g., prior distributions, likelihood 

functions, independence, linear relationships, normality, stationarity of the quantities and parameters considered), 

see e.g., Tang, Wang, and Li (2020); Sun et al. (2021b); Albert, Callies, and von Toussaint (2022); Pheulpin, 140 

X̂ 

θo 

X 
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θε 
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Bertrand, and Bacchi (2022). A more conventional choice is that x or θ are specified using the maximum entropy 

principle (MEP), to specify the least biased distributions possible on the given information (Jaynes, 1957). Such 

distributions are subject to the system’s physical constraints based on some available data. The information entropy 

of a probability distribution measures the amount of information contained in the distribution. The larger the 

entropy, the less information is provided by the distribution. Thus, by maximising the entropy over a suitable set 145 

of probability distributions, one finds the least informative distribution in the sense that it contains the least amount 

of information consistent with the system’s constraints. Note that a distribution is sought over all the candidate 

distributions subject to a set of constraints. The MEP has been questioned since its validity and usefulness lie in 

the proper choice of physical constraints (Jaynes, 1957; Yano 2019). Doubts are also raised regarding the potential 

information loss when using the principle. Analysts usually strive to use all available knowledge and avoid 150 

unjustified information loss (Christakos, 1990; Flage, Aven, and Berner, 2018). 

Options to address the parametrisation challenge also include surrogate models, parameter reduction, and 

model learning (e.g., Lu and Lermusiaux, 2021; Sun et al., 2021b; Albert, Callies, and von Toussaint, 2022; Degen 

et al. 2022; Liu et al., 2022). Surrogate models are learnt to replace a complicated model with an inexpensive and 

fast approximation. Parameter reduction is achieved based on either principal component analysis or global 155 

sensitivity analysis to determine which parameters significantly impact model outputs and are essential to the 

analysis (Degen et al., 2022; Wagener, Reinecke, and Pianosi, 2022). Remarkably, versions of the model learning 

option do not need any prior information about model equations Eɱ but require local verification of conservation 

laws in the data ɗ (Lu and Lermusiaux, 2021). These approaches still require large data sets sourced systematically, 

which is a frequent limitation in geohazard assessments. More importantly, however, is that, like many models, 160 

the credibility of unobserved surrogate model outputs can always be questioned, since, for instance, records may 

miss crucial events (Woo, 2019). Models may also fail to reproduce outputs caused by recorded abrupt changes 

(e.g., extreme velocities of turbidity currents) (Alley, 2004). An additional point is the issue of incomplete model 

response, which refers to a model not having a solution for some combinations of the specified input quantities 

(Cardenas, 2019; van den Eijnden, Schweckendiek, and Hicks, 2021).  165 

In bypassing the described challenges when quantifying uncertainty, simplifications are usually enforced, 

sometimes unjustifiably, in the form of assumptions, denoted here by Ą. The set Ą can include one or more of the 

assumptions listed in Table 1. Note that the set of assumptions can be increased with those assumptions imposed 

by using specific models Ɱ (e.g., conservation of energy, momentum, or mass, Mohr-Coulomb’s failure criterion). 

Table 1. Some enforced assumptions in UQ for geohazard assessments 

 Predictions (non-observed outputs) of Y* are credible, despite models only reproducing responses based on 

historical data ɗ={Ŷ=ŷ,X=x̂}, ɗ ∈ Ɗ.  
 A model has a solution for any combination of the specified input quantities X. 

 Elements in X are fully specified. 

 Elements in X are mutually independent. 

 The joint distribution f(x,θ) distributes according to the maximum entropy principle. 

 If measurements are available, some specified input quantities X are set to specific values x= x̂. 

 Specified input quantities X are set to constant values x0, that is X=x0. 

 Some θ are set to specific point values and are mutually independent.  

 Some θ are independent of SGɱ, BCɱ, ICɱ. 

 SGɱ, BCɱ, ICɱ are set to be constant. 

 When some data ɗ is available in the form of measurements {ŷ, x̂}, likelihood functions ℒ[ɱ(θ|ɗ)] are mutually 

independent. 
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3 Addressing the challenges in uncertainty quantification 170 

From the previous section, we saw that it is very difficult in geohazard assessments to meet data requirements for 

the ideal parameterisation of models. Further, we have noted that, although fully parameterised models could potentially 

be accurate at reproducing data from past events, these may turn out to be inadequate for unobserved outputs. We also 

made explicit that predictions are not only conditional on Θ but possibly also on SGɱ, BCɱ, ICɱ, see Eq. (1-7). 

Ultimately, assumptions made also condition model outputs. More importantly, note that when only some model 175 

input quantities or parameters can be updated using data ɗ, the modelling will only reflect some aspects of the 

uncertainty involved. If the above challenges remain unaddressed, UQ lacks credibility. To address such challenges 

and provide increased credibility, clarifications and reinterpretation of some fundamental concepts and practical 

simplifications may be required, which are discussed in the following. Table 2 shows the major challenges found 

and how they are addressed in related literature, while in Table 3, some clarifications or considerations put forward 180 

by us are displayed. The discussion in this section builds on previous analysis by Aven and Pörn (1998), Apeland, 

Aven, and Nilsen (2002), Aven and Kvaløy (2002), Nilsen and Aven (2003), Aven and Zio (2013), Khorsandi and 

Aven (2017), and Aven (2019). 

