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Abstract. The data assimilation technique is one of the important ways to reduce the uncertainty of atmospheric chemistry 

model input and improve the model forecast accuracy. In this paper, an ensemble optimal interpolation assimilation (EnOI) 10 

system for a regional online chemical weather numerical forecasting system (GRAPES_Meso5.1/CUACE) is developed for 

operational use and efficient updating of the initial fields of chemical components. A heavy haze episode in eastern China was 

selected, and the key factors affecting the EnOI, such as localization length-scale, ensemble size, and assimilation moment, 

were calibrated by sensitivity experiments. The impacts of assimilating ground-based PM2.5 observations on the model 

chemical initial field and PM2.5, visibility forecasts were investigated. The results show that assimilation of PM2.5 reduces the 15 

uncertainty of the initial PM2.5 field considerably. Using only 50% observations to do the assimilation, the root mean square 

error (RMSE) of initial PM2.5 for independent verification sites in mainland China decreases from 73.7 to 46.4 µg m-3, and the 

correlation coefficient increases from 0.58 to 0.84. An even larger improvement appears in North China. For the forecast fields, 

assimilation of PM2.5 improves PM2.5 and visibility forecasts throughout the time window of 24 h. The PM2.5 RMSE can be 

reduced by 10%-21% within 24 h, and the assimilation effect is most remarkable in the first 12 h. Within the same assimilation 20 

time, the assimilation efficiency varies with the discrepancy between model forecasts and observations at the moment of 

assimilation, and the larger the deviation, the higher the efficiency. The assimilation of PM2.5 further contributes improvement 

of visibility forecast. When the PM2.5 increment is negative, it corresponds to an increase in visibility, and when the PM2.5 

analysis increment is positive, visibility decreases. It is worth noting that the improvement of visibility forecasting by 

assimilating PM2.5 is more obvious in the light pollution period than in the heavy pollution period, since visibility is much 25 

more affected by humidity during the heavy pollution period accompanied by low or extreme low visibility. To get further 

visibility improvement, especially for extreme low visibility during severe haze pollution, not only PM2.5 but also relative 

humidity should be simultaneously assimilated as well. The results of this study shows that the EnOI may provide a practical 

and cost-effective alternative to the EnKF for the applications where computational cost is a main limiting factor, especially 

for real-time operational forecast. 30 
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1 Introduction 

Air pollution is an intractable problem that all developing countries with high population in the world are facing at present. 

PM2.5 plays an important role in air pollution, and its concentration will directly affect air quality. From the health perspective, 

long-term exposure to high concentrations of PM2.5 has adverse effects on the human body, including the respiratory system, 

cardiovascular disease and other chronic diseases(Ghorani-Azam et al., 2016). From the meteorological perspective, aerosol 35 

particles can effectively absorb and scatter solar radiation, change the intensity and direction of sunlight, reduce atmospheric 

horizontal visibility(Liu et al., 2019; Yadav et al., 2022; Ting et al., 2022), leading to haze episodes which are characterized 

by significant growth in the concentration of aerosol particles and sharp reduction of visibility.  

Accurate PM2.5 and visibility forecasts are critical for human health, air quality assessment and public transportation safety 

issues(Zhang et al., 2013). Chemistry Transport Model (CTM) or Coupled chemistry meteorology models (CCMM) are 40 

important tools for PM2.5 and visibility forecasting, and is pivotal in air quality and atmospheric chemistry research. However, 

various uncertainties exist in the simulation of atmospheric components in CTM or CCMM, especially for aerosols (Lee et al., 

2016). The complexity of atmospheric pollution formation mechanisms and model structure, the uncertainty of chemical initial 

conditions (ICs) and the lag in emission inventories lead to a deviation of air quality forecast results from observed comparisons.  

Data assimilation (DA) is one of the most effective ways to improve model predictions. Weather prediction had relied on data 45 

assimilation for many decades (Kalnay, 2003; Navon 2009). In comparison, the use of data assimilation in atmospheric 

chemistry models to improve air quality forecasting is more recent, but important advances have been made. Tombette et al. 

(2009) presented an experiment on PM10 data assimilation using  OI method to improve PM10 forecasting. Tang et al. (2015) 

used the same DA method to assimilate ozone/ PM2.5 and MODIS aerosol optical depth data into the Community Multi-scale 

Air Quality model to improve the ozone and total aerosol concentration for the CMAQ simulation over the contiguous United 50 

States. Liu et al. (2011) assimilated AOD from Terra and Aqua satellites using the GSI 3D-Var assimilation system, showing 

that AOD data assimilation system can serve as a tool to improve simulations of dust storms. Li et al. (2013) and Feng et al. 

(2018) assimilated ground-based observations of PM2.5 using 3D-Var to improve PM2.5 forecasting. 4D-Var has been 

successfully implemented on CTMs and has improved the PM2.5 forecasting capability. Zhang et al. (2016) constructed a 

GEOS-Chem adjoint model suitable for PM2.5 pollution diffusion based on 4DVAR algorithm, which was verified by the 55 

monitoring data of APEC in Beijing in 2014. Zhang et al. (2021) built a PM2.5 data assimilation system based on the 4DVar 

algorithm and the WRF-CMAQ model, which can assimilate synchronous observations simultaneously to improve aerosol 

prediction accuracy. Wang et al. (2021) established a 4D-VAR assimilation system based on GRAPES_CUACE to optimize 

black carbon (BC) daily emissions in northern China on 4 July 2016. EnKF also plays a significant role in improving the 

accuracy of atmospheric chemistry model forecasts. Lin et al. (2007) developed a EnKF system for a regional dust transport 60 

model. Tang et al. (2016) investigated a cross-variable ozone DA method based on an EnKF, for improving ozone forecasts 

over Beijing and surrounding areas. Park et al. (2022) developed a DA system for the CTM using the EnKF technique, where 

PM2.5 observations from ground stations are assimilated to ICs every 6 hours to improve PM2.5 forecasting in the Korean region. 
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Peng et al. (2017) used EnKF to optimize ICs and emission input, resulting in significant improvements in PM2.5 forecast. 

Overviews of these achievements were provided in several literatures (Bocquet et al., 2015; Benedetti et al., 2018; Zhu et al., 65 

2018; Sokhi et al., 2022).  

