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Abstract. The Simulation Environment for Geomorphology, Hydrodynamics and Ecohydrology in Integrated form (SERGHEI)

is a multi-dimensional, multi-domain and multi-physics model framework for environmental and landscape simulation, de-

signed with an outlook towards Earth System Modelling. It aims to provide a modelling environment for hydrodynamics,

ecohydrology, morphodynamics, and, most importantly, interactions and feedbacks among such processes at different levels of

complexity and across spatiotemporal scales. The small scale feedbacks and interactions, which warrant high resolution, can5

result in emergent behaviours manifesting at larger scales, thus warranting large model domains. At the core of SERGHEI’s

technical innovation is its HPC implementation, built from scratch on the Kokkos portability layer. Consequently, SERGHEI

achieves performance-portability from personal computers to top HPC systems, including GPU-based and heterogeneous sys-

tems. SERGHEI relies Kokkos to handle memory spaces, thread management and execution policies for the required backend

programming models. In this work we explore combinations of MPI and Kokkos using OpenMP and CUDA backends. In10

this contribution, we introduce the SERGHEI model framework, and present with detail its first operational module for solv-

ing shallow water equations (SERGHEI-SWE). This module is designed to be applicable to hydrological, environmental and

consequently Earth System Modelling problems, but also to classical engineering problems such as fluvial or urban flood mod-

elling. We also provide evidence of its applicability by testing it against several well-known benchmarks. We also evaluate its

performance on several benchmarks and large scale problems. Finally, SERGHEI-SWE is evaluated in terms of scaling (on15

several TOP500 HPC systems).
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1 Introduction

The upcoming exascale high-performance parallel computing (HPC) systems will enable physics-based geoscientific mod-

elling with unprecedented detail (Alexander et al., 2020). Although the need for such HPC systems is traditionally driven by20

climate, ocean, and atmospheric modelling, hydrological models are progressively becoming as physical, sophisticated, and

computationally intensive. Physically-based, integrated hydrological models such as Parflow (Kuffour et al., 2020), Aman-

zi/ATS (Coon et al., 2019), and Hydrogeosphere (Brunner and Simmons, 2012) are becoming more prominent in hydrological

research and Earth System Modelling (ESM) (Fatichi et al., 2016; Paniconi and Putti, 2015), making HPC more and more

relevant for computational hydrology (Clark et al., 2017).25

Hydrological models, as many other HPC applications, are currently facing challenges in exploiting available and future

HPC systems. These challenges arise, not only because of the intrinsic complexity of maintaining complex codes over large

periods of time, but because HPC and its hardware are undergoing a large paradigm change (Leiserson et al., 2020; Mann,

2020), which is strongly driven by the end of Moore’s law (Morales-Hernández et al., 2020). In order to gain higher processing

capacity, computers will require heterogeneous and specialised hardware (Leiserson et al., 2020), potentially making high-30

performing code harder to develop and maintain, and demanding for developers to adapt and optimise code for an evolving

hardware landscape. It has become clear that upcoming exascale systems will have heterogeneous architectures embedded in

modular and reconfigurable architectures (Djemame and Carr, 2020; Suarez et al., 2019) that will consist of different types of

CPUs and accelerators, possibly from multiple vendors requiring different programming models. This puts pressure on domain

scientists to write portable code that performs efficiently on a range of existing and future HPC architectures (Bauer et al.,35

2021; Lawrence et al., 2018; Schulthess, 2015), and to ensure the sustainability of such code (Gan et al., 2020).

Different strategies are currently being developed to cope with this grand challenge. One strategy is to offload the architecture-

dependent parallelisation tasks to the compiler—see, for example, (Vanderbauwhede and Takemi, 2013; Vanderbauwhede and

Davidson, 2018; Vanderbauwhede, 2021). Another strategy is to use an abstraction layer that provides a unified programming

interface to different computational backends—a so-called performance portability framework—that allows the same code40

to be compiled across different HPC architectures. Examples of this strategy include RAJA (Beckingsale et al., 2019) and

Kokkos (Edwards et al., 2014; Trott et al., 2021), which are both very similar in their scope and their capability. Both RAJA

and Kokkos are C++ libraries that implement a shared-memory programming model to maximise the amount of code that

can be compiled across different hardware devices with nearly the same parallel performance. They allow access to several

computational backends, in particular multi-GPU and heterogeneous HPC systems.45

This paper introduces the Kokkos-based computational (eco)hydrology framework SERGHEI (Simulation Environment for

Geomorphology, Hydrodynamics and Ecohydrology in Integrated form) and its surface hydrology module SERGHEI-SWE.

The primary aim of SERGHEI’s implementation is scalability and performance-portability. In order to achieve this, SERGHEI

is written in C++ and based from scratch on the Kokkos abstraction. Kokkos currently supports CUDA, OpenMP, HIP, Syvl, and

Pthreads as backends. We chose Kokkos over other alternatives, because it is actively engaged in securing the sustainability of50

its programming model, fostering its partial inclusion into ISO C++ standards (Trott et al., 2021). Indeed, there is an increasing
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number of applications in multiple domains leveraging on Kokkos, for example (Bertagna et al., 2019; Demeshko et al., 2018;

Grete et al., 2021; Halver et al., 2020; Watkins et al., 2020). Thus, among other similar solutions, Kokkos has been identified

as advantageous in terms of performance portability and project sustainability, although perhaps somewhat more invasive and

less clear on the resulting code (Artigues et al., 2019). We present the full implementation of the SERGHEI-SWE module, the55

shallow water equations (SWE) solver for free surface hydrodynamics at the heart of SERGHEI.

SERGHEI-SWE enables the simulation of surface hydrodynamics of overland and stream flow seamlessly and across scales.

Historically, hydrological models featuring surface flow have relied on kinematic or zero-inertia (diffusive) approximations

due to their apparent simplicity (Caviedes-Voullième et al., 2018; Kollet et al., 2017) and because until the last decade, robust

SWE solvers were not available (Caviedes-Voullième et al., 2020a; García-Navarro et al., 2019; Simons et al., 2014; Özgen-60

Xian et al., 2021). However, the current capabilities of SWE solvers, the increase in computational capabilities, and the need to

better exploit parallelism—easier to achieve with explicit solvers than implicit solvers as usually required by diffusive equations

(Caviedes-Voullième et al., 2018; Fernández-Pato and García-Navarro, 2016)—has been pushing to replace simplified surface

flow models with fully dynamic SWE solvers. There is an increasing number of studies using SWE solvers for rainfall-runoff

and overland flow simulations from hillslope to catchment scales—for example, (Bellos and Tsakiris, 2016; Bout and Jetten,65

2018; Caviedes-Voullième et al., 2012, 2020a; Costabile and Costanzo, 2021; Costabile et al., 2021; David and Schmalz, 2021;

Dullo et al., 2021a, b; Fernández-Pato et al., 2020; García-Alén et al., 2022; Simons et al., 2014; Xia and Liang, 2018). This

trend contributes to the transition from engineering hydrology towards Earth System science (Sivapalan, 2018), a shift that

motivated by necessity and opportunity, as continental (and larger) ESM will progressively require fully dynamic SWE solvers

to cope with increased resolution digital terrain models and the dynamics which respond to them, improved spatiotemporal70

rainfall data and simulations, as well as increasingly more sophisticated process interactions across scales, from patch, to

hillslope to catchments (Fan et al., 2019).