Table 2. Major challenges and options to address them in geohazard assessments  

Challenges, CH Options to address the challenges, O 

Challenges related to the model outputs and system responses 

CH1. Model outputs Y lack credibility since these are 

outputs not recorded in the data ɗ,  

CH2. A model does not have a solution for a feasible 

combination of the specified input quantities X. 

O1. Credibility of predictions is judged in terms of physical 

consistency checks (Wagener, Reinecke, and Pianosi, 2022) and 

by examining the ability of models to reproduce disruptive 

changes recorded in the data (Alley, 2004).  

O2. Predictions by Bayesian forecasting methods. Based on a prior 

distribution for y, a posterior distribution of y is obtained by 

including the information provided by the model prediction in the 

form of model likelihood (Montanari and Koutsoyiannis, 2012). 

 

Challenges related to input quantities 

CH3. Data available ɗ may not include all the crucial 

historical events or disruptive changes, 

CH4. Some input quantities remain unknown 

(unidentified) to analysts during an assessment, 

CH5. The distribution f(x) or the bounds of x are 

unknown,  

CH6. Some input quantities X may be mutually 

dependent. 

 

O3. Using the maximum entropy principle (MEP) to specify the 

distributions based on the choice of physical constraints of the 

phenomena involved. To reduce unjustified information loss, 

constraining the distributions by data including data other than 

measurements (Jaynes, 1957; Christakos, 1990; Betz, 2017; Yano 

2019). 

O4. Counterfactual analysis in which alternative events to 

observed facts, including disruptive changes, are assumed to 

obtain alternative system responses using models (Pearl, 1993; 

Woo, 2019). 

O5. To specify input distributions, an exhaustive investigation of 

input uncertainty using the assumptions deviation approach 

(Aven, 2013). 

 

Challenges related to the parameters and models  

CH7. The distribution f(θ) or the bounds of θ are 

unknown,  

CH8. Some θ may be dependent on SGɱ, BCɱ, or ICɱ,  

CH9. Likelihood functions ℒ[ɱ(θ|ɗ)] may be mutually 

dependent,  

CH10. Models ɱ in Ɱ may be mutually correlated. 

 

 

  

 

O3. Using the MEP as described above. 

O6. A joint distribution of Θ, SGɱ, BCɱ, ICɱ, X for each ɱ, can be 

specified by encoding other assumptions (e.g., prior distributions, 

likelihood functions, independence, linear relationships, 

normality, stationarity) in Bayesian networks (Albert, Callies, and 

von Toussaint, 2022).  

O7. Using surrogate models, parameters reduction, and model 

learning (Lu and Lermusiaux, 2021; Albert, Callies, and von 

Toussaint, 2022).  
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Table 3. Some clarifications and considerations to address the challenges in UQ 

 

C1. Uncertainty refers to lack of knowledge about quantities or events. 

 

C2. Models are simplifications, mainly used for understanding the performance of the system and approximating its 

responses. Models are part of the knowledge of the system, and they do not introduce uncertainty. 

  

C3. The focus is on quantifying the uncertainty of the system responses rather than on the accuracy of a model reproducing 

recorded data. 

 

C4. Predictions are conditional on the model(s) chosen and the assumptions made by analysts. 

 

C5. The specification of the joint distribution f(x,θ) cannot solely rely on the use of the maximum entropy principle but on the 

full scrutiny of background knowledge Қ.  

 

C6. Some elements in the parameter set Θ are not properties of the system as such, and there could not be uncertainty about 

them. 

 

C7. Analysts may choose a model or a set of models which are believed or judged to be the best credible models. 

 

 

 

Among the clarifications, we consider a major conceptualisation suggested by the literature, which is the 

definition of uncertainty. Uncertainty refers to incomplete information or knowledge about a quantity or the 

occurrence of an event (Society for Risk Analysis, 2018). In Table 3, we denote this clarification as C1. Embracing 190 

this definition has some implications for uncertainty quantification using geohazard models. We use these 

implications to address the major complications and challenges. For instance, if uncertainty is measured in terms 

of probability, one such implication is that analysts are discouraged from using so-called frequentist probabilities. 