Although the previous studies have reported DA method using ground-based or satellite-retrieved observation led to 

improvement of atmospheric composition prediction, each of these DA methods has its own limitation. In OI and 3D-Var, the 

background error covariance (BEC) matrix is estimated at once and the prediction error is statistically stationary. 4D-Var and 

EnKF are advanced data assimilation methods that provide the evolution of the forecast error covariance, but when they are 70 

employed in the operation use, each of them is facing their own challenge.  The CTM and CCMM are complex systems with 

rapid updates, and the implementation of 4D-Var requires a large workload of adjoint models coding (Ha, 2022). EnKF obtains 

a flow-dependent BEC using ensemble forecast by integrating the model multiple times, and that makes it approximately 100 

times more computationally expensive than the forward model when applied to nonlinear systems (Counillon and Bertino, 

2009). Compared to EnKF, EnOI is a suboptimal method for ensemble-based assimilation (Evensen, 2003). EnOI uses a 75 

stationary ensemble to estimate the BEC and only one analysis field is updated at a time, which makes the computation time 

greatly reduced. EnOI can be used in conjunction with other DA methods and may be an appropriate choice for coupled 

forecast systems(Oke et al., 2010). EnOI has been widely used in ocean models with significant improvements to model 

forecast (Counillon and Bertino, 2016; Castruccio et al., 2020; Xie and Zhu, 2010; Belyaev et al., 2021), but not in the CTM 

or CCMM. To our knowledge, there are only several papers involved researches of EnOI in atmospheric chemistry models so 80 

far. Zhang et al. (2014) implement the EnOI on an air quality numerical modelling MM5-STEM for the Pearl River Delta 

region in China. They found that EnOI produced the initial condition closer to the true situation, but they didn’t investigate the 

effect of EnOI on forecast. Wang et al. (2016) used EnOI to investigate the possibility of optimally recovering the spatially 

resolved emissions bias of black carbon aerosol. Kong et al. (2021) applied EnOI to assimilate hourly surface observations of 

CO concentrations at 1107 sites over China in January 2015. They found that simulations with the updated emissions revealed 85 

a decrease bias of average CO concentrations at 349 independent validation sites from 0.74 mg m−3 to 0.01 mg m−3 and a 

reduction of the RMSE by 18%. Results from these papers showed that EnOI is a useful and computation-free method to 

reduce the errors of initial chemical condition or emissions. Since development of CCMM are fairly recent, EnOI have not 

applied for real-time CCMM yet. The GRAPES-CUACE is an online CCMM system developed by the China Meteorological 

Administration (Gong and Zhang, 2008; Zhou et al., 2008; Wang et al., 2010a). This model not only plays an important role 90 

in the scientific research on air pollution (Wang et al., 2015a; Wang et al., 2015b), aerosol-cloud interaction (Wang et al., 2018; 

Peng et al., 2022); and aerosols’ weather feedback (Wang et al., 2010b; Zhang et al., 2022), but is also applied for the 

operational forecasting of air quality, Fog-Haze weather and dust storm in China (Wang and Niu, 2013; Liu et al., 2017). Very 

recently, this model system has been updated to a new version (GRAPES_Meso5.1/CUACE) with many improvements (Wang 

et al., 2022). In this study, we established a real-time EnOI chemistry initial fields PM2.5 assimilation system for this new 95 

version of model, with assimilating PM2.5 data from nearly 1500 ground stations in China into the model chemical initial fields 

to improve the model forecasts of the concentrations of PM2.5 and discuss the impact of assimilating PM2.5 on visibility. 
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2 Methods and Data 

2.1  The ensemble optimal interpolation algorithm 

EnOI algorithm used in this study is based on the work of Evensen (2003). A brief recall of the EnKF and EnOI is given in 100 

this section. DA methods are algorithms that combine observations and model results and their respective statistical 

characteristics of errors to obtain a statistically optimal analysis value by minimizing the analysis variance. Based on Kalman 

filter theory, the analysis state 𝝍𝑎 is determined by a linear combination of the vector of measurements y and the forecasted 

model state vector or background 𝝍𝑓, which is given by the equation (1) and (2),  

𝝍𝑎 = 𝝍𝑓 + 𝑲(𝒚 − 𝑯𝝍𝑓)                 (1) 105 

𝑲 = 𝑷𝑯𝑇[𝑯𝑷𝑯𝑇 + 𝑹]−1                     (2) 

where K is Kalman gain matrix, P is the background error covariance matrix, H is the observation operator that relates the 

model state to the observation, and R is the observation error covariance matrix. 

Now we define A is the matrix holding the ensemble members 𝝍𝑖  

 𝑨 = (𝝍1, 𝝍2, ⋯ , 𝝍𝑁)   ∈ 𝕽𝑛𝑑𝑖𝑚×𝑁         (3) 110 

where N is the number of ensemble members and ndim is the size of the model state vector 

let �̅� be the ensemble mean of A, then the ensemble anomaly 𝑨′ is defined as  

 𝑨′ = 𝑨 − �̅�                                        (4) 

The ensemble covariance matrix P can be defined as 

 𝑷 =
𝑨′𝑨′𝑇

N−1
   ∈ 𝕽𝑛𝑑𝑖𝑚×𝑛𝑑𝑖𝑚                            (5) 115 

the vector of measurements y need to be perturbed with its error as the following 

𝒅𝑗 = 𝒚 + 𝜺𝑗 , 𝑗 = 1, ⋯ , 𝑁               (6) 

which can be stored in a matrix as 

𝑫 = (𝒅𝟏, 𝒅𝟐, ⋯ , 𝒅𝒏)  ∈  𝕽𝑚×𝑁       (7) 

where m is the number of measurements. 120 

The EnKF analysis equation will be expressed as the following 

𝑨𝑎 = 𝑨 + 𝑨′𝑨′𝑇𝑯𝑇[(𝑯𝑨′𝑨′𝑻𝑯𝑇 + (N − 1)𝑹)]−1(𝑫 − 𝑯𝑨)      (8) 

The analysis includes updating each ensemble and need to run the model N times in every forecast cycle to calculate P, 

therefore tends to be computationally demanding and has limited use when the computer time is the main affecter to be 

considered, especially in real-time operational forecast. 125 

The EnOI analysis is computed with the ensemble covariance matrix P spanned by a stationary ensemble of model states 

sampled from a long-time integration. It is computed by solving an equation written as the following 

𝝍𝑎 = 𝝍𝑓 + α𝑨′𝑨′𝑇𝑯𝑇[(𝛼𝑯𝑨′𝑨′𝑇𝑯𝑇 + (N − 1)𝑹)]−1(𝒚 − 𝑯𝝍𝑓)      (9)                                                       
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where the scalar 𝛼 ∈ (0, 1] is introduced to allow for different weights on the ensemble versus measurements. As Evensen 

(2003) pointed out, an ensemble consisting of model states sampled over a long time period will have a climatological variance 130 

which is too large to represent the actual error in the model forecast, and 𝛼 which mainly depends on how the model forecast 

behaviours is used to reduce the variance to a realistic level and can be tuned for optimal performance. In this study, it is taken 

as 0.9 based on our experience. Through Eq. (9) the EnOI analysis updates only one model state at a time, so the computer 

time can be reduced by one or two orders of magnitude. 

2.2 The EnOI data assimilation system design 135 

Using a set of ensemble forecasts with finite number to calculate the BEC will suffer from sample error and cause imperfect 

estimation or even filter divergence (Houtekamer and Mitchell, 1998). There are two sorts of techniques to possibly solve this 

problem. One is the distance-dependent covariance localization, which is done by updating the analysis at all grid points with 

the multiplication of the BEC by a correlation function (Hamill et al., 2001). The other is done by updating the analysis at each 

grid point simultaneously using the state variables and the observations in the local region centred at that point (Ott et al.2004). 140 

In our EnOI DA system, we use the second technique. First, we define the localization length-scale as L. For each model grid 

point, we find the observations within L which are called active observations, and then calculate the corresponding innovation. 