SERGHEI-SWE distinguishes itself from other HPC SWE solvers through a number of key novelties. Firstly, SERGHEI-

SWE is open sourced under a permissive BSD license. While there are indeed many GPU-enabled SWE codes, many of

these are research codes that are not openly available—for example, (Aureli et al., 2020; Buttinger-Kreuzhuber et al., 2022;75

Echeverribar et al., 2020; Hou et al., 2020; Lacasta et al., 2014, 2015; Liang et al., 2016; Vacondio et al., 2017)—or commercial

codes, such as RiverFlow2D, TUFLOW, HydroAS_2D—see Jodhani et al. (2021) for a recent non-comprehensive review.

Open source solvers are a fundamental need for the community, ensuring transparency, reproducibility, and providing a base

for model (software) sustainability. We note that open source SWE solvers are becoming increasingly more available—see

Table 1. However, only a handful of these freely available models are enabled for GPUs, mostly through CUDA. Fewer of80

them have multi-GPU capabilities and are capable of fully leveraging HPC hardware. All of these multi-GPU enabled codes

are currently dependent on CUDA, and therefore somewhat limited to Nvidia hardware. This leads into the second novelty of

SERGHEI-SWE: it is a performance-portable, highly scalable and GPU enabled solver. SERGHEI-SWE generalises hardware

(CPU, GPU, accelerators) support to a performance-portability concept through Kokkos. This gives SERGHEI-SWE the key

advantage to have a single code base for (currently) OpenMP and CUDA backends, but most importantly, keeps this code base85

relevant for other backends, such as HIP. This is particularly important, as there is a currently ongoing shift to AMD GPUs,
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Model Reference GPU MPI Availability Notes

SERGHEI-SWE this paper Kokkos yes Open source (BSD) Highly scalable

TRITON Morales-Hernández et al. (2021) CUDA yes Open source (BSD) Highly scalable

PARFLOOD Vacondio et al. (2014) CUDA yes - Highly scalable, source code can be requested, MPI par-

allelisation by Turchetto et al. (2019)

HiPIMS Xia et al. (2019) CUDA - Open source (GPLv3) Multi-GPU support based on Thrust (on single node)

DRR/FI Kobayashi et al. (2015) - yes - Highly scalable

SW2D-GPU Carlotto et al. (2021) CUDA - Open source -

LisFlood-FP 8.0 Shaw et al. (2020) CUDA - Open source (BSD) SWE solver embedded into LisFlood (Bates and Roo,

2000), which originally did not solve SWE.

IBER García-Feal et al. (2018) CUDA - Freeware -

SW2D-Lemon Caldas Steinstraesser et al. (2021) - - Freeware Source code can be requested

B-flood Kirstetter et al. (2021) - - Open source (GPL) Adaptive mesh refinement

FullSWOF Delestre et al. (2017) - yes Open source (CeCILL) MPI parallelisation by (Wittmann et al., 2017)

TELEMAC Moulinec et al. (2011) - yes Open source (GPLv3/LGPL) -

GeoClaw Berger et al. (2011) - yes Open source (BSD) Adaptive mesh refinement

HEC-RAS2D Brunner (2021) - - Freeware -

hms Simons et al. (2014) - yes Open source (GPL) MPI parallelisation by Steffen et al. (2020)

Table 1. Overview of openly available SWE solvers.

with the most recent leading TOP 500 systems –Frontier and LUMI– and upcoming HPC systems (e.g., El Capitan) rely on

AMD GPUs.

Another important novelty of SERGHEI-SWE is that it is specifically designed to cope with rainfall-runoff problems in both

natural and urban environments, fluvial problems, and other flows of broad hydrological and environmental interest that occur90

on (eco)hydrological time scales. This separates it from some of the arguably more engineering-oriented established models in

Table 1, which are more geared towards flood modelling.

SERGHEI-SWE has been developed harnessing the past 15 years of numerical advances in the solution of SWE, ranging

from fundamental numerical formulations (García-Navarro et al., 2019; Morales-Hernández et al., 2020) to HPC GPU imple-

mentations (Brodtkorb et al., 2012; Hou et al., 2020; Lacasta et al., 2014, 2015; Liang et al., 2016; Vacondio et al., 2017; Sharif95

et al., 2020).
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2 Mathematical and numerical model

SERGHEI-SWE is based on the resolution of the two-dimensional (2D) shallow water equations, that can be expressed in a

compact differential conservative form as:

∂U
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(1)100

Here, t [T] is time, x [L] and y [L] are Cartesian coordinates, U is the vector of conserved variables (that is to say the unknowns

of the system) containing the water depth, h [L], and the unit discharges in x and y directions, called qx = hu [L2T−1] and

qy = hv [L2T−1] respectively. F and G are the fluxes of these conserved variables with gravitational acceleration g [LT−2].

The mass source terms Sr account for rainfall, ro [LT−1], and infiltration/exfiltration, rf [LT−1]. The momentum source terms

include gravitational bed slope terms, Sb, expressed according to the gradient of the elevation z [L]; and friction terms, Sf ,105

as a function of the friction slope σ. This friction slope is often modelled by means of Gauckler-Manning’s equation in terms

of Manning’s roughness coefficient n [TL−1/3], but also frequently with the Chezy and the Darcy-Weisbach formulations

(Caviedes-Voullième et al., 2020a).

SERGHEI-SWE uses a first-order accurate upwind finite-volume scheme with a forward Euler time integration to solve

the system of equations (1) on uniform Cartesian grids with grid spacing ∆x [L]. The numerical scheme, presented in detail110

in (Morales-Hernández et al., 2021), harnesses many solutions that have been reported in the literature in the past decade,

ensuring that all desirable properties of the scheme (well-balancing, depth-positivity, stability, robustness) are preserved under

the complex conditions of realistic environmental problems. In particular, we require the numerical scheme to stay robust and

accurate in the presence of arbitrary rough topography and shallow water depths with wetting and drying.

Well-balancing and water depth positivity are ensured by solving numerical fluxes at each cell edge k with augmented115

Riemann solvers (Murillo and García-Navarro, 2010, 2012) based on the Roe linearisation (Roe, 1981). In fluctuation form,

the rule for updating the conserved variables in cell i from time step n to time step n + 1 reads:

U⋆
i = Un

i −
∆t

∆x

4∑

k=1

3∑

m=1

λ̃−

λ̃

[
(λ̃α̃− β̃)ẽ

]n

m,k
, (2)

followed by

Un+1
i = U⋆

i + (ro− rf )n
i ∆t, (3)120
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where λ̃ and ẽ are the eigenvalues and eigenvectors of the linearised system of equations, α̃ and β̃ are the fluxes and bed

slope and friction source term linearisations respectively, and the minus-sign accounts for the upwind discretisation. Note that

all the tilde variables are defined at each computational edge. The time step ∆t is restricted to ensure stability, following the

Courant-Friedrich-Lewy (CFL) condition:

∆t = CFLmin
i





∆x∣∣∣qx

h

∣∣∣
i
+
√

ghi,
∣∣∣qy

h

∣∣∣
i
+
√

ghi





CFL≤ 0.5 (4)125

Although the wave speed values are formally defined at the interfaces, the corresponding cell values are used instead for the

CFL condition. As pointed in (Morales-Hernández et al., 2021), this approach does not compromise the stability of the system,

but accelerates the computations and simplifies the implementation.

