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Abstract.   

The prediction of river water temperature (WT) is of key importance in the field of environmental science. Water temperature 10 

datasets for low order rivers are often in short supply, leaving lake/reservoir water quality modelers with the challenge of 

extracting as much information as possible from existing datasets, usually without the use of physically based models, due 

to the significant amount of data required (e.g., river morphology, degree of shading, wind velocity). Commonly, the WT 

observed in monitoring stations located near the downstream section of rivers are assumed to be the boundary condition of 

lake/reservoir water quality models. The main goal of this study is to identify a suitable WT modeling solution for these 15 

sections given the scarcity of the forcing datasets.  In this study, five models are used to predict the water temperature of 83 

rivers (with 98% missing data): three machine-learning (ML) algorithms (Random Forest, Artificial Neural Network and 

Support Vector Regression), the hybrid Air2stream model with all available parameterizations and a Multiple Regression. 

With the exception of Air2stream, which was forced with mean daily air temperature and discharge, all other models were 

forced with: mean, maximum, and minimum daily air temperature, mean daily total radiation (shortwave), mean daily 20 

discharge, month of the year and day of the year. The machine learning hyperparameters were optimized with a Tree-

structured Parzen Estimators algorithm and the results of each model are presented as an ensemble of 12 individual optimized 

model runs. The meteorological datasets were obtained from the fifth-generation atmospheric reanalysis, ERA5. In general 

terms, the results of the study demonstrate the vital importance of hyperparameter optimization and suggest that, from a 

practical modeling perspective, when the number of predictor variables and observed river WT values are limited, the 25 

application of all the models considered in this study is relevant (models ensemble mean annual – Root mean square error 

(RMSE): 2.75 ºC ± 1.00; Nash-Sutcliffe efficiency (NSE): 0.56 ± 0.48).  Therefore, the datasets gaps can be filled with the 

best model of the ensemble approach. The model that performed best was Random Forest (annual mean - RMSE: 3.18 ºC ± 

1.06; NSE: 0.52 ± 0.23). The results also revealed the existence of a logarithmic correlation among the RMSE between the 

observed and predicted river WT and the watershed time of concentration. The RMSE increases by an average of 0.1 ºC 30 

with a one-hour increase in the watershed time of concentration. (watershed area: μ= 106 km2; σ=153). Hopefully, the high 

number of modeled sections considered in this model intercomparison study and the specific model forcing conditions will 

help to reduce the overall WT modeling uncertainty. 
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1 Introduction  

Water temperature (WT) is recognized as a key parameter in aquatic systems due to its influence on water quality (e.g., 40 

chemical reaction rate; oxygen solubility) and the distribution and growth rate of aquatic organisms (e.g., primary 

production; fish growth and habitat) (Smith, 1972; Webb, 2003; Caissie, 2006). As such, the accurate prediction and 

assessment of river WT is a crucial part of many earth science applications. The thermal dynamics in rivers is quite complex 

as it depends on an array of physical and chemical factors (Smith and Lavis, 1975; Jeppesen and Iversen, 1987). River WT 

follows a seasonal and a diurnal cycle, driven by heat input and losses at the boundary conditions of a river section (upstream 45 

and downstream transfer; air-water and sediment-water interface; lateral contribution from tributaries and groundwater) 

under specific meteorological and hydrological conditions (Walling and Webb, 1993; Wetzel, 2001). The complexity of 

river water temperature estimation is often more pronounced for sub-daily temporal and spatial scales (Toffolon and 

Piccolroaz, 2015) and it is, therefore, common practice to average out sub-daily effects and to consider a daily discretization 

for modeling purposes. This assumption can have a significant impact on lake/reservoir water quality modeling results, 50 

namely, when lake/reservoir inflows are large. The fall and spring turnover onset, stratification strength/length and the 

overall heat budget can be affected. Air temperature approximates correlates with the equilibrium temperature of a river and 

is, therefore, frequently used as the independent variable; hence, it is not unusual to find a strong linear correlation between 

daily air temperature and stream and river water temperature with a time lag (Smith, 1981; Crisp and Howson, 1982). There 

are a number of examples in the existing literature of the successful implementation of linear regression models correlating 55 

air and water temperature using data relating to different time periods, mostly weekly and/or monthly, as the serial 

dependency for these timescales is generally small (e.g., Mackey and Berrie, 1991; Webb and Nobilis, 1997). That said, 

several studies have shown departures from linearity, showing that the rate of evaporative cooling increases at peak air 

temperatures, which means that the river water temperature will, therefore, not increase linearly with the mean air 

temperature (Mohseni et al.,1998, 2002), thereby demonstrating the need for more complex models and sampling of an 60 

increased number of independent variables.  

There are many sources of error in the modeling of river WT, including those associated with the definition of the input data 

and boundary conditions or with the river WT measurements used in model calibration or related to the model’s structure. 

The predictor variables can represent a significant source of uncertainty, as river WT is not only affected by local 

environmental conditions, but also by upstream conditions (Moore et al., 2005). In order to minimize this source of 65 

uncertainty, some authors use a space-averaging approach in which the predictor variables consider a variety of buffer zones 
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with different lengths and widths (e.g., Macedo et al., 2013; Segura et al., 2014). However, the extent of the area affecting 

the river energy balance at a certain point is still unclear (Moore et al., 2005; Gallice et al., 2015).  

  

In the past decades, different types of models have been successfully used to model river WT under different spatial and 70 

temporal scales. In general, the model selection depends not only on the study’s requirements, namely the output timescale, 

but also on the availability of the input data. These include statistical models, such as the linear regression (e.g., Neumann 

et al., 2003; Rehana, S. and Mujumdar, P. P., 2011), multiple regression (e.g., Jeppesen and Iversen, 1987; Jourdonnais et 

al., 1992), non-linear regression (e.g., Mohseni et al., 1998), stochastic regression models (e.g., Ahmadi-Nedushan et al., 

2007; Rabi et al., 2015) and hybrid models (statistics methods combined with physical based process, e.g., Gallice et al., 75 

2015; Toffolon and Piccolroaz, 2015). Machine-learning (ML) models, such as artificial neural networks (ANN), have also 

proved to be a robust option for river WT prediction (e.g., Piotrowski et al., 2015; Temizyurek and Dadaser-Celik, 2018; 

Zhu et al., 2019c).  Process-based models, based on the concepts of heat advection, transportation and equilibrium 

temperature are quite accurate when the boundary conditions are well characterized (e.g., Sinokrot and Stefan, 1993; Younus 

et al., 2000; Du et al., 2018), although they do require a large amount of forcing data, including stream geometry, air 80 

temperature, dew point temperature (or relative humidity), cloud cover and short-wave solar radiation, degree of shading 

and wind direction/velocity.  

  

The number and type of predictor variables considered to force river WT models in several intercomparison studies is quite 

different. Several modeling intercomparison studies on the modeling of river WT have been produced that consider different 85 

predictors.  In general, results show the performance of ML models to be comparable (Feigl et al., 2021; Zhu et al., 2018). 

Multi-layer perception neural network models are, in most cases, not outperformed by more complex and advanced neural 

networks models (Piotrowski et al., 2015; Zhu et al., 2019b). ML outperformed standard modeling approaches, such as 

multiple regression, the hybrid Air2stream model developed by Toffolon and Piccolroaz (2015) (Feigl et al., 2021), linear 

regression, non-linear regression and stochastic models (Zhu et al., 2018). This is not a prevailing rule, however, as the 90 

Air2stream model was also able to outperform ML, clearly indicating its potential as a valid solution in certain conditions, 

(Zhu et al., 2019d). Table 1 describes the RMSE between observed and predicted river WT obtained from several studies 

and using different models. Overall, the results are quite impressive, varying from 0.42 ºC to 2.30 ºC in the case of the ML 

models. The worst results, as expected, correspond to the classical statistical models, namely multiple regression.   

  95 

From a water-quality modeling perspective, accurate time-varying boundary conditions are vital in order to calibrate lake or 

reservoir models. For water temperature calibration, this ideally means using continuous inflow temperatures, a condition 

that is very difficult to attain, as WT measurements are often scarce and rarely available, particularly for low-order streams.  
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Hence, the main objective of this study is to identify a suitable WT modeling solution to improve the lake/reservoir water 

quality models’ boundary condition. It is important to mention that, for this study, an absence of significant variation 100 

between the water quality station observed WT and the WT at the downstream portion of a river was assumed, which 

coincides with the lake/reservoir water quality model boundary condition. 

It is also important to note that the studies defined to evaluate the performance of different modeling approaches are normally 

restricted to a very small number of test sites and usually contain a reasonable amount of forcing data (Table 1). Hence, the 

vital importance of increasing the number of test sites and using a limited amount of forcing data to model river temperatures. 105 

This is the primary and innovative objective of this study and. The methodological approach was, therefore, defined to 

attempt to answer the following questions: 

  

i) What is the best modeling solution to predict river water temperature with limiting forcing data? This modeling solution 

will be considered to improve the characterization of lake/reservoir WT boundary conditions (assuming that the observed 110 

WT of the downstream sections of the rivers are the boundary condition of lake/reservoir water quality models);  

ii) How does the length of the calibration period and percentage of missing data affect model performance?  

iii) Is it possible to relate the modeling error with river and watershed geomorphological and hydrological variables (e.g., 

time of concentration; wet and dry season)?  

 115 

To that end, 83 river sections with different geomorphological, meteorological and hydrological conditions were modeled. 

These stations correspond to all the sections for which the Portuguese Water Resources Information System (SNIRH) holds 

WT and discharge datasets, which are also, coincidentally, characterized by 98% missing data. The modeling ensemble 

includes five different models, using five different models, three of which use ML algorithms optimized with a sequential 

model-based optimization approach: Random Forest (RF); Artificial Neural Network (ANN) and Support Vector Regression 120 

(SVR). The remaining models include the hybrid Air2stream model (using all model parametrization variations: 3, 4, 5, 7 

and 8 parameters)  

(Toffolon and Piccolroaz, 2015) and Multiple Regression (MR). The results of this study will hopefully prove useful from 

a practical perspective by helping to improve the quality of lake/reservoir model boundary conditions, as well as contributing 

to the overall model evaluation/development process.  125 
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Table 1: List of reviewed publications on river WT modelling and the corresponding RMSE between observed and 

modelled WT values  140 

Reference  Geographic location  
Number  
of sites  

Temporal  
scale  

Model 

type  RMSE (ºC)  

Chenard and Caissie, 2008  Canada  1  day  ANN  0.96  

DeWeber and Wagner, 2013  Eastern U.S.  96  day  ANN  1.82; 1.93  

Rabi et al., 2015  Croatia  3  day  ANN  
μ=1.70 σ=0.49; μ=2.06 σ=0.35; μ=2.30 

σ=0.76   

Zhu et al., 2019c  U.S.  3  day  ANN  0.768; 0.948; 1.242  

Feigl et al., 2021  
Austria; Germany and 

Switzerland  10  day  ANN  Best results: 0.45;0.42;0.43  

Zhu et al., 2019a  Croatia  2  day  ANN  1.35; 1.70  

Zhu et al., 2019d  Europe, U.S.  8  day  ANN  [0.46,1.69]  

Rehana, 2019  India  1  day  SVR  1.69  

Rajesh and Rehana, 2021  India  1  day  SVR  0.99  

Lu et al., 2020  U.S.  1  hour  RF  1.04  

Feigl et al., 2021  
Austria; Germany and  

Switzerland  10  day  RF  0.58  

Rajesh and Rehana, 2021  India  1  day  RF  1.03  

Rehana, 2019  India  1  day  MR  1.85  

Moore et al., 2003  Western Canada  418  year  MR  2.1  

Ducharne, 2008  France  88  month  MR  [1.4,1.9]  

Zhu et al., 2019a  Croatia  2  day  MR  2.33; 2.74  

Toffolon and Piccolroaz, 2015  Switzerland  3  day  Air2stream  

3-par[0.88, 1.05];4-par[0.87,1.04] 

5par[0.70, 1.05]; 7-

par[0.65,0.78];8par[0.75,0.62] * 

Zhu et al., 2019d  Europe, U.S.  8  day  Air2stream  
3-par[0.64, 1.25]; 5-par[1.31, 0.76]; 

8par[1.37;0.93] * 

Feigl et al., 2021  
Austria; Germany and  

Switzerland  10  day  Air2stream  8-par[0.74,1.17] * 

          *The model can be applied with 3, 4, 5, 7 or 8 parameters (3-par; 4-par; 5-par; 7-par and 8-par) 

2 Study area and data  

The watersheds considered in this study are located in Portugal (Fig. 1). This southern European country has a typical  
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Mediterranean climate. Maximum daily mean air temperature ranges from 13 ºC in the central highlands to 25 ºC in the  

southeastern region. The minimum daily mean air temperature ranges from 5 ºC in the northern and central regions to 18 ºC 145 

in the south (Soares et al., 2012). The spatial and temporal heterogeneity of precipitation, which differs from a relatively 

wet annual maximum of over 2 500 mm/yr, in the mountainous northwest to a much drier 400 mm/yr. in the flat southeast, 

is defined by complex topography and coastal processes (Cardoso et al., 2013; Soares et al., 2015).  

