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Abstract. Accurate estimates and forecasts of ocean eddies in key regions such as Western Boundary Currents are important

for weather and climate, biology, navigation and search and rescue. The dynamic nature of mesoscale eddies requires data

assimilation to produce accurate eddy timings and locations in ocean model simulations. However, data assimilating models

are rarely assessed below the surface due to a paucity of observations, hence it is not clear how data assimilation impacts the

subsurface eddy structure. Here, we use a suite of Observing System Simulation Experiments to show how the subsurface5

representation of eddies is changed within data assimilating simulations even when assimilating nearby observations. We

examine in detail two possible manifestations of how the data assimilation process impacts 3-dimensional eddy structure,

namely, by producing overly active baroclinic instability and through inaccurate vertical mode structure. Therefore in DA

simulations, subsurface temperature structures can be too deep and too warm, particularly in dynamic eddy features. Our

analyses demonstrate the need for further basic research in ocean data assimilation methodologies to improve representation10

of subsurface ocean structure.

1 Introduction

Mesoscale ocean eddies are energetic, O(10-100) km wide, rotating circulations with a typical lifespan greater than a month

(Gill et al., 1974). Eddies are found ubiquitously throughout the ocean (Chelton et al., 2011), particularly in dynamic current

regimes such as where Western Boundary Currents (WBCs) meander and lose coherency (e.g. Mata et al., 2006). Due to their15

size and lifespan, mesoscale eddies and their peripheral ring of fluid (see Wang et al., 2016; Abernathey and Haller, 2018;

Denes et al., 2022) can potentially transport significant quantities of heat and salt (Dong et al., 2014) and therefore water-

masses (Zhang et al., 2014) across different regions; provide mixing (e.g. Klocker and Abernathey, 2014); and, the deliver

nutrients for biological processes (e.g. McGillicuddy et al., 1998). They can also heavily impact cross shelf exchange with

coastal seas (Brink, 2016; Malan et al., 2020), the poleward transport of ocean warming-driving heat (Li et al., 2022a) and20

marine heatwaves (Elzahaby et al., 2021), which thus influence local Blue Economies (e.g. Li et al., 2017). Data assimilation

(DA) simulations, which use observations to produce an optimised estimate of the ocean state, are the obvious choice for

producing an accurate representation of eddy location and timing, and thus, predictability — all of which are important due to

the myriad impacts of mesoscale eddies.
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While DA simulations can place eddies at the correct location and time, they have been shown to be hampered in their25

subsurface representation. For example, Pilo et al. (2018) considered the impact of DA (specifically using an Ensemble Optimal

Interpolation method) on eddy representation and found that model adjustments were forcing nonphysical vertical velocities,

temperature and salinity. While this particular DA artefact may not impact all DA systems and methods, other studies have

shown that the mean subsurface state (e.g. temperature and velocities) is poorly estimated, even with assimilation of subsurface

observations (e.g. Zavala-Garay et al., 2012; de Paula et al., 2021; Gwyther et al., 2022).30

Most studies that assess the performance of the global observing system or operational DA models do so by comparison

against surface observations. This is due to the broad and detailed surface datasets obtained in the satellite era and by the relative

difficulty in obtaining non-sparse subsurface datasets. The majority of modern subsurface observing systems include Argo

floats, supplemented by repeat expendable bathythermograph (XBT) lines and more recently autonomous glider deployments.

However, even with the rapid increase in subsurface profiles from Argo deployments (e.g. 2 million temperature and salinity35

profiles between 1999 and September 2018; Wong et al., 2020), these datasets are sparse in their spatial distribution, deployed

irregularly at inconsistent locations, and drift with ocean currents. All of these issues result in a focus on correctly representing

surface conditions in models, with assumptions made of geostrophic balance and accurate extrapolation from limited subsurface

observations.

A clear limitation in assessing subsurface (and eddy) representation is the lack of (withheld) observations with which the40

DA simulation can be compared to. A workaround to this problem are Observing System Simulation Experiments (OSSEs),

which do not have the requirement of a withheld dataset to compare against. OSSEs are a type of DA experiment in which

the observations to be assimilated are extracted from a free-running simulation with the addition of realistic errors (Halliwell

et al., 2014). This allows comparison of the OSSE against the free-running reference simulation and a better assessment of

the efficacy of the DA system and the observing platform. OSSEs have been used previously for planning and assessment of45

future observational systems and deployments on near-global (e.g. Schiller et al., 2004; Gasparin et al., 2019; Oke and Schiller,

2007; Ballabrera-Poy et al., 2007; Halliwell et al., 2017) and regional (e.g. Melet et al., 2012) scales, as well as exploring how

different observation types improve representation of ocean characteristics in DA systems (e.g. Halliwell et al., 2015; Gwyther

et al., 2022). To date, we are unaware of any study that has used OSSEs to investigate the impact of different observation types

on vertical subsurface ocean representation in a dynamic eddy field.50

We examine the subsurface representation of mesoscale eddies in the East Australian Current (EAC), the WBC of the South

Pacific Gyre, in a high-spatial resolution 4DVar DA simulation. The simulation study area (Fig.1a, inset) encompasses the

EAC and associated eddy field, consisting of anticyclonic and cyclonic eddies. An example anticyclonic eddy from a free-

running simulation (see below) is shown in Fig.1a (boxed region), with the vertical structure of the respective temperature

field at 0 m , 250 m , 500 m , 1000 m and 1500 m shown in Fig.1b. The vertical representation of eddies in the EAC has55

seen some limited research suggesting that model representation is poor, specifically in DA simulations: An eddy case study

simulated by Oke and Griffin (2011) showed the large eddy exhibited anomalous vertical structure that was too deep with an

exaggerated tilt (Roughan et al., 2017) however it is still an open question of why, e.g. if this is an unphysical artefact of the DA

process. In a high-resolution model of the EAC system, Kerry and Roughan (2020) showed that the free-running simulation
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Figure 1. (a) The East Australian Current region is shown, with lines of sub-surface observations marked in the north (XBT-N) and south