This localization effect on the analysis is illustrated in section 3.1 (Fig.3).  

The observation error covariance matrix R is assumed to be diagonal here, that is, the observation errors are not correlated. 

The diagonal elements of R are thus given by the sum of the measurement error variance 𝜀𝑜
2 and representativeness error 145 

variance 𝜀𝑟
2  , following Elbern et al. (2007). The measurement error 𝜀𝑜 is assigned as 7.5% of observed value, and 

representativeness errors 𝜀𝑟 is formulated as 𝜀𝑟 = 𝜀𝑜 ∙ √
∆𝑥

𝐿𝑟
, where ∆𝑥 is model grid resolution (10km in this study) and Lr is 

the characteristic representativeness length of the observation, defined as 2 km for urban sites, 10km for rural sites and 20km 

for remote sites, respectively. 

Based on the Eq. (9), we built the EnOI initial field PM2.5 assimilation system, as shown in Fig. 1. The main procedures can 150 

be divided into pre-processing, analysis, and post-processing. Pre-processing involves the acquisition of observed data and 

ensemble samples. Analysis is the revised main module of EnOI where the main computational processes are performed. Post-

processing firstly verifies the assimilation results using the validation observations which are not used in EnOI and then 

processes the results obtained from assimilation into model-readable chemical initial conditions. Compared with the traditional 

EnOI, the time-continuous model historical forecast before the assimilation moment are selected as the ensemble samples for 155 

this study. The ensemble design is set to be as following: suppose the assimilation will be done at time t, first we evolve the 

model from the spin-up run at t-NΔt and integrate the model to time t (in our operational set up, Δt is 1 hour), therefore we get 

a time series of N hourly model forecast outputs At-N+1, At-N+2, …, At-1, At. These hourly outputs before the assimilation time t 

form the N-number ensemble A, which can be used to calculate the average �̅� and anomalies A’ and then the background error 
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covariance matrices P is calculated. The BEC is stationary for a particular analysis moment, but it changes with the assimilation 160 

moment during a long assimilation period. Because background error covariance statistics are derived directly from forecasts 

and the DA scheme does not need to modify the original CCMM, EnOI is very easy to apply and very cost-free in term of 

computation time.  

 

2.3 GRAPES_Meso5.1/CUACE 165 

In this study, the DA method EnOI was established for the latest updated version of the regional atmospheric chemistry model 

GRAPES_Meso5.1/CUACE developed by the China Meteorological Administration (Wang et al., 2022). The model system 

consists of two main components, which are called GRAPES_Meso and CUACE, respectively. GRAPES_Meso refers to a 

real-time operational weather forecasting model used by China Meteorological Administration (Chen et al., 2008; Zhang and 

Shen, 2008). Now, the new version of it has been established with the resolutions ranging from 3 to 10 km for regional forecast 170 

(Shen et al., 2020). It uses fully compressible non-hydrostatic equations as its model core. The vertical coordinates adopt the 

height-based, terrain-following coordinates, and the horizontal coordinates use the spherical coordinates of equal longitude–

latitude grid points. The horizontal discretization adopts an Arakawa-C staggered grid arrangement and a central finite-

difference scheme with second-order accuracy, while the vertical discretization adopts the vertically staggered variable 

arrangement. The time integration discretization uses a semi-implicit and semi-Lagrangian temporal advection scheme. The 175 

transport and advection processes for all gases and aerosols are calculated by the dynamic framework of it. The second 

component, CUACE, refers to the atmospheric chemistry model (the Chinese Unified Atmospheric Chemistry Environment 

model), which mainly includes three modules: the aerosol module (CAM), the gaseous chemistry module (RADM2) and the 

thermodynamic equilibrium module (ISOPIA). In the RADM2 module, 63 gas species through 21 photochemical reactions 

and 136 gas-phase reactions participate in the calculations. CAM module considers the dynamic, physical and chemical 180 

processes of aerosols including hygroscopic growth, dry and wet depositions, condensation, nucleation, vertical mixing, cloud 

chemistry, and coagulation and activation of cloud condensation nodules from aerosols.. Seven types of aerosols (sea salt, 

sand/dust, black carbon, organic carbon, sulfate, nitrate, and ammonium salt) are considered in the CAM. The aerosol size 

spectrum (except for ammonium salt) is divided into 12 bins with particles radium of 0.005–0.01, 0.01–0.02, 0.02–0.04, 0.04–

0.08, 0.08–0.16, 0.16–0.32, 0.32–0.64, 0.64–1.28, 1.28–2.56, 2.56–5.12, 5.12–10.24, and 10.24–20.48 μm. The interface 185 

program that connects CUACE and GRAPES_Meso transmits the meteorological fields calculated in GRAPES_Meso and the 

emission data processed as needed to each module of CUACE. GRAPES_Meso and CUACE are online fully-coupled (Peng 

et al., 2021; Zhang et al., 2022). 
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2.4 Data  

Based “Ambient air quality standards” (GB 3095-2012) of China, the mass concentration limit of PM2.5 and its corresponding 190 

air quality level and air pollution index (API) are shown in Table 1. Haze is defined as a weather phenomenon caused by air 

pollution when visibility is less than 10km, according to “Observation and forecasting levels of haze” (QX/T 113-2010) of 

China. Three pollution episodes occurred in China in December 2016, with the most severe haze episode occurring in China 

from 16 to 21 December 2016 (see more details in Wang et al. 2022, Table 3). During this pollution episode, the highest daily 

PM2.5 concentration peaks 600 µg m-3 in Shijiazhuang and some other cities, reaching the severely polluted level (250-500 µg 195 

m-3). In this study, 15-23 December 2016 was selected as the main study period, and both model input data and observation 

data used in this study are within this month. Model input data include anthropogenic emission data, model meteorological 

initial and boundary data. The emission inventory used in this study is from the Multi-resolution Emissions Inventory for China 

(MEIC) in December 2016 (http://www.meicmodel.org/). The emission inventory covers power plants, industry (cement, Iron 

and steel, industrial boilers, petroleum industry), residential, transportation, solvent use and agriculture, in-field crop residue 200 

burning. National Centers for Environmental Prediction (NCEP) Final analysis (FNLs) data 

(https://rda.ucar.edu/datasets/ds083.3/) are used for the model’s initial and 6 h meteorological lateral boundary input fields. 

The observations include PM2.5 and visibility. Nearly 1500 ground-based hourly PM2.5 (µg m-3) observations from the Chinese 

Ministry of Environmental Protection, with the detailed location and spatial distribution of the stations shown in Fig. -2. The 

hourly meteorological automatic ground-based visibility data (km) were obtained from the China Meteorological 205 

Administration. The time format of these observations is processed to UTC and all the observational data are obtained after 

quality control and rechecked before use. 