We note that frequentist probabilities do not measure uncertainty or lack of knowledge. Rather such probabilities 

reflect frequency ratios representing fluctuation or variation in the outcomes of quantities. Frequentist probabilities 195 

are of limited use because these assume that quantities vary in large populations of identical settings, a condition 

which can be justified only for rather few geohazard quantities. The often one-off nature of many geohazard 

features and the impossibility of verifying or validating data by, e.g., a large number of repeated tests make it 

difficult to develop such probabilities. Thus, a more meaningful and practical approach can be suggested to 

measure uncertainty by the use of knowledge-based (also referred to as judgemental or subjective) probabilities 200 

(Aven 2019). A knowledge-based probability is an expression of the degree of belief in the occurrence of an event 

or quantity by a person assigning the probability conditional on the available knowledge Қ. Such knowledge Қ 

includes not only data in the form of measurements ɗ made available, but also other data sources in Ɗ. The models 

Ɱ chosen for the prediction and the modelling assumptions Ą made by analysts are also part of Қ. Accordingly, 

to describe uncertainty about quantities, probabilities are assigned based on Қ and, therefore, those probabilities 205 

are conditional on Қ. In the previous section, we have made evident the conditional nature of the uncertainty 

quantification (i.e., the probabilities) on measured data ɗ and models Ɱ and wrote the expression f(y|x,Θ,Ɗ,Ɱ) for 

the overall output probability distribution (see Eq. 6). If assumptions Ą are also acknowledged as a conditional 

argument of the uncertainty quantification, we write more explicitly f(y|x,Θ,Ɗ,Ɱ,Ą), or equivalently f(y|x,Θ,Қ). 

We can therefore write: 210 

f(y|x,Θ,Қ) = f(y|x,Θ,Ɗ,Ɱ,Ą)         (8) 

The meaning of this expression is explained next. If, in a specific case, we would write f(y|x,Θ,Қ) = f(y|x,θ,Ɗ), 

it means that Ɗ summarises all the knowledge that analysts have to calculate y given (realised or known) x and θ. 

Accordingly, the full expression in Eq. 8 implies that to calculate y, and when knowing x and θ, the background 
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knowledge includes Ɗ, Ɱ, Ą. Note that Қ can also be formed by observations, justifications, rationales, and 215 

arguments, thus, Eq. 8 can be further detailed to include these aspects of Қ. Structured methods exist to assign 

knowledge-based probabilities (see, e.g., Apeland, Aven, and Nilsen, 2002; Aven 2019). Here we should note, 

however, that since models form part of the available background knowledge Қ, models can also inform these 

knowledge-based probability assignments. It follows that, based on knowledge-based input probabilities, an 

overall output probability distribution calculated using models is also subjective or knowledge-based (Jaynes, 220 

1957). Some of the implications of using knowledge-based probabilities are described throughout this section. 

According to the left column in Table 2, the focus of the challenges relates to the model outputs, more 

specifically predictions (CH1 and CH2), input quantities (CH3-CH6), parameters (CH7-CH9), and models 

(CH10). We recall that uncertainty quantification helps determine the system’s response uncertainty based on 

specified input quantities. Accordingly, an assessment focuses on the potential system’s responses. The focus is 225 

often on uncertainty about future non-observed responses Y*, which are approximated by the model output Y, 

considering some specified input quantities X. We recall that Y* and X* are quantities that are unknown at the 

time of the analysis but will take some value in the future, and possibly become known. Thus, during an 

assessment, Y* and X* are the uncertain quantities of the system since we have incomplete knowledge about Y* 

and X*. Accordingly, the output-prediction error ε, the mismatch between the model prediction values y, and the 230 

non-observed system’s response values y*, can only be specified based on the scrutiny of Қ.  

There is another consequence of considering the definition of uncertainty put forward in C1, which links 

uncertainty solely to quantities or events. The consequence is that models, as such, are not to be linked to 

uncertainty. Models are merely mathematical artefacts. Models, per se, do not introduce uncertainty, but they are 

likely inaccurate. Accordingly, another major distinction is to be set in place. We recall that models, by definition, 235 

are simplifications, approximations of the system being analysed. They express or are part of the knowledge of the 

system. Models should therefore be solely used for understanding the performance of the system rather than for 

illusory perfect predictions. In Table 3, we denote the latter clarification as C2. 

Regarding the challenges CH1 and CH2, we should note that geohazard analysts are often more interested in 

predictions rather than known system outputs. For instance, predictions are usually required to be calculated for 240 

input values not contained in the validation data. We consider that predictions are those model outputs not observed 

or recorded in the data, i.e., extrapolations out of the range of values covered by observations. Thus, the focus is 

on quantifying the uncertainty of the system’s responses rather than on the accuracy of a model reproducing 

recorded data. This is the clarification C3 in Table 3. Considering this, models are yet to provide accuracy in 

reproducing observed outputs but, more importantly, afford credibility in predictions. Such credibility is to be 245 

assessed, mainly in terms of judgements, since conventional validation cannot be conducted using non-observed 

outputs. Recall that model accuracy usually relates to comparing model outputs with experimental measurements 

(Roy and Oberkampf, 2011; Aven and Zio, 2013) and is the basis for validating models. Regarding the credibility 

of predictions, Wagener, Reinecke, and Pianosi (2022) have reported that such credibility can be mainly judged in 

terms of the physical consistency of the predictions. Such consistency is judged by checks rejecting physically 250 

impossible representations of the system. The credibility of predictions may also include the verification of the 

ability of models to accurately reproduce disruptive changes recorded in the data (Alley, 2004). However, as we 

have made explicit in the previous section, model predictions are conditional on a considerable number of critical 

assumptions and choices made by analysts (see Table 1 and clarification C4 in Table 3). Therefore, predictions 
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can only be as good as the quality of the assumptions made. The assumptions could be wrong, and the examination 255 

of the impact of these deviations on the predictions must be assessed. To provide credibility of predictions, such 

assumptions and choices should be justified and scrutinised, ref. option O5 in Table 2. Option O5 addresses the 

challenge CH1; however, when conducting UQ, O5 has a major role when investigating input uncertainty, which 

is discussed next. 

