
Global, high-resolution mapping of tropospheric ozone –
explainable machine learning and impact of uncertainties
Clara Betancourt1, Timo T. Stomberg2, Ann-Kathrin Edrich3,5, Ankit Patnala1, Martin G. Schultz1,
Ribana Roscher2,4, Julia Kowalski5, and Scarlet Stadtler1

1Jülich Supercomputing Centre, Jülich Research Centre, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
2Institute of Geodesy and Geoinformation, University of Bonn, Nußallee 17Niebuhrstraße 1a, 531153 Bonn, Germany
3Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University,
Schinkelstrasse 2a, 5205662 Aachen, Germany
4Data Science in Earth Observation, Technical University of Munich, Lise-Meitner-Str. 9, 85521 Ottobrunn, Germany
5Methods for Model-based Development in Computational Engineering, RWTH Aachen University, Eilfschornsteinstr. 18,
52062 Aachen, Germany

Correspondence: Scarlet Stadtler (s.stadtler@fz-juelich.de)

Abstract. Tropospheric ozone is a toxic greenhouse gas with a highly variable spatial distribution which is challenging to map

on a global scale. Here we present a data-driven ozone mapping workflow generating a transparent and reliable product. We

map the global distribution of tropospheric ozone from sparse, irregularly placed measurement stations to a high-resolution

regular grid using machine learning methods. The produced map contains the average tropospheric ozone concentration of

the years 2010 - 2014 with a resolution of 0.1°× 0.1°. The machine learning model is trained on AQ-Bench, a precompiled5

benchmark dataset consisting of multi-year ground-based ozone measurements combined with an abundance of high-resolution

geospatial data.

Going beyond standard mapping methods, this work focuses on two key aspects to increase the integrity of the produced map.

Using explainable machine learning methods we ensure that the trained machine learning model is consistent with commonly

accepted knowledge about tropospheric ozone. To assess the impact of data and model uncertainties on our ozone map, we10

show that the machine learning model is robust against typical fluctuations in ozone values and geospatial data. By inspecting

the feature spaceinput features, we ensure that the model is only applied in regions where it is reliable.

We provide a rationale for the tools we use to conduct a thorough global analysis. The methods presented here can thus be

easily transferred to other mapping applications to ensure the transparency and reliability of the maps produced.

1 Introduction15

Tropospheric ozone is a toxic trace gas and a short-lived climate forcer (Gaudel et al., 2018). Contrary to stratospheric ozone

which protects humans and plants from ultraviolet radiation, tropospheric ozone causes substantial health impairments to

humans when it enters the lung and because it destroys the lung tissue (Fleming et al., 2018). It is also the cause of major crop

losses globally, as it damages plant cells and leads to reduced growth and seed production (Mills et al., 2018). Tropospheric

ozone is a secondary pollutant with no direct sources, but with formation cycles depending on photochemistry and precursor20
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emissions. It is typically formed downwind of precursor sources from traffic, industry, vegetation, and agriculture, under the

influence of solar radiation. Ozone patterns are also influenced by the local topography causing specific flow patterns (Monks

et al., 2015; Brasseur et al., 1999). Depending on the on-site conditions, ozone can be destroyed in a matter of minutes or have

a lifetime of several weeks with advection from source regions to remote areas (Wallace and Hobbs, 2006). The interrelation

of these factors of ozone formation, destruction, and transport is not fully understood (Schultz et al., 2017). This makes ozone25

both difficult to quantify and to control. See Brasseur et al. (1999) and Monks et al. (2015) for more details on the ozone life

cycle. Public authorities recognize ozone-related problems. To quantify ozone, tThey install air quality monitoring networks

to quantify ozone (Schultz et al., 2015, 2017). Furthermore, they enforce maximum exposure rules to mitigate ozone health

and vegetation impacts (e.g. European Union, 2008).

Tropospheric ozone research is currently seeing increased use of machine learning methods.Currently, there is increased30

use of machine learning methods in tropospheric ozone research. Such "intelligent" algorithms can learn nonlinear rela-

tionships of ozone processes and connect them to environmental conditions, even if their interrelations are not well understood

through process-oriented research. Kleinert et al. (2021) and Sayeed et al. (2021) used convolutional neural networks to fore-

cast ozone at several hundred measurement stations, based on meteorological and air quality data. Large training datasets

allowed them to train deep neural networks, resulting in a significant improvement over the first machine learning attempts to35

predictforecast ozone (Comrie, 1997; Cobourn et al., 2000). Machine learning is also extensively used to calibrate low-cost

ozone monitors that can then complement existing ozone monitoring networks (Schmitz et al., 2021; Wang et al., 2021). Fur-

thermore, costlycompute-intensive chemical reactions schemes for numerical ozone modeling in atmospheric models can be

emulated using machine learning (Keller et al., 2017; Keller and Evans, 2019). Ozone and ozone precursor datasets which can

beare used as training data for machine learning models are being increasingly made available as FAIR (Wilkinson et al., 2016)40

and open data. One of these datasets is AQ-Bench (‘air quality benchmark dataset,’ Betancourt et al., 2021b), for example, is

a dataset for machine learning on global ozone metrics which also and serves as training data for this mapping study.

We refer to mapping as a data-driven method for spatial predictions of environmental target variables. For mapping, a model

is fitted to observations of the target variable at a number of measurement sites, which might even be sparse and of irreg-

ularly placementd. To fit the model, eEnvironmental features are used which areas proxies for the target variable to fit the45

model. A map of the target variable is produced by applying the model to the spatially continuous features in the mapping

domain. The history of such mapping methods in environmental applications starts with the identification of e.g. regional

road salt contamination and traffic-related air pollution inMapping for environmental applications was performed since the

1990s (Mattson and Godfrey, 1994; Briggs et al., 1997). For air pollution, iIt was deployed for air pollution as an alternative

toimprovement over spatial interpolation and dispersion modeling which suffer from performance issues due to sparse mea-50

surements, and a lack of detailed source description (Briggs et al., 1997). In their 2008 review article, Hoek et al.Hoek et al.

(2008) describe these early mapping studies as "linear models with little attention to mapping outside the study area". This has

changed dramatically as nowadays the simple linear regression of the features is replaced byIn contrast, modern nonlinear

machine learning algorithms which are often trained on thousands of samples for mapping (Petermann et al., 2021; Heuvelink

et al., 2020). Mapping was shown to outperform other geostatistical methods such as Kriging in sSeveral studies (e.g. Li et al.,55
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2019; Ren et al., 2020), have shown that mapping using machine learning methods is superior to other geostatistical

methods such as Kriging because it can capture nonlinear relationships and makes ideal use of environmental features

by exploiting similarities between distant sites. and mapping domains are extendedIn contrast to traditional interpolation

techniques, mapping allows to extend the domain to the global scale, because it can predict the variable of interest based

on environmental features, even in regions without measurements (Lary et al., 2014; Bastin et al., 2019; Hoogen et al.,60

2019). More rRecently, it is questioned whether machine learning is really themethods are the most suitable method to "map

the world" (Meyer, 4 Mar 2020): SMeyer et al. (2018) and Ploton et al. (2020) point out that some studies may be overconfi-

dent in their mapping results because they use inappropriate validation strategiesthey validate their maps on data that is not

statistically independent from the training data (Meyer et al., 2018; Meyer et al., 2020). This occurs when a random data

split is used on data with spatio-temporal (auto)correlations. Doubts also ariseThere are also concerns when the mapping65

models are applied to areas that have completely different properties from the measurement locations (Meyer and Pebesma,

2021). A model trained on certain input feature combinations can only be applied to similar feature combinations. Fur-

thermore, uncertainty estimates of the produced maps are particularly important as they are often used as a basis for further

research. The new approaches combined in this study improve uncertainty issues, ensure explainability and applicability, and

allow for a robust and consistent analysis of the machine learning results.70

In this study, we produce the first fully data-driven global map of tropospheric ozone, aggregated in time over the years

2010-2014. This study builds upon Betancourt et al. (2021b) who proved that ozone metrics can be predicted using static

geospatial data. We do not only provide the map as a product, but alsoand combine it with uncertainty estimates and ex-

planations to ensure the trustworthiness of our results. We justify the choice of methods and clarify why they are necessary

for a thorough global analysis. Sect. 2 contains a description of the data and machine learning methods, including explain-75

able machine learning and uncertainty estimation. Sect. 3 contains the results, which are discussed in Sect. 4. We conclude in

Sect. 5.

2 Data and methods

2.1 Data description

Mapping with machine learning models requires two datasets: a dataset for training, testing, and validating the model, which80

contains features and targets at the measurement sites, and a dataset for prediction, which contains only the features on a regular

grid. In the followingIn this section, we present the datasets used in this study. Additional tTechnical details on these data and

their sources are given in Appendix A.

2.1.1 AQ-Bench dataset

We fit our machine learning model on the AQ-Bench dataset (‘air quality benchmark dataset,’ Betancourt et al., 2021b). The85

AQ-Bench dataset is a machine learning benchmark dataset that was designedallows to relate ozone statistics at air quality
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Figure 1. Average ozone valuesstatistic of the AQ-Bench dataset. The values at 5577 measurement stations are aggregated over the

years 2010 - 2014. (a) Values at measurement stations on a map projection. (b) Histogram and summary statistics.

measurement stations to easy-access geospatial data. It contains aggregated ozone statistics of the years 2010-2014 at 5577 sta-

tions all overaround the globe, compiled from the database of the Tropospheric Ozone Assessment report (TOAR, Schultz

et al., 2017). The AQ-Bench dataset considers ozone concentrations on a climatological time scale instead of day-to-day

air quality data. The scope of this dataset is to discover purely spatial relations. Machine learning models trained on this90

dataset will output aggregated statistics over the years 2010 - 2014, and will not be able to capture temporal variances.

This is beneficial if the required final data products are also aggregated statistics. The bulkmajority of the stations is

located in North America, Europe, and East Asia. The dataset contains different kinds of ozone statistics such as percentiles or

health-related metrics. Of these statistics, tThis study solely focuses on the average ozone statistic as target (Fig. 1).

The features in the AQ-Bench dataset characterize the measurement site and are proxies for ozone formation, destruction,95

and transport processes. For example, the ‘altitude’ and ‘relative altitude’ of the station are important proxies for local flow

patterns and ozone sinks. Other features are ‘pPopulation density’ in different radii around every station, whichare proxies for

human activity and thus ozone precursor emissions. ‘Latitude’ is a proxy for ozone formation through photochemistry, as

radiation and heat generally increase towards the equator. The landcover variables are proxies for precursor emissions

and deposition. The full list of features and which ozone processes they are related totheir relation to ozone processes are100

documented by Betancourt et al. (2021b). Fig. 1 shows predictions of a machine learning model on the test set of AQ-

Bench. Table 1 lists allThe features we choose as candidates for this mappingused in this study are listed in Table 1. Features

that are only available at station locations and not in gridded format are excluded because they cannot be used for mapping.

With respect to geographical coordinates, only ‘latitude’ is used, which is a proxy for ozone formation through photochemistry.

‘Longitude’ is not a proxy for ozone formation.105

2.1.2 Gridded data

To map the target average ozone, fFeatures are needed on a regular grid (i.e. as raster data) over the entire mapping domain

to map the target average ozone. Most of these gridded data are derived from the same original geospatial datasets as the
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Figure 2. Predicted ozone values versus measurement values of the test set of the AQ-Bench dataset. See Sect. 3.3.1 for the specifications

of the used machine learning model. There is a spread around the 1:1 line, furthermore, extremes are not captured as well as values closer

to the mean.

features of the AQ-Bench dataset. The original gridded data used here (Appendix A) has a resolution of 0.1°×0.1° or finer.