3 HPC implementation

3.1 Domain decomposition130

The surface domain is a two-dimensional plane, discretised by a Cartesian grid with a total cell number of Nt = NxNy , where

Nx and Ny are the number of cells in x- and y-directions, respectively. Operations are usually performed per subdomain,

each one associated with an MPI rank. During initialisation, each MPI process constructs a local subdomain with nx cells in

x-direction and ny cells in y-direction. The user specifies the number of subdomains in each Cartesian direction at runtime

and SERGHEI determines the subdomain size from this information. Subdomains are the same size, except for correction135

due to non-integer-divisible decompositions. In order to communicate information across subdomains, SERGHEI uses so-

called halo cells, non-physical cells on the boundaries of the subdomain that overlap with physical cells from neighbouring

subdomains. The halo cells augment the number of cells in x- and y-direction by 1 at each boundary. Thus, the subdomain size

is nt = (nx+2)(ny +2). The definitions are sketched—without loss of generality—for a square-shaped subdomain in Figure 1

and the way these subdomains overlap in the global domain is sketched in Figure 2 (left). Halo cells are not updated as part140

of the time stepping. Instead, they are updated by receiving data from the neighbouring subdomain, a process which naturally

requires MPI communications.

Besides the global cell index that ranges from 0 to Nt, each subdomain uses two sets of local indices to access data stored

in its cells. The first set spans over all physical cells inside the subdomain and the second index spans over both halo cells and

physical cells—see Figure 1. The second set maps into memory position. For example, in order to access the physical cell 14145

in Figure 1, one has to access memory position 27.

3.2 Data exchange between subdomains

The underlying methods for data exchange between subdomains are centered on the subdomains rather than on the interfaces.

Data is exchanged through MPI-based send and receive calls (non-blocking) that aggregate data in the halo cells across the
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Figure 1. Domain decomposition and indexing in SERGHEI: A subdomain consists of physical cells (white) and halo cells (gray). SERGHEI

uses two sets of indices: an index for physical cells (left) and an index for all cells including the halo cells (right)

Figure 2. Data exchange between subdomains in SERGHEI: In the global surface domain, subdomains overlap with each other through their

halo cells (left). These halo cells are used to exchange data between the subdomains (right).

subdomains. Note that, by default, Kokkos implicitly assumes that the MPI library is GPU-aware, allowing GPU to GPU150

communication provided that the MPI libraries support this feature. Figure 2 (right) illustrates the concept of sending a halo

buffer containing state variables from subdomain 1 to update halo the cells of subdomain 0. The halo buffer contains state

variables for ny cells, grouped as water depth (h), unit discharge in x-direction (hu), and unit discharge in y-direction (hv).
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3.3 Performance portable implementation

Further parallelism is achieved per subdomain through the Kokkos framework, which allows the user to choose between shared155

memory parallelism and GPU backends for further acceleration. SERGHEI’s implementation makes use of the Kokkos concept

of Views, which are memory space aware abstractions. For example, for arrays of real numbers, SERGHEI defines a type

realArr, based on View. This takes the form of Listing 1 for the shared (host) memory space and Listing 2 for the Unified

Virtual Memory (UVM) GPU-device CUDA memory space.

Listing 1. realArr definition based on View for CPU160
t y p e d e f Kokkos : : View< r e a l * , Kokkos : : Layou tRigh t > r e a l A r r ;

and for a CUDA backend, making use of unified memory (CudaUVMSpace) is

Listing 2. realArr definition based on View for GPU

t y p e d e f Kokkos : : View< r e a l * , Kokkos : : Layou tRigh t ,165

Kokkos : : Device <Kokkos : : Cuda , Kokkos : : CudaUVMSpace>> r e a l A r r ;

Similar definitions can be constructed for integer arrays. These arrays describe spatially distributed fields, such as conserved

variables, model parameters, and forcing data. Deriving these arrays from View allows us to operate on them via Kokkos to

achieve performance portability.170

Conceptually, the SERGHEI-SWE solver consists of two computationally intensive kernels: (i) cell-spanning and (ii) edge-

spanning kernels. The update of the conserved variables following Equation 2 results in a kernel around a cell-spanning loop.

These cell-spanning loops are the most frequent ones in SERGHEI-SWE and are used for many processes, of different com-

putational demand. The standard C++ implementation of such a kernel is illustrated in Listing 3, which spans indices i and

j of a 2D cartesian grid. Here, the loops may be parallelised using, for example, OpenMP or CUDA. However, such a direct175

implementation of, for example an OpenMP parallelisation, would not automatically allow leveraging GPUs. That is to say,

such an implementation is not portable.

Listing 3. Conserved variable update in standard C++

i n l i n e void computeNewState ( S t a t e &s t a t e , c o n s t Domain &dom , c o n s t S o u r c e S i n k D a t a &s s ) {

f o r ( i n t j =0 ; j <dom . ny ; j ++){180

f o r ( i n t i =0 ; i <dom . nx ; i ++){

/ / c o m p u t a t i o n a l l y i n t e n s i v e code t o u p d a t e c e l l s

}

}

}185

In order to achieve the desired portability, we replace the standard for by a Kokkos::parallel_for, which enables a

lambda function, is minimally intrusive and reformulates this kernel to the code shown in Listing 4. As a result, this implemen-

tation can be compiled for both OpenMP applications and GPUs with Kokkos handling the low-level parallelism on different

backends.190
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Listing 4. Conserved variable update using Kokkos

i n l i n e void computeNewState ( S t a t e &s t a t e , c o n s t Domain &dom , c o n s t S o u r c e S i n k D a t a &s s ) {

Kokkos : : p a r a l l e l _ f o r ( dom . nCellDomain , KOKKOS_LAMBDA( i n t iG lob ) {

/ / c o m p u t a t i o n a l l y i n t e n s i v e code t o u p d a t e c e l l s

}195

}

Edge-spanning loops are conceptually necessary to compute numerical fluxes (Equation 2). Although numerical fluxes can

be computed in a cell-centered fashion, this would lead to inefficiencies due to duplicated computations. In Listing 5 we

illustrate the edge-spanning kernel solving the numerical fluxes in SERGHEI-SWE. Notably, Listing 5 is indexed by cells, and200

the construction of edge-wise tuples occurs inside of the kernel. This bypasses the need for additional memory structures to

hold edge-based information, but only for Cartesian meshes. Generalisation to adaptive or unstructured meshes would require

explicitly an edge-based loop with an additional View of size equal to the number of edges.

