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Abstract. Tropospheric ozone is a toxic greenhouse gas with a highly variable spatial distribution which is challenging to map

on a global scale. Here we present a data-driven ozone mapping workflow generating a transparent and reliable product. We

map the global distribution of tropospheric ozone from sparse, irregularly placed measurement stations to a high-resolution

regular grid using machine learning methods. The produced map contains the average tropospheric ozone concentration of

the years 2010 - 2014 with a resolution of 0.1°× 0.1°. The machine learning model is trained on AQ-Bench, a precompiled5

benchmark dataset consisting of multi-year ground-based ozone measurements combined with an abundance of high-resolution

geospatial data.

Going beyond standard mapping methods, this work focuses on two key aspects to increase the integrity of the produced map.

Using explainable machine learning methods we ensure that the trained machine learning model is consistent with commonly

accepted knowledge about tropospheric ozone. To assess the impact of data and model uncertainties on our ozone map, we10

show that the machine learning model is robust against typical fluctuations in ozone values and geospatial data. By inspecting

the input features, we ensure that the model is only applied in regions where it is reliable.

We provide a rationale for the tools we use to conduct a thorough global analysis. The methods presented here can thus be

easily transferred to other mapping applications to ensure the transparency and reliability of the maps produced.

1 Introduction15

Tropospheric ozone is a toxic trace gas and a short-lived climate forcer (Gaudel et al., 2018). Contrary to stratospheric ozone

which protects humans and plants from ultraviolet radiation, tropospheric ozone causes substantial health impairments to

humans because it destroys lung tissue (Fleming et al., 2018). It is also the cause of major crop loss, as it damages plant

cells and leads to reduced growth and seed production (Mills et al., 2018). Tropospheric ozone is a secondary pollutant with

no direct sources, but with formation cycles depending on photochemistry and precursor emissions. It is typically formed20
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downwind of precursor sources from traffic, industry, vegetation, and agriculture, under the influence of solar radiation. Ozone

patterns are also influenced by the local topography causing specific flow patterns (Monks et al., 2015; Brasseur et al., 1999).

Depending on the on-site conditions, ozone can be destroyed in a matter of minutes or have a lifetime of several weeks

with advection from source regions to remote areas (Wallace and Hobbs, 2006). The interrelation of these factors of ozone

formation, destruction, and transport is not fully understood (Schultz et al., 2017). This makes ozone both difficult to quantify25

and to control. Public authorities recognize ozone-related problems. They install air quality monitoring networks to quantify

ozone (Schultz et al., 2015, 2017). Furthermore, they enforce maximum exposure rules to mitigate ozone health and vegetation

impacts (e.g. European Union, 2008).

Currently, there is increased use of machine learning methods in tropospheric ozone research. Such "intelligent" algorithms

can learn nonlinear relationships of ozone processes and connect them to environmental conditions, even if their interrelations30

are not well understood through process-oriented research. Kleinert et al. (2021) and Sayeed et al. (2021) used convolutional

neural networks to forecast ozone at several hundred measurement stations, based on meteorological and air quality data.

Large training datasets allowed them to train deep neural networks, resulting in a significant improvement over the first ma-

chine learning attempts to forecast ozone (Comrie, 1997; Cobourn et al., 2000). Machine learning is also used to calibrate

low-cost ozone monitors that complement existing ozone monitoring networks (Schmitz et al., 2021; Wang et al., 2021).35

Furthermore, compute-intensive chemical reactions schemes for numerical ozone modeling can be emulated using machine

learning (Keller et al., 2017; Keller and Evans, 2019). Ozone datasets which are used as training data for machine learning

models are increasingly made available as FAIR (Wilkinson et al., 2016) and open data. AQ-Bench (‘air quality benchmark

dataset,’ Betancourt et al., 2021b), for example, is a dataset for machine learning on global ozone metrics and serves as training

data for this mapping study.40

We refer to mapping as a data-driven method for spatial predictions of environmental target variables. For mapping, a model

is fit to observations of the target variable at measurement sites, which might even be sparse and irregularly placed. Environ-

mental features are used as proxies for the target variable to fit the model. A map of the target variable is produced by applying

the model to the spatially continuous features in the mapping domain. Mapping for environmental applications was performed

since the 1990s (Mattson and Godfrey, 1994; Briggs et al., 1997). It was deployed for air pollution as an improvement over45

spatial interpolation and dispersion modeling which suffer from performance issues due to sparse measurements, and lack of

detailed source description (Briggs et al., 1997). Hoek et al. (2008) describe these early mapping studies as "linear models with

little attention to mapping outside the study area". In contrast, modern machine learning algorithms are often trained on thou-

sands of samples for mapping (Petermann et al., 2021; Heuvelink et al., 2020). Several studies (e.g. Li et al., 2019; Ren et al.,

2020) have shown that mapping using machine learning methods is superior to other geostatistical methods such as Kriging50

because it can capture nonlinear relationships and makes ideal use of environmental features by exploiting similarities between

distant sites. In contrast to traditional interpolation techniques, mapping allows to extend the domain to the global scale, be-

cause it can predict the variable of interest based on environmental features, even in regions without measurements (Lary et al.,

2014; Bastin et al., 2019; Hoogen et al., 2019). Recently, it is questioned whether machine learning methods are the most

suitable to "map the world" (Meyer, 4 Mar 2020): Meyer et al. (2018) and Ploton et al. (2020) point out that some studies55
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may be overconfident because they validate their maps on data that is not statistically independent from the training data.

This occurs when a random data split is used on data with spatio-temporal (auto)correlations. There are also concerns when

the mapping models are applied to areas that have completely different properties from the measurement locations (Meyer and

Pebesma, 2021). A model trained on certain input feature combinations can only be applied to similar feature combinations.

Furthermore, uncertainty estimates of the produced maps are important as they are often used as a basis for further research.60

In this study, we produce the first fully data-driven global map of tropospheric ozone, aggregated in time over the years

2010-2014. This study builds upon Betancourt et al. (2021b) who proved that ozone metrics can be predicted using static

geospatial data. We provide the map as a product, and combine it with uncertainty estimates and explanations to ensure the

trustworthiness of our results. We justify the choice of methods and clarify why they are necessary for a thorough global

analysis. Sect. 2 contains a description of the data and machine learning methods, including explainable machine learning and65

uncertainty estimation. Sect. 3 contains the results, which are discussed in Sect. 4. We conclude in Sect. 5.

2 Data and methods

2.1 Data description

In this section, we present the datasets used in this study. Technical details on these data are given in Appendix A.

2.1.1 AQ-Bench dataset70

We fit our machine learning model on the AQ-Bench dataset (‘air quality benchmark dataset,’ Betancourt et al., 2021b). The

AQ-Bench dataset is a machine learning benchmark dataset that allows to relate ozone statistics at air quality measurement

stations to easy-access geospatial data. It contains aggregated ozone statistics of the years 2010-2014 at 5577 stations around

the globe, compiled from the database of the Tropospheric Ozone Assessment report (TOAR, Schultz et al., 2017). The AQ-

Bench dataset considers ozone concentrations on a climatological time scale instead of day-to-day air quality data. The scope75

of this dataset is to discover purely spatial relations. Machine learning models trained on this dataset will output aggregated

statistics over the years 2010 - 2014, and will not be able to capture temporal variances. This is beneficial if the required final

data products are also aggregated statistics. The majority of the stations is located in North America, Europe, and East Asia.