Since our target resolution is 0.1°×0.1°, the gridded data are downscaled to that resolution if the original resolution is finer. The110

‘land cover’, ‘population’, and ‘light pollution’ features of the AQ-Bench dataset are not point data at the station, but spatial

aggregates in a certain radius around the station (see Table 1). To prepare gridded fields of these features, the area around

each individual grid point is considered, and the required radius aggregation is written to that grid point. The gridded dataset

is available under the DOI http://doi.org/10.23728/b2share.9e88bc269c4f4dbc95b3c3b7f3e8512c. See Appendix A for details

on the original data sources.115

Table 1: Features candidates selected from the AQ-Bench dataset.

fFeature Unit

General Climatic zone -

Latitude deg

Altitude m

Relative altitude m

Land cover Water in 25 km area %

Evergreen needle leaf forest in 25 km area %

Evergreen broadleaf forest in 25 km area %

Deciduous needle leaf forest in 25 km area %

(continued on next page)
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(Table 1 continued from previous page)

Feature Unit

Deciduous broadleaf forest in 25 km area %

Mixed forest in 25 km area %

Closed shrublands in 25 km area %

Open shrublands in 25 km area %

Woody savannas in 25 km area %

Savannas in 25 km area %

Grasslands in 25 km area %

Permanent wetlands in 25 km area %

Croplands in 25 km area %

Urban and built-up in 25 km area %

Cropland / natural vegetation mosaic in 25 km area %

Snow and ice in 25 km area %

Barren or sparsely vegetated in 25 km area %

Agriculture Wheat production 1000 tons y−1

Rice production 1000 tons y−1

Ozone precursors NOx emissions g m−2 y−1

NO2 column 105 molec cm−2

Population Population density person km−2

Maximum population density in 5 km area person km−2

Maximum population density 25 km area person km−2

Light pollution Nightlight 1 km brightness index

Nightlight in 5 km area brightness index

Maximum nightlight in 25 km area brightness index

2.2 Explainable machine learning workflow

We apply a standard mapping workflow and extend it with explainable machine learning methods as described in the followingthis

section. Together with the uncertainty assessment methods described in Sect. 2.3, they allow for a thorough analysis of theour

machine learning model. A random forest (Breiman, 2001) is fitted on the AQ-Bench dataset to outputpredict average ozone120

at the corresponding measurement stations for given features. A random forest is an ensemble of regression trees that is cre-

ated by bootstrapping the training dataset several times to increase generalizability. We choose random forest as a machine

learning algorithm because tree-based models are the state of the art for structured data (Lundberg et al., 2020). Random forest

was also shown to outperform linear regression and a shallow neural network in predicting average ozone on the AQ-Bench
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dataset (Betancourt et al., 2021b). In addition, this algorithm has been proven to be the most suitable for mapping in several125

studies (Petermann et al., 2021; Nussbaum et al., 2018; Ren et al., 2020). We use the python machine learning framework

SciKit-learn (Pedregosa et al., 2011). We automate the hyperparameter search with the python package for machine learning

and hyperactive (Blanke, 2021) for hyperparameter tuning.

A proper validation strategy is crucial for spatial prediction models because both environmental conditions and target vari-

ables are often correlated in space. When tested on spatially correlated and thus statistically dependent samples, mapping130

results may be overconfident (Meyer et al., 2018; Ploton et al., 2020). We use the independent spatial data split provided

with the AQ-Bench dataset to avoid this overconfidencevalidate spatial generalizability. Details on our validation strategy

are given in Sect. 2.2.1. After training and validation, the model is applied point-wise to the gridded data with a resolution

of 0.1°× 0.1° to produce the final ozone map. As an extension of theis standard mapping workflow described in Sect. 1, we

perform experiments to increase interpretability, test robustness, and explain the model. The extended workflow is summarized135

in Table 2 and further justified in the following.

Table 2: Machine learning experiments as an addition to the standard mapping method. For details on the methods, please

seerefer to the given sections.

Sect. Method Goal

2.2.2 Feature engineering Make features easier to interpret

Forward feature selection Remove counterproductive features which favor overfitting

2.2.3 Spatial cross validation Check model spatial robustness

Cross validation on world regions Evaluate model generalizability

2.2.4 Calculate SHAP values Explain model predictions

The use of redundant features in mapping applications can favor spatial overfitting and even cause the machine learning

model to learn properties of individual locations. We thus remove counterproductive features by forward feature selection as

proposed by Meyer et al. (2018). Additionally, we apply basic feature engineering to increase the interpretability of the model.140

Details on feature engineering and feature selection are described in Sect. 2.2.2.

In order to make our mapping model trustworthy, we need to verify its robustness and ability to generalize to previously

unseen locations, but alsoand to explore the limits of its predictive capabilities. Noise in the AQ-Bench dataset might causes

problems if the model is not robust. Additionally, limited availability of ozone measurements in regions like Central and South

East Asia, Central and South America, and Africa is expected to poses a problem as it is unclear whether our model will145

generalize to these regions. Environmental factors and their interaction with ozone might be highly variable, especially over a

large domain such as the entire globe. Because of that, our model can have high evaluation scores when tested on the world

regions with many air quality measurement stations (Europe, North America, East Asia, see Fig. 1) but might not necessarily

be as reliable in other regions. To tackle the issues of robustness and generalizability we develop a spatial cross validation
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strategy in Sect. 2.2.3.We address the issues of robustness and generalizability using the spatial cross validation strategy150

described in Sect. 2.2.3.

Finally, weWe also aim to explain how the model arrives at its predictions, and to check if it is consistentconsistency with

common ozone process understanding. For that, we use by using SHAP (SHapley Additive exPlanations, Lundberg and Lee,

2017), a post-hoc explainable machine learning method. It is a game-theoretic approach based on Shapley values (Shapley,

1953). In game theory, Shapely values provide a way of fairly distributing the outcome of a game among the ‘players’, the155

contributors to the game. For our random forest, they provide a means to identifySHAP identifies the importance of the

individual features to a model prediction. We describe our SHAP implementation in (Sect. 2.2.4).

2.2.1 Evaluation scores

We rely on the independent 60 % – 20 % – 20 % data split of AQ-Bench as provided by Betancourt et al. (2021b). Here, stations

with a distance of more than 50 km are considered independent of each other. 60 % of the AQ-Bench dataset is used for training,160

and 20 % for validation. The remaining 20 % are only used for testing the final model that is used to generate the map. The

evaluation score is the coefficient of determination R2,

R2 = 1−
∑M

m=1(ym − ŷm)2∑M
m=1(ym −⟨y⟩)2

with ⟨y⟩= 1

M

M∑
m=1

ym (1)

where m denotes a sample index, M the total number of samples, ŷm a predicted target value, and ym a reference target value.

R2 measures the proportion of variance in the output values that the model predicts. Thus, a larger R2 represents a better model165

and the largest possible value is 1, which is equal to 100 %. To provide an additional evaluation score that directly indicates the

expected error of the predicted ozone levels, wWe also evaluate the root mean square error (RMSE) in ppb:

RMSE =

√√√√ M∑
m=1

(ym − ŷm)2

M
(2)

2.2.2 Feature engineering and feature selection

We perform bBasic feature engineering is performed to improve the interpretability of theour model. Different types of170

savanna, shrublands, and forests are given individually in AQ-Bench (see Table 1). We merge them into ‘savanna’, ‘forest’,

and ‘shrubland’ because a high number of features with similar properties would make the model interpretation more difficult.

Instead of ‘latitude’, we train on the ‘absolute latitude’, since radiation and temperature decrease when moving away from the

equator, regardless of whether one moves south or north. The feature ‘absolute latitude’ thus has a direct meaning in regard to

increased ozone formation favored through high radiation or temperature. Compared to experiments performed without feature175

engineering, we did not see any increasechange in evaluation scores on the validation set (not shown).

Our feature selection method follows We use the forward feature selection method for spatial prediction models

by Meyer et al. (2018), who propose to eliminate counterproductive features in spatial prediction models by forward feature

selection. The model is initially trained on all possible 2-feature combinationspairs. The combinationpair with the highest
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Figure 3. Data splits for the spatial cross validation. (a) Station clusters are randomly assigned to four cross validation (CV) folds. (b) The

data is divided by the world regions North America (NAM), Europe (EUR), and East Asia (EAS).

evaluation score on the validation set is kept. The model is then trained on each remaining feature along with the already180

selected features. The additional feature with the best evaluation score is appended to the existing list of features. This iterative

approach is continued until the R2 value drops, which indicates that a feature favorsleads to overfitting. The final selected

features are presented in Sect. 3.1.1.

2.2.3 Spatial cross validation

To prove a machine learning models’ robustness, cWe apply cross validation can be applied to prove the robustness of our185

model. We reserve 20 % of the AQ-Bench dataset for testing the final model, relying on the independent split of Betancourt et al. (2021b).

We split the remaining 80 %test and training set into four independent cross validation folds of 20 % each. Like Betancourt

et al. (2021b), we assume that air quality measurement stations with a distance of at least 50 km are independent of each

other. We, therefore, produce the cross validation folds with a two-step approach. First, we cluster the data based on the spatial

location of the measurement sites using the density-based clustering algorithm DBSCAN (Ester et al., 1996). The maximum190

distance between clusters is set to 50 km so stations closer than that distance are assigned to the same cluster. Small clusters

that result are randomly assigned ourto the cross validation folds. In athe second step, larger clusters (n > 50) are split again

with KMeans clustering (Duda et al., 2001) to ensure the same statistical distribution of all cross validation folds. For this,

we use the KMeans clustering algorithm (Duda et al., 2001). The resulting smaller clusters are again randomly assigned to the

cross validation folds. Fig. 3 (a) shows this data split.195

To evaluate the generalizability of our predictions to world regions with few measurements, wWe extend our spatial cross

validation experiment to evaluate the generalizability of our predictions to world regions with few measurements. Here

we divide the data byinto the three world regions North America, Europe, and East Asia (Fig. 3 (b)). Most measurement

sites are located either in North America, Europe, or East Asia, and we only consider stations in these world regions for this

experiment. A random forest is fitted and evaluated on two of the three regions and also evaluated on the third region for200

comparison. For example, it is fitted and evaluated on data of Europe and North America and additionally evaluated in East
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Asia. The difference in the resulting evaluation scores shows the spatial generalizability of the model. The results of the spatial

cross validation experiments described in this section are presented in Sect. 3.1.2.

2.2.4 Shapley Additive Explanations (SHAP)

SHapley Additive exPlanations (SHAP) Lundberg and Lee (2017)(SHAP, Lundberg and Lee, 2017) provide detailed expla-205

nations for individual predictions by quantifying how each feature contributes to the result. The contribution refers to the

average model output (or base value) over the training dataset. In other words, this means that a: A feature with the SHAP

value x causes the model to predict x more than the average prediction or base value (over the training set). To calculate

SHAP for our data and model, we use the Python package SHAP provided by Lundberg (2021). The package contains

a TreeSHAP module (Lundberg et al., 12 Feb 2018), which has been specially tailored to tree-based models. It, therefore,210

provides an efficient and accurate approach for our random forest model. We use the TreeShap module (Lundberg et al., 12

Feb 2018) of the Python packacke SHAP (Lundberg and Lee, 2017) to calculate SHAP values. Global feature importances

are obtained by adding up all local contributions to the predictions. Features with high absolute contributions are considered

more important. The local and global SHAP feature contributions aid us in checking for the scientific consistency of the model

output. The SHAP values of our model are presented in Sect. 3.1.3.215

2.3 Methods to assess the impact of uncertainties

Uncertainty assessment increases the trustworthiness of our machine learning approach and final ozone map. In general, the

predictions of machine learning models have two kinds of uncertainties (Gawlikowski et al., 7 Jul 2021): First, model un-

certainty, which results from the trained machine learning model itself, and second, data uncertainty which stems from the

uncertainty inherent in the data. It is common to treat these uncertainties separately. Developing an uncertainty assessment220

strategy for our mapping approach is challenging because different uncertainties arise at different stages of the mapping pro-

cess. Looking at it closely, eEvery ozone measurement, every preprocessing step, and every model prediction is a potential

source of error. It would be infeasible to investigate the impacts of each and every error. We, therefore, identify the most im-

portant error sources and analyze the uncertainty induced in our produced map only for these. The decision on which aspects

to analyze specifically is based on expert knowledge and on the results of our machine learning experiments, i.e., robustness225

analysis (Sect. 2.2.3) and SHAP values (Sect. 2.2.4). We develop a formalized approach which is summarized in Table 3 and

further elaborated in the following.