2.5 Experimental Setup 

The horizontal resolution, time step, forecast length and model domain of the GRAPES_Meso5.1/CUACE model are optional. 

In this study, the horizontal resolution of the model is 0.1°×0.1°, the time step is 100 s considering model integration stability 210 

and accuracy, and the model domain is15-60° E, 70-145° N and (grey dashed box in Figure 2). There are 49 model layers 

ascending vertically from the surface to 31km in height. The model warm restart time is 0000 UTC and 1200 UTC, and the 

forecast length is 24 hours. The model simulation results are output on an hourly basis. 

Three groups of experiments were performed in this study: one set of control experiments (CR), one set of sensitivity 

experiments and one set of cyclic DA experiments, as shown in Table 1. CR00 is the control experiment representing model 215 

run without DA begin at 0000 UTC every day and forecast 24 hours (the initial field is the previous day's 24-hour forecast 

field), simulated from 1 to 31 December 2016. CR12 is also model run without DA but begins at 1200 UTC every day and 

forecast 24 hours. The localisation length-scale L and the ensemble size N are the key parameters affecting EnOI. Based on 

CR00, two parallel sensitivity experiments were designed to study the impact of localisation length-scale and ensemble size 

on the assimilation effects. The chemical initial fields, ensemble samples for the sensitivity experiments were obtained from 220 

http://www.meicmodel.org/
https://rda.ucar.edu/datasets/ds083.3/
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the CR00. The first group of sensitivity experiments is fixed with ensemble size N of 48, and length-scale is selected for 20, 

40, 60, 80, and 100 km to investigate the impacts of different localization length-scale choices on the optimized chemical 

initial field; the second group is fixed with length-scale L of 80 km, and the 24, 48, 72, 96, 120, and 144 simulations before 

the assimilation moment (0000 UTC) were selected as ensemble samples, respectively, and the effect of the number of 

ensemble samples on the assimilation effect was discussed.  225 

To investigate the impact of the assimilation moment on the forecast fields, the optimal length-scale and ensemble size were 

selected based on the results of sensitivity experiments, and two sets of cyclic DA experiments, DA00 and DA12, were set up 

to represent the daily assimilation of the initial fields at 0000 UTC and 1200 UTC, respectively. The N hourly model forecasts 

before the assimilation moment were used as the ensemble samples to approximate the BEC, and the analysis increments are 

calculated by combining the model forecasts and PM2.5 observations at 0000 UTC and 1200 UTC, and the analysis are used as 230 

the chemical initial fields for the next forecast to achieve cyclic DA.  

3 Result and discussion 

3.1 Localization length-scale sensitivity experiments 

The localization effect on the analysis is illustrated firstly and two observation sites A (114.5° E, 38.0° N), and B (36.6° N, 

116.9° E) were selected to perform a length-scale single-point experiment for the initial field at 0000 UTC on 15 December 235 

2016, corresponding to the left and right columns of the analysis increments (𝝍𝑎 − 𝝍𝑓 ) shown in Fig. 3. The analysis 

increments are determined by both the observation increments and the BEC based on Eq. (9). As shown in Fig. 3, the 

increments are positive in the left and negative in the right column, which represent the underestimation of PM2.5 concentration 

at site A and overestimation at site B before being assimilated. As the length-scale increases, the range of analysis increment 

expands, and the number of model grids that can be affected increases gradually. Due to the sparse distribution of PM2.5 sites, 240 

if the localization length-scale is too small, most of the model grids cannot be updated, which reduces the assimilation 

efficiency; whereas if the localisation length-scale is too large, the analysis increments between distant sites will offset and 

superimpose, creating fake increments. With the experiments using length-scale of L = 80 and 100 km, a small negative 

analysis increments are found at site A in the southeast direction. Compared to site A, a wide positive analysis increments that 

do not match the actual situation are found at site B in the west direction for experiments using L=60, 80, and 100km. It is 245 

worth noting that there are differences in the shape of the analysis increment fields at sites A and B, which is related to the 

EnOI having a flow-dependent BEC, the details of BEC will be discussed in 3.2. 

Ground-based PM2.5 sites are established according to the population and economic development level of the region, and are 

not evenly distributed, such as Beijing, Shanghai, Guangzhou, and other economically developed and populous megacities, 

which have a high density of PM2.5 sites, while the western and central regions of China are sparsely populated, and the sites 250 

are partially sparse. So, in order to obtain the statistically optimal localization length-scale, we performed assimilation 

experiments on the initial fields at 0000 UTC each day from 1 to 31 December. 50% of PM2.5 sites were randomly selected as 
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DA sites, and the rest were used as verification sites (without DA), and the blue and brown sites shown in Fig. 2 represent the 

spatial distribution of verification and assimilation sites, respectively. The statistics results of verification sites against the 

observation are shown in Table 3. Compared to the CR, Correlation Coefficient (CORR) of DA for verification sites increase 255 

from 0.65 to 0.77 at least, and the Root Mean Square Error (RMSE), Mean Bias (MB), and Mean Error (ME) of the DA 

experiment are smaller than those of the CR. The statistical data are different for different Localisation length-scale, indicating 

that localization can have an effect on the assimilation. Compared with the CR, RMSE of DA decreased from 60.1 to 41.6 µg 

m-3,MB decreased from 8.5 to 3.2 µg m-3 and ME decreased from 41.73 to 25.9 µg m-3 for the localization length-scale selection 

of 40 km, which is the best among all the experiments on different length-scale. Localisation length-scale of 60km and 80km 260 

have similar statistics results, but the statistics of 20km and 100km are not very good. Using a localization length-scale of 20 

km prevents most of the model data from being updated while using too large a length-scale allows remote sites to interact 

with each other and produce more spurious increments. In addition, from the meteorological conditions, heavy pollution 

weather is always characterized by small or static winds, pollutant transport over small distances, an observation site represents 

a limited spatial extent, so a larger localized length-scale setting may also not produce a very realistic initial field. From this 265 

sensitivity experiment, we find that when the localization length-scale is using from 40 km to 80km, the statistics are relatively 

good and the optimal assimilation effect can be achieved. 

3.2 Ensemble size sensitivity experiments 

We repeat the series of experiments presented in Fig. 3, but with a localising length-scale of 80 km and 24, 48, 72, 96 and 120 

ensemble members. Figure 4 shows a map of BEC correlation field between observation sites (A, B) for different ensemble 270 

size, overlaid with the 0000 UTC surface wind vector of 15 December 2016. Site A is controlled by strong north and northwest 

winds, which makes the CORR field show a northeast-southwest trend; The wind speed at site B is less than 5 m.s-1 in all 

directions with a steady state, so the CORR field is approximately distributed in concentric circles nearby the center of the site. 

As the number of ensemble samples increases, the area of positive CORR greater than 0.7 gradually increases in A and B.. 