The dataset contains different kinds of ozone statistics such as percentiles or health-related metrics. This study focuses on the

average ozone statistic as target (Fig. 1).80

The features in the AQ-Bench dataset characterize the measurement site and are proxies for ozone formation, destruction,

and transport processes. For example, the ‘altitude’ and ‘relative altitude’ of the station are important proxies for local flow

patterns and ozone sinks. ‘Population density’ in different radii around every stationare proxies for human activity and thus

ozone precursor emissions. ‘Latitude’ is a proxy for ozone formation through photochemistry, as radiation and heat generally

increase towards the equator. The landcover variables are proxies for precursor emissions and deposition. The full list of85
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Figure 1. Average ozone statistic of the AQ-Bench dataset. The values at 5577 measurement stations are aggregated over the years 2010 -

2014. (a) Values on a map projection. (b) Histogram and summary statistics.
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Figure 2. Predicted ozone values versus measurement values of the test set of the AQ-Bench dataset. See Sect. 3.3.1 for the specifications of

the used machine learning model.

features and their relation to ozone processes are documented by Betancourt et al. (2021b). Fig. 2 shows predictions of a

machine learning model on the test set of AQ-Bench. Table 1 lists all features used in this study.

2.1.2 Gridded data

Features are needed on a regular grid (i.e. as raster data) over the entire mapping domain to map the target average ozone.

The original gridded data used here (Appendix A and B) has a resolution of 0.1°×0.1° or finer. Since our target resolution90

is 0.1°×0.1°, the gridded data are downscaled to that resolution if the original resolution is finer. The ‘land cover’, ‘popula-

tion’, and ‘light pollution’ features of the AQ-Bench dataset are spatial aggregates in a certain radius around the station (see

Table 1). To prepare gridded fields of these features, the area around each individual grid point is considered, and the required
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radius aggregation is written to that grid point. The gridded dataset is available under the DOI http://doi.org/10.23728/b2share.

9e88bc269c4f4dbc95b3c3b7f3e8512c.95

Table 1: Features selected from the AQ-Bench dataset.

Feature Unit

General Climatic zone -

Latitude deg

Altitude m

Relative altitude m

Land cover Water in 25 km area %

Evergreen needle leaf forest in 25 km area %

Evergreen broadleaf forest in 25 km area %

Deciduous needle leaf forest in 25 km area %

Deciduous broadleaf forest in 25 km area %

Mixed forest in 25 km area %

Closed shrublands in 25 km area %

Open shrublands in 25 km area %

Woody savannas in 25 km area %

Savannas in 25 km area %

Grasslands in 25 km area %

Permanent wetlands in 25 km area %

Croplands in 25 km area %

Urban and built-up in 25 km area %

Cropland / natural vegetation mosaic in 25 km area %

Snow and ice in 25 km area %

Barren or sparsely vegetated in 25 km area %

Agriculture Wheat production 1000 tons y−1

Rice production 1000 tons y−1

Ozone precursors NOx emissions g m−2 y−1

NO2 column 105 molec cm−2

Population Population density person km−2

Maximum population density in 5 km area person km−2

Maximum population density 25 km area person km−2

(continued on next page)
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(Table 1 continued from previous page)

Feature Unit

Light pollution Nightlight 1 km brightness index

Nightlight in 5 km area brightness index

Maximum nightlight in 25 km area brightness index

2.2 Explainable machine learning workflow

We apply a standard mapping workflow and extend it with explainable machine learning methods as described in this section.

Together with the uncertainty assessment methods described in Sect. 2.3, they allow for a thorough analysis of our machine

learning model. A random forest (Breiman, 2001) is fit on the AQ-Bench dataset to predict average ozone for given features. A100

random forest is an ensemble of regression trees that is created by bootstrapping the training dataset to increase generalizability.

We choose random forest because tree-based models are the state of the art for structured data (Lundberg et al., 2020). Random

forest was also shown to outperform linear regression and a shallow neural network in predicting average ozone on the AQ-

Bench dataset (Betancourt et al., 2021b). In addition, this algorithm has been proven to be suitable for mapping in several

studies (Petermann et al., 2021; Nussbaum et al., 2018; Ren et al., 2020). We use the python framework SciKit-learn (Pedregosa105

et al., 2011) for machine learning and hyperactive (Blanke, 2021) for hyperparameter tuning.

A proper validation strategy is crucial for spatial prediction models because both environmental conditions and target vari-

ables are often correlated in space. When tested on spatially correlated and thus statistically dependent samples, mapping

results may be overconfident (Meyer et al., 2018; Ploton et al., 2020). We use the independent spatial data split provided with

the AQ-Bench dataset to validate spatial generalizability. Details on our validation strategy are given in Sect. 2.2.1. As an110

extension of the standard mapping workflow described in Sect. 1, we perform experiments to increase interpretability, test

robustness, and explain the model. The extended workflow is summarized in Table 2 and further justified in the following.

Table 2: Machine learning experiments as an addition to the standard mapping method. For details on the methods, refer to the

given sections.

Sect. Method Goal

2.2.2 Feature engineering Make features easier to interpret

Forward feature selection Remove counterproductive features which favor overfitting

2.2.3 Spatial cross validation Check model spatial robustness

Cross validation on world regions Evaluate model generalizability

2.2.4 Calculate SHAP values Explain model predictions
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The use of redundant features in mapping applications can favor spatial overfitting. We thus remove counterproductive

features by forward feature selection as proposed by Meyer et al. (2018). Additionally, we apply basic feature engineering to115

increase the interpretability of the model. Details on feature engineering and feature selection are described in Sect. 2.2.2.

In order to make our mapping model trustworthy, we verify its robustness and ability to generalize to unseen locations,

and to explore the limits of its predictive capabilities. Noise in the AQ-Bench dataset causes problems if the model is not

robust. Additionally, limited availability of ozone measurements in regions like Central and South East Asia, Central and

South America, and Africa poses a problem as it is unclear whether our model will generalize to these regions. We address the120

issues of robustness and generalizability using the spatial cross validation strategy described in Sect. 2.2.3.

We also aim to explain how the model arrives at its predictions, and check consistency with common ozone process under-

standing by using SHAP (SHapley Additive exPlanations, Lundberg and Lee, 2017), a post-hoc explainable machine learning

method. It is a game-theoretic approach based on Shapley values (Shapley, 1953). SHAP identifies the importance of the

individual features to a model prediction (Sect. 2.2.4).125

2.2.1 Evaluation scores

We rely on the independent 60 % – 20 % – 20 % data split of AQ-Bench as provided by Betancourt et al. (2021b). Here, stations

with a distance of more than 50 km are considered independent of each other. The evaluation score is the coefficient of

determination R2,

R2 = 1−
∑M

m=1(ym − ŷm)2∑M
m=1(ym −⟨y⟩)2

with ⟨y⟩= 1

M

M∑
m=1

ym (1)130

where m denotes a sample index, M the total number of samples, ŷm a predicted target value, and ym a reference target value.