(XBT-S) of the domain (black lines). The colour map shows the mean model sea surface height (SSH) during the 6-12 March 2012, with

streamlines calculated from surface velocities marked as vectors. The study region is shown as an inset on the east coast of Australia. The

grey box shows the region in focus in panel (b), which shows the vertical structure of temperature at various levels (0 m , 250 m , 500 m ,

1000 m , and 1500 m ) for a region focussing on an anti-cyclonic (warm core) eddy. Black contours of temperature are shown in (b), with

intervals marked in the colour bar.

provided a good representation of 3-dimensional ocean structure. However, when the same model was used in a 4DVar DA60

configuration, 3-dimensional eddy structure was well represented only in the vicinity of subsurface observations; eddies not

located near subsurface observations extended too deep (Siripatana et al., 2020). Gwyther et al. (2022) showed the same for

integrated upper ocean heat content, which could be relatively well represented in the vicinity of subsurface observations,

but was otherwise poorly represented. Understanding how deficiencies manifest in 3-dimensional eddy representation in DA

systems is required in order to improve predictability in eddy-rich regions such as the East Australian Current.65

Using OSSEs, this study explores the subsurface structure of eddies in a series of 4DVar experiments. We diagnose the

physical mechanisms by which the vertical representation of eddies is altered as a result in DA simulations. In particular, we

focus on two: firstly how the model represents the instability that generates eddies, and secondly the cascade of energy through

the vertical (baroclinic) modes (e.g. Smith and Vallis, 2001). In Section 2, we introduce the free running model and DA con-
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figuration used in these OSSEs. In Section 3, we present results showing the representation of subsurface conditions and eddy70

characteristics including case studies of two eddies. In Section 4, we discuss potential mechanisms, including energy conver-

sion and vertical energy distribution, that are hindering more accurate eddy representation and discuss how these limitations

are manifest in the vertical ocean dynamics.

2 Methods

2.1 The Numerical Ocean Model75

The Regional Ocean Modeling System (ROMS v3.9 ROMS/TOMS Framework: Mar 3, 2020) is a 3-D finite-difference model

solving the primitive equations on a horizontal grid with a terrain following vertical coordinate (Shchepetkin and McWilliams,

2005). The model application used here focusses on the EAC and has been used in several previous studies (e.g. Kerry et al.,

2016; Rocha et al., 2019; Siripatana et al., 2020; Li et al., 2021, 2022b; Gwyther et al., 2022). Along the coastline, the model

domain extends from 27◦ S – 38◦ S and over∼ 700 km offshore (Fig. 1a). Bathymetry is sourced from the Geoscience Australia80

50 m multibeam survey (Whiteway et al., 2009). The grid discretisation has a spatial resolution of 2.5 km to 6 km , linearly

increasing in the off-shelf direction, and is rotated 20◦ clockwise from North to approximately align the model grid with

the along-continental shelf and off-continental shelf directions. There are 30 vertical s-coordinate layers, with the sigmoidal

distribution tuned for finer spacing and resolution in the surface layer.

The EAC model application is used with two different configurations, a free-running simulation and the DA configuration.85

The free-running simulation uses lateral forcing conditions of currents, temperature and salinity from BRAN2020 (Cham-

berlain et al., 2021, 2020 version of the Bluelink Reanalysis) and surface forcing conditions from BARRA-R (Bureau of

Meteorology Atmospheric high-resolution Regional Reanalysis for Australia; Su et al., 2019). We refer to this free-running

configuration as the ‘Ref state’.

The DA configuration used in these OSSEs is an Incremental Strong Constraint 4-Dimensional Variational scheme (IS4D-90

VAR; e.g. Moore et al., 2011), which has been applied to the EAC region previously (Kerry et al., 2016, 2018). This 4D-Var

scheme considers the difference between a free-running forecast and observations (each with associated error fields) over an

assimilation window (in our case, 5 days). Adjusted initial and boundary conditions are then generated, such that a new analysis

simulation, using these adjusted forcing conditions, has minimised differences (in a least-squares sense) between the analysis

simulation and the observations. The assimilation cycle then increments forward using the previous analysis to initialise a new95

forecast, and the process repeats.

The DA configuration uses lateral forcing conditions from BRAN2020 and surface forcing conditions from a bulk flux

formulation (Fairall et al., 1996) with daily atmospheric conditions from the Australian Bureau of Meteorology’s ACCESS

reanalysis (Puri et al., 2013). The different surface forcing conditions between the DA configuration and the free-running Ref

state are appropriate, as they lead to an additional source of error that the DA system must reduce. Both the free-running100

and DA simulations are performed over the period November 2011–January 2013. Further details of the free-running and DA

configuration used in these OSSEs are given in Gwyther et al. (2022).
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2.2 Observing System Simulation Experiments

OSSEs compare a free-running Reference simulation (the ‘Ref state’) against data-constrained simulations, where the data to

be assimilated is sourced from the Ref state with the addition of errors. The OSSE that is simulating the same period as the Ref105

state is perturbed to introduce error and initiate divergent evolution (see discussion below). The assimilation of the synthetic

observations, which are selected to represent a chosen observation type, location and time, should then converge the resulting

analyses towards the Ref state. Comparing the OSSE to the Ref state will show the improvement in the data-constrained

reanalysis for the synthetic observation platform tested in each OSSE. For a more detailed description of the procedure, readers

are directed to Gwyther et al. (2022) and the schematic outlining the process in their Figure 2.110

The Ref state to which the OSSE is compared should be quasi-realistic of the true ocean and, as a result, the impact of assim-

ilating synthetic observations into the OSSEs should translate to the real ocean. Our Ref state simulation has been rigorously

shown to produce an accurate representation of the EAC, including eddy field structure (Kerry et al., 2016; Li et al., 2021),

EAC separation latitude (Kerry and Roughan, 2020) as well as long-term conditions (Li et al., 2021). The OSSEs should also

be simulated with a sufficient amount of difference to the Ref state such that the ocean state will tend to evolve differently to115

the Ref state. These differences could arise from different initialisation, model parameterisations, grid resolution and different

forcing (Halliwell et al., 2014). We employed a ‘fraternal twin’ approach for our OSSEs, where we use different initialisa-

tion conditions, different model parameterisations (e.g. vertical mixing parameters) and different boundary forcing conditions

between the free-running and DA simulations.