Table 3: Uncertainty assessment for our mapping method. For details on the methods, please see refer to the given sections.

Sect. Method Goal

2.3.1 Define area of applicability Ensure the model is only applied where it is reliable

2.3.2 Modeling of ozone fluctuations Evaluate the impact of ozone fluctuations on produced map

(continued on next page)

10



(Table 3 continued from previous page)

Sect. Method Goal

2.3.3 Propagate subgrid altitude variation through model Evaluate uncertainty introduced by altitude variation

The model error is caused by the uncertainty of the trainable parameters of a machine learningthe model. Uncertainties in the

model canIt becomes visible, for example, when different model results are obtained if the model is initialized with different230

random seeds before training (as for example in Petermann et al., 2021). To rule out this training instability, we re-trained

our models several times with different random seeds and monitored the results. We have seenfound negligible variations and

thus rule out this kind of uncertainty (not shown). Apart from uncertainty through training instability, the model uncertainty

is usually also high for predictions in areas of the feature space where training data is sparse (Lee et al., 26 Nov 2017; Meyer

and Pebesma, 2021). For example, a model that was not trained on data from very high mountains or deserts is not expected235

to produce reliable results in areas with these characteristics. For this reason, wWe apply the concept of ‘area of applicability’

by Meyer and Pebesma (2021) to limit our mapping to regions where our model is expected to produce reliable results. The

details are described in Sect. 2.3.1.

Of the data errors, the error caused by tThe target variable ‘average ozone’ is the first choice for assessment of data errors.

Fluctuations and random measurement errors introduce uncertainty into the ozone measurements. We evaluate the uncertainty240

causedintroduced by these influences in the map using a simple error model. To see the influence of ozone fluctuations on

the final map, the error model is used to perturb the training data – and we can, to check how the final map changes when the

model is trained on perturbed data instead of original data. The error model is described in Sect. 2.3.2.

Additional data uncertainty stems from the features. For example, geospatial data derived from satellite products are sensitive

to retrieval errors. Based on the sources and documentation of our geospatial data (Appendix A), we expect such errors to have245

a small impact in this study. However, we want to take a closer look at subgrid features in the geospatial data, and how they

affect the model resultswe inspect the subgrid features in the geospatial data and their effect on the model results.. We

limit ourselves to the ‘altitude’ because our SHAP analysis (Sect. 3.1.3) has shown that it is the most important feature besides

‘latitude’ which does not have critical subgrid variations. Subgrid variations of the altitude might influence our final map,

especially if a feature like a cliff or a high mountain is present in the respective grid cell. We evaluate the influence of subgrid250

variations in heightaltitude on the final map by propagating higher resolution altitudes through the final model as described in

Sect. 2.3.2.

2.3.1 Area of applicability method

We adopted the area of applicability method from Meyer and Pebesma (2021), and we refer to that study for a detailed

derivation. The method is based on considering the distance of a prediction sample to training samples in the multidimensional255

feature space. This concept is illustrated in Fig. 4, where it can be clearly seen that the AQ-Bench dataset forms a cluster in the

feature space, but that our mapping domain contains feature combinations that do not belong to this cluster. Predictions made
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Figure 4. Principle of the area of applicability. The plot displays the distribution of all AQ-Bench samples along the three most important

feature axes ‘absolute latitude’, ‘altitude’, and ‘relative altitude’. It is clearly visible that the AQ-Bench samples form a cluster, and that some

feature combinations in the gridded data are far away from thatthis cluster.

on these feature combinations suffer from high uncertainty. Consequently, we use the area of applicability method to flagmark

data points with a great distance to the training data cluster as ‘not predictable’.

The features are first normalized to treat differences in all features equally. Second, the features are scaled according to the260

feature importance (Sect. 2.2.4) to make distances of important features more relevant. After we normalized the features, we

scaled them accordingly to their global feature importance (Sect. 2.2.4) to increase their respective relevance. For this

importance scaling, we reuse the global feature importances as provided by SHAP (Sect. 3.1.3). To find a threshold distance

for non-predictable samples, we rely again on our We use the cross validation sets described in Sect. 2.2.3 to find a threshold

distance for non-predictable samples. In more detail, we considercalculate the distance from every training data point to the265

closest data point in a different cross validation set. The threshold distance for ‘non-predictable’ data is the upper whisker of

all the cross validation distances. Since the model is trained on land surface data only, we also remove the oceans from the area

of applicability. The result of this experiment is shown in Sect. 3.2.1.

2.3.2 Modeling ozone fluctuations

Here we describe our error model for evaluating the uncertainty introduced by typical ozone biases in the produced maps.270

Such biases may arise from measurement uncertainties, local geographic effects, or an "unusual" environment with respect to

precursor emission sources. We consider all of these effects as ozone measurement uncertainties although it would be more

precise to say that they are uncertainties in the determination of ozone concentrations at the scale of our grid boxes.
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Figure 5. Example realization of the error model for ozone uncertainties. A random subset of 25 % of the ozone values in the training set is

perturbed with values sampled from a Gaussian distribution with 0 ppb mean and 5 ppb variance.

Quantification of these uncertainties is challenging, as we typically lack the necessary local information. Here, weWe, there-

fore, assume the local ozone values to beare subject to a Gaussian error withof mean 0 ppb and variance 5 ppb as suggested275

by the discussion on ozone data errors in Schultz et al. (2017), Sect. 4 (Schultz et al., 2017, Sect. 4). The principle of the

error model is toWe randomly perturb a subset of the training ozone values according to typical uncertainties of ozone

measurementswith this Gaussian error and to monitor resulting variances in the final map. Assuming only one-quarter of

the measurement values are biased, a random subset consisting of 25 % of the training ozone values isare either increased or

decreased by random values sampled from a Gaussian distribution with 0 ppb mean and 5 ppb variancein this Gaussian dis-280

tribution. We use multiple realizations of this error model to perturb the training data, each realization perturbing a different

subset with different values. One example error model realization is shown in Fig. C1Appendix C.

The principle of propagating the ozone error and to analyze its impact on the resulting map is then toWe train on the randomly

perturbed data, obtain a ‘perturbed model’, and then create ‘perturbed maps’. If the perturbations of the resulting ozone maps

are less or equal to the initial perturbations, the resulting uncertainty in the map is considered acceptable. If completely different285

maps would be produced, this would point to a model lacking robustness. The process of perturbing, training, and comparing

maps is repeated until the standard deviation of all perturbed maps converges. For the configuration considered in this study,

tThe error model converged fully after 100 realizations, see Appendix D for details and further justification (Appendix D).

The result of this experiment is presented in Sect. 3.2.2.

2.3.3 Propagating subgrid altitude variation through model290

In contrast to perturbing the targets and retraining the machine learning model, here we sample inputs from a finer resolution

grid and propagate them through the existing fittedtrained model. In more detail, fFor every grid cell of our final map with

0.1° resolution, we propagate all ‘altitude’ values of the original finer resolution digital elevation model (DEM, resolution 1′,
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see Appendix A) through our random forest model while leaving the other variables unchanged. For each coarse 0.1° resolution

grid cell we find 36 altitude values of the fine grid cells and can thus make 36 predictions. We monitor the deviation of these295

predictions from the reference prediction in that cell. The results of these experiments are presented in Sect. 3.2.3.

3 Results

The results of our explainable machine learning mapping workflow (Sect. 2.2, Table 2) are presented in Sect. 3.1. The impact

of uncertainties (Sect. 2.3, Table 3) are presented in Sect. 3.2. The final ozone map that is generated based on the knowledge

gained from all experiments is presented in Sect. 3.3.300

3.1 Explainable machine learning model

3.1.1 Selected hyperparameters and features

We choose the following standard hyperparameters for our random forest model: 100 trees are fitted on bootstrapped versions

of the AQ-Bench dataset with a Mean Square Error (MSE) loss function and unlimited depth. The evaluation scores of our

random forest proved not to be sensitivefound to be insensitive to the choice of hyperparameters (not shown). Therefore, the305

standard hyperparameters are used to fit the model in all experiments of this study.

Based on the forward feature selection (Sect. 2.2.2) the following variables are used to build the model:

– Climatic zone
– Absolute latitude
– Altitude310
– Relative altitude
– Water in 25 km area
– Forest in 25 km area
– Shrublands in 25 km area
– Savannas in 25 km area315
– Grasslands in 25 km area
– Permanent wetlands in 25 km area
– Croplands in 25 km area
– Rice production
– NOx emissions320
– NO2 column
– Population density
– Maximum population density in 5 km area
– Maximum population density 25 km area
– Nightlight 1 km325
– Nightlight in 5 km area
– Maximum nightlight in 25 km area

The following features are discarded because the validation R2 score decreases when they are addedused to train the model:

‘Uurban and built-up in 25 km area’, ‘cropland / natural vegetation mosaic in 25 km area’, ‘snow and ice in 25 km area’, ‘barren

or sparsely vegetated in 25 km area’, ‘wheat production’. A discussion of why these features might beare counterproductive330

follows in Sect. 4.1.
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3.1.2 Spatial cross validation reveals limits in the model generalizability

The four-fold cross validation from Sect. 2.2.3 results in R2 values in the range of 0.58 to 0.64 and RMSEs in the range of

3.83 to 4.04 ppb (Table 4). These evaluation scores show that all models are useful despite the spreadvariance in evaluation

scores. On average the models explain 61 % of the variance in ozone values. The mean R2 score is 0.61 and the mean RMSE335

is 3.97 ppb. To putPutting this RMSE value into perspective, 5 ppb is a conservative estimate for the ozone measurement

error (Schultz et al., 2017). It is also lower than the 6.40 ppb standard deviation of the true ozone values of the training

dataset (Fig. 1). Although the evaluation scores of all folds are in an acceptable range, the standard deviation of 0.08 ppb in

the RMSEs shows that evaluation scores depend to some extent on the data split to some extend.

Concerning the spatial cross validation on different world regions, the R2 value drops between 0.13 and 0.49 when training340

and validating in different world regions (Table 5). The RMSEs increase when training and validating in different world regions

with the exception of the East Asia test case where the RMSE barely changes.If our model is validated on a different region

than it has been trained on, we observe a drop of the R2 value by 0.13 to 0.49 while the RMSE increases for two of

the three training regions (Table 5). Regarding the evaluation scores, East Asia is a special case because the ozone value

distribution is rather narrow there (not shown). This explains the low R2 value and the acceptable RMSE. One reason for345

the change in evaluation scores when training and testingvalidating in different world regions could be very different feature

combinations of the different world regions. We have ruled out this reason by inspecting the feature space (similar to Sect. 2.3.1,

not shown). The only other possible reason for the decrease in R2 is that the relationship between features and ozone is not

the same in different world regions. Therefore, the expected evaluation scores of our map vary not only with the feature

combinations (as described in Sect. 2.3.1), but also spatially. We differentiate between the two issues and their influence on the350

model applicability in Sect. 3.2.1 and discuss them further in Sect. 4.3.