  

Figure 1: Location of the watersheds considered in the study (from DEM – Shuttle Radar Topography Mission (Farr et al., 150 
2007)) 

 

The models used in this study were forced with daily mean, maximum and minimum air temperature and also global 

radiation values, obtained from the fifth-generation atmospheric reanalysis, ERA5, produced by the European Centre for 

Medium-Range Weather Forecasts (ECMWF). Hourly data on atmospheric parameters were obtained for the entire globe 155 

on a 0.25º latitude-longitude grid (Hersbach et al., 2020). The datasets are available from the Climate Data Store of the  
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Copernicus Climate Change Service (http://cds.climate.copernicus.eu). The watershed discharge data used to force the 

models and the water temperature considered for the model’s validation are also available from Portuguese Water Resources 

Information System (SNIRH) (http://snirh.apambiente.pt). The SNIRH provides data and water temperature values for 2 471 

water-quality stations, of which only 98 have gauging stations with discharge values, one of the conditions required to 160 

implement the Air2stream model. The missing discharge data was replaced with the corresponding climatological year 

value, hence only the gauging stations with data spanning at least a full year (365/366 values) were kept. Following this 

initial analysis, the number of sections considered was reduced to 83. Data availability varies from station to station but 

generally covers a period of 42 years (1980-2021). However, a significant amount of daily river WT values are missing, 

ranging from 96.9% to 99.9% (μ= 98.8%; σ=0.68). 165 

  

Table 2 shows the number of input values (WT and the predictors)WT for the annual data series, for the dry season (April 

to September) and for the wet season (October to March) separated into training and validation test datasets, considering all 

stations .  

  170 

Table 2: Number of input valuesWT for the annual, dry- and wet season, training and validation test data series  

 Temporal scale   Phase  
Total 

number  Mean  
 

Stdev  
 

Maximum  Minimum  

Annual  Train  8384  
 

101  
 

60  237  11  

Annual  Validation Test 3593  
 

43  
 

26  102  5  

Dry season  Train  4161  
 

50  
 

32  116  4  

Dry season  Validation Test 1783  
 

21  
 

14  50  2  

Wet season  Train  4223  
 

51  
 

29  124  4  

Wet season  Validation Test 1810  
 

22  
 

13  53  2  

  

3 Methodology  

The definition of the methodological approach was supported by the following:  

i) It is important to model a significant number of watersheds to reduce the degree of results uncertainty. This was minimized 175 

by modeling all the watersheds located in Portugal for which river water temperature and discharge values were available;  

ii) The number and type of models is also key to gaining a comprehensive understanding of the structural differences between 

the models and their performance. The five models considered in this study include state-of the art algorithms, with one 

classic modeling approach (MR) included to establish a benchmark;  

http://cds.climate.copernicus.eu/
http://cds.climate.copernicus.eu/
http://snirh.apambiente.pt/
http://snirh.apambiente.pt/
http://snirh.apambiente.pt/
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iii) Generally-speaking, there are no available sources of observed meteorological data for either the watershed or the area 180 

surrounding the lowest part of low-order rivers and, as such, the forcing meteorological datasets considered in this study 

were obtained from the ERA5 reanalysis;. 

iii)iv) There are no significant variations between the water quality station observed WT, and the WT at the downstream 

portion of a river, which coincides with the lake/reservoir water quality model boundary condition. 

  185 

The modeling reference is the watershed main gauging station/water-quality station. Therefore, the hourly air temperature 

(ºC) and global radiation (shortwave) (Jm-2) input datasets of the nearest ERA5 grid point were initially downloaded before 

the air temperature datasets were corrected according to the gauging station and the ERA5 grid point altitude. This correction 

was achieved by considering a linear variation of air temperature with the altitude, 
𝑑𝑇

𝑑𝑧
= −6.50, °𝐾𝐶/𝑘𝑚.  (Fahrer and 

Harris, 2004).  After this correction,  190 

 the mean, maximum and minimum daily air temperature values and the mean global radiation values where computed from 

the hourly meteorological datasets. Initially the model predictors were selected on the basis of their availability and the 

results obtained with other studies (e.g., Zhu et al., 2019c; Feigl et al., 2021). These included, mean, max. and min. daily air 

temperature (ºC), mean daily total radiation (shortwave) (Jm-2), discharge (m3.s-1) and two temporal features, the month (0-

12) and the day (1-365) of the year (MOY and DOY, respectively) (Table 3).  195 

 

Table 3: Model predictor variables 

Model Predictor variables 

Output 

variable 

RF 

Mean, max., and min. daily air temperature (ºC) 

Mean daily total radiation (shortwave) (Jm-2) 

 Mean daily discharge (m3.s-1) 

MOY and DOY 

Water 

temperature 

ANN 

Mean, max., and min. daily air temperature (ºC) 

Mean daily total radiation (shortwave) (Jm-2) 

 Mean daily discharge (m3.s-1) 

MOY and DOY 

SVR 

Mean, max., and min. daily air temperature (ºC) 

Mean daily total radiation (shortwave) (Jm-2) 

 Mean daily discharge (m3.s-1) 

MOY and DOY 

Air2stream 
Mean daily air temperature (ºC) 

Mean daily discharge (m3.s-1) 

ML 

Mean, max., and min. daily air temperature (ºC) 

Mean daily total radiation (shortwave) (Jm-2) 

 Discharge (m3.s-1) 

MOY and DOY 
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The results section starts with the evaluation of the ERA5 mean daily air temperature datasets. These datasets were compared 

with ground measurements, of mean daily air temperature considering all the meteorological datasets located within a 5 km 200 

radius of the stations considered in this study. 

Following this initial analysis, the models (vide Sect. 3.1 to 3.6) were applied to each of the 83 input datasets, divided 

between a training (70% of the entire dataset) and a validation test dataset (the remaining 30%). Due to size of the available 

datasets the validation phase was not considered. 

  205 

Hyperparameter optimization was achieved for the ML models through the application of the Tree-structured Parzen 

Estimators (TPE) algorithm (vide Sect. 3.5). Given the large number of input datasets and the fact that the optimization 

process can be very time consuming, the following approach was implemented (Fig. 2):  

i) Considering the ordered length (L) of the 83 input datasets (training + validationtesting), the datasets were divided into 

four different classes (L ≤ 50; 50> < L ≤100; 100> < L ≤200; L>200);  210 

ii) The ML and TPE algorithms were applied to the datasets corresponding to the minimum, mean and maximum number 

of values of each of the classes listed above. At this stage there are 12 model structures computed with the TPE algorithm 

for each ML model; 

iii) The 12 models obtained for each ML were applied to the 83 datasets and the best performing model at each station was 

calculated based on the computed root mean square value (RMSE). Hence, the ensemble of the best results obtained across 215 

the 12 different models per station defines the overall ML results.  

In other words, the ML hyperparameters are only optimized for 12 datasets and the ensemble of all the best models that 

were run are the ML results considered for the intercomparison of models.   

  

Following this initial analysis, and in order to further investigate the relevance of the predictor variables, the input feature 220 

importance was estimated for all stations by considering the best performing model. Additionally, the best model was used 

to evaluate the differences between observed and model river WT considering the sequential increase of the models’ 

predictors: 1) mean air temperature 2) mean air temperature + discharge; 3) mean air temperature + discharge + radiation; 

4) mean air temperature + discharge + radiation + maximum air temperature; 5) mean air temperature + discharge + radiation 

+ maximum air temperature + minimum air temperature; 6) mean air temperature + discharge + radiation + maximum air 225 

temperature + minimum air temperature + MOY; 7) mean air temperature + discharge + radiation + maximum air 

temperature + minimum air temperature + MOY + DOY. 

   

The effect of the watershed geomorphological and hydrological variables was addressed with the analysis of the watershed 

time of concentration, a variable that encapsulates some of the main watershed characteristics that effect the river water 230 

temperature. The well-known Temez equation (Temez, J.R., 1978) (vide Sect. 3.7) initially defined for small-scale 
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Mediterranean watersheds was selected for this analysis. Additionally, the Gaussian Mixture Models algorithm implemented 

with the machine-learning python package, scikit-learn (Pedregosa et al., 2011), was used for cluster analysis. The algorithm 

assumes that the data points belong to a mixture of Normal distributions. The covariance structure of the data as well as the 

center of the distributions are used to compute probabilistic cluster assignments. 235 

 

The results from the various models were evaluated with six metrics considering the observed and predicted daily datasets 

of river WTconsidering the observed and predicted annual, dry- and wet season datasets for river WT. During the results 

evaluation three types of datasets were considered: 

Annual datasets: All available daily averages of WT are compared to field data, 240 

Wet season: Only the daily averages of WT corresponding to the wet season are compared to field data (October to March), 

Dry season: Only the daily averages of WT corresponding to the dry season are compared to field data (April to September). 

 

The metrics were selected in order to provide not only a consistent interpretation of the models’ results, but also to facilitate 

comparison with the results obtained in other studies (vide Sect. 3.8). The following sections describe each of the models 245 

and outline their relevant advantages/disadvantages. The ML parameters are listed in Table 3. 

 

Figure 2: Schematic and simplified representation of the modeling process 

 
 250 
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3.1 Random Forest  

The RF algorithm (Random Forest Regressor) was implemented with the machine learning python package, scikit-learn 

(Pedregosa et al., 2011). This model fits classifying decision trees on various sub-samples of the datasets and then combines 

the predictions. Decision trees can model complex non-linear relations. The algorithm uses averaging to control overfitting 

and improve the algorithm predictive accuracy, thus effectively balancing the bias- variance trade-off. They are robust to 255 

outliers, missing values and irrelevant or noisy variables because the model implicitly performs feature selection and 

generates uncorrelated decision trees. Beyond these advantages, there is one major drawback, common to all the ML 

methods, with results difficult to interpret due to the intrinsically black box nature of the algorithm. More details about RF 

can be found in the literature (Breiman, 2001, Louppe, 2014).  

   260 

3.2 Artificial Neural Network  

The ANN prototyping and building was achieved with the NeuPy python library (Shevchuk, Y., 2015). This library uses 

Tensorflow (an open-source platform for machine learning) as a computational backend for deep learning models (Abadi et 

al., 2015). The momentum algorithm was selected for the ANN implementation because of the improved control it provides 

with regard to overfitting. This is an iterative first-order optimization method that uses gradient calculated from the average 265 

loss of a neural network. This algorithm promotes a gradual transition in the balance between stability and rate of change 

(Qian, 1999), the result is faster convergence and reduced oscillation. ANN has been successfully used to model river water 

temperature (Chenard and Caissie, 2008; DeWeber and Wagner, 2014; Piotrowski, et al., 2015). This type of model is 

reasonably accurate and does not require a large number of input variables but does have two significant drawbacks. The 

model has no capacity to provide information on energy flux mechanisms within the river and has a tendency to overfit the 270 

training dataset, thereby considerably diminishing the model’s ability to generalize the features or patterns present in the 

training dataset (Srivastava et al., 2014). For the implementation of the model, the training data was shuffled before training 

and the weights were randomly initiated. The loss function included the MSE to measure the accuracy of the results, as well 

as L2 regularization and dropout layers to minimize overfitting. The step decay algorithm was used to regularize the learning 

rate.   275 

 

3.3 Support Vector Regression  

The Epsilon-Support Vector Regression algorithm was also implemented using the machine-learning python package, scikit-

learn (Pedregosa et al., 2011). This type of algorithm is generally characterized by the use of kernels functions, sparseness 

of the solution and the absence of a local minimum (Platt, 1998; Smola et al., 2004). The algorithm searches for a line or 280 

hyperplane in multidimensional space that divides two or more variables. The hyperplane with the optimum number of 

points is the best fit (Awad and Khanna, 2015). The SVR training relays on the use of a symmetrical loss function, which 

penalizes high and low errors. The algorithm also ignores errors that are less than a certain threshold, ɛ. According to Awad 
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and Khanna (2015), the computational complexity of the algorithm does not depend on the dimensionality of the input space, 

which is a relevant advantage. It also offers good prediction accuracy and excellent generalization capability. Regardless of 285 

the advantages, this algorithm can be computationally expensive, which can be a significant drawback.   