In this study, we assess the performance of four OSSEs by comparing against the free-running Ref state. These experiments120

are designed to test the impact of surface-only observations of SSH and SST as measured by satellites (the ‘Surf’ OSSE), the

additional impact of surface observations with XBT-like subsurface temperature measurements (e.g. Scripps PX30 and PX34

XBT lines) in a long transect in the north of the domain (the ‘XBT-N’ OSSE; see Fig. 1a for transect location), the same

surface observations together with an XBT-like transect of subsurface temperature measurements in the south of the domain

(the ‘XBT-S’ OSSE; see 1a for transect location), and lastly, the surface observations together with the transect of subsurface125

temperature observations in the north and south of the domain (the ‘XBT-N+S’ OSSE). We direct readers to Gwyther et al.

(2022), where details of the synthetic observations are given, including how their timing and locations are sourced from satellite

observations, and the applied observation errors. Background error covariances are set following Kerry et al. (2016), and the

reader is directed there for details.

2.3 Analyses130

2.3.1 Root-Mean-Square (RMS) Error

The Root-Mean Square (RMS) error is calculated as RMS =
√

(X̂ −X)2, where the time mean (shown here as ) is

calculated of the squared difference between the reference field X̂ (here, extracted from the Ref state) and the quantity in

question X (extracted from the OSSE).
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Table 1. The experimental configurations of the Ref state and OSSEs are shown, and details of the synthetic observations. Grey fill indicates

that the item is not applicable for the Ref state.

Experiment Model configuration details Synthetic observations

Ref state Free-running simulation of Nov 2011–Jan 2013. Syn-

thetic observations sourced from this simulation.

None

Surf 4D-Var simulation of Nov 2011–Jan 2013, with ‘syn-

thetic observations’ of SSH and SST from Ref state

Along-track satellite-observed sea surface height al-

timetry and sea surface temperature.

XBT-N SSH, SST with XBT observations along a northern tran-

sect.

XBT profiles to 900 m starting at ∼ 28◦ S.

XBT-S SSH, SST with XBT observations along the southern

transect.

XBT profiles to 900 m starting at ∼34◦ S.

XBT-N+S SSH, SST with XBT observations along both transects. XBT profiles to 900 m starting at ∼28◦ S and ∼34◦ S.

2.3.2 Thermocline Depth and Mixed Layer Depth135

We use two metrics of upper ocean structure to assess the performance of the 4D-Var simulations for representing this region.

The mixed layer depth (MLD) is defined following Fiedler (2010) as the depth at which the temperature is 0.5◦C cooler than

the SST at each model grid cell (and time), that is,

MLD = Depth(T = SST− 0.5◦C). (1)

Here, Depth() denotes the first depth below the surface where the argument in the parentheses is met. The 0.5◦C temperature140

offset is chosen following Fiedler (2010), after inspection of the mean vertical temperature profile, which showed a relatively

constant mixed layer could be identified with a smaller offset in temperature. While there are more complex and potentially

more dynamically meaningful definitions (such as at sharp changes in temperature and salinity with depth), the above definition

is adequate for our purpose: a metric that detects the first, relatively large drop in temperature below the surface which can then

be compared between the OSSEs and Ref state.145

Below the mixed layer, we identify the thermocline as the transition between warm surface waters and cold, deeper water.

We use a similar algorithm to the ‘maximum slope by difference’ method (Fiedler, 2010); however, we have modified it to suit

the mean hydrography present in our model results, which have a thermocline that exhibits a weaker slope in the temperature-

depth profile and also extends deeper. Consequently, we capture a representative thermocline depth (TCD) with the criterion

150

TCD = MLD− 2
(

MLD−Depth
(

dT

dz
=

dT

dz max

))
. (2)

That is, the thermocline is at a depth that is twice the distance between the bottom of the mixed layer and the depth of the

maximum vertical temperature gradient below the bottom of the mixed layer. Again, a more sophisticated estimate could
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be used for the thermocline depth, but for our purposes, this metric is sufficient to detect the depth at which surface water

transitions to deeper water and is applicable for comparison between our experiments.155

2.3.3 Eddy Kinetic Energy and Energy Conversions

The eddy kinetic energy (EKE) is defined as the kinetic energy for the perturbations in velocity from the long-term mean,

such that EKE = 1
2

(
u′2 + v′2

)
, where u′ and v′ are the perturbations in time of the zonal and meridional flow from the long-

term average, which is here calculated over the full model integration (November 2011 to January 2013). To gain insight into

the energetics in the different experiments, we calculate the conversion rates through barotropic and baroclinic instability.160

Following Kang and Curchitser (2015), the barotropic conversion rate (KmKe) is through the pathway from mean kinetic

energy (MKE) to EKE, calculated as

KmKe = ρ0

[
u′u′

∂u

∂x
+ u′v′

∂u

∂y
+ v′u′

∂v

∂x
+ v′v′

∂v

∂y

]
, (3)

where u and v are time-mean zonal and meridional velocities, u′ and v′ are defined as above and ρ0 = 1025 kg m−3 . The

baroclinic conversion rate (PeKe) is via the pathway from eddy potential energy to EKE, and is calculated as165

PeKe =−gρ′w′, (4)

where the acceleration due to gravity is g = 9.81m s−2, ρ′ and w′ are the density perturbation and vertical velocity perturbation

from the long-term means, respectively, and the overbar represents a time mean of the enclosed quantity. These quantities have

been used effectively in the EAC System and other WBCs to explore energy conversions (e.g. Li et al., 2021, 2022a).