R2 measures the proportion of variance in the output values that the model predicts. Thus, a larger R2 represents a better

model and the largest possible value is 1. We also evaluate the root mean square error (RMSE) in ppb:

RMSE =

√√√√ M∑
m=1

(ym − ŷm)2

M
(2)

2.2.2 Feature engineering and feature selection135

We perform basic feature engineering to improve the interpretability of our model. Different types of savanna, shrublands, and

forests are given individually in AQ-Bench (Table 1). We merge them into ‘savanna’, ‘forest’, and ‘shrubland’ because a high

number of features with similar properties would make the model interpretation more difficult. Instead of ‘latitude’, we train

on the ‘absolute latitude’, since radiation and temperature decrease when moving away from the equator, regardless of whether

one moves south or north. Compared to experiments performed without feature engineering, we did not see any change in140

evaluation scores.

We use the forward feature selection method for spatial prediction models by Meyer et al. (2018). The model is initially

trained on all 2-feature pairs. The pair with the highest evaluation score is kept. The model is then trained on each remaining
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Figure 3. Data splits for the spatial cross validation. (a) Station clusters are randomly assigned to four cross validation (CV) folds. (b) The

data is divided by the world regions North America (NAM), Europe (EUR), and East Asia (EAS).

feature along with the already selected features. The additional feature with the best evaluation score is appended to the existing

list of features. This iterative approach is continued until the R2 value drops, which indicates that a feature leads to overfitting.145

The selected features are presented in Sect. 3.1.1.

2.2.3 Spatial cross validation

We apply cross validation to prove the robustness of our model. We split the test and training set into four independent

cross validation folds of 20 % each. Like Betancourt et al. (2021b), we assume that air quality measurement stations with a

distance of at least 50 km are independent of each other. We, therefore, produce the cross validation folds with a two-step150

approach. First, we cluster the data based on the spatial location of the measurement sites using the density-based clustering

algorithm DBSCAN (Ester et al., 1996). The maximum distance between clusters is set to 50 km so stations closer than that

distance are assigned to the same cluster. Small clusters are randomly assigned to the cross validation folds. In the second step,

larger clusters (n > 50) are split with KMeans clustering (Duda et al., 2001) to ensure the same statistical distribution of all

cross validation folds. The resulting smaller clusters are again randomly assigned to the cross validation folds. Fig. 3 (a) shows155

this data split.

We extend our spatial cross validation experiment to evaluate the generalizability of our predictions to world regions with

few measurements. Here we divide the data into the three world regions North America, Europe, and East Asia (Fig. 3 (b)).

A random forest is fit and evaluated on two of the three regions and also evaluated on the third region for comparison. For

example, it is fit and evaluated on data of Europe and North America and additionally evaluated in East Asia. The difference160

in the resulting evaluation scores shows the spatial generalizability of the model. The results are presented in Sect. 3.1.2.

2.2.4 Shapley Additive Explanations (SHAP)

SHapley Additive exPlanations (SHAP, Lundberg and Lee, 2017) provide detailed explanations for individual predictions by

quantifying how each feature contributes to the result. The contribution refers to the average model output (or base value) over
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the training set: A feature with the SHAP value x causes the model to predict x more than the base value. We use the TreeShap165

module (Lundberg et al., 12 Feb 2018) of the Python packacke SHAP (Lundberg and Lee, 2017) to calculate SHAP values.

Global feature importances are obtained by adding up all local contributions to the predictions. Features with high absolute

contributions are considered more important. The SHAP values of our model are presented in Sect. 3.1.3.

2.3 Methods to assess the impact of uncertainties

Uncertainty assessment increases the trustworthiness of our machine learning approach and final ozone map. In general, the pre-170

dictions of machine learning models have two kinds of uncertainties (Gawlikowski et al., 7 Jul 2021): First, model uncertainty,

which results from the trained machine learning model itself, and second, data uncertainty which stems from the uncertainty

inherent in the data. It is common to treat these uncertainties separately. Developing an uncertainty assessment strategy for our

mapping approach is challenging because different uncertainties arise at different stages of the mapping process. Every ozone

measurement, every preprocessing step, and every model prediction is a potential source of error. It would be infeasible to175

investigate the impacts of every error. We, therefore, identify the most important error sources and analyze the uncertainty in-

duced in our produced map only for these. The decision on which aspects to analyze specifically is based on expert knowledge

and the results of our machine learning experiments, i.e., robustness analysis (Sect. 2.2.3) and SHAP values (Sect. 2.2.4). We

develop a formalized approach which is summarized in Table 3 and further elaborated in the following.

180

Table 3: Uncertainty assessment for our mapping method. For details on the methods, refer to the given sections.

Sect. Method Goal

2.3.1 Define area of applicability Ensure the model is only applied where it is reliable

2.3.2 Modeling of ozone fluctuations Evaluate the impact of ozone fluctuations on produced map

2.3.3 Propagate subgrid altitude variation through model Evaluate uncertainty introduced by altitude variation

The model error is caused by the uncertainty of the trainable parameters of the model. It becomes visible, for example, when

different results are obtained if the model is initialized with different random seeds before training (Petermann et al., 2021). To

rule out this training instability, we re-trained our models several times with different random seeds and monitored the results.

We found negligible variations and thus rule out this kind of uncertainty. Apart from uncertainty through training instability,

the model uncertainty is usually high for predictions in areas of the feature space where training data is sparse (Lee et al., 26185

Nov 2017; Meyer and Pebesma, 2021). For example, a model that was not trained on data from very high mountains or deserts

is not expected to produce reliable results in areas with these characteristics. We apply the concept of ‘area of applicability’

by Meyer and Pebesma (2021) to limit our mapping to regions where our model is expected to produce reliable results. The

details are described in Sect. 2.3.1.

The target variable ‘average ozone’ is the first choice for assessment of data errors. Fluctuations and random measurement190

errors introduce uncertainty into the ozone measurements. We evaluate the uncertainty introduced by these influences in the
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Figure 4. Principle of the area of applicability. The plot displays the distribution of all AQ-Bench samples along the three most important

feature axes ‘absolute latitude’, ‘altitude’, and ‘relative altitude’. It is clearly visible that the AQ-Bench samples form a cluster, and that some

feature combinations in the gridded data are far away from this cluster.

map using a simple error model. The error model is used to perturb the training data, to check how the map changes when the

model is trained on perturbed data instead of original data. The error model is described in Sect. 2.3.2.

Additional data uncertainty stems from the features. For example, geospatial data derived from satellite products are sensitive

to retrieval errors. Based on the sources and documentation of our geospatial data (Appendix A), we expect such errors to have195

a small impact in this study. However, we inspect the subgrid features in the geospatial data and their effect on the model

results.. We limit ourselves to the ‘altitude’ because our SHAP analysis (Sect. 3.1.3) has shown that it is the most important

feature besides ‘latitude’ which does not have critical subgrid variations. Subgrid variations of the altitude might influence our

final map, especially if a feature like a cliff or a high mountain is present in the respective grid cell. We evaluate the influence

of subgrid variations in altitude on the final map by propagating higher resolution altitudes through the final model as described200

in Sect. 2.3.2.