The ensembles of size N =24 or N=48 can be considered small compared to the selection of other ensemble sizes in sensitivity 275 

experiments. In this case, the CORRs between the observation sites and the surrounding large-scale areas are all greater than 

0.7, and an extremely strong negative correlation is found in the southwest. The success of ensemble-based DA systems 

depends strongly on the number of samples. The smaller ensemble size fails to accurately estimate the BEC and is prone to 

sampling error, resulting in an overestimation or underestimation of the initial field, and Natvik and Evensen (2003) 

investigated the effect of the number of samples on assimilation and showed that an ensemble of fewer than 60 samples reduce 280 

the performance of assimilation. When the hourly model forecasts of over 5 days (N=120) before assimilation are selected as 

the ensemble samples, the correlations of both sites A and B with the BECs in a wide area become positive.  

 The DA sites were used to assimilate the initial field at 0000 UTC per day for December 2016, and six different ensemble 

sizes were used to improve the initial field as shown in table 4. Compared with the initial field without data assimilation, the 

RMSE, CORR, MB, and ME of the initial field after assimilation had all been improved and the improvement were different 285 
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depending on the ensemble size. The priori initial field is shown in table 4 “CR”. With only 24 ensemble samples assimilated, 

the RMSE of verification sites decreased from 60.1 to 48.6 µg m-3, the CORR increased from 0.56 to 0.76, and the MB and 

ME are decreased from 8.5 to 4.2 µg m-3 and 41.7 to 30.8 µg m-3, respectively. As seen in table 3 the statistics of verification 

sites become progressively better as the ensemble members increases from 24 to 48, 72, and 96. The verification sites RMSEs 

for 48, 72, and 96 samples are 44.9, 42.4 and 40.70 µg m-3 respectively, the CORRs are 0.80, 0.81, 0.82, and the MEs are 27.0, 290 

25.9, and 25.7. When 120 samples or 144 samples were selected for assimilation, the analysis field PM2.5 DA and verification 

statistics were not better than those of 96 samples. The verification sites RMSEs for 120, and 144 samples were 44.1, and 45.8 

µg m-3 respectively, and the CORRs also became smaller. The differences between the statistics also indicate there is an optimal 

ensemble size, the RMSE of the experiment using 96 samples is smaller than the RMSE when using the other ensemble sizes, 

and the remaining statistics are better than the results when other samples are selected, so we consider that in this sensitivity 295 

experiments the best assimilation is achieved when the number of ensemble size is 96. It is noted from the experimental results 

that not the larger the ensemble, the better the results in this study. It could be influenced by the following reasons that the 

atmospheric chemistry model used in the study is coupled online with the mesoscale regional weather model 

GRAPES_Mese5.1. The mesoscale regional weather model differs from the climate model and the global model in that the 

mesoscale model represents weather systems on time scales of one day to several days(Emanuel, 1986). In addition, 300 

atmospheric chemical processes are fast-varying processes with small time scales compared to climatic and oceanic processes, 

so using model results from long-time integrations as ensemble may average out the “error of the day” and will not be a very 

good assessment of model background errors. 

 

3.3 Impact on initial fields 305 

In order to verify the assimilation effect and evaluate quantitatively the impact of the EnOI system on the initial fields, DA 

experiments with length-scale of L=40 and ensemble size of N= 96 was performed on the initial field at each 0000 UTC from 

15 to 23 December 2016. The assimilated observations were obtained from the DA sites in Fig. 2, and the effect on both DA 

sites and verification sites are evaluated.  Figure 5 shows the statistics for the two regions of the initial field, the China mainland, 

and North China. In China mainland, the CORRs of the verification sites and DA sites before assimilation were 0.60 and 0.58, 310 

respectively, and the RMSEs were 73.9 and 73.4 µg m-3, respectively. After the DA sites were assimilated, the CORR of 

assimilated sites increased to 0.99 and the RMSE decreased to 14.5 µg m-3, and the CORR of verification sites increased to 

0.84 and the RMSE decreased to 46.4 µg m-3, meanwhile the ME changes from 49.7 to 27.3 µg m-3. In North China, after the 

DA sites were assimilated, each statistic of the validation site also changed, with the CORR increasing from 0.53 to 0.87, 

RMSE decreasing from 105.5 to 65.7 µg m-3. Only 50% of the ground-based observation are assimilated and the statistics of 315 

the validation sites also have been improved. This experimental results prove that the DA system can indeed yield more 

accurate initial field with over 40% increase of CORR and 37% reduction of RMSE  
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To illustrate the assimilation effect of different pollution levels, we consider this episode from 15 to 23 December 2016, in 

which the first two days as the pollution start period, days 3 to 7 as the pollution period, and the last two days as the pollution 

dissipation period. We compared the PM2.5 observations and initial conditions before and after DA within all the observations 320 

sites assimilated during this episode. This was done to understand the impact of DA for initial conditions in the system’s actual 

operating situation. Fig. 6 shows the spatial distribution of PM2.5 in the observation field (OB), background field (BF), analysis 

field (AF), and analysis field increments (AFI) for two days of light pollution (16 and 23 Dec.) and two days of heavy pollution 

(19 and 20 Dec.). The black boxed area in Fig.6 is the same as North China (NC) in Fig. 2, including Beijing, Tianjin, eastern 

Shanxi, southern Hebei, western Shandong, and northern Henan, which has the highest simulated PM2.5 concentration. Table 325 

5 summarizes the corresponding statistics of initial PM2.5 concentrations for assimilation sites and verifications sites before 

and after EnOI. Fig. 6 shows that, compared with OBs, the model background PM2.5 without DA can capture the spatial pattern 

of distribution over China in general which shows that the model performance is moderate good. However, there are still errors 

between the background and observations. PM2.5 concentrations are overestimated in NC and eastern China during the 

pollution start and dissipation periods. During the heavy pollution period, the background PM2.5 concentrations are 330 

overestimated in northeast China and underestimated in NC. After assimilating the ground-based PM2.5, the PM2.5 

concentration increments were distributed around the observation sites as expected and were more closer to the observations 

distributions. Negative values of the AFI demonstrate that assimilation reduces PM2.5 concentrations, while positive values 

demonstrate that assimilation increases PM2.5 concentrations. During the period before and after pollution, PM2.5 

concentrations decrease in eastern China and increase in western China and NC, indicating a reduction in over- or under-335 

prediction of model PM2.5 concentrations after assimilation. Table 5 shows that assimilating 50% of the ground-based 

observations improved the initial condition for other areas where have no assimilated sites. Take 19 Dec. 2016 as an example, 

the CORR for verification sites increased from 0.66 to 0.85, RMSE decreased from 79.2 to 56.1µg m-3, and MB and ME also 

became smaller after EnOI. These results indicate that the initial PM25 fields can be adjusted efficiently by EnOI. What is the 

impact of this innovation through the EnOI system for PM2.5 forecast is discussion in the next section. 340 