2.3.4 Normal mode analysis170

We will assess the representation of vertical structure of eddies in each OSSE by analysing the normal modes (i.e. barotropic

and baroclinic modes) associated with the density profile at the centre of two case study eddies (see Section .3.3). These

modes can then show how kinetic energy is partitioned in the vertical. To begin, the velocity can be decomposed into a sum of

orthogonal functions or modes ϕn(z), with each mode having a time-invariant vertical structure (Gill, 1982), such that

u(z) = u0ϕ0(z) +u1ϕ1(z) +u2ϕ2(z) + · · ·=
∞∑

n=0

unϕn(z). (5)175

Here, ϕn(z) are the barotropic (n = 0) and baroclinic (n = 1,2,3, · · · ) modes, which are then defined as the solutions to the

eigenvalue (Sturm-Liouville) problem (Gill, 1982),

d

dz

(
f2

N2(z)
dϕn(z)

dz

)
+ k2

nϕn(z) = 0, (6)

where f is the Coriolis parameter, N2(z) is the buoyancy frequency and kn are the deformation wavenumbers (or equivalently,

the inverse deformation length scales). Equation 6 is subject to Neumann boundary conditions on the surface and bottom180
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boundaries, dϕn/dz = 0 on z =−H,0. The numerical method for solving Equation 6 on a discrete vertical grid is described

in Appendix B of (Smith, 2007), and achieved with the code linked below.

The normal modes satisfy the orthogonality condition

H−1

0∫

−H

ϕn(z)ϕm(z) dz = δn,m (7)

where we have chosen to normalise the modes such that H−1
∫ 0

−H
ϕ2

n(z) dz = 1. Making use of Equation 5 and Equation 7, it185

can be shown that the modal amplitudes are

un = H−1

0∫

−H

u(z)ϕn(z) dz ≈H−1
K∑

k=0

u(zk)ϕn(zk) ∆zk, (8)

(with a similar expression for vn) where k = 0,1, · · · ,K is the layer in a finite vertical layer model, and zk is the depth of layer

k.

From this we can also derive the modal decomposition of the depth-integrated kinetic energy (KE), defined as,190

KE =
1
2

0∫

−H

(
|u(z)|2 + |v(z)|2

)
dz =

H

2

∞∑

n=0

(
u2

n + v2
n

)
. (9)

Note that the factor of H appears in Equation 9 because KE is the depth-integrated kinetic energy, whereas un and vn are

calculated using the depth-averaged orthonormality condition (Equation 7).

3 Results

3.1 Subsurface conditions across the domain195

We first explore the representation of the immediate subsurface, through consideration of the mixed layer depth and thermocline

depth. The MLD for all OSSEs (Fig.2b-e) is represented as too shallow when compared to the Ref state (Fig.2a), despite the

presence of approximately 6 subsurface observations within the ∼40 m thick mixed layer. Note that the mean MLD (shown

in each panel in Fig.2) in each OSSE still falls within one standard deviation of the mean MLD of the Ref state. The metric

we use here to diagnose a proxy of the MLD indicates that all OSSEs have a near-surface vertical temperature structure that200

display a more rapid decrease in temperature with depth compared to the Ref state. The shallower MLD of all OSSEs indicates

that, in these experiments, there is minimal improvement in near-surface temperature structure offered by the assimilation of

observations in this region.

The thermocline depth, which is deepest in the EAC eddy region (154.5◦ E, 33–34◦ S) in the Ref state (Fig.2f), is relatively

poorly represented in all OSSEs (Fig.2g-j). The Surf OSSE has a thermocline which is not deep enough in the eddy-rich region205

(120–140 m deep, compared to over 160 m deep in the Ref state) but too deep for most of the rest of the domain (over 120

m deep, in contrast to the Ref state which outside of the eddy-rich region is 80–100 m deep) as shown in Fig.2g. The presence of
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Figure 2. The mean mixed layer depth (first row) is shown for the Ref state (a) and each OSSE (b-e). The mixed layer depth is calculated

as the depth at which temperature is 0.5◦C less than the SST. The thermocline depth (second row) is shown for the Ref state (f) and each

OSSE (g-j). The thermocline depth is calculated as the depth equal to twice the distance from the bottom of the mixed layer to the depth of

maximum change in temperature with depth. For each panel, x shows the spatial mean and standard deviation.

subsurface observations improves the spatial pattern of thermocline depth (Fig.2h-j). The thermocline is deepest in the upstream

region of the EAC core and in the eddy dominated region between 32.5◦ S – 36◦ S. In these deep thermocline regions, all of

the XBT OSSEs represent the bottom of the thermocline as too shallow, while the regions of shallower thermocline (outside210

of the EAC and its eddies) are fairly well represented (and represented considerably better than in the Surf OSSE). This likely

points to poor representation of EAC core and eddy vertical structure in all OSSEs.

3.2 Eddy Kinetic Energy representation

While surface EKE can be reasonably estimated in the presence of surface (particularly SSH) observations, subsurface EKE,

and hence the 3-dimensional structure of eddy variability, has generally poor spatial and temporal representation. We integrate215

subsurface EKE over two depth ranges, from 0 m to 250 m , and from 250 m to 2000 m , which were chosen to capture the

upper (higher energy) and deeper (lower energy) regions of eddy depth structure.

As expected, the mean EKE in the top 250 m is strongest in the EAC eddy region (Fig.3a). The representation of upper ocean

EKE in all OSSEs is relatively similar (Fig.3b-e), with the difference from the Ref state being small and having a similar spatial

9
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Figure 3. The time-mean eddy kinetic energy (EKE) is shown as the average over the top 250 m for (a) the Ref state, and the difference from

this for the (b) Surf, (c) XBT-N (d) XBT-S and (e) XBT-N+S OSSEs, and as the average over 250 m –2000 m for (f) the Ref state, and the

difference from this for the (g) Surf, (h) XBT-N (i) XBT-S and (j) XBT-N+S OSSEs. In (k), the vertical profile of the EKE, spatially averaged

over the high eddy variability region (box shown in panels a and f) is shown for each OSSE. The shaded regions designate a range of plus

and minus one standard deviation in spatial mean EKE at that depth, for that OSSE.

pattern for all OSSEs. At depth, however, the representation of the depth-averaged EKE (Fig.3f) is represented differently in220

each OSSE. The Surf OSSE overestimates EKE through the highest EKE region (Fig.3g). The OSSEs with a single transect

of observations perform better, with lower error in representation of the depth-averaged EKE (Fig.3h-i). The XBT-N+S OSSE

has a slightly higher EKE difference than XBT-N or XBT-S but performs better than Surf (cf. Fig.3j and Fig.3g).