A critical task in UQ is the quantification of input uncertainty. Input uncertainty may originate when crucial 260 

historical events or disruptive changes are missing in the records, CH3. Some critical input quantities may also 

remain unidentified to analysts during an assessment, CH4. Analysts can unintendedly fail to identify relevant 

elements in X* due to insufficiencies in data or limitations of existing models. For example, during many 

assessments, trigger factors that could bring a soil mass to failure could remain unknown to analysts (e.g., Hunt et 

al. 2013; Clare et al. 2016; Leynaud et al. 2017; Casalbore et al. 2020). UQ requires simulating sampled values 265 

from X, and elements in X can be mutually dependent. However, the joint distribution of X, namely f(x), is often 

also unknown. This is the challenge CH6. Considering the potential challenges CH3 to CH6, to specify f(x), we 

cannot solely rely on using the maximum entropy principle (MEP). The MEP may fail to advance an exhaustive 

uncertainty quantification in the input, e.g., by missing relevant values not recorded in the measured data. This 

would undermine the quality of predictions and, therefore, uncertainty quantification. Recall that the MEP suggests 270 

using the least informative distribution among candidate distributions constrained solely on measurements. Using 

counterfactual analysis, as described in Table 2, is an option. However, the counterfactual analysis will also fail to 

provide quality predictions since this analysis focuses on counterfactuals (alternative events to observed facts ɗ, ɗ 

∈ Ɗ) and little on the overall knowledge available Қ. Note that the knowledge Қ about the system includes, e.g., 

among others, the assumptions made in the UQ, such as those shown in Table 1. Further note that such assumptions 275 

relate not only to data but also to input quantities, modelling, and predictions. Thus, it appears that the examination 

of these assumptions should be at the core of UQ in geohazard assessments, as suggested in Table 2, option O5. 

The risk assessment of deviations from assumptions was originally suggested by Aven (2013) and exemplified by 

Khorsandi and Aven (2017). An assumption deviation risk assessment evaluates different deviations, their 

associated probabilities of occurrence, and the effect of the deviations. A major distinctive feature of the 280 

assumption deviation risk assessment approach is the evaluation of the credibility of the knowledge Қ supporting 

the assumptions made. Another feature of this approach is questioning the justifications supporting the potential 

for deviations. The examination of Қ can be achieved by assessing the justifications for the assumptions made, the 

amount and relevance of data or information, the degree of agreement among experts, and the extent to which the 

phenomena involved are understood and can be modelled accurately. Justifications might be in the form of direct 285 

evidence becoming available, indirect evidence from other observable quantities, supported by modelling results, 

or possibly inferred by assessments of deviations of assumptions. This approach is succinctly demonstrated in the 

following section. Accordingly, we suggest specifying f(x) in terms of knowledge-based probabilities in 

conjunction with investigating input uncertainty using the assumptions deviation approach. This is identified as 

consideration C5 in Table 3. 290 

Another point to consider is that when uncertainty is measured in terms of knowledge-based probabilities, 

analysts should be aware of what conditionality means. If, for example, a quantity X2, is conditional on a quantity 

X1, this implies that increased knowledge about X1 will change the uncertainty about X2. The expression that 

denotes this is conventionally written as X2|X1. Analysts may exploit this interpretation when specifying, e.g., the 
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joint distribution f(x,θ). For example, when increased knowledge about a quantity X1 will not result in increased 295 

knowledge about another quantity X2, analysts may simplify the analysis according to the scrutiny of Қ, meaning 

that a distribution f(y|x1,x2) to be specified may reduce to f(y|x1)f(y|x2) according to probability theory. Apeland, 

Aven, and Nilsen (2002) have illustrated how conditionality in the setting of knowledge-based probabilities can 

inform the specification of a joint distribution. 