Listing 5. Flux computations

i n l i n e void computeDel taFluxXRoe ( S t a t e &s t a t e , Domain c o n s t &dom , P a r a l l e l &p a r ) {205

Kokkos : : p a r a l l e l _ f o r ( dom . n c e l l s , KOKKOS_LAMBDA ( i n t iG lob ) {

i n t i , j , n c e l l s ;

i n t id1 , i d 2 ;

u n p a c k I n d i c e s ( iGlob , dom . ny +2*hc , dom . nx +2*hc , j , i ) ;

i f ( i >hc −2 && i <dom . nx+hc && j >hc −1 && j <dom . ny+hc ) {210

n c e l l s =dom . n c e l l s ;

i d 1 = iGlob ;

i d 2 = j * ( dom . nx+2* hc )+ i +1;

/ / c o m p u t a t i o n a l l y i n t e n s i v e code t o compute f l u x e s a t t h e edge between c e l l s i d 1 and i d 2

}215

}

4 Verification and validation

In this section we report evidence supporting the claim that SERGHEI-SWE is an accurate, robust and efficient shallow water

solver. The formal accuracy testing strategy is based on several well-known benchmark cases with well-defined reference220

solutions. Herein, for brevity, we focus only on the results of these tests, while providing a minimal presentation of the setups.

We refer the interested reader to the original publications (and to the many instances in which these tests have been used) for

further details on the geometries, parametrisations and forcing.

We purposely report an extensive testing exercise to show the wide applicability of SERGHEI across hydraulic and hy-

drological problems, with a wide range of the available benchmark tests. Analytical, experimental and field-scale tests are225

included. The first are aimed at showing formal convergence and accuracy. The experimental cases are meant as validation

of the capabilities of the model to reach physically meaningful solutions under a variety of conditions. The field-scale tests
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Figure 3. Analytical steady flows: Bumps. SERGHEI preserves lake at rest solutions for immersed (left) and emerged (right) bump.

showcase the applicability of the solver for real problems, and allow for strenuous computational tasks to show performance,

efficiency and parallel-scaling. All solutions reported here were computed using double precision arithmetic.

4.1 Analytical steady flows230

We test SERGHEI’s capability to capture moving equilibria in a number of steady flow test cases compiled in (Delestre et al.,

2013). Details of the test cases for reproduction purposes can be retrieved from (Delestre et al., 2013) and the accompany-

ing software SWASHES—in this work, we use SWASHES version 1.03. In the following test cases, the domain is always

discretised using 1000 finite volumes.

4.1.1 Bumps235

These tests feature a smooth bump in a one-dimensional, frictionless domain which can be used to validate the C-property,

well-balancing, and the shock-capturing ability of the numerical solver (Morales-Hernández et al., 2012; Murillo and García-

Navarro, 2012). Firstly, we demonstrate demonstrate that SERGHEI preserves a lake-at-rest in the presence of an immersed

and emerged bump in Figure 3. The model predictions from SERGHEI matches the analytical solution obtained through

SWASHES, which verifies the C-property of the implemented solver.240

To show well-balancing under steady flow, we test SERGHEI for three steady state flow configurations: subcritical flow,

transcritical flow without a shock, and transcritical flow with a shock wave. Figure 4 shows SERGHEI predictions plotted

against analytical solutions (SWASHES), with very good agreement. The constant unit discharge is captured with machine

accuracy without oscillations at the shock, which is an inherent feature of the augmented Roe solver (Murillo and García-

Navarro, 2010).245
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Figure 4. Analytical steady flows: Bumps. SERGHEI captures moving equilibria solutions for subcritical (top left), transcritical without a

shock (top right), and transcritical with a shock (bottom center) test cases.

4.1.2 Flumes

A series of test cases featuring one-dimensional flumes with varying geometry based on analytical solution by MacDonald

et al. (1995) are studied. These tests are well-known and widely used as benchmark solutions (e.g., Caviedes-Voullième and

Kesserwani, 2015; Delestre et al., 2013; Kesserwani et al., 2019; Morales-Hernández et al., 2012; Murillo and García-Navarro,

2012). At steady state, local acceleration terms and source terms balance each other out such that the free surface water elevation250

becomes a function of bed slope and friction source terms. Thus, these test cases can be used to validate the implementation

of these source terms and the well-balanced nature of the complete numerical scheme. Since pluvial flow is usually dominated

by these two terms, verifying well-balancing and proper source term discretisation and implementation is especially important

for solvers targeting such applications.
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Figure 5. Analytical steady flows: Flumes. SERGHEI captures moving equilibria solutions for subcritical (top left), transcritical without

a shock (top right), supercritical (bottom left), and transcritical with a shock (bottom right) test cases. Not that the solution is stable (no

oscillations) and well-balanced (discharge remains constant along the flume).

Figure 5 shows comparisons between SERGHEI and analytical solutions obtained through SWASHES. Overall, good agree-255

ment between SERGHEI and analytical solutions is obtained. Note that the unit discharge is captured with machine accuracy

in the presence of friction and bottom changes, which is mainly due to the upwind friction discretization used in the SERGHEI

solver. As reported by Burguete et al. (2008); Murillo et al. (2009), a centered friction discretization does not ensure a perfect

balance between fluxes and source terms for steady states even if using the improved discretisation by Xia et al. (2017).

Finally, MacDonald-type solutions can be constructed for frictionless flumes to study the the bed slope source term im-260

plementation in isolation. We present a frictionless test case with SERGHEI that is not part of the SWASHES benchmark

compilation. We discretise the bed elevation of the flume as

z(x) = C0−
1
2

exp(−0.001x)− 2q2
0 exp(0.002x)

g
, (5)

12

https://doi.org/10.5194/gmd-2022-208
Preprint. Discussion started: 8 September 2022
c© Author(s) 2022. CC BY 4.0 License.

phillip
Notiz
e

phillip
Notiz
add axis description specific dischargewhy is discharge 0 ?also belowor do you show the erroror a relative error, unit ?in case it is a (relative) error, add description how it is computed in the text

phillip
Notiz
is this elevation or water depth ?the water depth goes down to 0 ?add a comment if it becomes very small and is no more visible

phillip
Notiz
3.1.2aalso for others



Figure 6. Analytical steady flows: Flumes. SERGHEI captures moving equilibrium solution for frictionless test case, with a stable and well-

balanced solution.

Case L1 (m) L2 (m) L∞ (m)

3.1.1 0.2 0.01826 0.00249

3.1.2 0.1 0.01467 0.00249

3.1.3 0.293 0.02618 0.00332

3.1.4 0.693 0.0306 0.00356

3.1.5 0.371 0.07285 0.06984

3.2.1a 1.0389 0.03805 0.00191

3.2.1b 0.68584 0.01909 0.0015

3.2.1c 5.21459 0.12162 0.00435

3.2.1d 1.02096 0.06826 0.0622

w/o fr. 0.74571 0.02743 0.00178

Table 2. Analytical steady flows: Summary of L-norms for errors in water depth; L-norms for errors in unit discharge are in the range of

machine accuracy and omitted here.

where C0 is an arbitrary integration constant and q0 is a specified unit discharge. The water depth for this topography is

h(x) =
1
2

exp(−0.001x) . (6)265

Using C0 = 1.0 m and q0 = 1.0 m2/s, we obtain the solution plotted in Figure 6. SERGHEI’s prediction and the analytical

solution show good agreement.

L-norms for errors in water depth are summarised in Table 2 for the sake of completeness. The L-norms for errors in unit

discharge are in the range of machine accuracy for all cases and omitted here.
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4.2 Analytical dam breaks270

We verify SERGHEI’s capability to capture transient flow for a number of test cases compiled in (Delestre et al., 2013). Dam

break problems are defined by an initial discontinuity in the water depth in the domain h(x), such that

h(x) =





hL if x≤ x0,

hR otherwise,
(7)

where hL denotes a specified water depth on the left hand-side of the location of the discontinuity x0 and hR denotes the

specified water depth on the right hand-side of x0. Initial velocities are nil in the entire domain. In the following, we report275

empirical evidence of the numerical schemes mesh convergence property by comparing model predictions for test cases with

100, 1000, 10000, and 100000 elements, respectively.