2.3.1 Area of applicability method

We adopt the area of applicability method from Meyer and Pebesma (2021). The method is based on considering the distance

of a prediction sample to training samples in the feature space. This concept is illustrated in Fig. 4, where it can be clearly seen

that the AQ-Bench dataset forms a cluster in the feature space, but that our mapping domain contains feature combinations that205

do not belong to this cluster. Predictions made on these feature combinations suffer from high uncertainty. Consequently, we

mark data points with a great distance to the training data cluster as ‘not predictable’.
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After we normalized the features, we scaled them accordingly to their global feature importance (Sect. 2.2.4) to increase their

respective relevance. We use the cross validation sets described in Sect. 2.2.3 to find a threshold distance for non-predictable

samples. In detail, we calculate the distance from every training data point to the closest data point in a different cross validation210

set. The threshold distance for ‘non-predictable’ data is the upper whisker of all the cross validation distances. Since the model

is trained on land surface data only, we also remove the oceans from the area of applicability. The result of this experiment is

shown in Sect. 3.2.1.

2.3.2 Modeling ozone fluctuations

Here we describe our error model for evaluating the uncertainty introduced by typical ozone biases in the produced map.215

Such biases may arise from measurement uncertainties, local geographic effects, or an "unusual" environment with respect to

precursor emission sources. We consider all of these effects as ozone measurement uncertainties although it would be more

precise to say that they are uncertainties in the determination of ozone concentrations at the scale of our grid boxes.

Quantification of these uncertainties is challenging, as we typically lack the necessary local information. We, therefore,

assume the local ozone values are subject to a Gaussian error of mean 0 ppb and variance 5 ppb (Schultz et al., 2017, Sect. 4).220

We randomly perturb a subset of the training ozone values with this Gaussian error and monitor resulting variances in the final

map. Assuming only one-quarter of the measurement values are biased, 25 % of the training ozone values are either increased

or decreased by random values in this Gaussian distribution. We use multiple realizations of this error model to perturb the

training data, each realization perturbing a different subset with different values. One example error model realization is shown

in Appendix C.225

We train on the randomly perturbed data, obtain a ‘perturbed model’, and then create ‘perturbed maps’. If the perturbations

of the resulting ozone maps are less or equal to the initial perturbations, the resulting uncertainty in the map is acceptable. If

completely different maps would be produced, this would point to a model lacking robustness. The process of perturbing, train-

ing, and comparing maps is repeated until the standard deviation of all perturbed maps converges. The error model converged

fully after 100 realizations (Appendix D). The result of this experiment is presented in Sect. 3.2.2.230

2.3.3 Propagating subgrid altitude variation through model

In contrast to perturbing the targets and retraining the machine learning model, here we sample inputs from a finer resolution

grid and propagate them through the existing trained model. For every grid cell of our final map with 0.1° resolution, we prop-

agate all ‘altitude’ values of the original finer resolution digital elevation model (DEM, resolution 1′, Appendix A) through our

random forest model while leaving the other variables unchanged. For each coarse 0.1° resolution grid cell we find 36 altitude235

values of the fine grid cells and can thus make 36 predictions. We monitor the deviation of these predictions from the reference

prediction in that cell. The results of these experiments are presented in Sect. 3.2.3.
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3 Results

The results of our explainable machine learning mapping workflow (Sect. 2.2, Table 2) are presented in Sect. 3.1. The impact

of uncertainties (Sect. 2.3, Table 3) are presented in Sect. 3.2. The final ozone map that is generated based on the knowledge240

gained from all experiments is presented in Sect. 3.3.

3.1 Explainable machine learning model

3.1.1 Selected hyperparameters and features

We choose the following standard hyperparameters for our random forest model: 100 trees are fit on bootstrapped versions

of the AQ-Bench dataset with a Mean Square Error (MSE) loss function and unlimited depth. The evaluation scores found245

to be insensitive to the choice of hyperparameters. Therefore, the standard hyperparameters are used to fit the model in all

experiments of this study.

Based on the forward feature selection (Sect. 2.2.2) the following variables are used to build the model:

– Climatic zone
– Absolute latitude250
– Altitude
– Relative altitude
– Water in 25 km area
– Forest in 25 km area
– Shrublands in 25 km area255
– Savannas in 25 km area
– Grasslands in 25 km area
– Permanent wetlands in 25 km area
– Croplands in 25 km area
– Rice production260
– NOx emissions
– NO2 column
– Population density
– Maximum population density in 5 km area
– Maximum population density 25 km area265
– Nightlight 1 km
– Nightlight in 5 km area
– Maximum nightlight in 25 km area

The following features are discarded because the validation R2 score decreases when they are used to train the model: ‘urban

and built-up in 25 km area’, ‘cropland / natural vegetation mosaic in 25 km area’, ‘snow and ice in 25 km area’, ‘barren or270

sparsely vegetated in 25 km area’, ‘wheat production’. A discussion of why these features are counterproductive follows in

Sect. 4.1.
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3.1.2 Spatial cross validation reveals limits in the model generalizability

The four-fold cross validation from Sect. 2.2.3 results in R2 values in the range of 0.58 to 0.64 and RMSEs in the range of

3.83 to 4.04 ppb (Table 4). These evaluation scores show that all models are useful despite the variance in evaluation scores.275

The mean R2 score is 0.61 and the mean RMSE is 3.97 ppb. Putting this RMSE value into perspective, 5 ppb is a conservative

estimate for the ozone measurement error (Schultz et al., 2017). It is also lower than the 6.40 ppb standard deviation of the

true ozone values of the training dataset (Fig. 1). Although the evaluation scores of all folds are in an acceptable range, the

evaluation scores depend on the data split to some extend.

If our model is validated on a different region than it has been trained on, we observe a drop of the R2 value by 0.13 to280

0.49 while the RMSE increases for two of the three training regions (Table 5). One reason for the change in evaluation scores

when training and validating in different world regions could be different feature combinations of the different world regions.

We ruled out this reason by inspecting the feature space (similar to Sect. 2.3.1, not shown). The only other possible reason for

the decrease in R2 is that the relationship between features and ozone is not the same in different world regions. Therefore,

the expected evaluation scores of our map vary not only with the feature combinations (as described in Sect. 2.3.1), but also285

spatially. We differentiate between the two issues and their influence on the model applicability in Sect. 3.2.1.

Table 4. Four-fold cross validation results.

Fold R2 RMSE [ppb]

1 0.64 3.83

2 0.58 4.03

3 0.61 4.04

4 0.61 3.97

∅ 0.61± 0.02 3.97± 0.08

Table 5. Cross validation on the world regions Europe (EUR), East Asia (EAS), and North America (NAM). We give the difference in

R2 values and RMSEs, when validating the model in another world region than the training region.