The parameterisation problem, which involves the challenges CH7 to CH9 in Table 2, warrants exhaustive 300 

consideration. Addressing these challenges also requires some reinterpretation. To start, note that parameters are 

coefficients determining specific functions among a family of potential functions modelling the system. Those 

parameters constrain a model’s output. Recall that y, as realisations of Y, are the model output when X take the 

values x, and some parameters θ ∈ Θ, and models ɱ ∈ Ɱ are used. Thus, as shown in the previous section, any 

output y is conditional on θ, and so is the uncertainty attached to y*. We may also distinguish two types of 305 

parameters. We may have parameters associated with a property of the system. There exist other parameters that 

are merely artefacts in the models and are not properties of the system. As suggested, if uncertainty can solely be 

attached to events or quantities, we may say that parameters that are not properties of the system are not to be 

linked to any uncertainty. This is identified as clarification C6 in Table 3. For example, analysts may consider 

therefore that, parameters Θε, which are linked to the output-prediction error ε, some model parameters in Θɱ, the 310 

vector associated with observation/measurement errors Θo, and the overall attached hyperparameters linked to 

probability distributions (including priors, likelihood functions), are not properties of the system as such. Analysts 

may consider the latter parameters as modelling artefacts, so it is questionable to attach uncertainty to them. Thus, 

focused on the uncertainty of the system responses rather than model inaccuracies, uncertainty is to be assigned to 

those parameters that represent physical quantities. Fixed single values can be assigned to those parameters that 315 

are not properties of the system. To help identify those parameters to which some uncertainty can be linked, we 

can scrutinise, e.g., the physical nature of these. In fixing parameters to a single value, we can still make use of 

back analysis procedures, as mentioned previously. Analysts may have some additional basis to specify parameter 

values when the background knowledge available Қ is scrutinised. Қ can be examined to verify that not only data 

measurements but other sources of data, models, and assumptions made strongly support a specific parameter 320 

value. Based on this interpretation, setting the values of the parameters that are not properties of the system to a 

single value reduces the complications in quantifying uncertainty considerably. It also follows that analysts are 

encouraged to make explicit that model outputs are conditional on these fixed parameters, as well as on the model 

or models chosen, as we have shown in the previous section. The latter also leads us to argue that the focus of UQ 

is on the uncertainty of the system response rather than the inaccuracies of the models. This implies in a practical 325 

sense that in geohazard assessments, when parameters are clearly differentiated from specified input quantities, 

and models providing the most credible predictions are chosen, uncertainty quantification can then proceed. This 

parsimonious modelling approach is identified as consideration C7 in Table 3. This latter consideration addresses, 

to an extent, the challenge CH10.  

In the following section, we further illustrate the above discussion by analysing a documented case in which 330 

UQ in a geohazard assessment was informed by modelling using sampling procedures.  
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4 Case analysis  

To further describe the proposed considerations, we analyse a case reported in the specialised literature. The 

case deals with the quantification of uncertainty of geological structures, namely uncertainty about the subsurface 

stratigraphic configuration. Conditions in the subsurface are highly variable, whereas site investigations only 335 

provide sparse measurements. Consequently, subsurface models are usually inaccurate. At a given location, 

subsurface conditions are unknown until accurately measured. Soil investigation at all locations is usually 

impractical and uneconomical, and point-to-point condition variation cannot be known (Vanmarcke, 1984). Such 

uncertainty means significant engineering and environmental risk to, e.g., infrastructure built on the surface. One 

way to quantify this uncertainty is by calculating the probability of every possible configuration of the geological 340 

structures (Tacher et al. 2006; Thiele et al. 2016; Pakyuz-Charrier et al. 2019). Sampling procedures for UQ are 

helpful in this undertaking. We use an analysis and information from Zhao et al. (2021), which refer to a site 

located in the Central Business District, Perth, Western Australia, where 6 boreholes were executed. The case has 

been selected taking into account its simplicity to illustrate the points of this paper, but at the same time, it provides 

details to allow some discussion. Figure 2 displays the system being analysed. 345 

 

Figure 2: Borehole logs in colours and longitudinal section reported by Zhao et al. (2021) located in the Central Business 

District, Perth, Western Australia. The records correspond to information on six boreholes. Three types of materials are 

revealed by the boreholes, including sand (yellow), clay (magenta), and gravel (blue).  

In the system under consideration, a particular material type to be found in a non-bored point, a portion of 

terrain not penetrated during soil investigation, is unknown and thus uncertain. The goal is to compute the 

probability of encountering a given type of soil at these points. Zhao et al. (2021) focus on calculating the 

probabilities of encountering clay in the subsurface. The approach advocated was a sampling procedure to generate 

many plausible configurations of the geological structures and evaluate their probabilities. In a non-penetrated 350 

point in the ground, to calculate the probability of encountering a given type of soil c, p(y=c), Zhao et al. (2021) 

used a function that depends on two correlation parameters, namely the horizontal and vertical scale of fluctuation 

θh and θv. Note that spatial processes and their properties are conventionally assumed as spatially correlated. Such 

spatial variation may presumably be characterised by correlation functions, which depend on a scale of fluctuation 

parameter. The scale of fluctuation measures the distance within which points are significantly correlated 355 

(Vanmarcke, 1984). Expression 9 describes the basic components of the model chosen by Zhao et al. (2021) 

(specific details are given in the Appendix to this paper): 
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ɱ: Xs˟ Θɱ→Ys →p(y=c)          (9) 

where X is the collection of all specified quantities at borehole points sx which can take values x from the set {sand, 

clay, gravel}, according to the setting in Figure 2. Y is the collection of all model outputs with values y at non-360 

borehole points sy. Probabilities p(y=c) are computed based on the sampling of the values y and x and a chosen 

model using the parameters θh=11,1 and θv=4,1 metres, θh, θv ∈ Θɱ. Using the maximum likelihood method, the 

parameters were determined based on the borehole data revealed at the site. In determining parameters, the 

sampling from uniform and mutually independent distributions of θh and θv was the procedure advocated. The 

system is further described by a set of equations Eɱ (a correlation function and a probability function), the spatial 365 

domain geometry sgɱ (a terrain block of 30 x 80 metres), and the boundary conditions bcɱ (the conditions at the 

borders). More details are given in the Appendix to this paper. Since this system is not considered time-dependent, 

the initial conditions ICɱ were not specified. 