4.2.1 Dam break over a wet bed without friction — A

The dam break on wet bed without friction test case is configured by setting water depths in the domain as hL = 0.005m and

hR = 0.001m. The domain is 10m long, and the discontinuity is located at x0 = 5m. The total run time is 6s. Figure 7 shows280

the model results obtained on successively refined grids, compared against the analytical solution by Stoker (). Errors for this

test case are reported in Table 3. We also report the observed convergence rate R, calculated on the basis of the L1-norm. As

the grid is refined, the model result converges to the analytical solution. Due to the discontinuities in the solution, the observed

convergence rate is below the theoretical convergence rate of R = 1.

4.2.2 Dam break over a dry bed without friction — B285

Flow featuring depth close to dry bed is a special case for the numerical solver, because regular wave speed estimations become

invalid Toro (2001). In this test case, initial conditions are chosen to be hL = 0.005m and hR = 0m, that is to say dry. As in

the previous test case A, the domain is 10m long, the discontinuity is located at x0 = 5m, and the total run time is 6s. Model

results are plotted against the analytical solution by Ritter for different grid resolutions in Figure 8. The model results converge

to the analytical solution as the grid is refined. This is also seen in Table 3, where errors and convergence rates for this test290

case are summarised. Again, the observed convergence rate is below the theoretical convergence rate of R = 1, because of the

increased complexity introduced by the discontinuity in the solution and the presence of dry bed.

4.3 Analytical oscillations

We present transient two-dimensional test cases with moving wet-dry fronts that consider the periodical movement of water in

a parabolic bowl, so-called oscillations that have been studied by Thacker (1981). We replicate two cases from the SWASHES295

compilation (Delestre et al., 2013), using a mesh spacing of ∆x = 0.01m.
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Figure 7. Dam break on wet bed without friction: Model predictions for different number of grid cells. SERGHEI converges to the analytical

solution (Stoker’s solution) as the grid is refined.

Case n L1(h) (m) L2(h) (m) R(h) (m) L1(u) (m/s) L2(u) (m/s) R(u) (m/s)

A 100 0.01623 0.03303 - 0.11194 0.14115 -

A 1000 0.00265 0.00932 0.79 0.01842 0.0424 0.78

A 10000 0.00041 0.00327 0.81 0.00272 0.01458 0.83

A 100000 6×10−5 0.00125 0.83 0.00037 0.00581 0.87

B 100 0.01566 0.02343 - 0.23 0.526 -

B 1000 0.00396 0.00645 0.6 0.138 0.4053 0.22

B 10000 0.00068 0.00137 0.76 0.08169 0.34 0.22

B 100000 0.0001 0.00026 0.83 0.04193 0.248 0.28
Table 3. Analytical dam breaks: L-norms and empirical convergence rates (R) for water depth (h) and velocity (h)
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Figure 8. Dam break on dry bed without friction: Model predictions for different number of grid cells. SERGHEI converges to the analytical

solution (Ritter’s solution) as the grid is refined.

4.3.1 Radially-symmetrical paraboloid

The first test case is a radially symmetrical oscillation in a frictionless paraboloid. The topography is defined as




z(r) =−h0

(
1− r2

a2

)
,

r =
√

(x−L/2)2 + (y−L/2)2,
(8)

where r is the radius, h0 is the water depth at the centre of the paraboloid, a is the distance from the centre to the zero elevation300

shoreline, L is the length of the square-shaped domain, and x and y denote coordinates inside the domain. The analytical

solution is derived in (Thacker, 1981). We use the same values as Delestre et al. (2013), that is h0 = 0.1m, a = 1m, and

L = 4m. The simulation is run for 3 periods, with a spatial resolution of δx = 0.01m. Figure 9 shows the numerical and

analytical solution at four different times. Model results show good agreement with the analytical solution.

4.3.2 Planar surface in a paraboloid305

The more established test case by (Thacker, 1981) is the periodic oscillation of a planar surface in a frictionless paraboloid.

This case has been extensively used for validation of shallow water solvers, for example (Aureli et al., 2008; Dazzi et al., 2018;

Liang et al., 2015; Murillo and García-Navarro, 2010; Vacondio et al., 2014; Zhao et al., 2019), because of its rather complex
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(a) T/2 (b) T

(c) 2T (d) 3T

Figure 9. Radially-symmetrical paraboloid: Snapshots of water depth by the model compared to the analytical solution (contour lines).

Period T = 2.242851s

2D nature and the presence of moving wet/dry fronts. The topography is again given by Equation 8 with the same choice

of parameters and discretisation as before. The analytical solution can be found in (Thacker, 1981; Delestre et al., 2013). The310

simulation is run for 3 full periods. Snapshots of the simulation are plotted in Figure 10 and compared to the analytical solution.

The model results agree well with the analytical solution after three periods, with slightly growing phase error, as is commonly

observed on this test case.
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(a) T/2 (b) T

(c) 2T (d) 3T

Figure 10. Planar surface in a paraboloid: Snapshots of water depth by the model compared to the analytical solution (contour lines). Period

T = 2.242851s

4.4 Variable rainfall over a sloping plane

Govindaraju et al. (1990) presented an analytical solution to a variable rainfall over a sloping plane, which is commonly used315

(Caviedes-Voullième et al., 2020a; Gottardi and Venutelli, 2008; Singh et al., 2015). The plane is 21.945m long, with a slope

of 0.04. We select rainfall B from Govindaraju et al. (1990), which has to distinct rainfall peaks. Friction is modeled with

Chezy’s equation, with a roughness coefficient of 1.767m1/2s−1. The computational domain was defined by a 200×x10 grid,

with δx = 0.109725m.
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The simulated discharge hydrograph at the outlet is compared against the analytical solution in Figure 11. The numerical320

solutions matches the analytical one very well. The only relevant difference occurs in the magnitude of the second discharge

peak, which is slightly underestimated in the simulation.
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Figure 11. Simulated and analytical discharge for the analytical case of rainfall in a flume

5 Laboratory-scale experiments

5.1 Experimental dam-break over a triangular sill

Hiver (2000) presented a large flume experiment of a dam-break over a triangular sill, which is a standard benchmark in dam-325

break problems (Caviedes-Voullième and Kesserwani, 2015; Bruwier et al., 2016; Kesserwani and Liang, 2010; Loukili and

Soulaïmani, 2007; Murillo and García-Navarro, 2012; Yu and Duan, 2017; Zhou et al., 2013), together with the reduced scale

version (Soares-Frazão, 2007; Hou et al., 2013a, b; Yu and Duan, 2017).

The computational domain was discretised with a 380× 5 grid, with a δx = 0.1m resolution. Figure 12 shows simulated

and experimental results for the triangular sill case. A very good agreement can be observed, both in terms of peak depths330

occurring whenever the shock wave passes through a gauge, and in the timing of the shock wave movement. The simulations

tend to slightly overestimate the peaks of the shock wave, as well as overestimating the waves downstream of the sill (see

12(g)). Both behaviours are well documented in the literature.