3.4 Impact on forecast fields 

3.4.1 Impact on PM2.5 forecast fields 

In this section, we will discuss the impact of assimilation observations on PM2.5 forecasts. As in Section 3.3, we assimilate the 

DA sites at 0000 UTC from 15 to 23 December 2016, and then analyse the following forecast of DA and the verification sites 

separately. The RMSE of the DA and verification sites in China mainland and North China for a complete pollution process 345 

obtained average over 15 to 23 December 2016 is shown in Fig. 7. For the DA sites in China mainland (Fig.7a), the model 

forecast RMSE without DA is about 75 µg m-3, after the assimilation, the model forecasts RMSE is decreased rapidly from 

75.4 to 40.1µg m-3, which is an over 40% reduction. This implies that assimilation with EnOI can considerably improve the 

forecast accuracy. Meanwhile, it is notable that assimilation of DA sites also has an impact on the forecast at the verification 
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sites. The trend of the RMSE series at the verification site is consistent with the DA site, but smaller in values. The RMSE of 350 

verification sites at 1h forecast hour dropped from 75.5 to 51.0 µg m-3, about 32% reduction. For North China, which was 

shown in Figure7c and d, the model forecast RMSE without DA is about 115 µg m-3. After the assimilation of PM2.5 observation, 

the model forecasts RMSE of DA sites at 1h forecast time is decreased rapidly from 122 to 56.1µg m-3, which is an over 54% 

reduction. For verification sites, the reduction amplitude is 33%, smaller than that of DA sites, but still a moderate improvement 

considering only 50% ground-based observations were used to be assimilated at 0000UTC. The results show that assimilation 355 

with EnOI not only improve the forecast for the DA sites but also the verification sites. The improvements are mainly within 

the first 12h forecasts with an RMSE greater than 10 µg m-3. The improvement receded with forecast time, changing from 46% 

at 1h forecast hour to 7% at 24h forecast hour. These results are consistent with previous study, which either used 4DVAR or 

EnKF (Wu et al. 2008; Bocquet et al, 2015, Park et al.,2022). As Bocquet et al. (2015) pointed out, even with the improved 

analysis, the impact of initial state adjustment is generally limited to the first day of the forecast, for pollutant transport and 360 

transformation are strongly driven by uncertain external parameters, such as emissions, deposition, boundary conditions, and 

meteorological fields.  

Now we use all ground-based observation sites as DA sites to investigate the performance of assimilating the initial field at 

0000 UTC per day (DA00) or 1200 UTC per day (DA12) on improving the PM2.5 forecasts. DA00 and DA12 were performed 

in parallel. The daily average of the 24-hour RMSE was obtained for the DA and CR experiments. Rate of improvement (ROI) 365 

by data assimilation in 1d (24h) predictions for 15 to 23 December 2016 for Mainland China and NC were calculated using 

the ratio of the reduced RMSE statistical metrics to those for the CR simulation and plotted in a daily time series histogram as 

shown in Fig. 8. In this episode, the improvement of China mainland PM2.5 forecasts by DA00 and DA12 are minimum at 9% 

and 10% respectively on December 15 and maximum at 15% and 21% respectively on December 19. The minimum and 

maximum improvement of assimilation on PM2.5 forecasts in NC both appear in DA12, which are 4% and 25%, respectively. 370 

The difference between DA12 and DA00 relative RMSEs is mostly positive, within 6% in China mainland, but in NC this 

difference can be up to 15%. The average RMSE improvement of 24h forecast for China mainland and the North China 

assimilation at 0000 UTC is 12.3% and 9.8%, respectively, while that at 1200 UTC is 14.4% and 14.0%, respectively.  In terms 

of the average relative RMSE for this episode, assimilating the initial field at 1200 UTC improves the PM2.5 forecast more 

than 0000 UTC, mainly because the model forecasts are not close to the observations at 1200 UTC in most cases, thus choosing 375 

this time for assimilation will have a significant impact. In addition, the DA effect varies for each day and the larger the error, 

the greater the improvement in RMSE from DA, which means that the larger the a priori error, the greater the improvement 

from DA. These results show that using EnOI to assimilate ground-based PM2.5 observations for the model chemical initial 

field can reduce over 9.8% of RMSE for 24h forecast in average. Park et al. (2022) implemented an ensemble Kalman filter 

in the Community Multiscale Air Quality model (CMAQ model v5.1) for data assimilation of ground-level PM2.5. They found 380 

using EnKF with 40 ensemble number can reduce 9.6% of RMSE for 24h forecast. Comparing their results with ours, we can 

find that, while EnOI is sub-optimal, it can give improvement of forecast that are comparable to those of the EnKF. Moreover, 

the computational cost of EnOI is typically about N times less than that of EnKF. Therefore, we suggest that EnOI may provide 
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a practical and cost-effective alternative to the EnKF for the applications where computational cost is a main limiting factor, 

especially for real-time operational forecast. 385 

To achieve better performance of assimilation, we update the initial field every 12h. Figure 9 gives time series of forecasts and 

observations in term of PM2.5, together with RMSE of CR and DA for North China. Compared with the observations, the 

forecast PM2.5 concentrations are 20 to 100 µg m-3 higher in the pollution start period (15-17 December) and the pollution 

fading period (21, 23 December), about 100 µg m-3 lower on December 19. The PM2.5 concentrations changes immediately 

one hour after 0000 UTC or 1200 UTC. It can be seen from Fig. 9b, the RMSEs of the DA experiments are always lower than 390 

that of the CR experiments, and the difference in RMSE between the CR and DA experiments receded with forecast time. This 

proves that assimilating the initial field can improve the PM2.5 forecast. Note that the DA algorithm used here cannot produce 

an optimal solution when there are larger errors in the model. On 19 December 2016, even with DA the model still cannot 

retrieve the true variation very well for the first 12 hour forecast. This suggest that using DA on initial field can only partially 

remedy inherent model error. To improve the analysis capabilities and prolong the impact of DA on PM2.5 forecasts, we should 395 

extend the assimilation for adjusting emissions, meteorological field and other model uncertainty sources.  

 

3.4.2 Impact on Visibility forecast fields 

The occurrence of low visibility episodes is usually associated with aerosol pollution. The horizontal spatial distribution of the 

OBs, forecast fields without assimilation (CR), forecast fields with assimilation (DA), and incremental fields (DA-CR) for 400 

visibility and PM2.5 at 0100 UTC on 16 and 20 December are shown in Fig.10. During the pollution start period (16 December 

0100 UTC) visibility is above 10km in most of China, and during the pollution period (20 December 0100 UTC) visibility is 

mostly below 7km in eastern China. After assimilating the ground-based PM2.5, the visibility distribution of DAs more 

consistent with the observation compared to the CRs. A positive PM2.5 concentration increment corresponds to a negative 

visibility increment, that means that when the PM2.5 concentration increases, the visibility decreases at the same moment. At 405 

0100UTC On 16 December, the CR PM2.5 concentration is underestimated in NC and overestimated in Southeast China, and 

after assimilating PM2.5, the visibility is reduced in NC with increased PM2.5 and increased in Southeast with reduced PM2.5. 