The summary results reported by Zhao et al. (2021) are shown in Figure 3. In Figure 3, the most probable 

stratigraphic configuration, along with the spatial distribution of the probability of the existence of clay, is 370 

displayed. The authors focused on this sensitive material, which likely represents a risk to the infrastructure built 

on the surface. 

 

(a) 

 

(b) 

Figure 3: Zhao et al. (2021) findings shown in their Figure 9. (a) Most probable stratigraphic configuration. (b) 

Spatial distribution of the probability of the existence of clay. Reprinted from Engineering Geology, 238, Zhao et 

al. 2021, Probabilistic characterisation of subsurface stratigraphic configuration with modified random field 

approach, Pages 106138, Copyright (2021), with permission from the COPYRIGHT OWNER: Elsevier. Distances 

in metres. 
 

Zhao et al. (2021) stated that “characterisation results of the stratigraphic configuration and its uncertainty 

are consistent with the intuition and the state of knowledge on site characterisation”. Next, throughout Zhao et 375 

al.’s (2021) analysis, the following assumptions were enforced (Table 4), although these were not explicitly 

disclosed by the authors. 

 

 

 380 
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Table 4. Assumptions enforced by Zhao et al., (2021) 

 Predictions (non-observed outputs) are credible.  
 Likelihood functions ℒ[ɱ(θ|ɗ)] were set to be mutually independent. 

 For the determination of parameters and model, f(θh,θv) distributes according to the maximum entropy principle. 

θh and θv are mutually independent. 

 Specified elements X are complete.  

X only take values from the set {sand, clay, gravel}. 

 X were set to the measured values, i.e., x = x̂ (no inaccuracies in data). 

 θ are independent of sgɱ and bcɱ. 

 sgɱ, bcɱ were set to be constant. 

   

Unfortunately, the authors did not report enough details on how the majority of these assumptions are justified. 

We should note, however, that providing these justifications was not the objective of their research. Yet, here we 

analyse how assumptions can be justified by scrutinising Қ and using some elements of the assumption deviation 

approach described in the previous section. Table 5 summarises the analysis conducted and only reflects the most 385 

relevant observations and reservations we identified. Accordingly, the information in Table 5 may not be 

exhaustive, but still useful for the desired illustration. Table 5 displays some of our observations related to the 

credibility of the knowledge Қ. The examination of Қ is achieved by assessing the amount and relevance of data 

or information, the extent to which the phenomena involved are understood and can be modelled accurately, the 

degree of agreement among experts, and the justifications for the assumptions made. Observations regarding the 390 

justifications for potential deviations from assumptions also form part of the analysis. 

Not surprisingly, the observations in our analysis concentrate on the predictions’ credibility. Recall that UQ 

focuses on the system’s response, approximated by model predictions (considerations C2 and C3 in Table 3). For 

example, although using correlations is an accepted practice and a practical simplification, correlation functions 

appear counterintuitive to model geological structures or domains. Further, correlation functions do not help much 395 

in understanding the system (consideration C2 in Table 3). Recall that such structures are mainly disjoint domains 

linked to a finite set of possible categorical quantities (masses of soil or rock) rather than continuous quantities. 

Next, the variation of such structures can occur by abrupt changes in materials, thus the use of smoothed correlation 

functions to represent them requires additional consideration. Moreover, the physical basis of the correlation 

functions is not clear and physical models based on deposition processes may be suggested (e.g., Catuneanu et al., 400 

2019). We should note a potential justification for the deviation from the assumption regarding the credibility of 

predictions. This is because knowledge from additional sources such as surface geology, sedimentology, local 

geomorphic setting, and structural geology was not explicitly taken into account in quantifying uncertainty. The 

revision of this knowledge can contribute to reducing the probability of deviation in predictions. Based on the 

observations in Table 5, we can conclude that there is potential to improve the credibility of predictions. 405 

The choices made by Zhao et al. (2021) regarding the use of parameters with fixed values together with the 

choice for a single best model can be highlighted. These choices illustrate the points raised in considerations C6 

and C7 (Table 3). The maximum likelihood method supported these choices; a back analysis method focused on 

matching measurements and calculated model outputs using different assumed values for θh and θv. We highlight 

that a model judged to be the best model was chosen. This includes the specification of a particular spatial domain 410 

geometry in SGɱ. Investigating the impact of the variation of SGɱ was considered unnecessary. There was no need 

to specify several competing models, which is in line with our consideration labelled as C7 in this paper. 
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Zhao et al. (2021) investigated the joint distribution f(x), which was sampled to calculate probabilities. 