Table 4. Four-fold cross validation results.

Fold R2 RMSE [ppb]

1 0.64 3.83

2 0.58 4.03

3 0.61 4.04

4 0.61 3.97

∅ 0.61± 0.02 3.97± 0.08
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Table 5. Cross validation on the world regions Europe (EUR), East Asia (EAS), and North America (NAM). We also give the difference in

R2 values and RMSEs, when validating the model in another world region than the training region.

Training region Validation region R2 RMSE [ppb]

EUR + EAS EUR + EAS 0.57 3.54

NAM 0.34 5.01

diff. - 0.23 + 1.47

EAS + NAM EAS + NAM 0.52 3.76

EUR 0.39 4.64

diff. - 0.13 + 0.88

NAM + EUR NAM + EUR 0.63 3.92

EAS 0.14 3.78

diff. - 0.49 - 0.14

3.1.3 SHAP values quantify the influence of the features on the model results

SHAP was used to determine the feature importance of the random forest model as described in Sect. 2.2.4. Fig. 6 contains a

summary plot with the global feature importance (left side) and SHAP values of all features on the test set (right side). The

global importance of the features ‘absolute latitude’, ‘altitude’, ‘relative altitude’, and ‘nightlight in 5km area’ are highest with355

a contribution of at least 10 %. The remaining features have a weaker influence on the model output. E.g. the influence of the

‘climatic zone’ is often negligible. The local SHAP values in Fig. 6 reveal the contribution of features to the predictions. Here

it can be seen, for example, that aA lower ‘absolute latitude’ value, i.e., a location near the equator, leads to an increased ozone

value prediction. Likewise higher ‘altitude’ and ‘relative altitude’ increase predicted ozone values. Very hHigh ‘nightlight in

5km area’ values lead to lower predicted ozone concentrations. These tendencies are in line with domain knowledge on the360

atmospheric chemistry of ozone. Appendix E shows SHAP values of two individual predictions. We discuss the physical

consistency of the model based on the SHAP values in Sect. 4.1.

Fig. 7 shows two specific examples of accurate (less than 1 ppb error) predictions for a low-ozone and a high-ozone station,

respectively. The high ozone station (Fig. 7 (a)) is located in a rural area in the US with many agricultural fields and a smaller

city nearby. The average ozone at this location is predicted to be high because the model uses the absence of forests, the low365

‘night light in 5 km area’ value, and the ‘absolute latitude’ as features leading to high ozone values. This is consistent with

Fig. 6 where it can be seen that a lower ‘absolute latitude’ often increases the ozone value. The French station (Fig. 7 (b)) is an

urban background station surrounded by fields. The location is further in the north than the US station which leads to a strong

decrease in the predicted ozone value. The low ‘(relative) altitude’ further decreases the predicted ozone.
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Figure 6. SHAP summary plot. The global importances on the left side are calculated from the averaged sum of the absolute SHAP values.

The dots in the beeswarm plots on the right side show the SHAP values of single predictions. The color indicates the respective feature value.

This plot shows only features with more than 1 % global importance.
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Figure 7. SHAP force plots for two example predictions at a) a rural station in the US and (b) an urban station in France. Starting from the

base value (27.7 ppb) which is the mean of all predictions, a feature can increase or decrease the predicted ozone (red and blue arrows). The

final predictions (23.5 and 31.9 ppb respectively) result from adding all SHAP values to the base value. The most contributing features are

labeled and their values are given.
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3.2 Evaluating the impact of uncertainties370

3.2.1 Applicability and uncertainty of the model depends on both features and location

As described in Sect. 2.3.1, predictions of our model are considered valid if the feature combinations are similar to those of

the training dataset AQ-Bench. Additionally, the results of the spatial cross validation (Sect. 3.1.2) have shown that the spatial

proximity to the training locations has an influence on the model performance and uncertainty. Two cases were examined

in this section: Firstly, the cross validation sets which are close to each other (RMSE in the range of 0.4 ppb, as seen in375

Table 4), and secondly, the cross validation on different world regions, that have a maximum distance from each other (RMSE

values of up to 0.55 ppb, as seen in Table 5). In our uncertainty assessment, we therefore combine findings from both the

area of applicability (for matching features) and the spatial cross validation methods (for spatial proximity). The criterion for

matching features was presented in Sect. 3.2.1. for spatial proximity, we consider the mean spatial distance of a measurement

station to the closest measurement station in another cross validation set. It is ca. 182 km. Analogously to the approach of the380

area of applicability (Sect. 3.2.1), we analyze the distances between measurement stations in the geographical space. To

quantify spatial proximity, we calculate the mean distance of a measurement station and its closest neighboring station

in a different cross-validation set. Disregarding stations that are too far away from the others, we identified the distance

of ca. 182 km (upper whisker), within which we expect a comparable RMSE as shown in Table 4. We assume a higher

RMSE for locations that are more than 182 km away from their closest neighboring measurement station. Fig. 8 shows385

the area of applicability of our model including this spatial distinction. In this figure, locations with unrestricted applicability

(matching features and spatial proximity of up to 182 km to training locations) are marked in bright turquoise. Here we expect

an RMSE in the range of 4 ppb and an R2 value of about 0.55. We mark locations with a spatial distance of more than 182 km

from training locations in a darker shade of turquoise. Here the RMSE may raise to about 5 ppb. Bright grey areas in Fig. 8

denote areas that are closer than 182 km to a measurement station but do not have feature combinations found in AQ-Bench.390

The bulkmajority of the regions with good coverage of measurement stations (North America, Europe, and parts of East

Asia) are well predictable. In these regions, only some areas high in the high north and high mountains are not predictable.

Conversely, large areas in South and Central America, Africa, far northern regions, and Oceania have feature combinations

different from the training data and are therefore are not predictable. There are some regions in the Baltic area, South America,

Africa, and South Australia where feature combinations can be predicted by the model, but they are far away from the AQ-395

Bench stations. A broader discussion of the global applicability of our machine learning model follows in Sect. 4.3.

3.2.2 Uncertainty due to ozone fluctuations is within an acceptable range

The error model for ozone uncertainties is described in Sect. 2.3.2. The error model converged fully after 100 realizations, see

Appendix D for details on the error model convergence. The R2 values of the perturbed models varied between 0.50 and 0.58.

Fig. 9 shows the resulting standard deviation in the mapped ozone. We find that tThe assumed ozone fluctuations may lead to400

a less certain predictionhave a higher impact in specific areas, such as areas with sparse training datain areas with sparse

training data. In general, it can be concluded, however,We conclude that our error model does not tend to amplify the effects
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Figure 8. Area of applicability with restrictions in the feature space and spatial restrictions. The bright turquoise areas fulfill all prerequisites

to be predictable: they have similar features as the AQ-Bench dataset and they are close to stations for validation. The darker shade of

turquoise indicates similar predictions, but no proximity to stations for validation. Light grey areas indicate the proximity of a station, but no

applicability of the model. The locations of all measurement stations are plotted in white.
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Figure 9. Standard deviation of the ozone predictions under perturbations. This map was created by stacking the maps of 100 error model

realizations along the z axis and then calculating the grid point-wise standard deviation along the z axis.

of perturbed training data. This means that the machine learning algorithm smoothes out noise during training. This can be is

explained by the core functioning of the random forest which uses bootstrapping during training.

Fig. 9 also shows that regions with poor spatial coverage by measurement stations (darker shade of turquoise in Fig. 8) are405

more sensitive to noisy training data. Example regions are the patches in Greenland, Africa, Australia, and South America. This

can be explained by the fact that This is because the model relies its predictions on a few samples and is thus very sensitive to

perturbations of these few measurements.
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Figure 10. Results of propagating subgrid DEM variations through the model. (a) Spread of subgrid Digital elevation model data. (b) Spread

of ozone values.

3.2.3 Uncertainty through subgrid DEM variation is within an acceptable range

This method was described in Sect. 2.3.3. In most regions of the world, subgrid DEM variations around mean altitude are410

below 50 m (Fig. 10 (a)), e.g., in the central and eastern United States and in Europe except for the Alps. There are regions

with higher variances such as the Rocky Mountains and their surroundings, the Alps, and large parts of Japan outside Tokyo.

In Figure 10 (b) it can be seen how these variations influence the predicted ozone values. In the flat regions, the variance

is below 0.5 ppb, and even in the very high variance regions, the deviation is very seldomly above 2 ppb. This means the

model is robust against these variances. Few exceptions are present at the border of the area of applicability (ref. Sect. 3.2.1),415

e.g. in the Alps. But even in these regions, the deviation is well below 5 ppb, which is a conservative estimate for ozone

fluctuations (Schultz et al., 2017). A discussion of implications for general subgrid variances can be found in Sect. 4.1.
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3.3 The final ozone map

3.3.1 Production of the final map

All selected features listed in Sect. 3.1.1 are used to fit the final model. In contrast to the experiments in the previous sections,420

we now train the model on 80 % of the AQ-Bench data set and test it on the remaining 20 % of the independent test set. Fig. 2

shows the predictions of this model on the test set vs. the true average ozone values. The R2 value of this model is 0.55 and the

RMSE is 4.4 ppb. Not all points are exactly on the 1:1 line, but there is a spread around it.There is a spread around the 1:1

line, furthermore, extremes are not captured as well as values closer to the mean. Furthermore, tTrue values of less than

20 ppb or more than 40 ppb are predicted with high bias, which is expected since random forests tend to predict both low and425

high extremes less accurately than values closer to the mean.

3.3.2 Visual analysis

The final map is shown in Fig.11 (data available under the DOI http://doi.org/10.23728/b2share.a05f33b5527f408a99faeaeea033fcdc).

Predictions in the area of applicability are in a range between 9.4 and 56.5 ppb. This is not the full range of measured ozone

values (Fig. 1). There are some characteristics that are visible at first sight, e.g. the north-south gradient in Europe and generally430

higher values in mountain areas, like in the western US. The global importance of ‘absolute latitude’ shows through a lati-

tudinal stratification and a clear north-south gradient in Europe, the US and East Asia. Sometimes the borders of climatic

zones lead to steps in the mapped ozone valuesare visible, like in the north of North America, and inacross Asia. This shows

that even if the climatic zones are not important globally, they can be important locally important. There are furthermore

larger areas with very low ozone variation in Greenland, Africa, and South America.435

In Fig. 12, a detailed look at three selected areas is given, and the predictions are compared to the true values. In image (a), a

uniform, low ozone concentration is predicted over the peninsula of Florida. Image (b) shows low ozone values in the Po

valley, a densely populated plane where many people live. Towards the mountains which surround the valley, higher values

are predicted, and for the higher mountains, no predictions can be made. In iImage (c) we can seeshows the city of Tokyo

which is very well covered with ozone measurements and where ozone values are relatively low. Also at the coasts of Japan,440

the values are lower. Conversely on the mountains, just as in image (b), higher levels of ozone are predicted and some areas can

not be predicted. The spatial ozone patterns described here can also be found in ozone model productsozone maps generated

by traditional chemical models such as the fusion products by DeLang et al. (2021). We discuss the prospects of global ozone

mapping more thoroughly in Sect. 4.4.
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Figure 11. The final ozone map as produced in this study. (a) shows the ozone values, (b) shows the uncertainty estimates. The areas

shown in Fig. 12 are highlighted by white boxes.
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Figure 12. Map details with true values are given as white circles. (a) The Florida peninsula, US. (b) The Po Valley in northern Italy.