In the period of light pollution, the absolute value of visibility increment is mostly in the range of 5-7 km when the PM2.5 

increment is from 30 to 110 µg m-3 or from -30 to -110 µg m-3 in NC, while in the pollution period (20 December 0100 UTC 

for example), under the same PM2.5 analysis increment, the visibility increment in NC is between -3 and 3 km. 410 

Four stations, Beijing (BJ), Shijiazhuang (SJZ), Xingtai (XT), and Jinan (JN), were selected from the heavily polluted NC to 

study the effect of assimilating the initial field PM2.5 on the visibility forecasts. Since the assimilation effect is most obvious 

in the first 12 hours, we focus on the improvement of visibility forecasts within 12 hours. Figure 11 shows the observation, 

simulation and assimilation of visibility and observation, simulation  and assimilation  of PM2.5 concentration for the above 

cities from 0100 to 1200 on 16 and 20 December 2016. On 16 December, when PM2.5 concentration is less than 300 µg m-3 415 

(December 16), visibility at all four stations is closer to the observed value by assimilating PM2.5, among which BJ and JN 
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have decreased PM2.5 concentration after assimilation, and visibility has increased at the same time. SJZ and XT have increased 

PM2.5 concentration and decreased visibility after assimilation. In the period of low PM2.5 concentration, about 100 µg m-3 

PM2.5 change makes visibility change 11km, 4km, 5km and 7km in BJ, SJZ, XT and JN respectively. In the period of heavy 

pollution, PM2.5 concentration change 150 µg m-3 in Beijing and Shijiazhuang at 0100UTC, while visibility change 3.5km and 420 

0.5km respectively. These result show that the improvement of visibility by assimilating PM2.5 is limited during the heavy 

pollution period. It is worth noting that when the PM2.5 concentration is greater than 350 µg m-3 at the JN site, although the 

decrease of PM2.5 concentration corresponds to the increase in visibility, the gap between the assimilated visibility and 

observation becomes larger at this time, which may be related to the inaccuracy of the humidity simulation here and inaccurate 

visibility parameterization scheme for the model. Visibility is not linearly related to PM2.5, and visibility is also affected by 425 

humidity and other factors. Assimilation of the initial field PM2.5 can improve the visibility forecast, but if we want to improve 

the visibility forecast significantly,  we need to improve not only the visibility parameterization scheme, but also the humidity 

accuracy. 

4 Conclusions 

To improve the accuracy of PM2.5 and visibility forecasting in China, a real-time and efficient EnOI assimilation system is 430 

established for the latest online operational chemistry weather model GRAPES_Meso5.1/CUACE of China Meteorological 

Administration. The ground-based PM2.5 observation data nearly 1500 surface stations covering the whole country are used 

for assimilation. PM2.5 and visibility simulation-assimilation experiments were performed for a haze pollution episode from 

15 to 23 December 2016. Parallel sensitivity experiments of localization length-scale and ensemble size were set up to 

determine two key parameters that influence the effectiveness of EnOI assimilation. Based on the results of sensitivity 435 

experiments, the initial fields were assimilated at 0000 UTC each day from 15 to 23 December 2016 to study the improvement 

of EnOI on the initial field PM2.5. In addition to the analysis of the China mainland assimilation effect, the heavily polluted 

North China was additionally divided to discuss the different impacts of assimilation on the overall and regional chemical 

initial fields. Cyclic assimilation experiments were performed at 0000 UTC (DA00) and 1200UTC(DA12) to investigate the 

impacts of assimilation on the forecast fields, taking NC as an example, to discuss the impacts of assimilation on PM2.5 and 440 

visibility forecast fields. 

The optimal localization length-scale and the number of ensemble samples are 40 km and 96, respectively, derived from 

sensitivity experiments. Assimilating 50% of the ground-based observations improved the initial condition for other areas 

where have no assimilated sites. The DA can considerably improve the model PM2.5 initial field, the CORR of verification 

sites in mainland China improved from 0.58 to 0.84 and the RMSE decreased from 73.7 to 46.4 µg m-3, respectively. The 445 

results of the DA00, DA12 assimilation experiments showed that the improved impacts of the DA worked throughout the 

forecast time window, but the assimilation impact was most pronounced in the first 12 hours and gradually decreased in the 

subsequent time. Within the 24-hour forecast time window, the average RMSE improvement for the China mainland PM2.5 
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forecast field ranges from 9% to 21%, and between 4% and 25% in NC, and the comprehensive comparison shows that the 

initial field of 1200 UTC assimilation is superior to 0000 UTC. Therefore, in this study, it is considered that with limited 450 

computational resources, the EnOI assimilation efficiency is highest with the largest distance between the model simulation 

and observation to assimilate according to the model characteristics. When it comes to operational use, the assimilation 

efficiency can be improved by shortening the assimilation time interval due to the small demand of EnOI computational 

resources. 

The assimilation of PM2.5 also has a positive impact on visibility forecasts. When the PM2.5 increment by assimilation is 455 

negative, it corresponds to an increase in visibility, and when the PM2.5 analysis increment is positive, visibility decreases 

correspondingly. The greater the change in PM2.5 concentration during periods of light pollution, the more pronounced the 

improvement in visibility. It is worth noting that visibility is also related to a variety of factors and assimilating only ground-

based PM2.5 sites has a limited effect on visibility, and we will further consider assimilating PM10, humidity and other 

meteorology factors to improve visibility forecasts in subsequent studies.  460 
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Table1. Mass concentration limit of PM2.5 and its corresponding air quality level and air pollution index (API) 650 

PM2.5 concentration 

limit (ug m-3) 
Air quality description level API 

35 excellent I 0-50 

75 good II 51-100 

115 light pollution III 101-150 

150 moderate pollution IV 151-200 

250 heavy pollution V 201-300 

>250 hazardous pollution VI >300 

 

 

 

Table2. Experimental design.  

Name Experiment Design 

Control  

experiment 

CR00 
Model control run without DA begin at 0000 UTC every day 

and forecast 24 hours   

CR12 
Model control run without DA begin at 1200 UTC every day 

and forecast 24 hours  

Sensitivity 

experiment 

Lxxkm-N48 

assimilation at 0000 UTC with fixed ensemble size N of 48 and 

different localization length-scale Lxx of 20, 40, 60, 80, 100 

km  

L80km-Nyy 

assimilation at 0000 UTC with fixed localization length-scale 

L of 80 km and different ensemble size Nyy of 24, 48, 72, 96, 

120, 144 

Cycling  

assimilation 

experiment  

DA00 
Model forecast with assimilation at 0000 UTC  

every day 

DA12 
Model forecast with assimilation at 1200 UTC  

every day 

DA00&12 
Model forecast with assimilation at 0000 UTC  

and 1200UTC everyday 

 655 
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Table3. Statistics of PM2.5 concentrations for verifications sites of the initial field without (CR) and with assimilation at 0000 UTC 

each day from 1 to 31 December 2016. Assimilation sensitivity experiments were performed with 48 ensemble samples and length-

scale L of 20, 40, 60, 80, 100km respectively and only assimilated the assimilation sites. 