However, someone can suggest that the joint distribution f(x,θ,sgɱ,bcɱ) could have been produced. Nevertheless, 

we can argue that establishing such a joint distribution is challenging and requires, in many instances, that analysts 

encode many additional assumptions (e.g., prior distributions, likelihood functions, independence, linear 420 

relationships, normality, stationarity of the quantities and parameters considered). 

A more crucial observation derived from the analysis of potential deviations of assumptions might considerably 

impact the credibility of predictions. The observation comes from revisiting the knowledge sources of Zhao et al.’s 

(2021) analysis, available from https://australiangeomechanics.org/downloads/. Another type of sensitive material 

was revealed by other soundings in the area, more specifically, silt. Depending on the revision of Қ, this fourth 425 

suspected material could be analysed in an extended uncertainty quantification of the system. Note that the 

specified input quantities X were originally assumed to take values x from the set {sand, clay, gravel}. Such an 

assumption was based on the records of six boreholes which were believed accurate. The latter illustrates the 

relevance of consideration C5 in Table 3.  

Another choice by Zhao et al. (2021) is that they disregarded the possibility of incorporating measurement 430 

errors of the borehole data into the UQ, probably because this data was judged to be accurate. We recall in this 

respect that these errors reflect the inaccuracy of the measurements rather than the uncertainty about the system. 

As stated for consideration C6 (Table 3), we can hardly justify attaching uncertainty to measurement error 

parameters since measurement errors are not a property of the system. The same can be said for the parameters θh 

and θv, which are not properties of the system. Note that their physical basis is questioned. We should note, 435 

however, that assuming global coefficients for the parameters θh and θv is an established practice (Vanmarcke, 

1984, Lloret-Cabot et al., 2014, Juang et al., 2019). It can be pointed out that uncertainty quantification in this kind 

of system is, to an extent, sensitive to the choice of scale of fluctuation values (Vanmarcke, 1984). It can also be 

argued that using a global rather than local correlation between spatial quantities can misrepresent geological 

structure variation. Accordingly, a further examination of the existing Қ can justify assessing the impact of a 440 

deviation of assuming a local rather than a global scale of fluctuation. 

Overall, the Zhao et al. (2021) analysis is, to an extent, based on the previously suggested definition of 

uncertainty, ref. the consideration C1 in Table 3.  

We should stress that Zhao et al.’s (2021) uncertainty quantification refers specifically to the ground model 

described at the beginning of this section. In other words, the probabilities displayed in Figure 3b are conditional 445 

on the parameters chosen (θh=11,1 and θv=4,1 metres); the model selected (described by Eq. 9, A-1 and A-2 in the 

Appendix to this paper); the specified spatial domain geometry sgɱ (a terrain block of 30 x 80 metres); and 

ultimately the assumptions made (listed in Table 4). This information is to be reported explicitly to the users of 

the results. This reflects the clarification C4 in Table 3.  

Regarding the consideration of subjective probabilities, there has been somewhat an agreement on their use in 450 

this kind of UQ since Vanmarcke (1984). However, the use of knowledge-based probabilities in the extension 

described here is recommended, given the illustrated implications to advance UQ (as discussed in the previous 

section and stated in consideration C5). For example, increased examination of Қ might have resulted in using a 

more informative distribution f(θh,,θv) other than the uniform distribution. The increased examination of Қ might 

have led to different values for θh and θv, as well as a different model. Recall that the selection of the model and 455 

determination of parameters were based on the maximum likelihood method, which only uses measured data ɗ.  

https://australiangeomechanics.org/downloads/
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In our analysis of Zhaoʼs et al. (2021) assessment, the examination of supporting knowledge Қ resulted 

essentially in:  

(i) judging the credibility of predictions;  

(ii) providing justifications for assessing assumption deviations by considering the modelling of a fourth 460 

material;  

(iii) considering additional data other than the borehole records, such as surface geology, sedimentology, local 

geomorphic setting, and structural geology;  

(iv) analysing the possibility of distinct geological models with diverse spatial domain geometry and local 

correlations; and 465 

(v) ultimately, further examining the existing Қ. 

5 Conclusions 

In this paper, we have discussed challenges in uncertainty quantification (UQ) for geohazard assessments. 