Training region Validation region R2 RMSE [ppb]

EUR + EAS EUR + EAS 0.57 3.54

NAM 0.34 5.01

diff. - 0.23 + 1.47

EAS + NAM EAS + NAM 0.52 3.76

EUR 0.39 4.64

diff. - 0.13 + 0.88

NAM + EUR NAM + EUR 0.63 3.92

EAS 0.14 3.78

diff. - 0.49 - 0.14

13



Absolute latitude

Relative altitude

Altitude

Nightlight in 5 km area

Forest in 25 km radius

Population density

Nightlight in 1 km area

Water in 25 km area

Max. population density (25 km)

NO2 column

Savannas in 25 km area

Croplands in 25 km area

Grasslands in 25 km area

NOx emissions

Climatic zone: warm/dry

Max. population density (5 km)

Global importance [%] SHAP value (impact on prediction) [ppb]

0 10 3020

low

high

Fe
at

ur
e 

va
lu

e

0.0 5.0 7.5 10.0 12.52.5-5.0 -2.5

Figure 5. SHAP summary plot. The global importances on the left side are calculated from the averaged sum of the absolute SHAP values.

The dots in the beeswarm plots on the right side show the SHAP values of single predictions. The color indicates the respective feature value.

This plot shows only features with more than 1 % global importance.

3.1.3 SHAP values quantify the influence of the features on the model results

SHAP was used to determine the feature importance of the random forest model as described in Sect. 2.2.4. Fig. 5 contains a

summary plot with the global feature importance (left side) and SHAP values of all features on the test set (right side). The

global importance of the features ‘absolute latitude’, ‘altitude’, ‘relative altitude’, and ‘nightlight in 5km area’ are highest with290

a contribution of at least 10 %. The remaining features have a weaker influence on the model output. E.g. the influence of the

‘climatic zone’ is often negligible. The local SHAP values in Fig. 5 reveal the contribution of features to the predictions. A

lower ‘absolute latitude’ value leads to an increased ozone value prediction. Likewise higher ‘altitude’ and ‘relative altitude’

increase predicted ozone values. High ‘nightlight in 5km area’ values lead to lower predicted ozone concentrations. These

tendencies are in line with domain knowledge on the atmospheric chemistry of ozone. Appendix E shows SHAP values of two295

individual predictions. We discuss the physical consistency of the model based on the SHAP values in Sect. 4.1.
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3.2 Evaluating the impact of uncertainties

3.2.1 Applicability and uncertainty of the model depends on both features and location

As described in Sect. 2.3.1, predictions of our model are valid if the feature combinations are similar to those of the training

dataset. Additionally, the results of the spatial cross validation (Sect. 3.1.2) have shown that the spatial proximity to the training300

locations has an influence on the model performance and uncertainty. Two cases were examined in this section: Firstly, the cross

validation sets which are close to each other (RMSE in the range of 4 ppb, as seen in Table 4), and secondly, the cross validation

on different world regions (RMSE values of up to 5 ppb, as seen in Table 5). In our uncertainty assessment, we therefore

combine findings from both the area of applicability (for matching features) and the spatial cross validation methods (for

spatial proximity). Analogously to the approach of the area of applicability (Sect. 3.2.1), we analyze the distances between305

measurement stations in the geographical space. To quantify spatial proximity, we calculate the mean distance of a measurement

station and its closest neighboring station in a different cross-validation set. Disregarding stations that are too far away from

the others, we identified the distance of ca. 182 km (upper whisker), within which we expect a comparable RMSE as shown in

Table 4. We assume a higher RMSE for locations that are more than 182 km away from their closest neighboring measurement

station. Fig. 6 shows the area of applicability of our model including this spatial distinction.310

The majority of the regions with good coverage of measurement stations (North America, Europe, and parts of East Asia)

are well predictable. In these regions, only some areas in the high north and high mountains are not predictable. Conversely,

large areas in South and Central America, Africa, far northern regions, and Oceania have feature combinations different from

the training data and therefore are not predictable. There are some regions in the Baltic area, South America, Africa, and South

Australia where feature combinations can be predicted by the model, but they are far away from the AQ-Bench stations. A315

broader discussion of the global applicability of our machine learning model follows in Sect. 4.3.

3.2.2 Uncertainty due to ozone fluctuations is within an acceptable range

The error model for ozone uncertainties is described in Sect. 2.3.2. The R2 values of the perturbed models varied between 0.50

and 0.58. Fig. 7 shows the resulting standard deviation in the mapped ozone. The assumed ozone fluctuations have a higher

impact in areas with sparse training data. We conclude that our error model does not tend to amplify the effects of perturbed320

training data. This means that the machine learning algorithm smoothes out noise during training. This is explained by the core

functioning of the random forest which uses bootstrapping during training.

Fig. 7 also shows that regions with poor spatial coverage by measurement stations (darker shade of turquoise in Fig. 6) are

more sensitive to noisy training data. Example regions are the patches in Greenland, Africa, Australia, and South America. This

is because the model relies its predictions on a few samples and is thus sensitive to perturbations of these few measurements.325
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and validated
Applicable, but
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Close to AQ-Bench
Station, but not
applicable
Other
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Figure 6. Area of applicability with restrictions in the feature space and spatial restrictions. The bright turquoise areas fulfill all prerequisites

to be predictable: they have similar features as the AQ-Bench dataset and they are close to stations for validation. The darker shade of

turquoise indicates similar predictions, but no proximity to stations for validation. Light grey areas indicate the proximity of a station, but no

applicability of the model. The locations of all measurement stations are plotted in white.
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Figure 7. Standard deviation of the ozone predictions under perturbations. This map was created by stacking the maps of 100 error model

realizations along the z axis and then calculating the grid point-wise standard deviation along the z axis.
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Figure 8. Results of propagating subgrid DEM variations through the model. (a) Spread of subgrid Digital elevation model data. (b) Spread

of ozone values.

3.2.3 Uncertainty through subgrid DEM variation is within an acceptable range

This method was described in Sect. 2.3.3. In most regions of the world, subgrid DEM variations around mean altitude are

below 50 m (Fig. 8 (a)), e.g., in the central and eastern United States and in Europe except for the Alps. There are regions with

higher variances such as the Rocky Mountains and their surroundings, the Alps, and large parts of Japan outside Tokyo. In

Figure 8 (b) it can be seen how these variations influence the predicted ozone values. In the flat regions, the variance is below330

0.5 ppb, and even in the high variance regions, the deviation is seldomly above 2 ppb. This means the model is robust against

these variances. Few exceptions are present at the border of the area of applicability (Sect. 3.2.1), e.g. in the Alps. But even

in these regions, the deviation is well below 5 ppb. A discussion of implications for general subgrid variances can be found in

Sect. 4.1.
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3.3 The final ozone map335

3.3.1 Production of the final map

All selected features listed in Sect. 3.1.1 are used to fit the final model. In contrast to the experiments in the previous sections,

we train the model on 80 % of the AQ-Bench data set and test it on the remaining 20 % of the independent test set. Fig. 2

shows the predictions on the test set vs. the true values. The R2 value of this model is 0.55 and the RMSE is 4.4 ppb. There is

a spread around the 1:1 line, furthermore, extremes are not captured as well as values closer to the mean. True values of less340

than 20 ppb or more than 40 ppb are predicted with high bias, which is expected since random forests tend to predict extremes

less accurately than values closer to the mean.