5.2 Experimental idealised urban dam-break

A laboratory-scale experiment of a dam-break over an idealised urban area was reported by (Soares-Frazão and Zech, 2008) in335

a concrete channel including 25 obstacles representing buildings. It is widely used in the shallow-water community (Abderrez-

zak et al., 2008; Caviedes-Voullième et al., 2020b; Ginting, 2019; Hartanto et al., 2011; Jeong et al., 2012; Özgen et al., 2015;

Petaccia et al., 2010; Wang et al., 2017) because of its fundamental phenomenological interest and because it is demanding in
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Figure 12. Simulated (black lines) and experimental (red points) transient water depths at seven gauge points for the the dam-break over a

triangular sill.

terms of numerical stability and model performance. The small buildings and streets in the geometry require sufficiently high

resolution, both to capture the geometry, and to capture the complex flow phenomena which is triggered in the streets. Exper-340

imental measurements of transient water depth exist at different locations, including in between the buildings. A resolution of

2cm was used for the simulated results in Figure 13, together with experimental data.

5.3 Experimental steady and dam-break flows over complex geometry

Martínez-Aranda et al. (2018) presented experimental results of steady and transient flows over several obstacles, while record-

ing transient 3D water surface elevation in the region of interest. We selected the so-called G3 case, and simulated both a345
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Figure 13. Simulated (lines) and experimental (points) water depth profiles at y = 0.2m, at four times, for the idealised urban dam-break

case.

dam-break and steady flow. The experiment took place in a double-sloped plexiglass flume, 6 m long, and 24 cm wide. The

obstacles in this case are a symmetric contraction and a rectangular obstacle on the centerline, downstream of the contraction.

For both cases the flume (including the upstream wider reservoir) was discretised at a 5 mm resolution, resulting in a

computational domain with 106887 cells. Manning’s roughness was set to 0.01s.m−1/3. The steady simulation was run from

an initial state with uniform depth h = 5cm up to t = 300s. The dam-break simulation duration was 40s.350

The steady flow case had a discharge of 2.5 L/s. Steady water surface results in the obstacle region are shown in Figure 14,

for a centerline profile (y = 0) and a cross section at the rectangular obstacle, specifically at x = 2.40 (the coordinate system

is set at the center of the flume inlet gate). The simulation results approximate experimental results well. The mismatches

are similar to those analysed by Martínez-Aranda et al. (2018) and can be attributed to turbulent and 3D phenomena near the

obstacles.355

The dam-break case is triggered by a sudden opening of the gate followed by a wave advancing along the dry flume. Results

for this case at three gauge points are shown in Figure 15. Again, the simulations approximate experiments well, capturing

both the overall behaviour of the water depths and the arrival of the dam break wave, with local errors attributable to the violent

dynamics (Martínez-Aranda et al., 2018).
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Figure 14. Simulated and experimental steady water surface in the obstacle region of the G3 flume.
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Figure 15. Simulated and experimental transient water depths at three gauge points for the G3 flume dam-break over several obstacles.

5.4 Experimental unsteady flow over an island360

Briggs et al. (1995) presented an experimental test of an unsteady flow over a conical island. This test has been extensively used

for benchmarking (Bradford and Sanders, 2002; Choi et al., 2007; García-Navarro et al., 2019; Hou et al., 2013b; Liu et al.,

1995; Lynett et al., 2002; Nikolos and Delis, 2009). A truncated cone of base diameter 7.2m, top diameter 2.2m and 0.625m

high, was placed at the centre of a 26× 27.6m smooth and flat domain. An initial hydrostatic water level of h + z = 0.32m

was set, and a wave was imposed on the boundary following365

hb = h0 + Asech2

(
B(t−T )

C

)
(9)

B =
√

gh0

(
1 +

A

2h0

)
(10)

C = h0

√
4h0B

3A
√

gh0
(11)
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Figure 16 shows results for a simulation with a 2.5cm resolution, resulting in 1.2 million cells. A roughness coefficient of

0.013sm−1/3 was used for the concrete surface. The results are comparable to previous solutions in the literature, in general370

reproducing well the water surface surface, with some delay over experimental measurements.
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Figure 16. Simulated and experimental results of unsteady flow over an island

5.5 Experimental laboratory scale tsunami

A 1:400 scale experiment of a tsunami run-up over the Monai valley was reported by (Matsuyama and Tanaka, 2001; third

international workshop on long-wave runup models., 2004), providing experimental data on the temporal evolution of the water

surface at three locations, and of the maximum run-up. A laboratory basin of 2.05× 3.4m was used to create a physical scale375

model of the Monai coastline. A tsunami was simulated by appropriate forcing of the boundary conditions. This experiment

has been extensively used to benchmark SWE solvers (Arpaia and Ricchiuto, 2018; Caviedes-Voullième et al., 2020b; Hou

et al., 2015, 2018; Kesserwani and Liang, 2012; Kesserwani and Sharifian, 2020; Morales-Hernández et al., 2014; Murillo

et al., 2009; Murillo and García-Navarro, 2012; Nikolos and Delis, 2009; Serrano-Pacheco et al., 2009; Vater et al., 2019). The

domain has dimensions and was discretised with a resolution of 1.4cm, producing 95892 elements. Simulated water surface380

elevations are shown together with the experimental measurements in Figure 17 at three gauge locations. The results agree well

with experimental measurements, both in the water surface elevations and the arrival times of the waves.

5.6 Experimental rainfall-runoff over an idealised urban area

Cea et al. (2010a) presented experimental and numerical results for a range of laboratory scale rainfall-runoff experiments

on an impervious surface with different arrangements of buildings, which have been frequently used for model validation385

(Caviedes-Voullième et al., 2020a; Cea et al., 2010b; Cea and Bladé, 2015; Fernández-Pato et al., 2016; Su et al., 2017; Xia

et al., 2017). This laboratory scale test includes non-trivial topographies, small water layers and wetting/drying fronts, making

it a good benchmark for realistic rainfall-runoff conditions.

The dimensions of the experimental flume are 2×2.5m. Here, we select one building arrangement named A12 by Cea et al.

(2010a). The original DEM is available (from Cea et al. (2010a)) at a resolution of 1cm. The buildings are 20cm high, and are390
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Figure 17. Simulated and experimental results for the laboratory scale tsunami case.

represented as topographical features on the domain. All boundaries are closed, except for the free outflow at the outlet. The

domain was discretised with a δx = 1cm resolution, resulting in 54600 cells. The domain was forced by two constant pulses

of rain of 85mmh−1 and 300mmh−1 (lowest and highest intensities in the experiments) with a duration of 60s and 20s. The

simulation was run up to t = 200s. Friction was modelled by Manning’s equation, with a constant roughness coefficient of

0.010s.m−1/3 for steel (Cea et al., 2010a).395

Figure 18 shows the experimental and simulated outflow discharge for both rainfall pulses. There is a very good qualitative

behaviour, and peak flow is quantitatively well reproduced by the simulations. For the 300mmh−1 intensity rainfall, the onset

of runoff is earlier than in the experiments, and overall the hydrograph is shifted towards earlier times. Cea et al. (2010a)

observed a similar behaviour, and pointed out that this is likely caused by surface tension during the early wetting of the

surface, and it was most noticeable on the experiments with higher rainfall intensity.400
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Figure 18. Simulated hydrographs compared to experimental data from Cea et al. (2010a) for two rainfall pulses on the A12 building

arrangement.
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5.7 Experimental rainfall-runoff over a dense idealised urban area