The performance of each OSSE can be compared in the vertical profiles of EKE averaged over the high EKE variability

region (Fig.3k). EKE in the Ref state and all OSSEs is surface-intensified, while EKE in the upper 250 m is relatively well225

represented in all OSSEs. The EKE in the Ref state continues to decrease with depth, until approximately 1000 m . The XBT-S

OSSE matches the Ref state in the monotonic decrease in EKE with depth and provides the best fit, however the decrease with

depth is less compared to the Ref state. All other OSSEs display subsurface EKE maxima between ∼500–1100 m .

We now consider another measure of the 3-dimensional structure of eddies in these simulations — the along-shelf and

across-shelf slope of the temperature fields. The mean temperatures and isotherm slopes at 250 m are shown in Fig.4. This230

depth is chosen as it represents the transition where the OSSEs begin to display enhanced EKE, compared to the Ref state, as

shown in Fig.3k.

The presence of sub-surface observations improves the representation of mean temperature (cf. Fig.4b and Fig.4c-e), with

the XBT-S OSSE having the best representation of the higher temperature region at 154.5◦ E, 33◦ S. The across-shelf isotherm
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Figure 4. The mean temperature at 250 m is shown for (a) the Ref state, and the (b) Surf, (c) XBT-N (d) XBT-S and (e) XBT-N+S OSSEs.

The across-shelf isotherm slope at 250 m is shown for the (f) Ref state, and the (g) Surf, (h) XBT-N, (i) XBT-S and (j) XBT-N+S OSSEs.

Likewise, the along-shelf isotherm slope at 250 m is shown for the (k) Ref state, and the (l) Surf, (m) XBT-N, (n) XBT-S and (o) XBT-N+S

OSSEs. The slope directions are shown in each colour bar.

slope is characterised by a strong, negative slope along the coast, a weaker, broader region of negative slope in the off-shelf235

region of the western Tasman Sea (e.g. at 151.5◦ E, 36◦ S), and, further eastwards (153◦ E, 36◦ S), a weak but broad region of

positive slope (Fig.4f). These features represent, respectively, the sloping isotherms associated with the southward flowing EAC

jet, the western edge of the EAC eddy field, and the northwards return flow. While all OSSEs broadly contain these features

(Fig.4g-j), the representation is most accurate in the presence of subsurface observations in the southern region (XBT-S and
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XBT-N+S; Fig.4i,j). The relatively high vertical and horizontal spatial resolution of the subsurface observations improves the240

representation of the isotherm slope near the observation transect, but also the magnitude and distribution of the positive slope

in the return flow and the broad, weakly negative slope in the eddy region. However, all OSSEs still represent weaker sloping

across-shelf isotherms.

The most notable feature in the Ref state along-shelf slope is the zonal band of negative slope at 35◦ S, associated with

the eastwards extension of the EAC (Fig.4k). This band of negative slope is poorly represented in the Surf OSSE (Fig.4l),245

improved with subsurface observations (Fig.4m-o) and best represented with the XBT-S observations (Fig.4n). This indicates

that subsurface observations through the eddy region are key for improving representation of the EAC eastern extension.

While the 250 m isotherm represented the transition from the upper region of eddies and EKE, the deeper eddy region (which

we defined as the region of increased EKE between 250–2000 m ) can be captured by the 5◦C isotherm. The depth and slope

of this isotherm indicates the degree of vertical motion in the eddy field, and the potential to which water in this region could250

display baroclinicity.

The 5◦C isotherm in the Ref state is relatively flat with a mean depth of 1150 m (Fig.5), meaning most of the eddy variability

(e.g. upwelling) is above this depth. All OSSEs overestimate the depth of this isotherm in the high EKE region (153◦ E,

35◦ S) and underestimate the depth outside of this region (Fig.5b-e). The across-shelf (Fig. 4f) and along-shelf (Fig. 4k)

isotherm slopes display features related to the density structure that contributes to driving or maintaining the EAC jet, southward255

extension, return flow and eastern extension, as outlined above.

Like the isotherm tilting at 250 m (e.g. Fig.4f-j), the slope, both positive and negative, of the 5◦C isotherm is over estimated

in the across-shelf direction (Fig. 5g-j) and the along-shelf direction (Fig. 5l-o).

3.3 Eddy case studies

The above sections have focussed on time-mean metrics, however, a case study analysis is useful for providing insight into the260

model performance of these dynamic features. We have chosen to focus on two example eddies, where these events represent

‘best case’ or ‘worst case’ scenarios for the accurate simulation of subsurface conditions, namely, eddies in the vicinity of or

distant from subsurface observations.

3.3.1 Case Study A: Eddy on the XBT observations

The first case study considers the vertical structure of an anticyclonic eddy that passed through the XBT-S observation line265

(centred on the eddy-rich region), averaged over the period 11-March 2012 – 16-March 2012 in the Ref state simulation. This

eddy is chosen as one of the two case studies as the co-location with the XBT-S observation line should afford significant

improvement in the vertical structure, and hence represent a ‘best cast scenario’.

The anticyclonic eddy of case study A is recognisable in the Ref state and OSSEs by the large SSH anomaly centered at

approximately 153◦ E, 35◦ S (Fig. 6). As each OSSE will have a slightly different simulated eddy, the comparison transect270

(blue transect lines in maps; Fig. 6a-e) is shifted to pass through the eddy centre and allow a comparison of conditions through

the eddy centre.
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Figure 5. The depth of the 5◦C isotherm is shown for (a) the Ref state, and the (b) Surf, (c) XBT-N (d) XBT-S and (e) XBT-N+S OSSEs.

The across-shelf isotherm slope at the 5◦C isotherm is shown for the (f) Ref state, and the (g) Surf, (h) XBT-N, (i) XBT-S and (j) XBT-N+S

OSSEs. Likewise, the along-shelf slope of the 5◦C isotherm is shown for the (k) Ref state, and the (l) Surf, (m) XBT-N, (n) XBT-S and (o)

XBT-N+S OSSEs.