(c) Tokyo, Japan, and its surroundings.
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4 Discussion445

4.1 Robustness

Based on Hamon et al. (2020), we define robustness in the context of this work as follows: The model and map are considered

robust if they do not change substantially under noise or perturbations that could realistically occur. Here, 5 ppb change in

RMSE score and the ozone map are considered significant, because 5 ppb are a conservative estimate for ozone measurement

errorsWe define a 5 ppb change in RMSE score or predicted ozone values as significant (Schultz et al., 2017).450

Methods to assess the robustness are part of both the explainable machine learning workflow (Table 2) and the uncertainty

assessments (Table 3) of this study. Regarding the robustness of the training process, the cross validation results in Table 4

show that the model performance depended on the data split, leading to variances of the RMSE between 3.83 and 4.04 ppb.

This was already noted by Betancourt et al. (2021b) and is regarded as an inherent limitation of a relatively smallnoisy dataset.

Apart from that, there were no robustness issues of the training process, e.g. evaluation scores did not vary with different455

random seeds (not shown). We tested also the robustness regarding typical variances in the ozone and geospatial data. The

results from Sect. 3.2.2 and Sect. 3.2.3 show that the produced ozone map is robust against these fluctuations. The variances

are never above the initial perturbations, and variances in the map do not exceed theour limit of 5 ppb defined above. Limits

in the robustness were only shown through variances above 3 ppb at the borders of the area of applicability of the model, and

in regions with sparse training data (grey and dark turquoise areas in Fig. 9 and 10). This outcome is especially interesting460

because it shows that the issues of applicability (discussed in more detail in Sect. 4.3) and robustness are interconnected. In

areas where the model is applicable, it is also more robust and uncertainties are lower.

In order to make the robustness assessment with respect to data feasible, we strongly reduced the dimensionality of our error

model by using expert knowledge about the problem. We only conducted two experiments where we modify training data and

model inputs (described in Sect. 2.3.2 and 2.3.3). These experimental setups were chosen because they are expected to gener-465

alize well to other similar experiments. Firstly, spatial fluctuations produce similar perturbations to temporal fluctuations (not

shown), and, secondly, subgrid variances of one feature are also expected to generalize to other features. The combined robust-

ness experiments have shown that our produced maps are robust.

4.2 Scientific consistency

Here wWe discuss the scientific consistency of our model by assessing the results of the explainable machine learning work-470

flow (Table 2). In more detail, wWe interpret the selected features, their importance, and their influence on the model predic-

tions. In our case, tThe features are proxies to ozone processes, which makes it challenging to interpret the underlying chemical

processes. Nevertheless, the connections between the features can be discussed, if they are plausible and consistent with respect

to our understanding of ozone processes. This is a pure a posteriori approach, meaning we did not in any way enforce scientific

consistency in the model orduring the training process.475

Regarding the global feature importance of SHAP (Fig. 6), it might, at first sight, be counterintuitive that the model focuses

more on geographical features such as ‘absolute latitude’ and ‘altitude’ than chemical factors such as the ‘NO2 column’, and
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‘NOx emissions’. Geographic features are proxies for flow patterns and heat, not for ozone chemistry, which ozone researchers

would be expected to be of greatermore importancet. This contradiction is due to the fact that the model provides an as-is

view of ozone concentration and is not process-oriented in any way. Please note that mMany features such as ‘nightlight’ and480

‘population density’ are correlated, so retraining the model might swap dependence in the SHAP values as noted by Lundberg

et al. (2020).

The beeswarm plot in Fig. 6 aids in checkingshows the physical consistency of our model. The effect of ‘absolute latitude’

on predictions is consistent with what is known about ozone formation processes, i.e. – ozone production generally increases

toward the equatorwhen more sunlight is available. This is also evident in the highly latitudinally stratified ozone overview485

plots in global measurement-based overview studies such as TOAR health and TOAR vegetation (Fleming et al., 2018; Mills

et al., 2018). Ozone is affected by meteorology (temperature, radiation) and precursor emissions (Sect. 1). The fact that

there is no continuous increase of ozone towards tropical latitudes shows that the mapping model at least qualitatively

captures the influence of low precursor emissions in the tropics. The importance of ‘absolute latitude’ also indicates that

the model can be improved by including temperature and radiation features from meteorological data. High ‘relative490

altitude’ and ‘altitude’ both increase the modelpredicted ozone. This altitude-ozone relation is consistent with our previous

knowledge (Chevalier et al., 2007)These relations are consistent with Chevalier et al. (2007). There are also a few relatively

important chemistry-related features. We can see that very high values of ‘nightlight in 5 km area’ reduces the modelpredicted

ozone. This is consistent with NO titration (Monks et al., 2015). Nightlights are a proxy for human activity, generally in the

context of fossil fuel combustion, which usually leads to elevated NOx concentrations. NO reacts with ozone and thus removes495

it,destroys ozone, and especially during the night time this leads to very low ozone levels close to zero ppb. Conversely, very

hHigh ‘forests in 25 km area’ values lead to lower ozone predictions. This is plausible because there is little human activity

in forested areas and thus no combustion-related precursor emissions occur. Quantification of either influence is not possible

because, for example, it is unclear to what extent the different forests emit volatile organic compounds which are also ozone

precursors, and a. A city with ‘nightlight in 5 km area’ = 50 cannot be directly quantified in terms of precursor emissions either.500

It is also not expected that the machine learning model learns the ozone related processes described above because it is

not process based. Instead, it learns the effects of processes if they are reflected in the training data. SHAP values also

offer the possibility to quantify the influence of features on single predictions (Fig. 7). This is helpful for certain special cases,

e.g., when only a single prediction needs to be explained. In a global application, however, it might become infeasible – not all

the pixels in our ozone map can be explained one by one.505

The forward feature selection (Sect. 2.2.2 and 3.1.1) can also be discussed in terms of plausibility. Features selected by this

method favor a generalizable model. In other words, dDiscarded features may have some connection to ozone – but even if they

help to characterize the locations, but their addition to the training data diddoes not lead to a more generalizable model. This

can have different reasons. As such, ‘u‘Urban and built-up in 25 km area’ was not selected presumably because urban areas

are often very localized. Urban landcover in the area of 25 km around a locationThis feature is therefore not as meaningful510

as the variables ‘nightlight’ and ‘population density’, which are like ‘urban and built-up in 25 km area’also proxies for human

activity, but are available at higher resolution. Similarly, the feature ‘cropland / natural vegetation mosaic in 25 km area’ was
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discarded because ozone is affected differently by croplands and natural vegetation. Together with the large area considered,

this feature becomes obsolete. We suspect the features ‘snow and ice in 25 km area’, ‘barren or sparsely vegetated in 25 km

area’, and ‘wheat production’ did not contribute to the model generalizability because they are simply not represented well515

in the training data. A feature may be an important proxy for ozone, but if the relationship is not expressed in the training

data, it cannot be learned by a machine learning model. This feature can become more important if other training locations are

consideredincluded. This shows that the placing of measurement locations is crucial.

4.3 Mapping the global domain

For the global mapping, tThe model has to generalize to unseen locations for global mapping. Two prerequisites are: 1) The520

model must have seen the feature combination during training. 2) The connection between features and the target, ozone,

must be the same. The two conditions are only fulfilled in a very strictly constrained space, as can be seenshown in Fig. 8. We

combined cross validation with an inspection of the feature space to ensure matching feature combinations. Then, based

on the cross validation on different world regions, we point out regions with sparse or no training data, where higher

model errors are expected (Sect. 3.2.1) Regarding the feature combinations, we combined cross validation with an inspection525

of the feature space as described in Sect. 2.3.1. Then, based on the cross validation on different world regions (Table 5),

we decided that because the model uncertainty rises when training and testing in different world regions, we also combined

cross validation in the spatial domain in Sect. 3.2.1. One interesting thing here to mention is that weWe also conducted the

samespatial cross validation approach on other world regions with a shallow neural network (as in the baseline experiments

of Betancourt et al. (2021b)). The neural network had similar evaluation scores on the test set, but it did not generalize as530

well to other world regions, even showing even negative R2 values when testingevaluated in other world regions (not shown).

One reason for that could be that the random forest is an ensemble model and thus generalizes better under noisy data. We,

therefore, decided to discard the neural network architecture, because our main goal is global generalizability.

Concerning our mapping approach, wWe can confidently map Europe, large parts of the US and East Asia, where the

bulkmajority of the measurement stations are located. Those are all industrialized countries in the northern hemisphere.535

OurThe cross validation results (Sect. 3.1.2), the area of applicability (Sect. 3.2.1), but alsoand expert knowledge would

agreeconfirm that it is problematic to map touncertainties increase when a model trained on the AQ-Bench dataset is

applied to other world regions with the AQ-Bench training dataset only. However, the cross validation in connection with the

area of applicability technique yielded also the knowledgeshows that the models are not completely useless can be used in

other world regions with acceptable uncertainties. That is promising for future global mapping approaches. One idea to solve540

these problems of different connections between features and ozone in different world regions is to train localized models, and

apply them wherever possible. Localized models could not only yield more accurate predictions but in connection with SHAP

values (Sect. 2.2.4), they could also rule out the governing factors of ozone in the respective regions and be easier to interpret.

With regard to the spatial domain, we can also discuss the resolution. The model was trained on point data of the ‘absolute

latitude’, ‘altitude’, and ‘relative altitude’, and technically one could produce more fine-grained maps if the inputgridded data545

is present in higher resolution. The model is ‘perfect’ in this regard – because it was trained on infinite resolution point data as
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provided by TOAR. However, one may need to reconsider some assumptions made here in terms of regional representativity

of the measurements and the relation between geographic features and ozone on a different scale.

4.4 Prospects for ozone mapping

In this study, wWe mapped average tropospheric ozone from the stations in the AQ-Bench dataset to a global domain. For this,550

we fused different auxiliary geospatial datasets and gridded data with machine learning. We chose to useused features that

are known to have a connection toproxies for ozone processes, and that were already proven to enable a prediction of ozone

concentrations (Betancourt et al., 2021b). Our choice of data and algorithms is well justified and transparent. Errors did not

exceed 5 ppb, which is also in the range of measurement error and therefore an acceptable uncertainty. The R2 value of the

final model is 0.55, which is a good value for properly validated mapping. The maps produced show known patterns of ozone555

such as lower levels in metropolitan areas and higher levels in mediterranean or mountainous regions. But there are situations

– especiallyHowever extremes (Fig. 2) – which are not predicted well with higher bias. This can be considered as a general

problem of machine learning (Guth and Sapsis, 2019) but was also noted in other ozone modeling studies (Young et al., 2018).

For this first approach, we limited ourselves to the static mapping of aggregated mean ozone. An advantage of this approach

is that the model result is directly the ozone metric of interest (in this case average ozone). Since the AQ-Bench dataset contains560

other ozone metrics, they could be mapped as well. For example, vegetation- or health-related ozone metrics can be mapped

with the same workflow and training dataset as described here. Another advantage is that we used a multitude of inputs that

could not be used in a traditional model because their connection to ozone is unknown. This means we exploit two benefits

of machine learning: first, obtaining a bias-free estimate of the target directly, and second, using a multitude of inputs with

unknown direct impact on the target.565

Our model is only valid for the training data period (2010-2014), and it is not suitable to predict ozone values in other

years. Our data product is a map that is aggregated in time. This could be a limitation as sometimes the data product of interest

is a seasonal aggregate or even maps of daily or hourly air pollutant concentrations. In that regard, it is worth mentioning

that tThe use of meteorological data in not-aggregated or aggregated formas static or non-static inputs can be beneficial

to further increase model performance and allow time-resolved mapping. We applied a completely data-driven approach,570

relying heavily on geospatial data. The other side of the spectrum is DeLang et al. (2021), who fused chemical transport model

output to observations without exploiting the connection to any auxiliary dataother features. A possible direction to go from

here is described by Irrgang et al. (2021), who propose the fusion of models and machine learning to benefit from both methods.