  

3.4 Air2stream  

The Air2stream model solves a lumped heat-exchange budget between an unknown river section volume, its tributaries, and 

the atmosphere (Toffolon and Piccolroaz, 2015). The river WT variation is described by the following equation:    290 

𝜌𝐶𝑝𝑉
𝑑𝑇𝑊

𝑑𝑡
= 𝐴𝐻 +  𝜌𝐶𝑝𝑇𝑤(∑ 𝑄𝑖𝑇𝑊,𝑖 − 𝑄𝑇𝑤𝑖 ),                    (1) 

  

Where 𝑇𝑤 is the water temperature of a river section with a volume V and surface area A, ρ and 𝐶𝑝 are the water density 

and the specific heat capacity, respectively. H is the net heat flux at the air-water interface, and 𝑇𝑊𝑖  is the i-th water 

temperature of the discharge 𝑄𝑖  tributary or groundwater. The model assumes that air temperature can be used as a proxy 295 

for all surface heat fluxes. A Taylor series expansion is used to include the overall effect of air temperature. Q is the discharge 

downstream of the river section and t is time. Eq. (2) is the simplified form of Eq.(1) (vide Toffolon and Piccolroaz, 2015). 

This equation, with 8 parameters, forms the basis of the Air2stream model:  

𝑑𝑇𝑊

𝑑𝑡
=

1

𝜃𝑎4
(𝑎1+𝑎2 𝑇𝑎 − 𝑎3𝑇𝑤 + 𝜃 (𝑎5 + 𝑎6𝑐𝑜𝑠 (2𝜋 (

𝑡

𝑡𝑦
− 𝑎7)) − 𝑎8𝑇𝑤)),       (2) 

Where 𝑇𝑎 is the air temperature, θ is the dimensionless discharge (𝜃 = 𝑄/�̅�) (3), �̅� is the mean discharge. The parameter, 𝑎4 300 

is related with the exponent of the rating curve. The model is fitted to the entire input dataset (air temperature, water 

temperature and discharge) and the value of 𝑎4 and the value of all others model parameters are estimated during the model 

optimization process (calibration phase). In this study the Crank Nicolson scheme was used to solve the model equation. 

Following, Toffolon and Piccolroaz, 2015, the model parameters were estimated using the Particle Swarm Optimization 

method with inertia weight (Shi and Eberhart, 1998) with a population size of 2000 particles and 2000 iterations In this 305 

study five versions of this model were considered to model WT. The 3, 4, 5, 7 and 8 parameter versions. Please refer to 

Toffolon and Piccolroaz (2015) for a full description of each one of the models’ parameterizations..  

  

3.5 Hyperparameter optimization  

Hyperparameter optimization was achieved using the Tree-structured Parzen Estimators (TPE) algorithm implemented with 310 

the Hyperopt library (Bergstra et al., 2013). The optimization process is initiated with the selection of a prior distribution 

(e.g., uniformly distributed), then, for the first iterations, the TPE algorithm is warmed up with some random iterations 

(Random Search). After this initial set up the algorithm collects new observations and on completion of the iterations it 

selects the set of parameters that it will try during the next iteration. The algorithm scores and divides the collected 
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observations into two groups. The first group includes the best observations and the second group all the others. The main 315 

objective is to identify a set of parameters most likely to be in the first group. The TPE algorithm can serve as a good 

alternative to the Gaussian Process as it fixes some of the disadvantages associated with the latter. One notable drawback, 

however, is that this model selects parameters independently from each other. It is a well-known fact that the number of 

epochs of an ANN and regularization are related and that these two parameters influence the overfitting to a significant 

degree. To overcome this problem two different choices for the epochs, with and without regularization, were constructed. 320 

TPE hyperparameter optimization consists of 20 random parameter samples and 200 iterations. The hyperot algorithm 

samples 1000 candidates and selects the candidate that has the highest expected improvement (n_EI_candidates = 1000). 

The coefficient of determination (R2) was considered as the algorithm score. The algorithm uses 20% of best observations 

to estimate the next set of parameters (gama = 0.2). Table 3 shows the models parameters and the corresponding optimization 

range. The algorithm was applied to the training data set. Table A1 shows the model parameters and the optimization range. 325 

 

 

Table 3: Model parameters and optimization range  

Model  
  

Prior distribution  Parameter  Optimization range  

 

RF  

uniform  
'n_estimators'  [50, 2000]  

uniform  
'max_depth'  [10, 1000]  

uniform  
'min_samples_split'  [2, 10]  

-  
'max_features'  [auto, sqrt]  

-  
'bootstrap'  [True, False]  

ANN 

categorical  
'n_layers'  [1, 2]  

uniform integer  
'n_units_layer'  [10, 50]  

categorical  
'act_func_type'  ['Relu', 'PRelu', 'Elu', 'Tanh', 'Sigmoid']  

categorical  
'regularization'  [True, False]  

quantized  
distribution  'n_epochs'  With regularization: [500, 1000]; without regularization: [20, 300]  

uniform  
'dropout'  [0, 1.0]  

loguniform  
'batch_size'  [5, 20]  

uniform  
'initial_value'  [0.001, 0.1]  

uniform  
'reduction_freq'  [10, 200]  

uniform  'decay_rate'  
(regularization)  [0.0001, 0.001]  

SVR  

Categorical  
'C'  [0.1,1,100,1000]  

Categorical  
'kernel'  ['rbf','poly','sigmoid','linear']  

Categorical  
'degree'  [1,2,3,4,5,6]  

Categorical  
'gamma'  [1, 0.1, 0.01, 0.001, 0.0001]  

Categorical  
'epsilon'  [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10]  
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  330 

 3.6 Multiple regression  

This model was implemented using the machine learning python package, scikit-learn (Pedregosa et al., 2011). In this model 

the predicted value (y ̂) is expected to be a linear combination of the input features:  

𝑦̂ (𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑝𝑥𝑝,                                           (4)  

  335 

Where, 𝑥𝑖 are the model input features, 𝑤0 is the intercept and 𝑤𝑖 the model coefficients. The model fits a linear model with 

coefficients 𝑤𝑖 to minimize the residual sum of squares between the observed and predicted values.   

  

3.7 Time of concentration 

The time of concentration was estimated using the Temez equation (Temez, J.R., 1978), which was defined for small natural 340 

watersheds located in Spain.  

  

𝑇𝐶 = 0.3 (
𝐿

𝐽1/4
)
0.76

,                                                       (5)  

𝑇𝐶 – time of concentration, h  

𝐿 – length of the main water line, km  345 

𝐽 – mean steepness (ratio between the mean fall and the L length of the water line), m/m  

  

3.8 Evaluation metrics  

Model assessment was performed with six different metrics: the mean absolute error (MAE), the root mean square root error 

(RMSE), the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), the Kling-Gupta efficiency (KGE) (Kling et al., 350 

2012), the bias (BIAS) and the coefficient of determination (R2). The metrics were computed using the following equations, 

where 𝑚𝑖 and 𝑜𝑖 are the modeled and observed values, 𝑚  and 𝑜  their means, 𝜎𝑚 is the standard deviation of the modeled 

values, and 𝜎𝑜 the standard deviation of the observed values and r is the Pearson coefficient:  

  

 MAE =
1

𝑁
∑ |𝑚𝑖 − 𝑜𝑖|
𝑁
𝑖=1 ,            (6) 355 

 

RMSE = √
1

𝑁
∑ (𝑚𝑖 − 𝑜𝑖)

2𝑁
𝑖=1 ,           (7) 
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𝑁𝑆𝐸 = 1 − [
∑ (𝑜𝑖− 𝑚𝑖)

2𝑁
𝑖=1

∑ (𝑜𝑖−𝑜�̅�)
2𝑁

𝑖=1

],           (8) 

 360 

KGE = 1 − √(𝑟 − 1)2 + (
𝜎𝑚

𝜎𝑜
− 1)

2

+ (
�̅�

�̅�
− 1)

2

,         (9) 

 

𝐵𝑖𝑎𝑠 =  �̅� − 𝑜 ,             (10) 

 

R2 =
∑ (𝑚𝑖−�̅�)

2𝑁
𝑖=1

∑ (𝑜𝑖−�̅�)
2𝑁

𝑖=1

× 100,            (11) 365 

 

The Random Forest and ANN algorithms use the mean square error to measure the results accuracy:  

 MSE =
1

𝑁
∑ (𝑚𝑖 − 𝑜𝑖)

2𝑁
𝑖=1 ,           (12) 

 

4 Results  370 

4.1 Air temperature - ERA5 versus ground observed datasets  

In this analysis the observed air temperature datasets of a total of eleven meteorological stations were considered. These are 

all available air temperature datasets observed within a 5 km radius of the stations considered in this study. Results show 

that the mean RMSE obtained between the two datasets considering all stations varied from 1.26ºC to 2.05ºC (μ=1.54ºC; 

σ=0.24ºC) and that, according to the mean bias values, the ERA tends to overestimate the observed air temperature datasets 375 

at 91% of the stations. Overall, a mean value of 1.54ºC (σ=0.24ºC) and a mean NSE value of 0.90 (σ=0.07) is indicative of 

a good performance. However, as shown in Figure 3, there are some sporadic significant discrepancies between the two 

datasets (Fig. 3). Additionally, results show that the stations with a RMSE higher than 2ºC are scattered all over the country. 

In this context it is relevant to mention that McNicholl et al. (2021) also found large biases between the ERA5 daily air 

temperature datasets and land data for a temperate region (Dublin) and for a tropical region (Singapore). Generally, these 380 

results suggest that the consideration of the ERA5 air temperature datasets for WT modeling can, sporadically, induce some 

important discrepancies between the two datasets. The error can significantly increase if the model’s training/testing dataset 

is small. 

 

 385 

 

 

Table 4: Evaluation of ERA5 daily air temperature datasets - MAE, RMSE, NSE, KGE, bias and R2 (with standard 

deviation) between observed and ERA5 values 
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Station N* MAE   RMSE   NSE  KGE    bias   R2  

st4 80 1.100.26 1.390.28 0.910.04 0.940.05 0.740.47 0.940.02 

st6 120 1.100.37 1.340.38 0.900.17 0.920.09 -0.150.79 0.900.11 

st30 98 1.310.29 1.720.40 0.910.07 0.950.06 -0.480.70 0.920.05 

st32 67 1.160.52 1.430.58 0.960.04 0.940.05 -0.750.90 0.970.02 

st38 110 0.880.34 1.260.48 0.940.09 0.960.06 -0.460.57 0.950.04 

st42 21 1.190.47 1.530.58 0.9345.49 0.872.22 -0.420.75 0.940.03 

st50 90 1.080.30 1.450.48 0.910.06 0.890.11 -0.140.39 0.920.04 

st62 24 1.300.74 1.670.80 0.896.28 0.940.92 -0.171.36 0.900.04 

st68 47 1.601.18 2.051.09 0.719.81 0.860.23 -1.471.24 0.880.2 

st83 137 1.490.40 1.790.39 0.920.03 0.940.04 -0.600.88 0.930.02 

st91 51 1.040.13 1.330.16 0.930.04 0.960.09 -0.460.47 0.940.04 

 390 

*number of dataset values 

 

 

Figure 3: Metrics histograms of daily air temperature - ERA5 versus ground observed datasets 

 395 
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4.1 2 Model intercomparison – annual datasets  

The results obtained from all the models for the validation testing phase and the annual datasets showed the RF model 

ensemble, with a mean RMSE of 3.18 ºC (σ = 1.06), considering all station results, varying from 1.57 ºC to 7.23 ºC and a 400 

mean NSE value of 0.52 (σ=0.23) to be the best performing model, closely followed by the ANN model ensemble, with a 

mean RMSE of 3.22 ºC (σ = 1.05), varying from 1.79 ºC to 3.22 ºC (Table A24) and by the SVR model ensemble, with a 

mean RMSE of 3.37 ºC (σ = 0.96), varying from 1.34 ºC to 6.21 ºC. The SVR model had the lowest RMSE of all the 

simulations run: 1.34 ºC for Station 8 with a training dataset of 20 values (SVR parameters: kernel = 'sigmoid', degree = 3, 

C= 1000, gamma=0.0001, epsilon=0.005). The RF was also the best performing model based on a single model run (RF 405 

parameters: n_estimators = 50, max_depth = 485, min_samples_split = 5, max_features = 'auto', bootstrap = True), with a 

mean RMSE of 3.37 ºC (σ = 0.96) varying from 1.34 ºC to 6.21 ºC.  