3.3.2 Visual analysis

The final map is shown in Fig.9 (data available under the DOI http://doi.org/10.23728/b2share.a05f33b5527f408a99faeaeea033fcdc).

Predictions are in a range between 9.4 and 56.5 ppb. There are some characteristics that are visible at first sight, e.g. higher345

values in mountain areas, like in the western US. The global importance of ‘absolute latitude’ shows through a latitudinal strat-

ification and a clear north-south gradient in Europe, the US and East Asia. Sometimes the borders of climatic zones are visible,

like in the north of North America, and across Asia. This shows that even if the climatic zones are not important globally, they

can be locally important. There are larger areas with low ozone variation in Greenland, Africa, and South America.

In Fig. 10, a detailed look at three selected areas is given, and the predictions are compared to the true values. In image (a), a350

uniform, low ozone concentration is predicted over the peninsula of Florida. Image (b) shows low ozone values in the Po valley,

a densely populated plane. Towards the mountains which surround the valley, higher values are predicted, and for the higher

mountains, no predictions can be made. Image (c) shows the city of Tokyo which is covered with ozone measurements and

where ozone values are relatively low. At the coasts of Japan, the values are lower. The spatial ozone patterns described here

can also be found in ozone maps generated by traditional chemical models such as the fusion products by DeLang et al. (2021).355

We discuss the prospects of global ozone mapping more thoroughly in Sect. 4.4.

4 Discussion

4.1 Robustness

Based on Hamon et al. (2020), we define robustness as follows: The model and map are considered robust if they do not change

substantially under noise or perturbations that could realistically occur. We define a 5 ppb change in RMSE score or predicted360

ozone values as significant (Schultz et al., 2017).

Methods to assess the robustness are part of both the explainable machine learning workflow (Table 2) and the uncertainty

assessments (Table 3). Regarding the robustness of the training process, the cross validation results in Table 4 show that

the model performance depended on the data split. This was already noted by Betancourt et al. (2021b) and is regarded as
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Figure 9. The final ozone map as produced in this study. (a) shows the ozone values, (b) shows the uncertainty estimates. The areas shown

in Fig. 10 are highlighted by white boxes.
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Figure 10. Map details with true values are given as white circles. (a) The Florida peninsula, US. (b) The Po Valley in northern Italy.

(c) Tokyo, Japan, and its surroundings.
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an inherent limitation of a noisy dataset. We tested the robustness regarding typical variances in the ozone and geospatial365

data. The results from Sect. 3.2.2 and Sect. 3.2.3 show that the produced ozone map is robust against these fluctuations. The

variances are never above the initial perturbations, and variances in the map do not exceed our limit of 5 ppb. Limits in the

robustness were only shown through variances above 3 ppb at the borders of the area of applicability, and in regions with sparse

training data (grey and dark turquoise areas in Fig. 7 and 8). This outcome shows that the issues of applicability (Sect. 4.3) and

robustness are interconnected. In areas where the model is applicable, it is also more robust and uncertainties are lower.370

In order to make the robustness assessment with respect to data feasible, we strongly reduced the dimensionality of our error

model by using expert knowledge. We conducted two experiments where we modify training data and model inputs (Sect. 2.3.2

and 2.3.3). These experimental setups were chosen because they are expected to generalize well. The combined robustness

experiments have shown that our produced maps are robust.

4.2 Scientific consistency375

We discuss the scientific consistency of our model by assessing the results of the explainable machine learning workflow (Ta-

ble 2). We interpret the selected features, their importance, and their influence on the model predictions. The features are

proxies to ozone processes, which makes it challenging to interpret the underlying chemical processes. Nevertheless, the con-

nections between the features can be discussed, if they are plausible and consistent with respect to our understanding of ozone

processes. This is a pure a posteriori approach, meaning we did not in any way enforce scientific consistency during the training380

process.

Regarding the global feature importance of SHAP (Fig. 5), it might, be counterintuitive that the model focuses more on

geographical features such as ‘absolute latitude’ and ‘altitude’ than chemical factors such as the ‘NO2 column’, and ‘NOx

emissions’. Geographic features are proxies for flow patterns and heat, not for ozone chemistry, which would be expected to

be more important. This contradiction is due to the fact that the model provides an as-is view of ozone concentration and is385

not process-oriented in any way. Many features such as ‘nightlight’ and ‘population density’ are correlated, so retraining the

model might swap dependence in the SHAP values as noted by Lundberg et al. (2020).

The beeswarm plot in Fig. 5 shows the physical consistency of our model. The effect of ‘absolute latitude’ on predictions is

consistent with known ozone formation processes, i.e. ozone production generally increases when more sunlight is available.

This is also evident in the latitudinally stratified ozone overview plots in global measurement-based studies such as TOAR health390

and TOAR vegetation (Fleming et al., 2018; Mills et al., 2018). Ozone is affected by meteorology (temperature, radiation) and

precursor emissions (Sect. 1). The fact that there is no continuous increase of ozone towards tropical latitudes shows that

the mapping model at least qualitatively captures the influence of low precursor emissions in the tropics. The importance

of ‘absolute latitude’ also indicates that the model can be improved by including temperature and radiation features from

meteorological data. High ‘relative altitude’ and ‘altitude’ both increase the predicted ozone. These relations are consistent395

with Chevalier et al. (2007). There are relatively important chemistry-related features. We see that high values of ‘nightlight in

5 km area’ reduce the predicted ozone. This is consistent with NO titration (Monks et al., 2015). Nightlights are a proxy for

human activity, generally in the context of fossil fuel combustion, which leads to elevated NOx concentrations. NO destroys
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ozone, and especially during the night time this leads to ozone levels close to zero ppb. High ‘forests in 25 km area’ values lead

to lower ozone predictions. This is plausible because there is little human activity in forested areas and thus no combustion-400

related precursor emissions occur. Quantification of either influence is not possible because, for example, it is unclear to what

extent the different forests emit volatile organic compounds which are also ozone precursors. A city with ‘nightlight in 5 km

area’ = 50 cannot be directly quantified in terms of precursor emissions either. It is also not expected that the machine learning

model learns the ozone related processes described above because it is not process based. Instead, it learns the effects of

processes if they are reflected in the training data.405

The forward feature selection (Sect. 2.2.2 and 3.1.1) can also be discussed in terms of plausibility. Features selected by this

method favor a generalizable model. Discarded features may help to characterize the locations, but their addition to the training

data does not lead to a more generalizable model. ‘Urban and built-up in 25 km area’ was not selected presumably because

urban areas are often localized. This feature is therefore not as meaningful as the variables ‘nightlight’ and ‘population density’,

which are also proxies for human activity, but are available at higher resolution. Similarly, the feature ‘cropland / natural410

vegetation mosaic in 25 km area’ was discarded because ozone is affected differently by croplands and natural vegetation.