5 Conclusions

In this study, we developed a completely data-driven, machine learning-based, global mapping approach for tropospheric575

ozone. We mapped from the 5577 irregularly placed measurement stations of the AQ-Bench dataset (Betancourt et al., 2021b)

to a regular 0.1°× 0.1° grid. As environmental data, i.e. input features, wWe used a multitude of geospatial datasets as input

features. To our knowledge, this is the first completely data-driven approach to global ozone mapping. We combined this map-
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ping with an end-to-end approach for explainable machine learning and uncertainty estimation. This allowed us to assess the

robustness, scientific consistency, and global applicability of the model. We linked interpretation tools with domain knowledge580

to obtain application-specific explanations, which is in line with Roscher et al. (2020). The methods are interconnected, e.g.

forward feature selection also made the model easier to interpret. Likewise, the area of applicability was shown to match the

model’s robustness. We justified the choice of tools and detailed how they tools we have chosen provided us with the results

we need to make a comprehensive global analysis. The combination of explainable machine learning and uncertainty quan-

tification makes the model and outputs trustworthy. Therefore, the map we produced provides information on global ozone585

distribution and is a transparent and reliable data product.

We explained the outcome and the model, which can lead to new scientific insights. Mapping studies like this oneours could

also contribute to studies like Sofen et al. (2016), that propose locations for new air quality measurement sites to extend the

observation network,. Here the inspection of the feature space helps to cover not only spatial world regions but also air

quality regimes and areas with diverse geographic characteristics. The approach of an area of applicability can also be used590

to decide where to build new measurement stations to maximize the mapped areaBuilding locations can also be proposed

based on their contribution to maximizing the area of applicability (Stadtler et al., 2022). The map as a data product can

also be used to refine studies like TOAR (Fleming et al., 2018; Mills et al., 2018) because it enables analyzingses at locations

with no measurement stations. Closing the gaps in the maps, iIt would be highly beneficial to also add station data from other

countries, e.g. new data from East Asian countries, or from new data sources such as OpenAQ. It would be beneficial to add595

time resolved input features to the training data to improve evaluation scores and increase the temporal resolution of

the map. Adding training data from regions like East Asia, or new data sources such as OpenAQ1 would close the gaps

in the global ozone map.

Code and data availability. The mapping code which was used to generate the results published here is available under DOI http://doi.org/

10.34730/af084443e1c444feb12d83a93a65fa33 under MIT License. The current version of the code is available under https://gitlab.600

jsc.fz-juelich.de/esde/machine-learning/ozone-mapping (last access: 13 December 2021) under MIT License. The AQ-Bench dataset (Be-

tancourt et al., 2021b) is available under the DOI http://doi.org/10.23728/b2share.30d42b5a87344e82855a486bf2123e9f. The gridded data

is available under the DOI http://doi.org/10.23728/b2share.9e88bc269c4f4dbc95b3c3b7f3e8512c. The data products generated in this study,

namely the ozone map and the area of applicability are available under the DOI http://doi.org/10.23728/b2share.a05f33b5527f408a99faeaeea033fcdc.

All datasets are published under the CC-BY license.605

1https://openaq.org/, last access 02 November 2021
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Appendix A: Technical details on the data

Table A1: Technical details on the data used in this work. For more information on the station location data, refer to Betancourt

et al. (2021b). Please note that ‘land use in 25 km area’ comprises all the different land cover features.

Table A1

Variable Data source and technical info Reference

Ozone average values Aggregated average ozone measurements of the stations in

the AQ-Bench dataset from the years 2010-2014. The

original data source is the database of the Tropospheric

Ozone Assessment Report (TOAR).

Betancourt et al. (2021b),

Schultz et al. (2017)

Climatic zone Twelve classes of the IPCC 2006 classification scheme for

default climate regions with a resolution of 5′. Stations were

attributed to the climatic zone in the respective grid cell. To

prepare the gridded field, downscaling to 0.1° resolution

was done by nearest neighbor interpolation.

https://esdac.jrc.ec.europa.eu/

projects/RenewableEnergy/,

accessed 23 Mar 2021

Geographic location The geographical location of the stations (longitude and

latitude) was reported by the data providers and quality

controlled by the TOAR database administrators. A gridded

field of 0.1° resolution was generated within this study.

Schultz et al. (2017)

Altitude The station altitude was reported by the data providers and

quality controlled by the TOAR database administrators.

The gridded field of 0.1° resolution was produced by linear

2D interpolation of the ETOPO 1 digital elevation model

with an original resolution of 1′.

Schultz et al. (2017),

Amante and Eakins (2009)

Relative altitude Derived at stations from the ETOPO 1 digital elevation

model and the station altitude. To generate a gridded field,

the relative altitude was determined for every pixel

from ETOPO 1 data.

Amante and Eakins (2009)

(continued on next page)
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(Table A1 continued from previous page)

Variable Data source Reference

Land cover in 25 km area Derived from yearly land cover type L3 from the MODIS

MD12C1 collection with an original resolution of 0.05°.

The year 2012 and the IGBP classification scheme with

17 classes were used. For the data at station locations, land

cover data in the area of 25 km around each station was

considered. Similarly, for the gridded fields, the 25 km area

around each pixel was considered.

https:

//ladsweb.modaps.eosdis.nasa.gov/

missions-and-measurements/

products/MCD12C1/,

accessed 23 Mar 2021

Wheat / rice production Annual wheat / rice production of the year 2000 according

to the Global Agro-Ecological Zones data, version 3 with an

original resolution of 5′. The stations were attributed with

data of the respective pixel. The gridded field of 0.1° was

produced by linear 2D interpolation.

www.fao.org/,

accessed 23 Mar 2021

NOx emissions Annual NOx emissions of the year 2010 from EDGAR

HTAP inventory V2 with an original resolution of 0.1°. The

stations were attributed with data of the respective pixel.

The gridded field of 0.1° was produced by linear 2D

interpolation.

Janssens-Maenhout et al. (2015)

NO2 full column 5-year average (2011-2015) tropospheric NO2 column value

from the Ozone Monitoring Instrument (OMI) on

NASA AURA with an original resolution of 0.1°. The

stations were attributed with data of the respective pixel.

Krotkov et al. (2016)

Population density GPWv3 population density of the year 2010 with an original

resolution of 2.5′. For the data at station locations, data were

aggregated in 1 km, 5 km, and 25 km around the station

location. Similarly, for the gridded fields, data were

aggregated in these radii around each pixel.

CIESIN (2005)

Nightlight Stable nighttime lights of the year 2013 extracted from the

NOAA DMSP product with an original resolution

of 0.925 km. For the data at station locations, data were

aggregated in 1 km, 5 km and 25 km around the station

location. Similarly, for the gridded fields, data were

aggregated in these radii around each pixel.

https://ngdc.noaa.gov/eog/dmsp/

downloadV4composites.html,

accessed 23 Mar 2021
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Appendix B: Plots of gridded fields used as inputs for mapping model
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Figure B1. Gridded fields used for the final map production. Please note that the feature engineering was done as described in Sect. 2.2.2.
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Figure B2. Gridded fields used for the final map production. Please note that the feature engineering was done as described in Sect. 2.2.2.

31



Appendix C: Example realization of error model610
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Figure C1. Example realization of the error model for ozone uncertainties as described in Sect. 2.3.2. A random subset of 25 % of the

ozone values in the training set is perturbed with values sampled from a Gaussian distribution with 0 ppb mean and 5 ppb variance.
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Appendix D: Convergence of the error model
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Figure D1. This plot justifies the use of 100 error model realizations in Sect. 3.2.2. We have stacked n perturbed maps along the z -

axis. Then have and monitored the grid point wise standard deviation along the z - axis over these n realizations of the error model. The

mean standard deviation over the whole map stabilizes after ca. 40 realizations. The maximum standard deviation has some really high

valuesexceeds 3.5 ppb for less than 20 realizations. This can be explained by the fact that for a low number of realiations, some grid points

base their predictions on single, very differently perturbed stations when the number of realizations is low. But tThis effect smoothes out

after 20 realizations. Even though the maximum is not as stable as the mean (which is expected), convergence can be assumend after 100

realizations.
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Appendix E: SHAP values of single predictions

Base value = 27.7 Prediction = 31.9 
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Figure E1. SHAP force plots for two example low-bias (< 1 ppb) predictions at (a) a rural station in the US and (b) an urban station

in France, in addition to SHAP results from Sect. 3.1.3. Starting from the base value (27.7 ppb), a feature can increase or decrease the

predicted ozone (red and blue arrows). The final predictions (23.5 and 31.9 ppb respectively) result from adding all SHAP values to

the base value. The most contributing features are labeled and their values are given. The high ozone station (a) is located in a rural

area in the US with many agricultural fields and a smaller city nearby. The average ozone at this location is predicted to be high

because the model uses the absence of forests, the low ‘night light in 5 km area’ value, and the ‘absolute latitude’ as features leading

to high ozone values. This is consistent with Fig. 6 where it can be seen that a lower ‘absolute latitude’ often increases the ozone value.

The French station (b) is an urban background station surrounded by fields. The location is further in the north than the US station

which leads to a strong decrease in the predicted ozone value. The low ‘(relative) altitude’ further decreases the predicted ozone.

34



Author contributions. All authors jointly developed the concept of the project under the lead of CB and MGS. CB and SS coordinated the

project. MGS, RR, and JK supervised the project. CB, TTS, AE, AP, and SS developed the code, conducted the experiments, and prepared

the initial manuscript draft. MGS, RR, and JK reviewed and edited the manuscript. All authors read and approved the manuscript.615

Competing interests. Martin G. Schultz is a topic editor of Earth System Science Data (ESSD) for the special issue "Benchmark datasets

and machine learning algorithms for Earth system science data (ESSD/GMD inter-journal SI)" .

Disclaimer. Parts of this research were presented in oral and display format at the conference "EGU General Assembly 2021" (Betancourt

et al., 2021a).

Acknowledgements. We are thankful to the TOAR community and several international agencies and institutions for making air quality and620

geospatial data available. We thank Hanna Meyer and Hu Zhao for helpful discussions. CB and SS acknowledge funding from the European

Research Council, H2020 Research Infrastructures (IntelliAQ (grant no. ERC-2017-ADG#787576)). TTS, AE, AP, and SS acknowledge

funding from the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety under grant no 67KI2043 (KISTE).

RR acknowledges funding by the German Federal Ministry of Education and Research (BMBF) in the framework of the international future

AI lab "AI4EO – Artificial Intelligence for Earth Observation: Reasoning, Uncertainties, Ethics and Beyond" (Grant number: 01DD20001).625

The authors gratefully acknowledge the Earth System Modelling Project (ESM) for funding this work by providing computing time on the

ESM partition of the supercomputer JUWELS (Krause, 2019) at the Jülich Supercomputing Centre (JSC).

35



References

Amante, C. and Eakins, B. W.: ETOPO1 arc-minute global relief model: procedures, data sources and analysis, Tech. rep., NOAA National

Geophysical Data Center, Boulder, Colorado, 2009.630

Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C. M., and Crowther, T. W.: The global tree restoration

potential, Science, 365, 76–79, https://doi.org/10.1126/science.aax0848, 2019.

Betancourt, C., Stadtler, S., Stomberg, T., Edrich, A.-K., Patnala, A., Roscher, R., Kowalski, J., and Schultz, M. G.: Global fine resolution

mapping of ozone metrics through explainable machine learning, in: EGU General Assembly 2021, EGU21-7596, online, 2021a.