The Air2stream model with 3-parameters is the best of the hybrid model parameterizations, with a mean RMSE of 4.06 ºC 

(σ = 1.17), followed by the MR, with an annual mean RMSE of 4.28 ºC (σ = 1.17). The NSE, KGE and R2 values are closely 

aligned with the RMSE variation among the different models. Considering the performing ratings defined by Moriasi et al., 410 

(2007), the results obtained with the RF model ensemble, as described by the mean annual NSE value (μ=0.52; σ=0.23) can 

be considered satisfactory (0.50<NSE<0.65). According to the same classification, the ANN and the SVR with a mean 

annual NSE value of 0.48 (σ=0.28) and 0.47 (σ=0.19) produce an unsatisfactory modeling performance (NSE ≤ 0.50). The 

same classification was obtained with the all the parameterizations of the Air2stream model and the MR, but with a very 

reduced NSE value. The mean annual RMSE considering the ensemble of all model results for the validation testing phase 415 

is 2.75 ºC (σ = 1.00), varying from 1.34 ºC to 6.03 ºC and, according to the mean NSE value (μ=0.56; σ=0.48), the model’s 

ensemble can be considered satisfactory. The individual model’s contribution to the results ensemble considering the stations 

with the lowest mean annual RMSE was as follows: RF: 35; ANN: 17; SVR: 14; Air2stream (3 par):1; Air2stream (8 par):2; 

MR:14. It is important to mention that these results are not correlated with the number of values in the training or testing 

datasets but are a consequence of the dataset’s quality and of the model’s performance.  420 

  

Fig. 2 4 and 3 5 show the RMSE obtained with each model during the training and validation testing phases, respectively, 

and the interannual variability described by the standard deviation. The stations are ordered as a function of the number of 

training and testing datasets, from the smallest to the largest.  

The results help to explain the performance of the models during the testingvalidation phase by showing that:  425 

i) During the training phase, all models exhibited a very low mean RMSE and interannual variability, except the 

Air2stream (3par) and the MR;  

ii) The RF underfitted the training datasets with less than 30 values and, consequently, the predicted WT values exhibited 

a high RMSE and interannual variability during the testingvalidation phase (σ=1.28) (Fig. 2 4 and 35);  
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iii) During the training phase, the ANN exhibited the lowest mean annual RMSE (μ=0.44ºC; σ=0.40) (Table 4). This model 430 

clearly overfitted the training datasets, with less than 30 values, which increased the RMSE obtained for Stations 1 to 

11 (Fig. 2 4 and 35). The model mean RMSE variability during the testingvalidation phase is equal to that obtained for 

the RF, which exhibited the lowest variability during the testingvalidation phase (σ=1.28);  

iv) Like the ANN, the SVR overfitted the training datasets of the first 10 stations although the model had the lowest mean 

RMSE interannual variability during the testingvalidation phase (σ=1.25), including for the stations 1 to 10;  435 

v) The Air2stream (3-parameters) model and the MR exhibited the highest mean RMSE and interannual variability during 

both phases. In fact, the MR exhibited a significant degree of interannual variability (σ=4.10) for the datasets with less 

than 30 values (Stations 1 to 10), which was reflected in the results obtained during the testingvalidation phase.  

  

Fig. 4 6 was included to provide greater insight into the underfitting and overfitting associated with the ML models. The 440 

training datasets with less than 30 values are clearly underfitted by the RF model (Fig. 4a6a) and overfitted by the ANN and  

SVR (Fig. 4c 6c and 4e6e). In the case of the ANN and the SVR, the overfitting is stronger and more closely correlated with 

the number of training datasets (RF: R2 = 0.13; ANN: R2 = 0.52; SVR: R2 =0.58).   

  

  It also interesting to look at the results obtained from the models with regard to levels of performance. Fig. 5 7 shows the 445 

temporal evolution of the WT values obtained during the training and testingvalidation datasets for Station 59 (138 training 

values) and 2 (11 training values). Based on the RF model results, these are the stations with the best and worst mean annual 

RMSE. There are clear, fundamental differences between the ML models and the Air2stream and MR models. The ML 

models are highly effective. They describe a large number of spurious observed values in the WT values that can be 

associated with the sub-daily variation of the river WT, underground inflows or with a monitoring error and, by doing so, 450 

the predicted temporal evolution of the river WT oscillates widely (Fig. 5a7a, 5c7c, and 5e7e). This was not the case with 

the Air2stream or MR models. The results obtained from these two models demonstrate the fact that, in the absence of 

quality input training information (quantity plus quality), their predictive performance is significantly lower than that of the 

ML models. This is illustrated by the less oscillating sinusoidal evolution of the river WT (Fig. 5g 7g and 5i7i). When 

considering very small training datasets, such as the dataset corresponding to Station 2, with 11 training values and 5 455 

testingvalidation values, ML models tend to have a very unrealistic response as they either overfit or underfit the training 

datasets (Fig. 5b7b, 5d 7d and 5f7f). In this example, the Air2stream (5-parameters) model has a delayed but more realistic 

response. The MR performed the worst, with the model unable to describe the correlation between the predictor variables 

and the observed river WT (Fig. 5j7j).
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   Table 4: Evaluation of model performance during the training and validation phases considering the annual datasets. 460 

Mean MAE, RMSE, NSE, KGE, bias and R2 (with standard deviation) between observed and predicted WT values  

Annual  TRAIN            

Model/metric  MAE   RMSE   NSE  KGE    bias  
 

 R2  

RF  0.86 (±0.25)  1.13 (±0.30)  0.93 (±0.03)  0.85 (±0.07)  -0.01 (±0.06)  0.96 (±0.02)  

ANN  0.29 (±0.29)  0.44 (±0.40)  0.99 (±0.03)  0.98 (±0.03)  0.01 (±0.02)  0.99 (±0.03)  

SVR  0.82 (±0.54)  1.19 (±0.64)  0.91 (±0.06)  0.88 (±0.09)  0.00 (±0.11)  0.92 (±0.05)  

Air2stream (3-par)  2.82 (±0.86)  3.65 (±0.96)  0.33 (±0.25)  0.33 (±0.32)  0.01 (±0.01)  0.33 (±0.25)  

Air2stream (4-par)  2.83 (±0.86)  3.65 (±0.97)  0.33 (±0.25)  0.34 (±0.31)  0.00 (±0.01)  0.33 (±0.25)  

Air2stream (5-par)  2.72 (±0.88)  3.54 (±0.98)  0.36 (±0.25)  0.38 (±0.29)  0.00 (±0.01)  0.36 (±0.25)  

Air2stream (7-par)  2.67 (±0.86)  3.50 (±0.99)  0.38 (±0.25)  0.42 (±0.28)  0.01 (±0.02)  0.38 (±0.25)  

Air2stream (8-par)  2.68 (±0.87)  3.49 (±0.99)  0.39 (±0.24)  0.43 (±0.28)  0.01 (±0.04)  0.39 (±0.24)  

MR  2.55 (±0.79)  3.33 (±0.95)  0.47 (±0.27)  0.49 (±0.24)  0.00 (±0.00)  0.44 (±0.22)  

Ensemble  0.28 (±1.07)  0.41 (±1.36)  0.99 (±0.32)  0.98 (±0.27)  0.01 (±0.04)  0.99 (±0.30)  

              

Annual  VALIDATION            

Model/metric  MAE  RMSE  NSE  KGE  bias  R2  

RF  2.44 (±0.91)  3.18 (±1.06)  0.52 (±0.23)  0.60 (±0.20)  -0.07 (±1.11)  0.60 (±0.18)  

ANN  2.50 (±0.86)  3.22 (±1.05)  0.48 (±0.28)  0.66 (±0.18)  -0.12 (±0.94)  0.55 (±0.22)  

SVR  2.60 (±0.86)  3.37 (±0.96)  0.47 (±0.19)  0.53 (±0.21)  0.00 (±0.83)  0.54 (±0.18)  

Air2stream (3-par)  3.17 (±1.06)  4.07 (±1.18)  0.21 (±0.32)  0.29 (±0.32)  -0.18 (±1.15)  0.34 (±0.22)  

Air2stream (4-par)  3.30 (±1.15)  4.24 (±1.37)  0.11 (±0.73)  0.30 (±0.29)  -0.04 (±1.30)  0.32 (±0.23)  

Air2stream (5-par)  3.53 (±1.08)  4.37 (±1.13)  0.06 (±0.59)  0.18 (±0.38)  -0.12 (±1.03)  0.30 (±0.22)  

Air2stream (7-par)  3.74 (±1.15)  4.73 (±1.36)  -0.13 (±0.81)  0.19 (±0.32)  -0.50 (±1.51)  0.24 (±0.22)  

Air2stream (8-par)  3.94 (±1.35)  5.06 (±1.73)  -0.56 (±2.27)  0.16 (±0.44)  -0.42 (±1.65)  0.23 (±0.22)  

MR  3.34 (±1.29)  4.28 (±1.62)  0.32 (±0.34)  0.36 (±0.27)  -0.46 (±2.14)  0.34 (±0.22)  

Ensemble  2.14 (±0.83)  2.75 (±1.00)  0.56 (±0.48)  0.61 (±0.25)  -0.16 (±0.73)  0.60 (±0.18)  
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Figure 24: Root-mean-square error between observed and predicted WT values obtained during the training phase with all  
models (with standard deviation of interannual RMSE), considering the model results and the ensemble of all models 465 

results. Stations are ordered by the number of training dataset values, from smallest to largest  
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Figure 35: Root-mean-square error between observed and predicted WT values obtained during the validation testing phase 

with all models (with standard deviation of interannual RMSE), considering the model results and the ensemble of all 

models results. Stations are ordered by the number of validation testing dataset values, from smallest to largest 470 
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Figure 46: Root-mean-square error between observed and predicted WT values obtained with all models during the 

training (black dots) and validation testing (green dots) phases, ordered by the number of values in the training and 475 
validation testing datasets (from smallest to largest)  
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 Figure 57: Root-mean-square error between observed (black dots) and predicted WT (Blue line) values obtained during 480 
the calibration (blue shadow area) and validation testing phase (white shadow area) with all models for Station 59 

(graphs on left) and Station 2 (graphs on right). Air temperature (black line) 
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4.2 3 Model intercomparison – seasonal datasets  485 

The results obtained for the dry and wet season validation testing datasets, considering all metrics, suggest that models 

performance is better for the dry season, with the exception of the results obtained with the Air2stream model using 3 and 4 

and 5 parameters (Tables 5 A3 and 6A4). The model using the 3 and 4 parameters does not consider the effect of river discharge 

and the 5-parameter version assumes that the effect of the discharge can be retained using only a constant value. This suggests 

that the inclusion of discharge data increased the error in the wet season simulation for the 7 and 8 Air2stream model 490 

parameterizations. Following the initial selection of the gauging and water quality stations, the missing discharge values were 

replaced by the corresponding climatological year value. Missing discharge data replacement varied from 0.0% to 82.6% 

(μ=30.0; σ=22.3). Approximately 28% of the stations have missing discharge values of over 50%, which represents an 

important source of uncertainty that probably affected the Air2stream model performance.  

The results obtained with the best performing model (Random Forest) considering the annual datasets are in line with the 495 

previous conclusion that model performance is better for the dry season, but only when the DOY predictor is excluded (Table 

A1A5). The inclusion of the DOY predictor modified the correlation among the different variables and the performance of the 

models over the wet- and dry season, enhancing the importance of this variable in relation to the overall modeling performance.  

  

Overall, the results are, as expected, similar to those obtained for the annual datasets, showing that the ANN and the SVR 500 

models overfitted the training datasets, in particular during the wet season, which also contributed to the worst model 

performance during this season. The differences regarding the mean MAE and RMSE of the validation testing phase are very 

small among the ML models, with the results of the ANN ensemble coming out slightly ahead of those obtained through the 

RF and SVR ensembles for both seasons, considering the mean MAE and RMSE values. This deviation in terms of the results 

obtained for the annual datasets is driven by the difference in the length of the annual versus seasonal datasets and, 505 

consequently, the computation of the metrics, namely the MAE and the RMSE, highlighting the similarity between the ML 

models results. This is further emphasized by the mean NSE and KGE values, which, in the case of the wet season validating 

testing datasets, provide a contradictory result.  