Cea et al. (2010b) presented a laboratory scale experiment in a flume with a dense idealised urban area. The case elaborates

on the setup of Cea et al. (2010a) (subsection 5.6), including 180 buildings (case L180), in contrast to the 12 buildings in

subsection 5.6. This consequently requires a higher resolution to resolve the building (6.2cm sides) and street width (∼ 2cm),

and the flow in the streets. Rainfall is a single pulse of constant intensity. Two setups were used with intensities 85mmh−1405

and 300mmh−1 and durations of 60s and 20s respectively. As Figure 19 shows, the hydrographs are well captured by the

simulation, albeit with a delay. Analogously to subsection 5.6, this can be attributed to surface tension in the early wetting

phase.
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Figure 19. Simulated hydrographs compared to experimental data from Cea et al. (2010b) for two rainfall pulses on the L180 building

arrangement.

6 Plot-scale to catchment-scale experiments

6.1 Malpasset dam-break410

The Malpasset dam-break event Hervouet and Petitjean (1999) is the most commonly used real-scale benchmark test in shallow

water modelling (An et al., 2015; Brodtkorb et al., 2012; Brufau et al., 2004; Caviedes-Voullième et al., 2020b; Duran et al.,

2013; George, 2010; Hervouet and Petitjean, 1999; Hou et al., 2013a; Kesserwani and Liang, 2012; Kesserwani and Sharifian,

2020; Kim et al., 2014; Liang et al., 2007; Sætra et al., 2015; Schwanenberg and Harms, 2004; Smith and Liang, 2013; Valiani

et al., 2002; Xia et al., 2011; Yu and Duan, 2012; Wang et al., 2011; Zhou et al., 2013; Zhao et al., 2019). Although it may415

not be particularly challenging for current solvers, it remains an interesting case due to its scale, and the available field and

experimental data (Aureli et al., 2021). The computational domain was discretised to δx = 25m and δx = 10m (resulting in
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83137 and 515262 cells respectively). The Glaucker-Manning coefficient was set to a uniform value of 0.033sm−1/3, which

has been shown to be a good approximation in the literature.
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Figure 20. Result comparison for the Malpasset dam-break test case.
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6.2 Plot-scale field rainfall-runoff experiment420

Tatard et al. (2008) presented a rainfall-runoff plot-scale experiment performed in Thies, Senegal. This test has been often

used for benchmarking of rainfall-runoff models (Caviedes-Voullième et al., 2020a; Chang et al., 2016; Mügler et al., 2011;

Özgen-Xian et al., 2020; Park et al., 2019; Simons et al., 2014; Yu and Duan, 2017; Weill, 2007). The domain is a field plot of

10×4m, with an average slope of 1%. A rainfall simulation with an intensity of 70mmh−1 during 180s was performed. Steady

velocity measurements were taken at 62 locations. The Glaucker-Manning roughness coefficient was set to 0.02sm−1/3 and a425

constant infiltration rate was set to 0.0041667mms−1 (Mügler et al., 2011). The domain was discretised with δx = 0.02666m,

resulting is 56250 cells, with a single free outflow boundary downslope.

Simulated velocities are compared to experimental velocities at the 62 gauged locations in Figure 21. A good agreement

of simulated and experimental velocities exists, especially in the lower velocity range. The agreement is similar to previously

reported results (e.g., Caviedes-Voullième et al., 2020a), and the differences between simulated and observed velocities have430

been shown to be a limitation of a depth-independent roughness and Manning’s model (Mügler et al., 2011).

0 5 10 15 20 25 30

0
5

10
15

20
25

30

Exp. velocity [cm/s]

S
im

. v
el

oc
ity

 [c
m

/s
]

Figure 21. Comparison of simulated (line) and experimental (circles) steady velocities in the Thies field case.

7 Performance and scaling

In this section we report a first investigation of the computational performance and parallel scaling of SERGHEI-SWE for

selected test cases. To demonstrate performance-portability, we show performance metrics for both OpenMP and CUDA back-

ends enabled by Kokkos , computed on CPU and GPU architectures respectively. For that, hybrid MPI-OpenMP and MPI-435

CUDA implementations are used, with one MPI task per node for MPI-OpenMP and one MPI task per GPU for MPI-CUDA.

Most of the runs were performed on JUWELS at JSC (Jülich Supercomputing Centre). Additional HPC systems were also used
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for come cases. Properties of all systems are shown in Table 4. Additionally, we provide performance metrics on non-HPC

systems including some consumer-grade GPUs.

It is important to highlight that no performance tuning or optimisation has been carried out for these tests, and that no440

system-specific porting efforts were done. All runs relied entirely on Kokkos for portability. The code was simply compiled

with the available software stacks in the HPC systems and executed. All results reported here were computed using double

precision arithmetic.

Table 4. HPC systems in which SERGHEI has been tested

Name Centre Institution Country Devices Vendor Device/node Nodes

JUWELS JSC FZJ Germany

Xeon Platinum 8168 CPU Intel 2x(2x24) 2567

Volta V100 GPU Nvidia 4 56

Ampere A100 GPU Nvidia 4 936

JURECA-DC JSC FZJ Germany EPYC 7742 2.25 GHz AMD 2x(2x64) 480

SUMMIT OLCF ORNL USA Volta V100 GPU Nvidia 6 4608

Cori NERSC LBNL USA Xeon E5-2698 v3 CPU Intel 32 2388

JSC: Jülich Supercomputing Centre; FZJ: Forschungszentrum Jülich

OLCF: Oak Ridge Leadership Computing Facility; ORNL: Oak Ridge National Laboratory

NERSC: National Energy Research Scientific Computing Center; LBNL: Lawrence Berkeley National Laboratory

7.1 Single node scaling – Malpasset dam-break

The commonly used Malpasset dam-break test (introduced in subsection 6.1) was also tested for computational performance445

at a resolution of δx = 10m. Results are shown in Figure 22. The case was computed on CPUs a single JUWELS node and

a single JURECA-DC node. Three additional runs with single Nvidia GPUs were carried out: a commercial-grade GeForce

RTX 3070, 8GB GPU (in a desktop computer) and two scientific-grade cards V100 and A100 respectively (in JUWELS ). As

Figure 22 shows, CPU runtime quickly approaches an asymptotic behaviour (therefore demonstrating that additional nodes are

not useful in this case). Notably, all three GPUs outperform a single CPU node, and the performance gradient among the GPUs450

is evident. The A100 GPU is roughly 6.5 faster than a full JUWELS CPU node, and even for the consumer-grade RTX 3070 the

speed-up compared to a single HPC node is 2.2. Although it is possible to scale up this case with significantly higher resolution

and test it with multiple GPUs, it is not a case well suited for such a scaling test. Multiple GPUs (as well as multiple nodes

with either CPUs or GPUs) require a domain decomposition. The orientation of the Malpasset domain is roughly NW-SE,

which makes both 1D decompositions (along x or y) and 2D decompositions (x and y) inefficient, as many regions have no455

computational load. Moreover, the dam-break nature of the case implies that a large part of the valley is dry for long periods

of time, therefore load balancing among the different nodes/GPUs will be poor.
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Figure 22. Scaling for the Malpasset case (δx = 10m) on a single node and on single GPUs. GPU speed-ups relative to a full JUWELS

node are 6.5 (A100), 3.4 (V100) and 2.2 (RTX 3070).