Together with the large area considered, this feature becomes obsolete. We suspect the features ‘snow and ice in 25 km area’,

‘barren or sparsely vegetated in 25 km area’, and ‘wheat production’ did not contribute to the model generalizability because

they are simply not represented well in the training data. A feature may be an important proxy for ozone, but if the relationship

is not expressed in the training data, it cannot be learned by a machine learning model. This feature can become more important415

if other training locations are included. This shows that the placing of measurement locations is crucial.

4.3 Mapping the global domain

The model has to generalize to unseen locations for global mapping. Two prerequisites are: 1) The model must have seen

the feature combination during training. 2) The connection between features and the target, ozone, must be the same. The two

conditions are only fulfilled in a strictly constrained space, as shown in Fig. 6. We combined cross validation with an inspection420

of the feature space to ensure matching feature combinations. Then, based on the cross validation on different world regions,

we point out regions with sparse or no training data, where higher model errors are expected (Sect. 3.2.1) We also conducted

spatial cross validation with a shallow neural network (as in the baseline experiments of Betancourt et al. (2021b)). The neural

network had similar evaluation scores on the test set, but did not generalize to other world regions, even showing negative

R2 values when evaluated in other world regions. We decided to discard the neural network architecture, because our main425

goal is global generalizability.

We can confidently map Europe, large parts of the US and East Asia, where the majority of the measurement stations are

located. Those are industrialized countries in the northern hemisphere. The cross validation results (Sect. 3.1.2), the area of

applicability (Sect. 3.2.1), and expert knowledge confirm that uncertainties increase when a model trained on the AQ-Bench

dataset is applied to other world regions. However, the cross validation in connection with the area of applicability technique430

shows that the model can be used in other world regions with acceptable uncertainties. That is promising for future global

mapping approaches. One idea to solve these problems of different connections between features and ozone in different world
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regions is to train localized models, and apply them wherever possible. Localized models could not only yield more accurate

predictions but in connection with SHAP values (Sect. 2.2.4), they could also rule out the governing factors of ozone in the

respective regions and be easier to interpret.435

With regard to the spatial domain, we can also discuss the resolution. The model was trained on point data of the ‘absolute

latitude’, ‘altitude’, and ‘relative altitude’, and one could produce more fine-grained maps if the gridded data is present in

higher resolution. However, one may need to reconsider some assumptions made here in terms of regional representativity of

the measurements and the relation between geographic features and ozone on a different scale.

4.4 Prospects for ozone mapping440

We mapped average tropospheric ozone from the stations in the AQ-Bench dataset to a global domain. For this, we fused dif-

ferent auxiliary geospatial datasets and gridded data with machine learning. We used features that are known proxies for ozone

processes, and that were already proven to enable a prediction of ozone concentrations (Betancourt et al., 2021b). Our choice

of data and algorithms is well justified and transparent. Errors did not exceed 5 ppb, which is an acceptable uncertainty. The

R2 value of the final model is 0.55, which is a good value for properly validated mapping. The maps produced show known445

patterns of ozone such as lower levels in metropolitan areas and higher levels in mediterranean or mountainous regions. How-

ever extremes (Fig. 2) are predicted with higher bias. This can be considered as a general problem of machine learning (Guth

and Sapsis, 2019) but was also noted in other ozone modeling studies (Young et al., 2018).

For this first approach, we limited ourselves to the static mapping of aggregated mean ozone. An advantage of this approach

is that the model result is directly the ozone metric of interest (in this case average ozone). Since the AQ-Bench dataset contains450

other ozone metrics, they could be mapped as well. For example, vegetation- or health-related ozone metrics can be mapped

with the same workflow as described here. Another advantage is that we used a multitude of inputs that could not be used in a

traditional model because their connection to ozone is unknown. This means we exploit two benefits of machine learning: first,

obtaining a bias-free estimate of the target directly, and second, using a multitude of inputs with unknown direct impact on the

target.455

Our model is only valid for the training data period (2010-2014), and it is not suitable to predict ozone values in other years.

Our data product is a map that is aggregated in time. This could be a limitation as sometimes the data product of interest is

a seasonal aggregate or even maps of daily or hourly air pollutant concentrations. The use of meteorological data as static

or non-static inputs can be beneficial to further increase model performance and allow time-resolved mapping. We applied a

completely data-driven approach, relying heavily on geospatial data. The other side of the spectrum is DeLang et al. (2021),460

who fused chemical transport model output to observations without exploiting the connection to other features. A possible

direction to go from here is described by Irrgang et al. (2021), who propose the fusion of models and machine learning to

benefit from both methods.
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5 Conclusions

In this study, we developed a completely data-driven, machine learning-based, global mapping approach for tropospheric465

ozone. We mapped from the 5577 irregularly placed measurement stations of the AQ-Bench dataset (Betancourt et al., 2021b)

to a regular 0.1°× 0.1° grid. We used a multitude of geospatial datasets as input features. To our knowledge, this is the first

completely data-driven approach to global ozone mapping. We combined this mapping with an end-to-end approach for ex-

plainable machine learning and uncertainty estimation. This allowed us to assess the robustness, scientific consistency, and

global applicability of the model. We linked interpretation tools with domain knowledge to obtain application-specific ex-470

planations, which is in line with Roscher et al. (2020). The methods are interconnected, e.g. forward feature selection made

the model easier to interpret. Likewise, the area of applicability was shown to match the model’s robustness. We justified the

choice of tools and detailed how they provided us with the results to make a comprehensive global analysis. The combination

of explainable machine learning and uncertainty quantification makes the model and outputs trustworthy. Therefore, the map

we produced provides information on global ozone distribution and is a transparent and reliable data product.475

We explained the outcome and the model, which can lead to new scientific insights. Mapping studies like ours could also

contribute to studies like Sofen et al. (2016), that propose locations for new air quality measurement sites to extend the ob-

servation network. Here the inspection of the feature space helps to cover not only spatial world regions but also air quality

regimes and areas with diverse geographic characteristics. Building locations can also be proposed based on their contribution

to maximizing the area of applicability (Stadtler et al., 2022). The map as a data product can also be used to refine studies480

like TOAR (Fleming et al., 2018; Mills et al., 2018) because it enables analyzing locations with no measurement stations.

It would be beneficial to add time resolved input features to the training data to improve evaluation scores and increase the

temporal resolution of the map. Adding training data from regions like East Asia, or new data sources such as OpenAQ1 would

close the gaps in the global ozone map.

Code and data availability. The code which was used to generate the results published here is available under DOI http://doi.org/10.34730/485

af084443e1c444feb12d83a93a65fa33 under MIT License. The current version of the code is available under https://gitlab.jsc.fz-juelich.

de/esde/machine-learning/ozone-mapping (last access: 13 December 2021) under MIT License. The AQ-Bench dataset (Betancourt et al.,

2021b) is available under DOI http://doi.org/10.23728/b2share.30d42b5a87344e82855a486bf2123e9f. The gridded data is available under

DOI http://doi.org/10.23728/b2share.9e88bc269c4f4dbc95b3c3b7f3e8512c. The data products generated in this study, namely the ozone

map and the area of applicability are available under DOI http://doi.org/10.23728/b2share.a05f33b5527f408a99faeaeea033fcdc. All datasets490

are published under the CC-BY license.