The Ref state displays deepened isotherms, which are characteristic of anti-cyclonic eddies (Fig. 6f). The representation of

vertical temperature in the Surf OSSE is too warm through the eddy core as well as displaying a subsurface lens of doming

isotherms (suggesting upwelling) at 250 m depth (Fig. 6g); XBT-N also displays poor representation of temperature, with the275

upper 500 m being too cold and from 500 m to 1000 m being too warm (Fig. 6h). In contrast, the OSSEs which assimilate

the southern XBT observations (XBT-S and XBT-N+S; Fig. 6i-j) display lower error and reasonable vertical temperature
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Figure 6. The vertical representation of an anticyclonic eddy at ∼153◦ E, 35◦ S in the (a) Ref state, is compared to the (b) Surf, (c) XBT-N,

(d) XBT-S, and (e) XBT-N+S OSSEs, with the SSH field and vertical profile location marked by a blue line. The vertical temperature profile

along the transect is shown for the (f) Ref state, and the (g) Surf, (h) XBT-N, (i) XBT-S and (j) XBT-N+S OSSEs. Likewise, (k-o) Northwards

velocity profiles are shown for the same experiments. In the OSSE panels, the difference in temperature and velocity from the Ref state s

plotted in colour and contours of the (dark colour) OSSE and (light colour) the respective field in the Ref state are shown for comparison. In

panel (a), the blue dashed lines indicate the transect shown in (f).

representation, though both still suffer from overly warm eddy core water below 1000 m . The upper 500 m in XBT-N+S is

also too cold, but not to the same extent as XBT-N (cf. Fig. 6j and h).

The North/South velocity is characteristic of a anticyclonic eddy with southward velocity inshore and northward velocity280

further east (Fig.6k). All OSSEs struggle to represent the velocity field. Velocities in the Surf OSSE are too strong, too deep

and horizontally compact (Fig.6l), while the XBT-N and XBT-S OSSEs (Fig.6m-n) have velocity fields closest to the Ref state.

Like the Surf OSSE, the XBT-N+S velocity representation is dissimilar to the Ref state, being too narrow and too strong at

depth (Fig.6o).
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3.3.2 Case Study B: Eddy south of the XBT observations285

The second case study, case study B, was chosen as it presents a more complex scenario of an anticyclonic and cyclonic eddy

pair located at ∼151.5◦ E – 153.5◦ E, ∼37.5◦ S over the same period 11-March 2012 – 16-March 2012. In this case study, no

OSSEs have subsurface observations located closer than ∼300 km — this situation is more akin to a ‘worst case scenario’ for

representing eddy vertical structure in a DA simulation.

Figure 7. The vertical representation of an anticyclonic-cyclonic eddy pair at ∼151.5–153.5◦ E, 37.5◦ S in the (a) Ref state, is compared to

the (b) Surf, (c) XBT-N, (d) XBT-S, and (e) XBT-N+S OSSEs, with the SSH field and vertical profile location marked by a blue line. The

vertical temperature profile along the transect is shown for the (f) Ref state, and the (g) Surf, (h) XBT-N, (i) XBT-S and (j) XBT-N+S OSSEs.

Likewise, (k-o) Northwards velocity profiles are shown for the same experiments. In the OSSE panels, the difference in temperature and

velocity from the Ref state s plotted in colour and contours of the (dark colour) OSSE and (light colour) the respective field in the Ref state

are shown for comparison. In panel (a), the blue dashed lines indicate the transect shown in (f).

The SSH fields in each OSSE differ by varying degrees to the Ref state, with the XBT-N and XBT-N+S simulations contain-290

ing only the anticyclonic eddy while the Surf and XBT-S OSSEs displaying the signature of both eddies, but with noticeable

spatial offsets and SSH magnitudes (Fig. 7; a-e).
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The case study B anti-cyclonic eddy has an isothermal core from 100 m to 300 m deep, and a thermal structure typical of

an anti-cyclonic eddy with deepened isotherms below that (Fig. 7f). Representation of both of the anticyclonic and cyclonic

eddies is poor in all OSSEs. The Surf, XBT-N and XBT-N+S OSSEs display overly deep isotherms (that is, too warm) below295

500 m and erroneous uplifting of isotherms, within the anti-cyclonic eddy, between 500 m and 100 m (Fig. 7g,h,j), leading to

a lens-like isothermal layer in the 250–750 m depth range. The XBT-S OSSE is also too cold in the top 500 m and too warm

from 500 m to 1500 m (Fig. 7i), but it does not have the uplifted isotherms present (in anti-cyclonic eddy) in the other OSSEs.

The northwards velocity transect through the case study B eddies is a surface-intensified velocity field with relatively sym-

metric northwards and southwards flow around the western-most eddy core and weaker southward flow on the far side of300

the more easterly cyclonic eddy; in the vertical, velocity is strongest at the surface and monotonically decreases with depth

(Fig. 7k). All OSSEs struggle to represent this, with all representations being subsurface intensified and more spatially com-

plex and asymmetric about the eddy core (Fig. 7l-o) compared to the Ref state. This shows that even with a reasonable surface

impression, subsurface velocity fields of an eddy can be far from representative.

3.4 Eddy generation305

We have established that the time-mean subsurface conditions are poorly represented especially in the high EKE region,

indicating that these DA simulations are struggling to capture the structure of eddies at depth. Indeed, our case studies show

that the vertical structure of individual eddies is also poorly represented, whether they are far from or close to observations. We

now consider mechanisms that could be inhibiting a more accurate vertical eddy structure.

The barotopic conversion rate (KmKe) captures the energy pathway by which depth-mean horizontal velocity shear instabil-310

ity forms eddies. In contrast, the baroclinic conversion rate (PeKe) captures eddy formation that results from unstable vertical

density structure and baroclinic instability. Here we average both quantities over the top 450 m , to capture the region of highest

EKE (Fig. 3k).

Comparing KmKe to PeKe we see that barotropic conversion is approximately an order of magnitude larger than baroclinic

conversion (cf. Fig. 8a and f), which agrees with results from Li et al. (2021) who suggest KmKe is the dominant mode of315

eddy production in the EAC. All OSSEs produce a good representation of barotropic conversion rate, with most of the high

KmKe hotspots (e.g. 152◦ E, 32.5◦ S) being captured (Fig.8b-e). This explains why all OSSEs have a good representation of

the time-mean surface EKE field (see Fig. 3b-e).

However, baroclinic production is poorly represented in all OSSEs, with PeKe being too strong and extending too far to the

east (Fig. 8g-j). This suggests that the vertical density structure in the eddy field of all OSSEs is such that baroclinic instability320

is too active and generates too much conversion to eddy kinetic energy.