7.2 HPC scaling – 2D circular dam break case

This is a simple analytical verification test in the shallow water literature, which generalises the 1D dam-break solution. This

is a convenient test for scaling studies, as resolution can be increased at will, and the square and fully wet domain minimises460

load balancing issues. We take a 400× 400m flat domain with center at (0,0) and initial conditions given by

h(x,y, t = 0) =





4 if
√

x2 + y2 ≤ 50

1 otherwise
(12)

We generated three computational grids, with δx = 0.05,0.025,0.0175m, which correspond to 64, 256 and 552 million cells

respectively. Figure 23 shows the strong scaling results for the 64 and 256 million cells cases, computed in the JUWELS-Booster sys-

tem, on A100 Nvidia GPUs. The 64 million does not scale well beyond 4 GPUs. However, the 256 cells problem scales well465

up to 64 GPUs (and shows inefficiencies with 128), showing that the first case simply is too small for significant gains.

For the 552 million cell grid, only two runs were computed with 128 and 160 GPUs (corresponding to 32 and 40 nodes

in JUWELS-Booster respectively). Runtime for these was 95.4 and 84.7s respectively, implying a very good 89% scaling

efficiency for this large number of GPUs. For this problem and these resources, the time required for inter-GPU communica-

tions is comparable to that used by kernels computing fluxes and updating cells, signalling scalability limits for this case on470

the current implementation.

7.3 HPC-scaling of rainfall-runoff in a large catchment

To demonstrate scaling under production conditions of real scenarios, we use an idealised rainfall-runoff simulation over the

Lower Triangle region in the East River Watershed (Colorado, USA) (Carroll et al., 2018; Hubbard et al., 2018; Özgen-Xian
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(a) δx = 0.05, 64 million cells (b) δx = 0.025, 256 million cells

Figure 23. Strong scaling behaviour for a circular dam break test case

et al., 2020). The domain has an area of 14.82km2, and elevations ranging from 2759−3787m. The computational problem is475

defined with a resolution of δx = 0.5m (matching the highest resolution DEM available), resulting in 122×106 computational

cells.

For practical purposes, two configurations have been used for this test. A short rainfall of T = 870s, which was computed

in NERSC Cori and JUWELS to assess CPU performance and scalability (results shown in Figure 24). A long rainfall event

lasting T = 12000s was simulated in SUMMIT and JUWELS to assess GPU performance and scalability, with results shown480

in Figure 25. CPU results (Figure 24 show that the strong scaling behaviour in NERSC Cori and JUWELS is very similar.

Absolute runtimes are longer for NERSC Cori since the scaling study was carried starting from a single core, whereas in

JUWELS it was with a full node (i.e., 48 cores). Most importantly, the GPU strong scaling behaviour overlaps almost completely

between JUWELS and SUMMIT , although computations in SUMMIT were somewhat faster. CPU and GPU scaling is clearly

highly efficient and with similar behaviour. These results demonstrate the performance-portability delivered via Kokkos to485

SERGHEI.

8 Vision and future work

Similar to Giardino and Houser (2015), we view water fluxes as the thread connecting various elements of our Earth’s system.

Thus, SERGHEI is envisioned as a modular simulation framework around a physically-based hydrodynamic core, which al-

lows to represent a variety of water-driven and water-limited processes in a flexible manner. As illustrated by the conceptual490

framework in Figure 26, SERGHEI’s hydrodynamic core will consist of mechanistic surface and subsurface flow solvers (light

and dark blue), around which a generalised transport framework for multi-species transport and reaction will be implemented

(gray). The transport framework will further enable the implementation of morphodynamics (gold) and vegetation dynamics

(green) models. The transport framework will also include a Lagrangian particle-tracking module (currently also under devel-

opment). At the time of the writing of this paper, the subsurface flow solver—based on the three-dimensional extension of the495

Richards solver by Li et al. (2021)—is experimentally operative and is underway to be coupled to the surface flow solver, thus,
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Figure 24. Strong scaling behavior of SERGHEI-SWE on NERSC Cori and JUWELS for the short rainfall event. See Table 4 for details
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Figure 25. Strong scaling behaviour of SERGHEI-SWE on SUMMIT and JUWELS for the long rainfall event. See Table 4 for details on the

systems.

making the hydrodynamic core of SERGHEI applicable to integrated surface–subsurface hydrology. The initial infrastructure

for the transport-based three other frameworks is currently under development.

In contrast to many established codes, SERGHEI is conceptualised and designed with extendibility and software inter-

operability in mind. Design choices have been made to include foreseeable future developments on a wide range of topics:500

(i) numerics, e.g., the Discontinuous Galerkin discretisation strategies (Caviedes-Voullième and Kesserwani, 2015; Shaw et al.,

2020) and multiresolution adaptive meshing (Caviedes-Voullième et al., 2020b; Kesserwani and Sharifian, 2020; Özgen-Xian
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Figure 26. A conceptual framework of SERGHEI

et al., 2020); (ii) interfaces to mature geochemistry engines, e.g., CrunchFlow (Steefel, 2009) and PFLOTRAN (Lichtner et al.,

2015), and (iii) vegetation models with varying degree of complexity, for example, Ecosys, EcH2O.

In the long term, SERGHEI’s Kokkos-based HPC capabilities will enable, for example, to run decadal morphological simu-505

lations, to better capture sediment connectivity across the landscape, and to run catchment-scale hydro-biogeochemical simu-

lations with unprecedented high spatial resolution.

9 Conclusions

In this paper we present the SERGHEI framework, and in particular the SERGHEI-SWE module. SERGHEI-SWE implements

a 2D fully dynamic shallow water solver, harnessing state-of-the-art numerics, and leveraging on Kokkos to facilitate portability510

across architectures. We show through empirical evidence with a large set of well established benchmarks that SERGHEI-SWE

is accurate, numerically stable, and robust. Importantly, we show that SERGHEI-SWE’s parallel scaling is very good for CPU-

based HPC systems, consumer-grade GPUs, and GPU-based HPC systems. Consequently, we claim that SERGHEI is indeed

performance-portable, and approaching exascale-readiness, enabling its use as part of broader Earth System modelling efforts

and a plausible community code for shallow water modelling.515

Code and data availability. SERGHEI is available through GitLab, at https://gitlab.com/serghei-model/serghei, under a 3-clause BSD li-

cense. SERGHEI v1.0 was tagged as the first release at the time of submission of this paper. A static version of SERGHEI v1.0 is archived

in Zenodo, DOI: 10.5281/zenodo.7041423

A repository containing test cases is available https://gitlab.com/serghei-model/serghei_testcases. This repository contains many of the

cases reported here, except those for which we cannot publicly release data, but which can be obtained from the original authors of the520
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datasets. A static version of this datasets is archived in Zenodo, with DOI: 10.5281/zenodo.7041392. Additional convenient pre- and post-

processing tools are also available at https://gitlab.com/serghei-model/sergheir.
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