 CORR RMSE (µg m-3) MB (µg m-3) ME (µg m-3) 

CR 0.56 60.1 8.5 41.7 

20 0.77 48.2 4.1 30.2 

40 0.82 41.6 3.2 25.9 

60 0.81 43.1 3.5 26.8 

80 0.80 44.9 3.8 27.0 

100 0.79 46.0 4.0 28.2 

Table4. Statistics of PM2.5 concentrations for verifications sites of the initial field withthout (CR) and with assimilation at 0000 UTC 660 
each day from 1 to 31 December 2016. Assimilation sensitivity experiments were performed with a localization length-scale L of 80 

km and an ensemble size of 24, 48, 72, 96, 120, and 144, respectively and only assimilated the assimilation sites.  

 CORR RMSE (µg m-3) MB (µg m-3) ME (µg m-3) 

CR 0.56 60.1 8.5 41.7 

24 0.76 48.6 4.2 30.8 

48 0.80 44.9 3.8 27.0 

72 0.81 42.4 3.4 25.9 

96 0.82 40.7 2.9 25.7 

120 0.80 44.1 3.6 26.2 

144 0.79 45.8 3.9 27.3 
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Table5. Statistics of initial PM2.5 concentrations for assimilation sites (DA) and verifications sites (Ve) before EnOI (BF) and after 665 

EnOI (AF) at 0000 UTC on 16, 19, 20 and 23 December 2016, respectively. 

Date site IC CORR 
RMSE 

(µg m-3) 

ME 

(µg m-3) 

MB 

(µg m-3) 

16 

DA 
BF 0.50 50.8 9.1 38.2 

AF 0.98 11.0 0.9 7.1 

Ve 
BF 0.48 56.5 9.7 42.8 

AF 0.73 39.1 2.5 25.2 

19 

Da 
BF 0.65 81.5 -9.3 55.2 

AF 0.98 17.3 -1.2 10.4 

Ve 
BF 0.66 79.2 -5.7 50.2 

AF 0.85 56.1 1.3 32.4 

20 

DA 
BF 0.67 95.0 -24.2 64.5 

AF 0.99 19.1 -2.7 10.2 

Ve 
BF 0.66 94.7 -20.5 60.5 

AF 0.87 60.2 -5.1 35.1 

23 

DA 
BF 0.52 47.6 20.6 36.9 

AF 0.97 10.8 2.1 6.8 

Ve 
BF 0.50 50.3 23.3 37.9 

AF 0.75 31.4 6.0 20.6 

 

 

 

 670 
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Figure 1. Flow chart of the main procedures for EnOI initial field assimilation system. The Obs. PM2.5 is ground-based observation 

of PM2.5. The CCMM is coupled chemistry meteorology models. SVD is singular value decomposition 
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Figure 2. Simulation domain of GRAPES_Meso5.1/CUACE. Minor region represents North China (NC). The locations of ground 

stations in China mainland are marked on the maps with blue and brown dots. The blue and brown dots represent verification sites 

and assimilation sites, respectively. "N=743" means there are 743 verification sites. "N=742" means there are 742 DA sites. 680 
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Figure 3. Spatial distribution of PM2.5 analysis increments after assimilation of initial fields at 0000 UTC on 15 December 2016, for 

assimilation site A (38.0° N, 114.5° E) only (left column) and assimilation site B (36.6° N, 116.9° E) only (right column) with fixed 

ensemble size 48 and different localization length-scale of 20, 40, 60, 80, 100km.  685 
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Figure 4. Spatial distribution of correlation coefficients of background error for site A (38.0° N, 114.5° E) (rows 1, 2) and site B (36.6° 

N, 116.9° E) (rows 3, 4) with different ensemble size N of 24, 48, 72, 96, 120, 144 and wind vectors at 0000 UTC on 15 December 2016. 
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Figure 5. Scatter plot of PM2.5 concentrations from the control experiment (a,c) and the assimilation experiment (b, d). The ensemble 

size in the assimilation experiment is 96 and the length-scale L is 40 km. Brown (Da) and blue (Ver) dots are assimilation sites and 

validation sites respectively. a, b is for mainland China (Total), c, d is for North China (NC). 695 
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Figure 6. Snapshots of the horizontal distributions of PM2.5 observation (OB), before (BF) and after (AF) the application of EnOI 

technique, analysis field increment (AFI) at 0000 UTC on 16, 19, 20, and 23, December 2016. The black box area, representing North 700 
China (NC). 
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Figure 7. The average RMSE value of surface PM2.5 forecasts as a function of forecast time over (a) China Mainland for DA sites, 

(b) China Mainland for verification sites, (c) North China for DA sites, (d) North China for verification site.  
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 710 

Figure 8. Rate of improvement (ROI, unit: %) by data assimilation in 1d (24h) predictions for 15 to 23 December 2016 over Mainland 

China (a), North China (b). The ROI is the ratio of the reduced RMSE statistical metrics to those for the CR simulation. DA00 and 

DA12 represent the initial field assimilation using EnOI at 0000 UTC and 1200 UTC each day, respectively. DA00_mean and 

DA12_mean represent the mean ROI over 15 to 23 December 2016 of DA00 and DA12, respectively. 
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Figure 9. Time series of hourly PM2.5 concentration (a) and RMSE between forecasts and observations (b) from 15 December to 23 

December 2016 in North China. Red dots: observations, black line: forecasts from control experiment (CR), blue line: forecasts from 

experiment with initial field assimilation at 0000UTC and 1200UTC (DA), black line with dots: RMSE between CR forecasts and 720 

observations, blue line with dots: RMSE between CR forecasts and observations. The values are averages calculated against all the 

observation sites in North China. 
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5  

Figure 10. Snapshots of PM2.5 and visibility horizontal distribution for control (CR), assimilation (DA), observation (OB), and 725 
increment (DA-CR) at 0100 UTC after assimilation of the initial field at 0000 UTC on 16 and 20 December 2016.The upper box 

represents North China and the lower box represents Guangxi and Hainan in China. 
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Figure 11. Comparison between PM2.5 and visibility observations and model forecast at four cities without (CR00) and with 

assimilation (DA00) of the initial field at 0000 UTC on 16 and 20 December 2016. Four cities are exemplified, from left to right, 730 
Beijing (BJ), Shijiazhuang (SJZ), Xingtai (XT), Jinan (JN). The labels on the x-axis refer to the first 12 forecast hours of the day. 

PM2.5 observations: grey line with circles, visibility observations: orange line with circles, PM2.5 and visibility model forecast without 

assimilation: black line, PM2.5 model forecast with assimilation: blue line, visibility model forecast with assimilation: green line. 