Betancourt, C., Stomberg, T., Roscher, R., Schultz, M. G., and Stadtler, S.: AQ-Bench: a benchmark dataset for machine learning on global635

air quality metrics, Earth Syst. Sci. Data, 13, 3013–3033, https://doi.org/10.5194/essd-13-3013-2021, 2021b.

Blanke, S.: Hyperactive: An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive

models [code], https://github.com/SimonBlanke/Hyperactive, last access 4 Dec 2021, v2.3.0, 2021.

Brasseur, G., Orlando, J. J., and Tyndall, G. S., eds.: Atmospheric chemistry and global change, Oxford University Press, New York, US, 1

edn., 1999.640

Breiman, L.: Random forests, Machine Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.

Briggs, D. J., Collins, S., Elliott, P., Fischer, P., Kingham, S., Lebret, E., Pryl, K., Van Reeuwijk, H., Smallbone, K., and Van

Der Veen, A.: Mapping urban air pollution using GIS: a regression-based approach, Int. J. Geogr. Inf. Sci., 11, 699–718,

https://doi.org/10.1080/136588197242158, 1997.

Chevalier, A., Gheusi, F., Delmas, R., Ordóñez, C., Sarrat, C., Zbinden, R., Thouret, V., Athier, G., and Cousin, J.-M.: Influence of altitude645

on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2004, Atmos.

Chem. Phys., 7, 4311–4326, https://doi.org/10.5194/acp-7-4311-2007, 2007.

CIESIN: Gridded Population of the World, Version 3 (GPWv3): Population Count Grid, Originator: Center for International Earth Science

Information Network - CIESIN - Columbia University, United Nations Food and Agriculture Programme - FAO, and Centro Internacional

de Agricultura Tropical - CIAT. Publisher: CIAT, Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC), http:650

//dx.doi.org/10.7927/H4639MPP, 2005.

Cobourn, W. G., Dolcine, L., French, M., and Hubbard, M. C.: A Comparison of Nonlinear Regression and Neural Network Models for

Ground-Level Ozone Forecasting, J. Air. Waste Manag. Assoc., 50, 1999–2009, https://doi.org/10.1080/10473289.2000.10464228, 2000.

Comrie, A. C.: Comparing Neural Networks and Regression Models for Ozone Forecasting, J. Air. Waste Manag. Assoc., 47, 653–663,

https://doi.org/10.1080/10473289.1997.10463925, 1997.655

DeLang, M. N., Becker, J. S., Chang, K.-L., Serre, M. L., Cooper, O. R., Schultz, M. G., Schro¨der, S., Lu, X., Zhang, L., Deushi,

M., Josse, B., Keller, C. A., Lamarque, J.-F., Lin, M., Liu, J., Marécal, V., Strode, S. A., Sudo, K., Tilmes, S., Zhang, L., Cle-

land, S. E., Collins, E. L., Brauer, M., and West, J. J.: Mapping Yearly Fine Resolution Global Surface Ozone through the

Bayesian Maximum Entropy Data Fusion of Observations and Model Output for 1990–2017, Environ. Sci. Technol., 55, 4389–4398,

https://doi.org/https://doi.org/10.1021/acs.est.0c07742, 2021.660

Duda, R. O., Hart, P. E., and Stork, D. G.: Pattern Classification, chap. 10, John Wiley & Sons, Inc., New York, US, 2 edn., 2001.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise., in:

KDD-96 Proceedings, 34, pp. 226–231, Portland, OR, US, second International Conference on Knowledge Discovery and Data Mining

(KDD), 2-4 Aug 1996, 1996.

36

https://doi.org/10.1126/science.aax0848
https://doi.org/10.5194/essd-13-3013-2021
https://github.com/SimonBlanke/Hyperactive
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1080/136588197242158
https://doi.org/10.5194/acp-7-4311-2007
http://dx.doi.org/10.7927/H4639MPP
http://dx.doi.org/10.7927/H4639MPP
http://dx.doi.org/10.7927/H4639MPP
https://doi.org/10.1080/10473289.2000.10464228
https://doi.org/10.1080/10473289.1997.10463925
https://doi.org/https://doi.org/10.1021/acs.est.0c07742


European Union: Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner665

air for Europe, Official Journal of the European Union, OJ L, 1–44, http://data.europa.eu/eli/dir/2008/50/oj, 2008.

Fleming, Z. L., Doherty, R. M., Von Schneidemesser, E., Malley, C. S., Cooper, O. R., Pinto, J. P., Colette, A., Xu, X., Simpson, D., Schultz,

M. G., Lefohn, A. S., Hamad, S., Moolla, R., Solberg, S., and Feng, Z.: Tropospheric Ozone Assessment Report: Present-day ozone

distribution and trends relevant to human health, Elem. Sci. Anth., 6, 12, https://doi.org/10.1525/elementa.273, 2018.

Gaudel, A., Cooper, O. R., Ancellet, G., Barret, B., Boynard, A., Burrows, J. P., Clerbaux, C., Coheur, P. F., Cuesta, J., Cuevas, E., Doniki,670

S., Dufour, G., Ebojie, F., Foret, G., Garcia, O., Granados Muños, M. J., Hannigan, J. W., Hase, F., Huang, G., Hassler, B., Hurtmans,

D., Jaffe, D., Jones, N., Kalabokas, P., Kerridge, B., Kulawik, S. S., Latter, B., Leblanc, T., Le Flochmoën, E., Lin, W., Liu, J., Liu, X.,

Mahieu, E., McClure-Begley, A., Neu, J. L., Osman, M., Palm, M., Petetin, H., Petropavlovskikh, I., Querel, R., Rahpoe, N., Rozanov,

A., Schultz, M. G., Schwab, J., Siddans, R., Smale, D., Steinbacher, M., Tanimoto, H., Tarasick, D. W., Thouret, V., Thompson, A. M.,

Trickl, T., Weatherhead, E., Wespes, C., Worden, H. M., Vigouroux, C., Xu, X., Zeng, G., and Ziemke, J.: Tropospheric Ozone Assessment675

Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation,

Elem. Sci. Anth., 6, 39, https://doi.org/10.1525/elementa.291, 2018.

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W.,

Bamler, R., and Zhu, X. X.: A Survey of Uncertainty in Deep Neural Networks, arXiv [preprint], https://arxiv.org/abs/2107.03342v1, 7

Jul 2021.680

Guth, S. and Sapsis, T. P.: Machine Learning Predictors of Extreme Events Occurring in Complex Dynamical Systems, Entropy, 21,

https://doi.org/10.3390/e21100925, 2019.

Hamon, R., Junklewitz, H., and Sanchez, I.: Robustness and explainability of artificial intelligence, Tech. Rep. JRC119336, Publications

Office of the European Union, Luxembourg, Luxembourg, https://doi.org/10.2760/57493, 2020.

Heuvelink, G. B. M., Angelini, M. E., Poggio, L., Bai, Z., Batjes, N. H., van den Bosch, R., Bossio, D., Estella, S., Lehmann, J., Olmedo,685

G. F., and Sanderman, J.: Machine learning in space and time for modelling soil organic carbon change, Eur. J. Soil Sci., 72, 1607–1623,

https://doi.org/10.1111/ejss.12998, 2020.

Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., and Briggs, D.: A review of land-use regression models to assess

spatial variation of outdoor air pollution, Atmos. Environ., 42, 7561–7578, https://doi.org/10.1016/j.atmosenv.2008.05.057, 2008.

Hoogen, J. v. d., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., de Goede, R. G. M., Adams, B. J., Ahmad, W., Andriuzzi,690

W. S., Bardgett, R. D., Bonkowski, M., Campos-Herrera, R., Cares, J. E., Caruso, T., de Brito Caixeta, L., Chen, X., Costa, S. R., Creamer,

R., Mauro da Cunha Castro, J., Dam, M., Djigal, D., Escuer, M., Griffiths, B. S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P.,

Kergunteuil, A., Korthals, G., Krashevska, V., Kudrin, A. A., Li, Q., Liang, W., Magilton, M., Marais, M., Martín, J. A. R., Matveeva,

E., Mayad, E. H., Mulder, C., Mullin, P., Neilson, R., Nguyen, T. A. D., Nielsen, U. N., Okada, H., Rius, J. E. P., Pan, K., Peneva, V.,

Pellissier, L., Carlos Pereira da Silva, J., Pitteloud, C., Powers, T. O., Powers, K., Quist, C. W., Rasmann, S., Moreno, S. S., Scheu, S.,695

Setälä, H., Sushchuk, A., Tiunov, A. V., Trap, J., van der Putten, W., Vestergård, M., Villenave, C., Waeyenberge, L., Wall, D. H., Wilschut,

R., Wright, D. G., Yang, J.-i., and Crowther, T. W.: Soil nematode abundance and functional group composition at a global scale, Nature,

572, 194–198, https://doi.org/10.1038/s41586-019-1418-6, 2019.

Irrgang, C., Boers, N., Sonnewald, M., Barnes, E. A., Kadow, C., Staneva, J., and Saynisch-Wagner, J.: Towards neural Earth system mod-

elling by integrating artificial intelligence in Earth system science, Nat. Mach. Intell., 3, 667–674, https://doi.org/10.1038/s42256-021-700

00374-3, 2021.

37

http://data.europa.eu/eli/dir/2008/50/oj
https://doi.org/10.1525/elementa.273
https://doi.org/10.1525/elementa.291
https://arxiv.org/abs/2107.03342v1
https://doi.org/10.3390/e21100925
https://doi.org/10.2760/57493
https://doi.org/10.1111/ejss.12998
https://doi.org/10.1016/j.atmosenv.2008.05.057
https://doi.org/10.1038/s41586-019-1418-6
https://doi.org/10.1038/s42256-021-00374-3
https://doi.org/10.1038/s42256-021-00374-3
https://doi.org/10.1038/s42256-021-00374-3


Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller,

R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional

and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11 411–11 432,

https://doi.org/10.5194/acp-15-11411-2015, 2015.705

Keller, C. A. and Evans, M. J.: Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem

chemistry model v10, Geosci. Model Dev., 12, 1209–1225, https://doi.org/10.5194/gmd-12-1209-2019, 2019.

Keller, C. A., Evans, M. J., Kutz, J. N., and Pawson, S.: Machine learning and air quality modeling, in: Proceedings of the 2017 IEEE Inter-

national Conference on Big Data (Big Data), pp. 4570–4576, IEEE, Boston, MA, USA, https://doi.org/10.1109/BigData.2017.8258500,

2017.710

Kleinert, F., Leufen, L. H., and Schultz, M. G.: IntelliO3-ts v1.0: A neural network approach to predict near-surface ozone concentrations in

Germany, Geosci. Model Dev., 14, 1–25, https://doi.org/10.5194/gmd-14-1-2021, 2021.

Krause, D.: JUWELS: Modular Tier-0/1 Supercomputer at Jülich Supercomputing Centre, Journal of large-scale research facilities JLSRF,

5, 1–8, https://doi.org/10.17815/jlsrf-5-171, 2019.

Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan,715

B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI obser-

vations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605–4629, https://doi.org/10.5194/acp-

16-4605-2016, 2016.

Lary, D. J., Faruque, F. S., Malakar, N., Moore, A., Roscoe, B., Adams, Z. L., and Eggelston, Y.: Estimating the global abundance of ground

level presence of particulate matter (PM2. 5), Geospatial Health, 8, S611–S630, https://doi.org/10.4081/gh.2014.292, 2014.720

Lee, K., Lee, H., Lee, K., and Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples, arXiv [preprint],

https://arxiv.org/abs/1711.09325, 26 Nov 2017.