According to the mean NSE, the RF and SVR model ensembles produce the best results (NSE: RF: 0.13 (±1.91); SVR: 0.13 

(±1.10); ANN: 0.10 (±1.22)), nonetheless the mean KGE values favor the ANN ensemble over the other ML results (KGE: 510 

RF: 0.46 (±0.26); SVR: 0.37 (±0.26); ANN: 0.48 (±0.36)). The Air2stream model with 3-parameters is the best of the hybrid 

model parameterizations followed by the MR (Tables 5 A3 and 6A4).  
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Table 5: Evaluation of model performance during the training and validation phases considering the dry season 515 

datasets. Mean MAE, RMSE, NSE, KGE, bias and R2 (with standard deviation) between observed and predicted WT 

values  

Dry season  TRAIN            

Model/metric  MAE  RMSE  NSE  KGE  bias  R2  

RF  0.87 (±0.28)  1.13 (±0.34)  0.91 (±0.09)  0.83 (±0.88)  0.09 (±0.28)  0.95 (±0.02)  

ANN  0.33 (±0.30)  0.47 (±0.41)  0.98 (±0.03)  0.97 (±0.03)  0.01 (±0.03)  0.98 (±0.03)  

SVR  0.84 (±0.54)  1.20 (±0.68)  0.89 (±0.07)  0.86 (±0.10)  0.07 (±0.15)  0.91 (±0.06)  

Air2stream (3-par)  2.93 (±0.95)  3.67 (±1.08)  0.21 (±0.25)  0.23 (±0.34)  0.30 (±0.45)  0.26 (±0.25)  

Air2stream (4-par)  2.96 (±0.93)  3.69 (±1.06)  0.21 (±0.25)  0.23 (±0.32)  0.37 (±0.52)  0.27 (±0.25)  

Air2stream (5-par)  2.81 (±0.95)  3.55 (±1.07)  0.25 (±0.24)  0.23 (±0.31)  0.04 (±0.19)  0.28 (±0.24)  

Air2stream (7-par)  2.80 (±0.92)  3.55 (±1.05)  0.27 (±0.24)  0.29 (±0.30)  0.13 (±0.28)  0.29 (±0.23)  

Air2stream (8-par)  2.82 (±0.92)  3.55 (±1.04)  0.27 (±0.24)  0.30 (±0.30)  0.19 (±0.32)  0.29 (±0.24)  

MR  2.55 (±0.80)  3.22 (±0.96)  0.37 (±0.27)  0.39 (±0.24)  0.13 (±0.19)  0.41 (±0.22)  

Ensemble  0.31 (±1.12)  0.44 (±1.37)  0.98 (±0.37)  0.97 (±0.33)  0.01 (±0.22)  0.98 (±0.34)  

Dry season  TEST            

Model/metric  MAE  RMSE  NSE  KGE  bias  R2  

RF  2.37 (±1.17)  3.01 (±1.30)  0.33 (±0.62)  0.55 (±0.24)  0.29 (±1.55)  0.57 (±0.22)  

ANN  2.19 (±0.93)  2.80 (±1.10)  0.31 (±0.71)  0.57 (±0.31)  0.01 (±1.03)  0.54 (±0.22)  

SVR  2.39 (±0.95)  3.02 (±1.06)  0.37 (±0.34)  0.50 (±0.22)  0.29 (±1.04)  0.52 (±0.22)  

Air2stream (3-par)  3.29 (±1.27)  4.12 (±1.32)  -0.13 (±0.47)  0.09 (±0.35)  0.30 (±1.73)  0.21 (±0.23)  

Air2stream (4-par)  3.65 (±2.57)  4.49 (±2.51)  -0.28 (±0.87)  0.11 (±0.34)  0.79 (±3.20)  0.24 (±0.26)  

Air2stream (5-par)  3.69 (±1.35)  4.48 (±1.38)  -0.41 (±1.00)  0.04 (±0.33)  0.79 (±2.15)  0.18 (±0.22)  

Air2stream (7-par)  3.77 (±2.55)  4.58 (±2.50)  -0.29 (±0.75)  0.06 (±0.31)  0.57 (±3.23)  0.17 (±0.21)  

Air2stream (8-par)  3.97 (±2.66)  4.84 (±2.67)  -0.59 (±1.78)  0.06 (±0.35)  0.75 (±3.36)  0.18 (±0.22)  

MR  3.39 (±2.58)  4.21 (±2.71)  0.21 (±0.35)  0.22 (±0.33)  -0.44 (±3.26)  0.30 (±0.22)  

Ensemble  1.98 (±0.96)  2.51 (±1.08)  0.50 (±0.55)  0.63 (±0.28)  0.12 (±1.17)  0.63 (±0.21)  
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 Table 6: Evaluation of model performance during the training and validation phases considering the wet season 

datasets. Mean MAE, RMSE, NSE, KGE, bias and R2 (with standard deviation) between observed and predicted 520 

WT values  

Wet season  TRAIN            

Model/metric  MAE  RMSE  NSE  KGE  bias  R2  

RF  0.84 (±0.27)  1.11 (±0.33)  0.91 (±0.06)  0.80 (±0.09)  -0.07 (±0.15)  0.94 (±0.04)  

ANN  0.25 (±0.28)  0.37 (±0.40)  0.98 (±0.04)  0.98 (±0.04)  0.01 (±0.03)  0.98 (±0.03)  

SVR  0.75 (±0.53)  1.06 (±0.66)  0.91 (±0.07)  0.88 (±0.10)  -0.03 (±0.17)  0.92 (±0.06)  

Air2stream (3-par)  2.72 (±0.93)  3.57 (±1.07)  0.15 (±0.26)  0.14 (±0.32)  -0.22 (±0.35)  0.20 (±0.22)  

Air2stream (4-par)  2.70 (±0.92)  3.55 (±1.06)  0.15 (±0.26)  0.18 (±0.31)  -0.28 (±0.40)  0.20 (±0.22)  

Air2stream (5-par)  2.64 (±0.95)  3.48 (±1.11)  0.20 (±0.25)  0.18 (±0.29)  -0.02 (±0.16)  0.23 (±0.24)  

Air2stream (7-par)  2.56 (±0.96)  3.41 (±1.14)  0.24 (±0.25)  0.24 (±0.29)  -0.10 (±0.25)  0.27 (±0.25)  

Air2stream (8-par)  2.55 (±0.97)  3.38 (±1.16)  0.25 (±0.26)  0.27 (±0.31)  -0.14 (±0.27)  0.28 (±0.25)  

MR  2.58 (±0.89)  3.40 (±1.09)  0.30 (±0.28)  0.32 (±0.28)  -0.11 (±0.18)  0.27 (±0.23)  

Ensemble  0.23 (±1.06)  0.35 (±1.37)  0.99 (±0.39)  0.98 (±0.36)  0.01 (±0.19)  0.99 (±0.37)  

Wet season  TEST            

Model/metric  MAE  RMSE  NSE  KGE  bias  R2  

RF  2.38 (±1.07)  3.04 (±1.19)  0.13 (±1.91)  0.46 (±0.26)  -0.36 (±1.37)  0.49 (±0.23)  

ANN  2.38 (±1.04)  3.03 (±1.26)  0.10 (±1.22)  0.48 (±0.36)  -0.23 (±1.06)  0.48 (±0.23)  

SVR  2.52 (±0.94)  3.20 (±1.12)  0.13 (±1.10)  0.37 (±0.26)  -0.42 (±0.96)  0.40 (±0.23)  

Air2stream (3-par)  3.13 (±1.47)  3.95 (±1.55)  0.02 (±0.29)  0.14 (±0.30)  -0.42 (±1.92)  0.25 (±0.22)  

Air2stream (4-par)  3.15 (±1.29)  4.01 (±1.40)  -0.14 (±1.01)  0.14 (±0.29)  -0.49 (±1.77)  0.24 (±0.23)  

Air2stream (5-par)  3.36 (±1.09)  4.13 (±1.18)  -0.19 (±0.64)  0.06 (±0.32)  -0.81 (±1.65)  0.21 (±0.22)  

Air2stream (7-par)  3.85 (±1.23)  4.81 (±1.45)  -0.80 (±1.41)  0.01 (±0.30)  -1.27 (±2.15)  0.15 (±0.20)  

Air2stream (8-par)  3.99 (±1.37)  5.10 (±1.92)  -1.27 (±3.46)  -0.04 (±0.48)  -1.25 (±2.18)  0.13 (±0.19)  

MR  3.55 (±2.00)  4.42 (±2.22)  0.13 (±0.35)  0.13 (±0.36)  -0.28 (±2.61)  0.20 (±0.23)  

Ensemble  2.09 (±0.86)  2.65 (±1.04)  0.31 (±0.78)  0.52 (±0.28)  -0.33 (±1.07)  0.55 (±0.18)  

  

  

  

  525 
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4.3 4 Feature importance  

Table 7 5 shows the mean feature importance obtained with the best performing model (Random Forest Regressor, Pedregosa 

et al., 2011) considering the mean annual RMSE, a RF with the following parameters: n_estimators = 50; max_depth = 485; 

min_samples_split = 5; max_features = 'auto'; bootstrap = True; random_state = 42; considering all stations datasets. The 530 

maximum importance values show that all features are relevant, at least for some stations, and that they should not be 

discarded. The mean importance values indicate that the mean air temperature and the DOY are of upmost importance in 

relation to the model training process, followed by the maximum and minimum air temperature. Discharge, global radiation 

and MOY clearly play a secondary role, as described by the mean and standard deviation values. Table 8 A6 shows the 

evaluation of the RF model performance during the training and validation testing phases considering the annual datasets and 535 

the sequential increase of the model predictors. The results show that, on average, the inclusion of all predictor variables have 

a significant effect on model performance.   

  

Table 75: Mean input feature importance obtained with a Random Forest regressor 

  
Mean Air 

temperature  

Maximum  
air  

temperature  

Minimum  
air  

temperature  Discharge  
Global 

radiation  
Month of 

the year  
Day of the 

year  

Mean  0.20  0.12  0.15  0.09  0.10  0.06  0.29  

Stdev  0.16  0.10  0.10  0.09  0.07  0.07  0.20  

Maximum  0.70  0.46  0.62  0.33  0.28  0.34  0.82  

Minimum  0.02  0.01  0.02  0.01  0.01  0.00  0.01  

  540 

  

  

  

 

   545 
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Table 8: Evaluation of the Random Forest performance during the training and validation phases considering the annual datasets 

and the sequential increase of the models’ predictors. Mean MAE, RMSE, NSE, KGE, bias and R2 (with standard deviation) between 

observed and predicted WT values. 1) mean air temperature; 2) mean air temperature + discharge; 3) mean air temperature + 

discharge + radiation; 4) mean air temperature + discharge + radiation + maximum air temperature; 5) mean air temperature + 550 
discharge + radiation + maximum air temperature + minimum air temperature; 6) mean air temperature + discharge + radiation + 

maximum air temperature + minimum air temperature + MOY; 7) mean air temperature + discharge + radiation + maximum air 

temperature + minimum air temperature + MOY + DOY.  

Annual  TRAIN              

Metric/predictor  1)  2)  3)  4)  5)  6)  7)  

MAE  1.84 (±0.51)  1.61 (±0.45)  1.50 (±0.41)  1.48 (±0.40)  1.44 (±0.40)  1.41 (±0.40)  1.07 (±0.30)  

RMSE  2.35 (±0.57)  2.09 (±0.51)  1.98 (±0.47)  1.94 (±0.47)   1.90 (±0.46)  1.86 (±0.46)  1.43 (±0.38)  

NSE  0.72 (±0.10)  0.78 (±0.09)  0.80 (±0.07)  0.81 (±0.07)  0.82 (±.0.07)   0.82 (±0.07)  0.89 (±0.06)  

KGE  0.67 (±0.12)  0.70 (±0.11)  0.71 (±0.11)  0.71 (±0.10)  0.72 (±0.10)  0.72 (±0.10)  0.82 (±0.09)  

Bias  0.00 (±0.11)  0.01 (±0.09)  0.01 (±0.08)  0.01 (±0.09)  0.01 (±0.11)  0.00 (±0.08)  0.00 (±0.08)  

R2  0.76 (±0.08)  0.82 (±0.0.7)  0.85 (±0.05)  0.86 (±0.0.4)  0.87 (±0.04)  0.87 (±0.05)  0.92 (±0.04)  

Annual  TEST              

Metric/predictor  1)  2)  3)  4)  5)  6)  7)  

MAE  3.55 (±0.97)  3.43 (±1.01)  3.37 (±1.10)  3.35 (±1.08)  3.35 (±1.10)  3.29 (±1.10)   2.51 (±0.95)  

RMSE  4.54 (±1.18)  4.40 (±1.17)  4.30 (±1.19)  4.29 (±1.19)  4.30 (±1.23)  4.23 (±1.21)   3.29 (±1.12)  

NSE  0.03 (±0.35)  0.08 (±0.34)  0.12 (±0.35)  0.13 (±0.34)  0.13 (±0.34)   0.16 (±0.33)   0.48 (±0.26)  

KGE  0.32 (±0.25)  0.32 (±0.26)  0.31 (±0.28)  0.32 (±0.27)  0.31 (±0.28)   0.33 (±0.28)  0.60 (±0.20)  

Bias  -0.15 (±1.33)  -0.26 (±1.37)  -0.25 (±1.18)  -0.22 (±1.21)  -0.22 (±1.26)  -0.21 (±1.21)  -0.10 (±1.25)  

R2  0.23 (±0.20)  0.26 (±0.21)  0.28 (±0.22)  0.28 (±0.23)   0.28 (±0.23)   0.29 (±0.23)  0.58 (±0.18)  

  

  555 

4.5 Effect of the watershed time of concentration on model performance  

Not surprisingly, the results suggest that, tendentially, there are more training and testing datasets available for the largest 

watersheds (Fig. 6a 8a and 6b8b) and that the watershed time of concentration increases with the watershed area according to 

a power law (Fig. 6c8c). Additionally, the graphic correlation of the RMSE between the observed river WT and the predicted 

WT (Training datasets) obtained with the best performing model run - the RF ensemble model and the best individual RF run 560 

with the watershed time of concentration - revealed the existence of a very specific linear pattern within the dataset (Fig. 7a 9a 

and 7c9c). After the data sets z-score normalization and the application of the Gaussian Mixture Models algorithm with the 

following parameters: n_components=2, covariance_type='diag',init_params='random',warm_start=True (vide Pedregosa et 

al., 2011), two different data samples were extracted. This small set of values, 19 (watershed area: μ= 106 km2; σ=153) (Fig. 
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7b9b) and 19 (watershed area: μ= 106 km2; σ=153) (Fig. 7d9d) corresponds to 35% of the stations with fewer than 125 training 565 

values, a fact that enhances the non-random nature of this correlation.  