Beyond the parameterisation problem, the challenges include assessing the quality of predictions required in the 

assessments, quantifying uncertainty in the input quantities, and considering the impact of choices and assumptions 470 

made by analysts. Such challenges arise from the common-place situation of limited data and the one-off nature 

of geohazard features. If these challenges are kept unaddressed, UQ lacks credibility. Here, we have formulated 

seven considerations that may contribute to providing increased credibility in the quantifications. For example, we 

proposed understanding uncertainty as lack of knowledge, a condition that can only be attributed to quantities or 

events. Another consideration is that the focus of the quantification should be more on the uncertainty of the system 475 

response rather than the accuracy of the models used in the quantification. We drew attention to the clarification 

that models, in geohazard assessments, are simplifications used for predictions approximating the system’s 

responses. We have also considered that since uncertainty is only to be linked to the properties of the system, 

models do not introduce uncertainty. Inaccurate models can, however, produce poor predictions and such models 

should be rejected. Then, an increased examination of background knowledge will be required to quantify 480 

uncertainty credibly. We also put forward that there could not be uncertainty about those elements in the parameter 

set that are not properties of the system. The latter also has pragmatic implications, including how the many 

parameters in a geohazard system could be constrained in a geohazard assessment.  

We went into detail to show that predictions, and in turn UQ, are conditional on the model(s) chosen together 

with the assumptions made by analysts. We identified limitations of measured data to support the assessment of 485 

the quality of predictions. Accordingly, we have proposed that the quality of UQ needs to be judged based also on 

some additional crucial tasks. Such tasks include the exhaustive scrutiny of the knowledge coupled with the 

assessment of deviations of those assumptions made in the analysis.  

Key to enacting the proposed clarifications and simplifications is the full consideration of knowledge-based 

probability. Considering this type of probability will help overcome the identified limitations of the maximum 490 

entropy principle or counterfactual analysis to quantify uncertainty in input quantities. We have exposed that the 

latter approaches are prone to produce unexhausted uncertainty quantification due to their reliance on measured 

data, which can miss crucial events or overlook relevant input quantities. 
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Appendix 

In this Appendix, the necessary details of the original analysis made by Zhao et al. (2021) are given. The 495 

following are the basic equations Eɱ used by these authors.   

𝑝(𝒚 = 𝑐) ∼
∑ 𝜌𝑥=𝑐,𝑦=𝑐𝑥𝑠×𝒀

∑ ∑ 𝜌𝑥=𝑐,𝑦=𝑐𝑥𝑠×𝒀
𝐶
𝑐=1

 
(A-1) 

𝜌𝑥𝑦 = 𝑒𝑥𝑝 (−𝜋
𝑠𝑥𝑠𝑦̅̅ ̅̅ ̅̅

𝜃ℎ

− 𝜋
|𝑠𝑥𝑠𝑦

𝜃𝑣

) 
(A-2) 

 

where X is the collection of all specified quantities at borehole points, which take values x. Y is the collection of 

all outputs at non-borehole points with values y. 𝜌𝑥𝑦 is the value of correlation between a quantity value x at a 

penetrated point sx ∈ Sx and the value y at a non-penetrated point sy ∈ Sy. 𝑠𝑥𝑠𝑦̅̅ ̅̅ ̅̅  is the horizontal distance between 500 

points sx and sy, while |𝑠𝑥𝑠𝑦  is the vertical one. θh and θv are the horizontal and vertical scales of fluctuation, 

respectively. Each material class considered is associated exclusively with an element in the set of integers 

{1,2,…,C}. p(y=c) is the probability of encountering a type of material c in a point sy. Such probability is initially 

approximated using Eq. A-1. More accurate probabilities are computed based on the repeated sampling of the joint 

distribution f(x,y), which was approximated using Eq. A-1. Eq. A-1, described in short, approximates probabilities 505 

as the ratio of the sum of correlation values, calculated for a penetrated point in the set Sx and the set of non-

penetrated points Sy for a given material c, to the sum of correlation values for all points and all materials.   

Based on data collected at borehole locations, the selection of the type of correlation function and the scales of 

fluctuation took place using the maximum likelihood method. The authors considered three types of correlation 

functions, namely squared exponential, single exponential, and second-order Markov. In this case, the likelihood 510 

function ℒ(θm|ɗ) = f(ɗ|θm) represents the likelihood of observing ɗ  at borehole locations, given the spatial 

correlation structure θm. The squared exponential function yielded the maximum likelihood when the horizontal 

and vertical scales of fluctuation were set to 11.1 and 4.1 metres, respectively. Hence, the squared exponential 

function correlation, whose expression is Eq. A-2 in this Appendix was selected. Eq. A-3 and A-4 correspond to 

the single exponential and the second-order Markov functions, respectively. 515 

   

𝜌𝑥𝑦 = 𝑒𝑥𝑝 (−2
𝑠𝑥𝑠𝑦̅̅ ̅̅ ̅̅

𝜃ℎ

− 2
|𝑠𝑥𝑠𝑦

𝜃𝑣

) 
(A-3) 

𝜌𝑥𝑦 = (1 + 4
𝑠𝑥𝑠𝑦̅̅ ̅̅ ̅̅

𝜃ℎ

) (1 + 4
|𝑠𝑥𝑠𝑦

𝜃𝑣

) 𝑒𝑥𝑝 (−4
𝑠𝑥𝑠𝑦̅̅ ̅̅ ̅̅

𝜃ℎ

− 4
|𝑠𝑥𝑠𝑦

𝜃𝑣

) 
(A-4) 
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