Li, J., Siwabessy, J., Huang, Z., and Nichol, S.: Developing an Optimal Spatial Predictive Model for Seabed Sand Content Using Machine

Learning, Geostatistics, and Their Hybrid Methods, Geosciences, 9, https://doi.org/10.3390/geosciences9040180, 2019.

Lundberg, S. M.: shap [code], https://github.com/slundberg/shap/, last access 21 Jul 2021, v0.38.1, 2021.725

Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, in: Advances in Neural Information Processing Sys-

tems 30 (NeurIPS 2017 proceedings), edited by Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Gar-

nett, R., pp. 4765–4774, Long Beach, CA, USA, http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.

pdf, 2017.

Lundberg, S. M., Erion, G. G., and Lee, S.-I.: Consistent individualized feature attribution for tree ensembles, arXiv [preprint], https://arxiv.730

org/abs/1802.03888, 12 Feb 2018.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.-I.: From local

explanations to global understanding with explainable AI for trees, Nature machine intelligence, 2, 56–67, https://doi.org/10.1038/s42256-

019-0138-9, 2020.

Mattson, M. D. and Godfrey, P. J.: Identification of road salt contamination using multiple regression and GIS, Environ. Manage., 18, 767–735

773, https://doi.org/10.1007/BF02394639, 1994.

Meyer, H.: Machine learning as a tool to “map the world” ? On remote sensing and predictive modelling for environmental monitoring, 17th

Biodiversity Exploratories Assembly, Wernigerode, Germany [keynote], 4 Mar 2020.

38

https://doi.org/10.5194/acp-15-11411-2015
https://doi.org/10.5194/gmd-12-1209-2019
https://doi.org/10.1109/BigData.2017.8258500
https://doi.org/10.5194/gmd-14-1-2021
https://doi.org/10.17815/jlsrf-5-171
https://doi.org/10.5194/acp-16-4605-2016
https://doi.org/10.5194/acp-16-4605-2016
https://doi.org/10.5194/acp-16-4605-2016
https://doi.org/10.4081/gh.2014.292
https://arxiv.org/abs/1711.09325
https://doi.org/10.3390/geosciences9040180
https://github.com/slundberg/shap/
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://arxiv.org/abs/1802.03888
https://arxiv.org/abs/1802.03888
https://arxiv.org/abs/1802.03888
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1007/BF02394639


Meyer, H. and Pebesma, E.: Predicting into unknown space? Estimating the area of applicability of spatial prediction models, Methods Ecol.

Evol., 12, 1620–1633, https://doi.org/10.1111/2041-210X.13650, 2021.740

Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., and Nauss, T.: Improving performance of spatio-temporal machine learning models using

forward feature selection and target-oriented validation, Environ. Modell. Softw., 101, 1–9, https://doi.org/10.1016/j.envsoft.2017.12.001,

2018.

Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R., Schultz, M. G., Neufeld, H. S., Simpson, D., Sharps, K., Feng, Z., Gerosa,

G., Harmens, H., Kobayashi, K., Saxena, P., Paoletti, E., Sinha, V., and Xu, X.: Tropospheric Ozone Assessment Report: Present-day745

tropospheric ozone distribution and trends relevant to vegetation, Elem. Sci. Anth., 6, 47, https://doi.org/10.1525/elementa.302, 2018.

Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Steven-

son, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and

its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973,

https://doi.org/10.5194/acp-15-8889-2015, 2015.750

Nussbaum, M., Spiess, K., Baltensweiler, A., Grob, U., Keller, A., Greiner, L., Schaepman, M. E., and Papritz, A.: Evaluation of digital soil

mapping approaches with large sets of environmental covariates, Soil, 4, 1–22, https://doi.org/10.5194/soil-4-1-2018, 2018.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, J.

Mach. Learn. Res., 12, 2825–2830, https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf, 2011.755

Petermann, E., Meyer, H., Nussbaum, M., and Bossew, P.: Mapping the geogenic radon potential for Germany by machine learning, Sci.

Total Environ., 754, 142 291, https://doi.org/10.1016/j.scitotenv.2020.142291, 2021.

Ploton, P., Mortier, F., Réjou-Méchain, M., Barbier, N., Picard, N., Rossi, V., Dormann, C., Cornu, G., Viennois, G., Bayol, N.,

et al.: Spatial validation reveals poor predictive performance of large-scale ecological mapping models, Nat. Commun., 11, 1–11,

https://doi.org/10.1038/s41467-020-18321-y, 2020.760

Ren, X., Mi, Z., and Georgopoulos, P. G.: Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal es-

timation of ambient air pollution: Modeling ozone concentrations across the contiguous United States, Environ. Int., 142, 105 827,

https://doi.org/10.1016/j.envint.2020.105827, 2020.

Roscher, R., Bohn, B., Duarte, M. F., and Garcke, J.: Explainable Machine Learning for Scientific Insights and Discoveries, IEEE Access, 8,

42 200–42 216, https://doi.org/10.1109/ACCESS.2020.2976199, 2020.765

Sayeed, A., Choi, Y., Eslami, E., Jung, J., Lops, Y., Salman, A. K., Lee, J.-B., Park, H.-J., and Choi, M.-H.: A novel CMAQ-CNN hybrid

model to forecast hourly surface-ozone concentrations 14 days in advance, Sci. Rep., 11, 1–8, https://doi.org/10.1038/s41598-021-90446-

6, 2021.

Schmitz, S., Towers, S., Villena, G., Caseiro, A., Wegener, R., Klemp, D., Langer, I., Meier, F., and von Schneidemesser, E.: Unravelling

a black box: an open-source methodology for the field calibration of small air quality sensors, Atmos. Meas. Tech., 14, 7221–7241,770

https://doi.org/10.5194/amt-14-7221-2021, 2021.

Schultz, M. G., Akimoto, H., Bottenheim, J., Buchmann, B., Galbally, I. E., Gilge, S., Helmig, D., Koide, H., Lewis,

A. C., Novelli, P. C., et al.: The Global Atmosphere Watch reactive gases measurement network, Elem. Sci. Anth., 3,

https://doi.org/10.12952/journal.elementa.000067, 2015.

Schultz, M. G., Schröder, S., Lyapina, O., Cooper, O., Galbally, I., Petropavlovskikh, I., Von Schneidemesser, E., Tanimoto, H., Elshorbany,775

Y., Naja, M., Seguel, R., Dauert, U., Eckhardt, P., Feigenspahn, S., Fiebig, M., Hjellbrekke, A.-G., Hong, Y.-D., Christian Kjeld, P., Koide,

39

https://doi.org/10.1111/2041-210X.13650
https://doi.org/10.1016/j.envsoft.2017.12.001
https://doi.org/10.1525/elementa.302
https://doi.org/10.5194/acp-15-8889-2015
https://doi.org/10.5194/soil-4-1-2018
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://doi.org/10.1016/j.scitotenv.2020.142291
https://doi.org/10.1038/s41467-020-18321-y
https://doi.org/10.1016/j.envint.2020.105827
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1038/s41598-021-90446-6
https://doi.org/10.1038/s41598-021-90446-6
https://doi.org/10.1038/s41598-021-90446-6
https://doi.org/10.5194/amt-14-7221-2021
https://doi.org/10.12952/journal.elementa.000067


H., Lear, G., Tarasick, D., Ueno, M., Wallasch, M., Baumgardner, D., Chuang, M.-T., Gillett, R., Lee, M., Molloy, S., Moolla, R., Wang,

T., Sharps, K., Adame, J. A., Ancellet, G., Apadula, F., Artaxo, P., Barlasina, M., Bogucka, M., Bonasoni, P., Chang, L., Colomb, A.,

Cuevas, E., Cupeiro, M., Degorska, A., Ding, A., Fröhlich, M., Frolova, M., Gadhavi, H., Gheusi, F., Gilge, S., Gonzalez, M. Y., Gros,

V., Hamad, S. H., Helmig, D., Henriques, D., Hermansen, O., Holla, R., Huber, J., Im, U., Jaffe, D. A., Komala, N., Kubistin, D., Lam,780

K.-S., Laurila, T., Lee, H., Levy, I., Mazzoleni, C., Mazzoleni, L., McClure-Begley, A., Mohamad, M., Murovic, M., Navarro-Comas,

M., Nicodim, F., Parrish, D., Read, K. A., Reid, N., Ries, L., Saxena, P., Schwab, J. J., Scorgie, Y., Senik, I., Simmonds, P., Sinha, V.,

Skorokhod, A., Spain, G., Spangl, W., Spoor, R., Springston, S. R., Steer, K., Steinbacher, M., Suharguniyawan, E., Torre, P., Trickl, T.,

Weili, L., Weller, R., Xu, X., Xue, L., and Zhiqiang, M.: Tropospheric Ozone Assessment Report: Database and Metrics Data of Global

Surface Ozone Observations, Elem. Sci. Anth., 5, 58, https://doi.org/10.1525/elementa.244, 2017.785

Shapley, L.: A Value for n-Person Games, vol. II of Contributions to the Theory of Games, chap. 17, pp. 307–318, Princeton University Press,

Princeton, UK, https://doi.org/10.1515/9781400881970-018, 1953.

Sofen, E., Bowdalo, D., and Evans, M.: How to most effectively expand the global surface ozone observing network, Atmos. Chem. Phys.,

16, 1445–1457, https://doi.org/10.5194/acp-16-1445-2016, 2016.

Stadtler, S., Betancourt, C., and Roscher, R.: Explainable Machine Learning Reveals Capabilities, Redundancy, and Limitations of a Geospa-790

tial Air Quality Benchmark Dataset, Machine Learning and Knowledge Extraction, 4, 150–171, https://doi.org/10.3390/make4010008,

2022.

Wallace, J. and Hobbs, P.: Atmospheric Science: An Introductory Survey, vol. 92 of International Geophysics Series, Elsevier Academic

Press, Burlington, MA, USA, 2 edn., https://doi.org/10.1016/C2009-0-00034-8, 2006.

Wang, S., Ma, Y., Wang, Z., Wang, L., Chi, X., Ding, A., Yao, M., Li, Y., Li, Q., Wu, M., Zhang, L., Xiao, Y., and Zhang, Y.: Mobile795

monitoring of urban air quality at high spatial resolution by low-cost sensors: impacts of COVID-19 pandemic lockdown, Atmos. Chem.

Phys., 21, 7199–7215, https://doi.org/10.5194/acp-21-7199-2021, 2021.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B.,

Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-

Beltran, A., Gray, A. J., Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J.,800

Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag,

T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg,

P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3,

160 018, https://doi.org/10.1038/sdata.2016.18, 2016.

Young, P. J., Naik, V., Fiore, A. M., Gaudel, A., Guo, J., Lin, M. Y., Neu, J. L., Parrish, D. D., Rieder, H. E., Schnell, J. L., Tilmes, S., Wild, O.,805

Zhang, L., Ziemke, J. R., Brandt, J., Delcloo, A., Doherty, R. M., Geels, C., Hegglin, M. I., Hu, L., Im, U., Kumar, R., Luhar, A., Murray,

L., Plummer, D., Rodriguez, J., Saiz-Lopez, A., Schultz, M. G., Woodhouse, M. T., and Zeng, G.: Tropospheric Ozone Assessment Report:

Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends, Elem. Sci. Anth., 6, 10,

https://doi.org/10.1525/elementa.265, 2018.

40

https://doi.org/10.1525/elementa.244
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.5194/acp-16-1445-2016
https://doi.org/10.3390/make4010008
https://doi.org/10.1016/C2009-0-00034-8
https://doi.org/10.5194/acp-21-7199-2021
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1525/elementa.265