This correlation shows how the RMSE obtained with the RF increases with the watershed area, clearly showing the significant 

effect upstream conditions have on river WT. The RMSE increases by an average of 0.1 ºC with a one-hour increase in the 

watershed time of concentration, considering the RF ensemble aggregation approach (Fig. 7d9d). 

   570 
Figure 68: a) Number of training and validation testing datasets of each station. b) Watershed time of concentration and area of 

each station. c) Watershed time of concentration versus watershed area 
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 575 
Figure 79: a) RMSE between observed and simulated river WT with the Random Forest best model run versus the watershed time 

of concentration. b) Data extraction from a). c) RMSE between observed and simulated river WT with the Random Forest 

ensemble aggregation approach versus the watershed time of concentration. d) Data extraction from c)  

  

     580 

  

  

  

   

  585 

  

  

  

  

  590 
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5 Discussion  

Overall, the results of the model’s ensemble (mean RMSE: 2.75 ºC; σ = 1.00) driven mainly by the ML algorithms predictions 

are in line with the results obtained in other studies, namely Rabi et al., (2015) (ANN - RMSE: μ=2.06 ºC) and Zhu et al., 

(2019a) (MR – RMSE: 2.74 ºC), and do not differ greatly from the results obtained in other studies (vide Table 1). This is quite 

significant considering the scale of the missing training and validation testing datasets corresponding to this study (μ= 98.8%; 595 

σ=0.68). These results are, as expected, worse than the results obtained in some of the more recent studies in which ML 

algorithms were used to predict river WT (vide Table1). However, the availability of training data for most of these studies 

was impressively good in terms of quantity and quality, which is, of course, reflected in the overall results.  

 

The selection of the best approach to model river WT is not an easy task, as ML algorithm performance levels are very similar 600 

(e.g., Feigl et al., 2021). That said, the RF model ensemble produced the best results considering the annual datasets and was 

the model that provided the greatest contribution in relation to overall ensemble results. As such, this was selected as the best 

model for modeling river WT for stations with limiting forcing data. However, this is not in line with the findings of other 

studies. Rajesh and Rehana (2021) and Rehana (2019) concluded that the SVR model was the most robust model for predicting 

river WT temperature on a daily timescale. Feigl et al., (2021) concluded that the FNNs and the recurrent neural networks 605 

(RNNs) performed better than the Random Forest model. It is, however, important to highlight the significant variations in 

terms of the number of watersheds studied and the overall length of the training datasets used across all the different studies, 

which effectively could explain the different findings in relation to model performance. 

   

One of this study’s most significant conclusions is that, from a practical point of view, the application of all the models 610 

considered in this study is relevant. In fact, our results show that all models considered were best performers for some of the 

station datasets, including the MR, which was the best model for 14 stations. The results show that the advantages of the state-

of-the-art ML models and the Air2stream model are reduced when the training datasets are very small (<200 values) and spans 

a long period of time. The   

  information contained in the training datasets is not sufficient for the definition of the unknown underlying function 615 

that best relates the input variables to the output variable. Hence the less complex approaches, such as MR, may surpass the 

results produced by ML algorithms.   

The ML algorithms can considerably improve on the prediction results produced by the current state-of-the-art Air2stream 

model, regardless of the model parametrization. This finding concurs with that of Feigl et al. (2021) but is contrary to the 

results of the study carried out by Zhu et al. (2019d), which assessed the performance of a suite of machine-learning models 620 
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for daily stream water temperature. However, in the case of our study the performance of the Air2stream model was affected 

by the missing training data, namely, the discharge datasets, which proved to be a significant obstacle for this model. When 

the dataset gap is very large, the structure of the Air2stream model with 6 or more parameters may become very complex when 

compared to the number of observed WT values, increasing the risk of overfitting (Piccolroaz, 2016). This explains the fact 

that the best results were obtained with the 3-parameter model, the simplest version of the Air2stream models, which is a 625 

model that does not consider the river discharge and depth on a daily timescale and, as such, can be successfully applied if the 

longitudinal gradient of temperature is small (Toffolon and Piccolroaz, 2015). The results of our study correspond to those 

obtained by Piccolroaz (2016) regarding the effect of missing data during the modeling of the WT of two lakes located in the 

USA (Lake Erie and Lake Superior) with the 4- and 6-parameter Air2stream model. When the length of the calibration period 

is of one year and the percentage of missing data is in the range of 99%, the RMSE between observed and predicted lake WT 630 

is >3.5 ºC. It is also relevant to mention that the results of this study suggest that, besides the WT dataset gaps, the modeling 

results were also affected by the presence of a large number of WT outliers, by the uncertainty induced by the mean air 

temperature ERA5 reanalysis datasets and by upstream conditions, which increases with the watershed area. The results of this 

study considering the quality of the input datasets suggests that when the missing datasets reach 98%, a RMSE <3.0ºC is 

indicative of a good modeling performance.  Also relevant is the fact that this error can be further decreased by the generation 635 

of synthetic samples to some poorly represented ranges within the datasets, by applying a model such as SMOGN (Branco et 

al. 2017). 

  

The success of the models considered in this study, namely the ML algorithms, is undoubtedly linked to the hyperparameter 

optimization algorithm, a conclusion that is in line with the findings of Feigl et al. (2021), as well as to the quality of the ERA5 640 

meteorological dataset reanalysis, the quality of which was indirectly validated for the study area..   

   

The feature importance analysis showed that all the predictors (mean, max. and min. daily air temperature, mean daily total 

radiation, discharge, MOY and DOY) are relevant to model performance, a conclusion that also concurs with the findings of 

Feigl et al. (2021). Nonetheless the results highlight the importance of the daily mean air temperature and DOY.  645 

 

The DOY was the most relevant variable. In fact, the inclusion of the DOY modified the correlation among the different 

variables and the performance of the models across the wet and dry season, increasing the importance of this variable to the 

overall modeling performance, which is in line with the findings of Zhu et al. (2019d). This suggests that the correlation 

associated with the other input variables and the observed river WT is, in fact, rather weak, which relates to the length and 650 
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quality of the training datasets, but can also be associated with the uncertainty caused by the fact that river WT is not only 

affected by local environmental conditions, but also by upstream conditions. However, it is also worth mentioning the lack of 

clarity in relation to the exact extent of the upstream area controlling the river energy balance at a given point (Moore et al., 

2005) and, as such, the averaging of the predictor variables over the watershed area might not be the best solution. 

 655 

  

There are a number of limitations associated with our study that should be addressed in future studies. Firstly, the fact that, 

regardless of the hyperparameter optimization and the inclusion of regularization and dropout layers to minimize overfitting 

in the ANN model, the results show that when the training datasets contain fewer than 30 values, the model will considerably 

overfit the datasets and considerably reduce the model’s predictive capacity. This limitation might be minimized with more 660 

effective control of the number of training epochs and the regularization algorithm. It is also important to mention the fact that 

the hyperparameter optimization algorithm was not applied to all the station datasets, hence the ML algorithms might be further 

improved. Due to the lack of physical restraints, ML models might fail when extrapolating outside the range of their training 

datasets. This was not fully evaluated in this study due to the number of watersheds studied but certainly requires further 

investigation in the future. The results of this study demonstrate the feasibility of finding a correlation between the prediction 665 

error between observed and predicted river WT values and the watershed time of concentration. However, the number of 

samples that form this correlation is small (19) and, as such, the number of watersheds studied needs to be increased to 

strengthen this correlation and scale it to other watersheds. The inclusion of the watershed soil type as a predictor variable 

would also be of relevance. It is also important to note that the results of this study are restricted to the Mediterranean region 

and, therefore, the expansion of the study area to other latitudes to consider different climate and soil conditions would also be 670 

interesting, namely, the north of Europe and Africa where data scarcity is quite relevant. 

  

5 Conclusion  

The results obtained with this study demonstrate, from a practical modeling perspective, the validity of applying all the models 

considered in this study - Random Forest, Artificial Neural Network, Support Vector Regression, Air2stream, and Multiple 675 

Regression - when the number of predictor variables and observed river WT values is limited. It is also of upmost importance 

to optimize the ML algorithms hyperparameters. The Tree-structured Parzen Estimators algorithm has proved to be a good 

solution. The results of this study also show the viability of using all available predictor variables and highlights the importance 

of the day of the year and the mean daily air temperature. Regardless of the greater degree of modeling performance that can 
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be attained with an ensemble of all the different models, the Random Forest model with the following parameters: n_estimators 680 

= 50; max_depth = 485; min_samples_split = 5; max_features = 'auto'; bootstrap = True; random_state = 42) produce the best 

performance and may represent an effective solution for model river WT with limiting forcing data.  

It is also relevant to mention that a logarithmic correlation exists in relation to the RMSE between the observed and predicted 

river WT and the watershed time of concentration. The RMSE increases by an average of 0.1 ºC with a one-hour increase in 

the watershed time of concentration (watershed area: μ= 106 km2; σ=153), a conclusion that may prove useful for increasing 685 

our understanding of the effects of catchment size and landscape on runoff generation and, consequently, on river energy 

balance.   
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 Appendix A  

  

Table A1: Model parameters and optimization range  690 

Model  
  

Prior distribution  Parameter  Optimization range  

 

RF  

uniform  
'n_estimators'  [50, 2000]  

uniform  
'max_depth'  [10, 1000]  

uniform  
'min_samples_split'  [2, 10]  

-  
'max_features'  [auto, sqrt]  

-  
'bootstrap'  [True, False]  

ANN 

categorical  
'n_layers'  [1, 2]  

uniform integer  
'n_units_layer'  [10, 50]  

categorical  
'act_func_type'  ['Relu', 'PRelu', 'Elu', 'Tanh', 'Sigmoid']  

categorical  
'regularization'  [True, False]  

quantized  
distribution  'n_epochs'  With regularization: [500, 1000]; without regularization: [20, 300]  

uniform  
'dropout'  [0, 1.0]  

loguniform  
'batch_size'  [5, 20]  

uniform  
'initial_value'  [0.001, 0.1]  

uniform  
'reduction_freq'  [10, 200]  

uniform  'decay_rate'  
(regularization)  [0.0001, 0.001]  

SVR  

Categorical  
'C'  [0.1,1,100,1000]  

Categorical  
'kernel'  ['rbf','poly','sigmoid','linear']  

Categorical  
'degree'  [1,2,3,4,5,6]  

Categorical  
'gamma'  [1, 0.1, 0.01, 0.001, 0.0001]  

Categorical  
'epsilon'  [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10]  

  

   

 

 

 695 
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   Table A2: Evaluation of model performance during the training and testing phases considering the annual datasets. Mean MAE, 

RMSE, NSE, KGE, bias and R2 (with standard deviation) between observed and predicted WT values  

Annual  TRAIN            

Model/metric  MAE (ºC)  RMSE (ºC)  NSE  KGE  bias (ºC) 
 

 R2  

RF  0.86 (±0.25)  1.13 (±0.30)  0.93 (±0.03)  0.85 (±0.07)  -0.01 (±0.06)  0.96 (±0.02)  

ANN  0.29 (±0.29)  0.44 (±0.40)  0.99 (±0.03)  0.98 (±0.03)  0.01 (±0.02)  0.99 (±0.03)  

SVR  0.82 (±0.54)  1.19 (±0.64)  0.91 (±0.06)  0.88 (±0.09)  0.00 (±0.11)  0.92 (±0.05)  

Air2stream (3-par)  2.82 (±0.86)  3.65 (±0.96)  0.33 (±0.25)  0.33 (±0.32)  0.01 (±0.01)  0.33 (±0.25)  

Air2stream (4-par)  2.83 (±0.86)  3.65 (±0.97)  0.33 (±0.25)  0.34 (±0.31)  0.00 (±0.01)  0.33 (±0.25)  

Air2stream (5-par)  2.72 (±0.88)  3.54 (±0.98)  0.36 (±0.25)  0.38 (±0.29)  0.00 (±0.01)  0.36 (±0.25)  

Air2stream (7-par)  2.67 (±0.86)  3.50 (±0.99)  0.38 (±0.25)  0.42 (±0.28)  0.01 (±0.02)  0.38 (±0.25)  

Air2stream (8-par)  2.68 (±0.87)  3.49 (±0.99)  0.39 (±0.24)  0.43 (±0.28)  0.01 (±0.04)  0.39 (±0.24)  