3.5 Normal mode structure

In an effort to explore an alternative manifestation of incorrect eddy representation, we employ a normal mode analysis,

whereby the barotropic and baroclinic modes are computed (e.g. Gill, 1982; Wunsch, 1997; Kelly, 2016). This gives insight
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Figure 8. The barotropic conversion rate (KmKe) is shown for the (a) Ref state, and (b) Surf, (c) XBT-N, (d) XBT-S, and (e) XBT-N+S

OSSEs. The baroclinic conversion rate (PeKe) is shown for the (f) Ref state, and (g) Surf, (h) XBT-N, (i) XBT-S, and (j) XBT-N+S OSSEs.

In all panels, a positive value indicates conversion from (for panels a-e) mean kinetic or (for panels f-j) eddy potential energy into eddy

kinetic energy.

into how the OSSEs are simulating the vertical partitioning of kinetic energy in each baroclinic mode throughout the water325

column.

The normal modes are derived from the stratification profile (see Section 2.3.4 and Equation 6) using the numerical imple-

mentation described in (Smith, 2007). For case study A (Ref state; Fig.9a), there is a relatively smooth increase in density with

depth. In contrast, the Ref state in case study B has a sharper thermocline at ∼200 m , weak change in density between ∼200

m and 350 m , and below that, a smooth increase in density with depth (Ref state; Fig.10g).330

The amplitudes of the first four modes, calculated for the centre of the case study A eddy, are shown in Fig. 9b-f. The

barotropic mode, ϕ0, is normalised to have unity value at all depths, and so we focus attention on the first 3 baroclinic modes

ϕ1, ϕ2 and ϕ3. For case study A, XBT-S and XBT-N+S have the most accurate baroclinic mode structure (RMS values of 0.09–

0.2 compared to 0.20–0.46; Fig. 9e,f); the other OSSEs have errors in the amplitude with depth of all BC modes (Fig. 9c,d,f).

The improved mode structure in XBT-S and XBT-N+S, particularly of ϕ2 likely corresponds to a better representation of the335

weaker, smoothly sloping thermocline — the other OSSEs display a sharper thermocline at ∼200 m .

For case study B, with a more complex density structure (Ref state; Fig. 9g), all OSSEs fail to represent accurate baroclinic

mode structure, with higher RMS values. The shape of ϕ1 is poorly represented in all OSSEs (RMS errors ranging from 0.3–0.4;

Fig. 9i-l) which likely indicates a failure to capture the increase in density with depth associated with the primary thermocline

below sim350 m . The section of near-constant ϕ1 amplitude with depth that is present in Surf, XBT-S and XBT-N+S from340
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Figure 9. For case study A, the (a) potential density profile is shown for each OSSE, and the amplitude of the barotropic ϕ0 and baroclinic

modes (ϕ1 to ϕ3) are shown for (b) the Ref state, and the (c) Surf, (d) XBT-N, (e) XBT-S, and (f) XBT-N+S OSSEs. For case study B, (g) the

potential density profile is shown for each OSSE, and the mode amplitudes are shown for (h) the Ref state, and the (i) Surf, (j) XBT-N, (k)

XBT-S, and (l) XBT-N+S OSSEs. Potential densities are referenced to surface pressure. In panes c-f and i-l, for ϕ1, ϕ2 and ϕ3 respectively,

we show the RMS difference of the OSSE mode shape compared to that of the Ref state. Note that the vertical axis has been limited to the

top 3000 m .

250–1250 m likely represents the isothermal lens (Fig. 7g,j). This feature is present in the Ref state but at a much shallower

depth (from 100–250 m ; Fig. 7f), with the signature showing in ϕ1, ϕ2 and ϕ3 (Fig. 9h).

For case study B, ϕ2 is represented differently in all OSSEs compared to the Ref state, having either a portion (∼500–1500

m ) which stays relatively constant in amplitude with depth (Surf, XBT-S and XBT-N+S; Fig. 9i,k,l) or by displaying an overly

deep maximum (XBT-N; Fig. 9j).345

The first maximum in ϕ3 is too shallow and too weak in all OSSEs (Fig. 9i-l). The second, deeper maximum in ϕ3 is too

deep in all OSSEs, but particularly in Surf (Fig. 9i), which shows that all OSSEs represent this eddy as too deep.

Together, these results show that the baroclinic mode structure is poorly represented in all OSSEs, but especially in the

absence of nearby observations (case study B). The second baroclinic mode is particularly susceptible to erroneous shape,

which corresponds to poor representation of any deviations in the primary thermocline. The third baroclinic mode also has350
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Figure 10. The barotropic and baroclinic modes are projected onto the kinetic energy through the squared addition of the mode projections

on the zonal and meridional velocity anomalies (see Section 2.3.4). In (a), the value of the nth mode projections for case study A are shown,

and in (b), the nth mode projections for case study B are shown. The locations of case studies A and B are shown in the inset in (b).

poor representation in all the DA experiments, which captures how eddies here are simulated with an overly deep vertical

extent.

By projecting these baroclinic modes onto velocity anomalies in the meridional and zonal directions, we can decompose

the vertical partitioning of kinetic energy into the components resulting from the different BC modes. This kinetic energy

decomposition shows how energy is vertically distributed between the different modes.355

In case study A (Fig.10a), the XBT-N and XBT-N+S OSSEs poorly estimate the energy associated with either the barotropic

mode and one or more baroclinic modes. The XBT-S OSSE displays a fair estimate of energy in ϕ1 and ϕ4, but underestimates

ϕ0 and overestimates ϕ2–ϕ3. The Surf OSSE represents ϕ3 well, but overestimates ϕ0, ϕ1 and ϕ2.