1https://openaq.org/, last access 02 November 2021
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Appendix A: Technical details on the data

Table A1: Technical details on the data used in this work. For more information on the station location data, refer to Betancourt

et al. (2021b). Please note that ‘land use in 25 km area’ comprises all the different land cover features.

Table A1

Variable Data source and technical info Reference

Ozone average values Aggregated average ozone measurements of the stations in

the AQ-Bench dataset from the years 2010-2014. The

original data source is the database of the Tropospheric

Ozone Assessment Report (TOAR).

Betancourt et al. (2021b),

Schultz et al. (2017)

Climatic zone Twelve classes of the IPCC 2006 classification scheme for

default climate regions with a resolution of 5′. Stations were

attributed to the climatic zone in the respective grid cell. To

prepare the gridded field, downscaling to 0.1° resolution

was done by nearest neighbor interpolation.

https://esdac.jrc.ec.europa.eu/

projects/RenewableEnergy/,

accessed 23 Mar 2021

Geographic location The geographical location of the stations (longitude and

latitude) was reported by the data providers and quality

controlled by the TOAR database administrators. A gridded

field of 0.1° resolution was generated within this study.

Schultz et al. (2017)

Altitude The station altitude was reported by the data providers and

quality controlled by the TOAR database administrators.

The gridded field of 0.1° resolution was produced by linear

2D interpolation of the ETOPO 1 digital elevation model

with an original resolution of 1′.

Schultz et al. (2017),

Amante and Eakins (2009)

Relative altitude Derived at stations from the ETOPO 1 digital elevation

model and the station altitude. To generate a gridded field,

the relative altitude was determined for every pixel

from ETOPO 1 data.

Amante and Eakins (2009)

(continued on next page)
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(Table A1 continued from previous page)

Variable Data source Reference

Land cover in 25 km area Derived from yearly land cover type L3 from the MODIS

MD12C1 collection with an original resolution of 0.05°.

The year 2012 and the IGBP classification scheme with

17 classes were used. For the data at station locations, land

cover data in the area of 25 km around each station was

considered. Similarly, for the gridded fields, the 25 km area

around each pixel was considered.

https:

//ladsweb.modaps.eosdis.nasa.gov/

missions-and-measurements/

products/MCD12C1/,

accessed 23 Mar 2021

Wheat / rice production Annual wheat / rice production of the year 2000 according

to the Global Agro-Ecological Zones data, version 3 with an

original resolution of 5′. The stations were attributed with

data of the respective pixel. The gridded field of 0.1° was

produced by linear 2D interpolation.

www.fao.org/,

accessed 23 Mar 2021

NOx emissions Annual NOx emissions of the year 2010 from EDGAR

HTAP inventory V2 with an original resolution of 0.1°. The

stations were attributed with data of the respective pixel.

The gridded field of 0.1° was produced by linear 2D

interpolation.

Janssens-Maenhout et al. (2015)

NO2 full column 5-year average (2011-2015) tropospheric NO2 column value

from the Ozone Monitoring Instrument (OMI) on

NASA AURA with an original resolution of 0.1°. The

stations were attributed with data of the respective pixel.

Krotkov et al. (2016)

Population density GPWv3 population density of the year 2010 with an original

resolution of 2.5′. For the data at station locations, data were

aggregated in 1 km, 5 km, and 25 km around the station

location. Similarly, for the gridded fields, data were

aggregated in these radii around each pixel.

CIESIN (2005)

Nightlight Stable nighttime lights of the year 2013 extracted from the

NOAA DMSP product with an original resolution

of 0.925 km. For the data at station locations, data were

aggregated in 1 km, 5 km and 25 km around the station

location. Similarly, for the gridded fields, data were

aggregated in these radii around each pixel.

https://ngdc.noaa.gov/eog/dmsp/

downloadV4composites.html,

accessed 23 Mar 2021
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Appendix B: Plots of gridded fields used as inputs for mapping model495
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Figure B1. Gridded fields used for the final map production. Please note that the feature engineering was done as described in Sect. 2.2.2.
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Figure B2. Gridded fields used for the final map production. Please note that the feature engineering was done as described in Sect. 2.2.2.
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Appendix C: Example realization of error model

2
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Figure C1. Example realization of the error model for ozone uncertainties as described in Sect. 2.3.2. A random subset of 25 % of the ozone

values in the training set is perturbed with values sampled from a Gaussian distribution with 0 ppb mean and 5 ppb variance.
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Appendix D: Convergence of the error model
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Figure D1. This plot justifies the use of 100 error model realizations in Sect. 3.2.2. We have stacked n perturbed maps along the z - axis

and monitored the grid point wise standard deviation along the z - axis. The mean standard deviation over the whole map stabilizes after ca.

40 realizations. The maximum standard deviation exceeds 3.5 ppb for less than 20 realizations. This can be explained by the fact that some

grid points base their predictions on single, differently perturbed stations when the number of realizations is low. This effect smoothes out

after 20 realizations. Even though the maximum is not as stable as the mean (which is expected), convergence can be assumed after 100

realizations.

29



Appendix E: SHAP values of single predictions

Base value = 27.7 Prediction = 31.9 

22 2423 25 26 27 31302928 32

Prediction = 23.5 

Relative altitude = 9 m

Altitude = 67 m

Nightlight (5 km) = 45
(max=63)

Croplands (25 km)
= 80 %

Absolute latitude = 41°

Nightlight (5 km) = 13
(max=63)

Forest (25 km) = 0 %

Relative altitude = 11 m Water (25 km) = 0%(a)

Id = 8401, France(b)

Id = 11682, US O3 [ppb]

Absolute latitude = 48°

Positive impact on predicted ozone

Negative impact on predicted ozone

Population density
= 684 person / km2

Figure E1. SHAP force plots for two example low-bias (< 1 ppb) predictions at (a) a rural station in the US and (b) an urban station in

France, in addition to SHAP results from Sect. 3.1.3. Starting from the base value (27.7 ppb), a feature can increase or decrease the predicted

ozone (red and blue arrows). The final predictions (23.5 and 31.9 ppb respectively) result from adding all SHAP values to the base value. The

most contributing features are labeled and their values are given. The high ozone station (a) is located in a rural area in the US with many

agricultural fields and a smaller city nearby. The average ozone at this location is predicted to be high because the model uses the absence of

forests, the low ‘night light in 5 km area’ value, and the ‘absolute latitude’ as features leading to high ozone values. This is consistent with

Fig. 5 where it can be seen that a lower ‘absolute latitude’ often increases the ozone value. The French station (b) is an urban background

station surrounded by fields. The location is further in the north than the US station which leads to a strong decrease in the predicted ozone

value. The low ‘(relative) altitude’ further decreases the predicted ozone.
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