MR  2.55 (±0.79)  3.33 (±0.95)  0.47 (±0.27)  0.49 (±0.24)  0.00 (±0.00)  0.44 (±0.22)  

Ensemble  0.28 (±1.07)  0.41 (±1.36)  0.99 (±0.32)  0.98 (±0.27)  0.01 (±0.04)  0.99 (±0.30)  

              

Annual  TESTING           

Model/metric  MAE (ºC) RMSE (ºC) NSE  KGE  bias (ºC) R2  

RF  2.44 (±0.91)  3.18 (±1.06)  0.52 (±0.23)  0.60 (±0.20)  -0.07 (±1.11)  0.60 (±0.18)  

ANN  2.50 (±0.86)  3.22 (±1.05)  0.48 (±0.28)  0.66 (±0.18)  -0.12 (±0.94)  0.55 (±0.22)  

SVR  2.60 (±0.86)  3.37 (±0.96)  0.47 (±0.19)  0.53 (±0.21)  0.00 (±0.83)  0.54 (±0.18)  

Air2stream (3-par)  3.17 (±1.06)  4.07 (±1.18)  0.21 (±0.32)  0.29 (±0.32)  -0.18 (±1.15)  0.34 (±0.22)  

Air2stream (4-par)  3.30 (±1.15)  4.24 (±1.37)  0.11 (±0.73)  0.30 (±0.29)  -0.04 (±1.30)  0.32 (±0.23)  

Air2stream (5-par)  3.53 (±1.08)  4.37 (±1.13)  0.06 (±0.59)  0.18 (±0.38)  -0.12 (±1.03)  0.30 (±0.22)  

Air2stream (7-par)  3.74 (±1.15)  4.73 (±1.36)  -0.13 (±0.81)  0.19 (±0.32)  -0.50 (±1.51)  0.24 (±0.22)  

Air2stream (8-par)  3.94 (±1.35)  5.06 (±1.73)  -0.56 (±2.27)  0.16 (±0.44)  -0.42 (±1.65)  0.23 (±0.22)  

MR  3.34 (±1.29)  4.28 (±1.62)  0.32 (±0.34)  0.36 (±0.27)  -0.46 (±2.14)  0.34 (±0.22)  

Ensemble  2.14 (±0.83)  2.75 (±1.00)  0.56 (±0.48)  0.61 (±0.25)  -0.16 (±0.73)  0.60 (±0.18)  
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Table A3: Evaluation of model performance during the training and testing phases considering the dry season datasets. Mean MAE, 710 

RMSE, NSE, KGE, bias and R2 (with standard deviation) between observed and predicted WT values  

Dry season  TRAIN            

Model/metric  MAE (ºC) RMSE (ºC) NSE  KGE  bias (ºC) R2 

RF  0.87 (±0.28)  1.13 (±0.34)  0.91 (±0.09)  0.83 (±0.88)  0.09 (±0.28)  0.95 (±0.02)  

ANN  0.33 (±0.30)  0.47 (±0.41)  0.98 (±0.03)  0.97 (±0.03)  0.01 (±0.03)  0.98 (±0.03)  

SVR  0.84 (±0.54)  1.20 (±0.68)  0.89 (±0.07)  0.86 (±0.10)  0.07 (±0.15)  0.91 (±0.06)  

Air2stream (3-par)  2.93 (±0.95)  3.67 (±1.08)  0.21 (±0.25)  0.23 (±0.34)  0.30 (±0.45)  0.26 (±0.25)  

Air2stream (4-par)  2.96 (±0.93)  3.69 (±1.06)  0.21 (±0.25)  0.23 (±0.32)  0.37 (±0.52)  0.27 (±0.25)  

Air2stream (5-par)  2.81 (±0.95)  3.55 (±1.07)  0.25 (±0.24)  0.23 (±0.31)  0.04 (±0.19)  0.28 (±0.24)  

Air2stream (7-par)  2.80 (±0.92)  3.55 (±1.05)  0.27 (±0.24)  0.29 (±0.30)  0.13 (±0.28)  0.29 (±0.23)  

Air2stream (8-par)  2.82 (±0.92)  3.55 (±1.04)  0.27 (±0.24)  0.30 (±0.30)  0.19 (±0.32)  0.29 (±0.24)  

MR  2.55 (±0.80)  3.22 (±0.96)  0.37 (±0.27)  0.39 (±0.24)  0.13 (±0.19)  0.41 (±0.22)  

Ensemble  0.31 (±1.12)  0.44 (±1.37)  0.98 (±0.37)  0.97 (±0.33)  0.01 (±0.22)  0.98 (±0.34)  

Dry season  TEST            

Model/metric  MAE (ºC) RMSE (ºC) NSE  KGE  bias (ºC) R2  

RF  2.37 (±1.17)  3.01 (±1.30)  0.33 (±0.62)  0.55 (±0.24)  0.29 (±1.55)  0.57 (±0.22)  

ANN  2.19 (±0.93)  2.80 (±1.10)  0.31 (±0.71)  0.57 (±0.31)  0.01 (±1.03)  0.54 (±0.22)  

SVR  2.39 (±0.95)  3.02 (±1.06)  0.37 (±0.34)  0.50 (±0.22)  0.29 (±1.04)  0.52 (±0.22)  

Air2stream (3-par)  3.29 (±1.27)  4.12 (±1.32)  -0.13 (±0.47)  0.09 (±0.35)  0.30 (±1.73)  0.21 (±0.23)  

Air2stream (4-par)  3.65 (±2.57)  4.49 (±2.51)  -0.28 (±0.87)  0.11 (±0.34)  0.79 (±3.20)  0.24 (±0.26)  

Air2stream (5-par)  3.69 (±1.35)  4.48 (±1.38)  -0.41 (±1.00)  0.04 (±0.33)  0.79 (±2.15)  0.18 (±0.22)  

Air2stream (7-par)  3.77 (±2.55)  4.58 (±2.50)  -0.29 (±0.75)  0.06 (±0.31)  0.57 (±3.23)  0.17 (±0.21)  

Air2stream (8-par)  3.97 (±2.66)  4.84 (±2.67)  -0.59 (±1.78)  0.06 (±0.35)  0.75 (±3.36)  0.18 (±0.22)  

MR  3.39 (±2.58)  4.21 (±2.71)  0.21 (±0.35)  0.22 (±0.33)  -0.44 (±3.26)  0.30 (±0.22)  

Ensemble  1.98 (±0.96)  2.51 (±1.08)  0.50 (±0.55)  0.63 (±0.28)  0.12 (±1.17)  0.63 (±0.21)  
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Table A4: Evaluation of model performance during the training and testing phases considering the wet season datasets. Mean 

MAE, RMSE, NSE, KGE, bias and R2 (with standard deviation) between observed and predicted WT values  715 

Wet season  TRAIN            

Model/metric  MAE (ºC) RMSE (ºC) NSE  KGE  bias (ºC)  R2  

RF  0.84 (±0.27)  1.11 (±0.33)  0.91 (±0.06)  0.80 (±0.09)  -0.07 (±0.15)  0.94 (±0.04)  

ANN  0.25 (±0.28)  0.37 (±0.40)  0.98 (±0.04)  0.98 (±0.04)  0.01 (±0.03)  0.98 (±0.03)  

SVR  0.75 (±0.53)  1.06 (±0.66)  0.91 (±0.07)  0.88 (±0.10)  -0.03 (±0.17)  0.92 (±0.06)  

Air2stream (3-par)  2.72 (±0.93)  3.57 (±1.07)  0.15 (±0.26)  0.14 (±0.32)  -0.22 (±0.35)  0.20 (±0.22)  

Air2stream (4-par)  2.70 (±0.92)  3.55 (±1.06)  0.15 (±0.26)  0.18 (±0.31)  -0.28 (±0.40)  0.20 (±0.22)  

Air2stream (5-par)  2.64 (±0.95)  3.48 (±1.11)  0.20 (±0.25)  0.18 (±0.29)  -0.02 (±0.16)  0.23 (±0.24)  

Air2stream (7-par)  2.56 (±0.96)  3.41 (±1.14)  0.24 (±0.25)  0.24 (±0.29)  -0.10 (±0.25)  0.27 (±0.25)  

Air2stream (8-par)  2.55 (±0.97)  3.38 (±1.16)  0.25 (±0.26)  0.27 (±0.31)  -0.14 (±0.27)  0.28 (±0.25)  

MR  2.58 (±0.89)  3.40 (±1.09)  0.30 (±0.28)  0.32 (±0.28)  -0.11 (±0.18)  0.27 (±0.23)  

Ensemble  0.23 (±1.06)  0.35 (±1.37)  0.99 (±0.39)  0.98 (±0.36)  0.01 (±0.19)  0.99 (±0.37)  

Wet season  TEST            

Model/metric  MAE (ºC) RMSE (ºC) NSE  KGE  bias (ºC) R2  

RF  2.38 (±1.07)  3.04 (±1.19)  0.13 (±1.91)  0.46 (±0.26)  -0.36 (±1.37)  0.49 (±0.23)  

ANN  2.38 (±1.04)  3.03 (±1.26)  0.10 (±1.22)  0.48 (±0.36)  -0.23 (±1.06)  0.48 (±0.23)  

SVR  2.52 (±0.94)  3.20 (±1.12)  0.13 (±1.10)  0.37 (±0.26)  -0.42 (±0.96)  0.40 (±0.23)  

Air2stream (3-par)  3.13 (±1.47)  3.95 (±1.55)  0.02 (±0.29)  0.14 (±0.30)  -0.42 (±1.92)  0.25 (±0.22)  

Air2stream (4-par)  3.15 (±1.29)  4.01 (±1.40)  -0.14 (±1.01)  0.14 (±0.29)  -0.49 (±1.77)  0.24 (±0.23)  

Air2stream (5-par)  3.36 (±1.09)  4.13 (±1.18)  -0.19 (±0.64)  0.06 (±0.32)  -0.81 (±1.65)  0.21 (±0.22)  

Air2stream (7-par)  3.85 (±1.23)  4.81 (±1.45)  -0.80 (±1.41)  0.01 (±0.30)  -1.27 (±2.15)  0.15 (±0.20)  

Air2stream (8-par)  3.99 (±1.37)  5.10 (±1.92)  -1.27 (±3.46)  -0.04 (±0.48)  -1.25 (±2.18)  0.13 (±0.19)  

MR  3.55 (±2.00)  4.42 (±2.22)  0.13 (±0.35)  0.13 (±0.36)  -0.28 (±2.61)  0.20 (±0.23)  

Ensemble  2.09 (±0.86)  2.65 (±1.04)  0.31 (±0.78)  0.52 (±0.28)  -0.33 (±1.07)  0.55 (±0.18)  
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Table A5: Evaluation of the Random Forest performance during the training and testing phases considering the dry and wet seasons 

and the sequential increase of the model predictors. Mean MAE, RMSE, NSE, KGE, bias and R2 (with standard deviation) between 725 

observed and predicted WT values. 

Dry season  TRAIN              

Metric/predictor  1)  2)  3)  4)  5)  6)  7)  

MAE (ºC)  1.88 (±0.52)  1.65 (±0.47)  1.53 (±0.45)  1.52 (±0.44)  1.47 (±0.44)  1.44 (±0.43)  1.09 (±0.39)  

RMSE (ºC)  2.35 (±0.61)  2.10 (±0.56)  1.97 (±0.53)   1.95 (±0.52)  1.90 (±0.52)  1.88 (±0.52)  1.44 (±0.48)  

NSE   0.65 (±0.22)  0.71 (±0.25)  0.75 (±0.26)   0.75 (±0.26)  0.76 (±0.26)  0.77 (±0.26)  0.85 (±0.28)  

KGE  0.63 (±0.14)  0.66 (±0.14)  0.66 (±0.13)   0.67 (±0.13)  0.67 (±0.13)  0.67 (±0.14)  0.79 (±0.12)  

bias (ºC)  0.23 (±0.46)  0.21 (±0.41)  0.17 (±0.39)   0.17 (±0.40)   0.16 (±0.41)  0.14 (±0.38)  0.13 (±0.45)  

R2   0.73 (±0.09)  0.80 (±0.07)  0.84 (±0.05)   0.85 (±0.05)  0.86 (±0.05)  0.85 (±0.10)  0.91 (±0.04)  

Dry season  TEST              

Metric/predictor  1)  2)  3)  4)  5)  6)  7)  

MAE (ºC) 3.66 (±1.22)  3.48 (±1.24)  3.40 (±1.28)   3.40 (±1.26)   3.38 (±1.30)   3.35 (±1.27)   2.49 (±1.22)  

RMSE (ºC)  4.58 (±1.41)   4.40 (±1.42)  4.25 (±1.37)   4.24 (±1.36)   4.24 (±1.45)  4.19 (±1.39)  3.17 (±1.36)  