At case study B (Fig. 10b) all OSSEs overestimate the energy distribution in the barotropic and baroclinic modes. In partic-

ular, ϕ2 is best represented by XBT-N, XBT-S and XBT-N+S; all other modes are represented as too energetic in all OSSEs.360
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4 Discussion and Conclusions

Our exploration of the 3-dimensional representation of subsurface conditions in DA simulations has shown that even in the

presence of high resolution subsurface temperature observations, subsurface dynamics are not being captured correctly. Despite

several observations in the shallow waters, the thermocline and mixed layer are represented as deeper in the OSSEs compared

to the Ref state (compare Fig. 2 first column to following columns). Likewise, in the deeper water between 250–2000 m , all365

OSSEs overestimate the time-mean EKE, with the vertical profiles of mean EKE in the high eddy variability region all showing

an overestimation of EKE (Fig. 3k). Only with the assimilation of XBT observations near to the high eddy variability region

does the model produce a reasonable estimate the mean EKE at depth (Fig. 3i). The overly steep 5◦C isotherms (e.g. Fig. 5g-j)

are another indication that baroclinic dynamics are not being represented correctly.

Exploring the case study eddies, it is clear that the presence of subsurface observations improves the representation of the370

thermal structure and baroclinic modes in the vicinity of those observations (e.g. Fig. 6i and Fig. 9e). However, at distance from

those observations (∼300 km , case study B; Fig. 7g-j), 3-dimensional representation is again poor. This suggests that spatially

and/or temporally sparse observing platforms (i.e. Argo floats, quarterly XBT observations and sporadic glider deployments),

likely do not help DA simulations to resolve the correct eddy structure, especially if are directly co-located. The differences

in the mode structures between the OSSEs and Ref state, and between the OSSEs with observations close to the eddies, show375

that: the primary thermocline slope is particularly susceptible to inaccuracy (see poor ϕ2 structure in Surf, XBT-N; Fig 10c-d);

and, if there is secondary structure such as steps in the thermocline (i.e. a complex density structure; Fig. 9g), DA simulations

will potentially struggle to generate representative baroclinic mode structure.

We have focussed on two ways in which the DA system may be impacting the dynamics of the vertical structure. The first

is that baroclinic instability is too active, as a result of a poor vertical density structure. This is displayed in the baroclinic380

conversion rate for all OSSEs being higher than the Ref state (Fig. 8g-j), while the barotropic conversion rate is represented

relatively well (cf. Fig. 8a to Fig. 8b-e). In the XBT OSSEs simulated here, the subsurface observations have fine horizontal

and vertical spacing, which improves the vertical temperature structure (see, for example, better across-shelf slope in the XBT-

S experiment in the vicinity of the observations; Fig. 5i). However, the improvement from these XBT observations does not

extend far from the observation location.385

The second manifestation of how dynamics are impacted from the DA process is through incorrectly representing the en-

ergy flow pathways and distribution through the baroclinic modes, leading to incorrect vertical structure. The presence of

observations improves the baroclinic mode structure, as shown in Fig. 9e. However, this structure is degraded further from the

observations (e.g. Fig. 9k), or in general in the presence of eddies, which have more complex vertical structure and are thus

harder for the model dynamics to capture.390

The poor subsurface representation in some DA simulations, including these experiments, may be due to a suboptimally

specified background error covariance matrix. The background error covariance matrix is critical for performing data assim-

ilation: it is used to weight the importance of the model forecast during the mathematical combination of model state and

observations (Lee and Huang, 2020); it determines how observations exert influence in the vertical and horizontal directions
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(Bannister, 2008a); and it describes correlations and synergies between observations (Bannister, 2008b). However, it is com-395

putationally unfeasible to explicitly set, compute or store this term (due to the large number of elements), and thus it must

be estimated or modelled (e.g. Bannister, 2008a). In Ensemble DA, statistical methods are applied to an ensemble of forecast

simulations to produce a background error covariance. This estimate can be iteratively updated when a new ensemble is avail-

able (and thus can evolve in time) and, as it is calculated from model output, it can contain different horizontal and vertical

length scales (e.g. Brassington et al., 2007; Oke et al., 2008). However, due to the statistical nature of ensemble-based back-400

ground error covariance estimates, large modes of variability will be dominant and smaller-scale components can be lost (Li

et al., 2015). In Variational DA, the background error covariance must be estimated with a model (e.g. Weaver and Courtier,

2001) and often with assumptions of isotropy (similar horizontal and vertical length scales) and stationarity (no explicit flow-

dependence) being made. The specification of the background error covariance matrix is indeed one of the biggest remaining

challenges in development of DA and, in particular, 4DVar (Moore et al., 2019).405

Most recent advances in improving estimates of this matrix stem from numerical weather prediction. For example, in weather

prediction research, estimates of the background error covariance matrix have been investigated for various regions (Bonavita

et al., 2011; Michel and Auligné, 2010; Lee and Huang, 2020), and there is continuing development in advanced assimila-

tion schemes such as hybrid approaches that combine ensemble covariance statistics with static, ‘climatological’ covariance

estimates (e.g. Lorenc and Jardak, 2018). These hybrid methods have the benefit of representing flow-dependent changes in410

the background error covariance from the ensemble covariance estimate, while counteracting the sampling noise inherent in

the ensemble statistics with the static covariance estimate.(Bonavita et al., 2011). Development of ocean DA techniques typ-

ically lags behind that of weather prediction. Some recent advances have been made in hybrid approaches, which, like their

counterparts in weather prediction, combine an ensemble of model runs to estimate the background error covariance, which

is then combined with a 4DVar scheme (e.g. Penny et al., 2015). Other research has focussed on modifying the DA algorithm415

such that covariance estimates can account for different spatial scales and model resolutions (e.g. Li et al., 2015). However,

most present-day ocean DA systems do not apply sophisticated methods for estimating the background error covariance. As a

result, it is possible that the background error covariance is, at least in part, responsible for the poor subsurface representation

of dynamic and poorly sampled features (e.g. eddies) that we show here.

It is generally thought that poor background error covariance specification is a major impediment to improved ocean data420

assimilating simulations, which we hypothesise is the source of the aforementioned poor vertical structure. However, there is

still much work to be done in this area. This future research could focus on improvements to estimates of the background error

covariance, potentially using hybrid schemes or multi-scale approaches, or other aspects of DA schemes. Given the obvious

motivation to improve the vertical representation of stratification and structure in eddies, there is justification for the continued

development of basic research in ocean DA. In light of this, ocean DA can borrow much from developments and improvements425

in numerical weather prediction research.
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