NSE   -0.44 (±0.62)   -0.34 (±0.66)   -0.24 (±0.58)   -0.23 (±0.61)   -0.23 (±0.58)  
 -0.20  

(±0.61)   0.25 (±0.81)  

KGE   0.16 (±0.31)  0.17 (±0.33)   0.16 (±0.32)   0.17 (±0.32)   0.16 (±0.34)   0.17 (±0.34)   0.54 (±0.25)  

bias (ºC) 0.45 (±2.00)   0.41 (±2.01)   0.33 (±1.78)   0.36 (±1.84)  0.33 (±1.83)  0.28 (±1.81)  0.24 (±1.75)  

R2   0.16 (±0.22)   0.20 (±0.24)  0.20 (±0.24)   0.21 (±0.24)   0.21 (±0.25)   0.22 (±0.24)   0.55 (±0.22)  

Wet season  TRAIN              

Metric/predictor  1)  2)  3)  4)  5)  6)  7)  

MAE (ºC) 1.80 (±0.59)  1.59 (±0.54)   1.49 (±0.51)   1.46 (±0.50)   1.42 (±0.50)  1.38 (±0.49)   1.06 (±0.36)  

RMSE (ºC)  2.31 (±0.67)   2.07 (±0.60)  1.97 (±0.57)   1.91 (±0.57)   1.88 (±0.57)  1.83 (±0.55)  1.42 (±0.43)  

NSE   0.64 (±0.13)   0.71 (±0.11)   0.73 (±0.10)   0.75 (±0.11)   0.76 (±0.10)   0.77 (±0.10)   0.85 (±0.10)  

KGE   0.60 (±0.14)  0.63 (±0.13)   0.63 (±0.12)   0.64 (±0.21)   0.65 (±0.12)   0.66 (±0.11)   0.76 (±0.11)  

bias (ºC) -0.16 (±0.27)   -0.13 (±0.23)   -0.11 (±0.21)   -0.10 (±0.21)  -0.09(±0.21)  -0.09 (±0.19)  -0.08 (±0.19)  

R2  0.70 (±0.12)   0.78 (±0.10)  0.82 (±0.08)   0.83 (±0.0.8)   0.84 (±0.07)   0.85 (±0.07)   0.89 (±0.07)  

Wet season  TEST              

Metric/predictor  1)  2)  3)  4)  5)  6)  7)  

MAE (ºC) 3.47 (±1.42)  3.44 (±1.52)   3.39 (±1.63)    3.37 (±1.59)   3.36 (±1.56)   3.27 (±1.55)   2.56 (±1.40)  

RMSE (ºC)  4.39 (±1.52)   4.31 (±1.57)  4.25 (±1.65)   4.25 (±1.63)   4.23 (±1.61)  4.16 (±1.63)  3.27 (±1.46)  

NSE   -0.66 (±3.06)   -0.52 (±2.36)   -0.64 (±.3.86)   -0.61 (±3.63)   -0.51 (±2.88)  
 -0.49  

(±2.81)   0.04 (±2.16)  

KGE   0.14 (±0.32)  0.13 (±0.32)   0.09 (±0.35)   0.11 (±0.30)   0.09 (±0.33)   0.13 (±0.34)   0.45 (±0.26)  

bias (ºC) -0.56 (±1.95)   -0.77 (±1.92)   -0.63 (±2.00)   -0.62 (±2.00)  -0.59 (±1.96)  -0.49 (±1.95)  -0.29 (±1.80)  

R2   0.18 (±0.23)   0.19 (±0.23)  0.20 (±0.23)   0.19 (±0.23)   0.19 (±0.22)   0.20 (±0.22)   0.45 (±0.24)  

 

 



40  

  

Table A6: Evaluation of the Random Forest performance during the training and testing phases considering the annual datasets 

and the sequential increase of the models’ predictors. Mean MAE, RMSE, NSE, KGE, bias and R2 (with standard deviation) 730 
between observed and predicted WT values. 1) mean air temperature; 2) mean air temperature + discharge; 3) mean air 

temperature + discharge + radiation; 4) mean air temperature + discharge + radiation + maximum air temperature; 5) mean air 

temperature + discharge + radiation + maximum air temperature + minimum air temperature; 6) mean air temperature + discharge 

+ radiation + maximum air temperature + minimum air temperature + MOY; 7) mean air temperature + discharge + radiation + 

maximum air temperature + minimum air temperature + MOY + DOY.  735 

Annual  TRAIN              

Metric/predictor  1)  2)  3)  4)  5)  6)  7)  

MAE (ºC) 1.84 (±0.51)  1.61 (±0.45)  1.50 (±0.41)  1.48 (±0.40)  1.44 (±0.40)  1.41 (±0.40)  1.07 (±0.30)  

RMSE (ºC) 2.35 (±0.57)  2.09 (±0.51)  1.98 (±0.47)  1.94 (±0.47)   1.90 (±0.46)  1.86 (±0.46)  1.43 (±0.38)  

NSE  0.72 (±0.10)  0.78 (±0.09)  0.80 (±0.07)  0.81 (±0.07)  0.82 (±.0.07)   0.82 (±0.07)  0.89 (±0.06)  

KGE  0.67 (±0.12)  0.70 (±0.11)  0.71 (±0.11)  0.71 (±0.10)  0.72 (±0.10)  0.72 (±0.10)  0.82 (±0.09)  

bias (ºC) 0.00 (±0.11)  0.01 (±0.09)  0.01 (±0.08)  0.01 (±0.09)  0.01 (±0.11)  0.00 (±0.08)  0.00 (±0.08)  

R2  0.76 (±0.08)  0.82 (±0.0.7)  0.85 (±0.05)  0.86 (±0.0.4)  0.87 (±0.04)  0.87 (±0.05)  0.92 (±0.04)  

Annual  TEST              

Metric/predictor  1)  2)  3)  4)  5)  6)  7)  

MAE (ºC) 3.55 (±0.97)  3.43 (±1.01)  3.37 (±1.10)  3.35 (±1.08)  3.35 (±1.10)  3.29 (±1.10)   2.51 (±0.95)  

RMSE (ºC) 4.54 (±1.18)  4.40 (±1.17)  4.30 (±1.19)  4.29 (±1.19)  4.30 (±1.23)  4.23 (±1.21)   3.29 (±1.12)  

NSE  0.03 (±0.35)  0.08 (±0.34)  0.12 (±0.35)  0.13 (±0.34)  0.13 (±0.34)   0.16 (±0.33)   0.48 (±0.26)  

KGE  0.32 (±0.25)  0.32 (±0.26)  0.31 (±0.28)  0.32 (±0.27)  0.31 (±0.28)   0.33 (±0.28)  0.60 (±0.20)  

bias (ºC) -0.15 (±1.33)  -0.26 (±1.37)  -0.25 (±1.18)  -0.22 (±1.21)  -0.22 (±1.26)  -0.21 (±1.21)  -0.10 (±1.25)  

R2  0.23 (±0.20)  0.26 (±0.21)  0.28 (±0.22)  0.28 (±0.23)   0.28 (±0.23)   0.29 (±0.23)  0.58 (±0.18)  
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 755 

 

Table A1: Evaluation of the Random Forest performance during the training and validation phases considering the dry and wet seasons and 

the sequential increase of the model predictors. Mean MAE, RMSE, NSE, KGE, bias and R2 (with standard deviation) between 

observed and predicted WT values. 

Dry season  TRAIN              

Metric/predictor  1)  2)  3)  4)  5)  6)  7)  

MAE   1.88 (±0.52)  1.65 (±0.47)  1.53 (±0.45)  1.52 (±0.44)  1.47 (±0.44)  1.44 (±0.43)  1.09 (±0.39)  

RMSE   2.35 (±0.61)  2.10 (±0.56)  1.97 (±0.53)   1.95 (±0.52)  1.90 (±0.52)  1.88 (±0.52)  1.44 (±0.48)  

NSE   0.65 (±0.22)  0.71 (±0.25)  0.75 (±0.26)   0.75 (±0.26)  0.76 (±0.26)  0.77 (±0.26)  0.85 (±0.28)  

KGE  0.63 (±0.14)  0.66 (±0.14)  0.66 (±0.13)   0.67 (±0.13)  0.67 (±0.13)  0.67 (±0.14)  0.79 (±0.12)  

Bias   0.23 (±0.46)  0.21 (±0.41)  0.17 (±0.39)   0.17 (±0.40)   0.16 (±0.41)  0.14 (±0.38)  0.13 (±0.45)  

R2   0.73 (±0.09)  0.80 (±0.07)  0.84 (±0.05)   0.85 (±0.05)  0.86 (±0.05)  0.85 (±0.10)  0.91 (±0.04)  

Dry season  TEST              

Metric/predictor  1)  2)  3)  4)  5)  6)  7)  

MAE  3.66 (±1.22)  3.48 (±1.24)  3.40 (±1.28)   3.40 (±1.26)   3.38 (±1.30)   3.35 (±1.27)   2.49 (±1.22)  

RMSE   4.58 (±1.41)   4.40 (±1.42)  4.25 (±1.37)   4.24 (±1.36)   4.24 (±1.45)  4.19 (±1.39)  3.17 (±1.36)  

NSE   -0.44 (±0.62)   -0.34 (±0.66)   -0.24 (±0.58)   -0.23 (±0.61)   -0.23 (±0.58)  
 -0.20  

(±0.61)   0.25 (±0.81)  

KGE   0.16 (±0.31)  0.17 (±0.33)   0.16 (±0.32)   0.17 (±0.32)   0.16 (±0.34)   0.17 (±0.34)   0.54 (±0.25)  

Bias  0.45 (±2.00)   0.41 (±2.01)   0.33 (±1.78)   0.36 (±1.84)  0.33 (±1.83)  0.28 (±1.81)  0.24 (±1.75)  

R2   0.16 (±0.22)   0.20 (±0.24)  0.20 (±0.24)   0.21 (±0.24)   0.21 (±0.25)   0.22 (±0.24)   0.55 (±0.22)  

Wet season  TRAIN              

Metric/predictor  1)  2)  3)  4)  5)  6)  7)  

MAE  1.80 (±0.59)  1.59 (±0.54)   1.49 (±0.51)   1.46 (±0.50)   1.42 (±0.50)  1.38 (±0.49)   1.06 (±0.36)  

RMSE   2.31 (±0.67)   2.07 (±0.60)  1.97 (±0.57)   1.91 (±0.57)   1.88 (±0.57)  1.83 (±0.55)  1.42 (±0.43)  

NSE   0.64 (±0.13)   0.71 (±0.11)   0.73 (±0.10)   0.75 (±0.11)   0.76 (±0.10)   0.77 (±0.10)   0.85 (±0.10)  

KGE   0.60 (±0.14)  0.63 (±0.13)   0.63 (±0.12)   0.64 (±0.21)   0.65 (±0.12)   0.66 (±0.11)   0.76 (±0.11)  

Bias  -0.16 (±0.27)   -0.13 (±0.23)   -0.11 (±0.21)   -0.10 (±0.21)  -0.09(±0.21)  -0.09 (±0.19)  -0.08 (±0.19)  

R2  0.70 (±0.12)   0.78 (±0.10)  0.82 (±0.08)   0.83 (±0.0.8)   0.84 (±0.07)   0.85 (±0.07)   0.89 (±0.07)  

Wet season  TEST              

Metric/predictor  1)  2)  3)  4)  5)  6)  7)  

MAE  3.47 (±1.42)  3.44 (±1.52)   3.39 (±1.63)    3.37 (±1.59)   3.36 (±1.56)   3.27 (±1.55)   2.56 (±1.40)  

RMSE   4.39 (±1.52)   4.31 (±1.57)  4.25 (±1.65)   4.25 (±1.63)   4.23 (±1.61)  4.16 (±1.63)  3.27 (±1.46)  

NSE   -0.66 (±3.06)   -0.52 (±2.36)   -0.64 (±.3.86)   -0.61 (±3.63)   -0.51 (±2.88)  
 -0.49  

(±2.81)   0.04 (±2.16)  

KGE   0.14 (±0.32)  0.13 (±0.32)   0.09 (±0.35)   0.11 (±0.30)   0.09 (±0.33)   0.13 (±0.34)   0.45 (±0.26)  

Bias  -0.56 (±1.95)   -0.77 (±1.92)   -0.63 (±2.00)   -0.62 (±2.00)  -0.59 (±1.96)  -0.49 (±1.95)  -0.29 (±1.80)  

R2   0.18 (±0.23)   0.19 (±0.23)  0.20 (±0.23)   0.19 (±0.23)   0.19 (±0.22)   0.20 (±0.22)   0.45 (±0.24)  
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Code and data availability. The python code used to generate all results for this publication and the Fortran code of the 

Air2stream model can be found in Almeida and Coelho (2022). Additionally, this repository includes the input data considered 

in this study (83 datasets). It is also possible to download the code/data from https://github.com/mcvta/WaterPythonTemp.  
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